Bundesnetzagentur	cetecom advanced					
	EPORT					
BNetzA-CAB-02/21-102	-4299_22-02-02					
Testing laboratory	Applicant					
cetecom advanced GmbHUntertuerkheimer Strasse 6 – 1066117 Saarbruecken / GermanyPhone:+ 49 681 5 98 - 0Fax:+ 49 681 5 98 - 9075Internet:https://cetecomadvanced.come-mail:mail@cetecomadvanced.com	Elektroniksystem i Umeå AB Tvistevägen 48 90736 Umeå / SWEDEN Phone: -/- Contact: Johan Haake e-mail: johan@elsys.se					
Accredited Testing Laboratory: The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.	Manufacturer Elektroniksystem i Umeå AB Tvistevägen 48 90736 Umeå / SWEDEN					
Test sta	indard/s					
FCC - Title 47 CFR Part 15 FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices						

RSS - 247 Issue 2 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE-LAN) Devices For further applied test standards please refer to section 3 of this test report.

Kind of test item:	LoRa Device
Model name:	ERS-2
FCC ID:	2ANX3-ERS02
ISED certification number:	26904-ERS02
Frequency:	902 MHz to 928 MHz
Technology tested:	LoRa
Antenna:	Integrated antenna
Power supply:	3.0 V DC by batteries
Temperature range:	-40°C to +85°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Marco Bertolino
Supervisor Radio Services
Radio Labs

Test performed:

Michael Dorongovski Lab Manager Radio Labs

1 Table of contents

1	Table o	f contents	2						
2	Genera	l information	3						
	2.2	Notes and disclaimer Application details Fest laboratories sub-contracted	3						
3	Test sta	andard/s, references and accreditations	4						
4	Reporti	ng statements of conformity – decision rule	5						
5	Test en	vironment	6						
6	Test ite	m	6						
		General description Additional information							
7	Sequen	ce of testing	7						
		Sequence of testing radiated spurious 9 kHz to 30 MHz							
		Sequence of testing radiated spurious 30 MHz to 1 GHz							
		Sequence of testing radiated spurious 1 GHz to 18 GHz							
8	Descrip	tion of the test setup	10						
		Shielded semi anechoic chamber							
		Shielded fully anechoic chamber							
		Conducted measurements system							
9		ement uncertainty							
10	Sum	mary of measurement results	15						
11	Addit	ional comments	16						
12	Meas	surement results Part 1 FHSS	17						
	12.1	Antenna gain	17						
	12.2	Carrier Frequency Separation							
	12.3	Number of Hopping Channels							
	12.4 12.5	Average Time of Occupancy (dwell time) Spectrum bandwidth of a FHSS system							
	12.5	Maximum Output Power							
	12.7	Detailed spurious emissions @ the band edge – conducted and radiated							
	12.8	Spurious Emissions Conducted							
	12.9	Spurious Emissions Radiated < 30 MHz	28						
	12.10	Spurious emissions radiated 30 MHz to 1 GHz							
	12.11	Spurious emissions radiated above 1 GHz	33						
13	Gloss	sary	37						
14	Docu	ment history	38						
15	5 Accreditation Certificate – D-PL-12076-01-04								
16	Accre	editation Certificate – D-PL-12076-01-05	39						

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. cetecom advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of cetecom advanced GmbH.

The testing service provided by cetecom advanced GmbH has been rendered under the current "General Terms and Conditions for cetecom advanced GmbH".

cetecom advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the cetecom advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the cetecom advanced GmbH test report include or imply any product or service warranties from cetecom advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by cetecom advanced GmbH.

All rights and remedies regarding vendor's products and services for which cetecom advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by cetecom advanced GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order:	2023-05-03
Date of receipt of test item:	2023-06-15
Start of test:*	2023-06-19
End of test:*	2023-07-11
Person(s) present during the test:	-/-

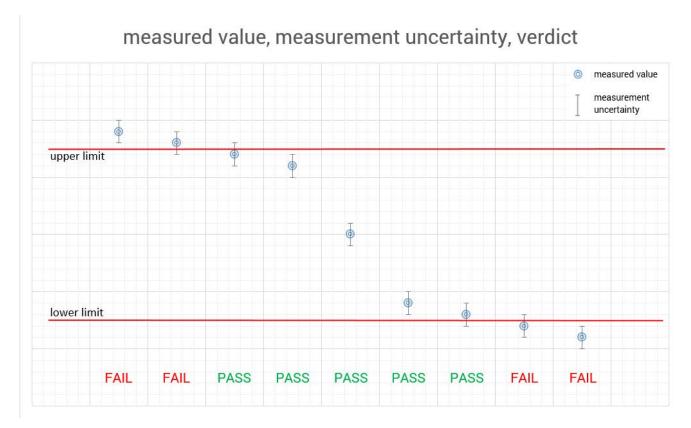
*Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

2.3 Test laboratories sub-contracted

None

3 Test standard/s, references and accreditations

Test standard	Date	Description			
FCC - Title 47 CFR Part 15	-/-	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices			
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices			
RSS - Gen Issue 5 incl. Amendment 1 & 2	February 2021	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus			
Guidance	Version	Description			
KDB 558074 D01 ANSI C63.4-2014 ANSI C63.10-2013	v05r02 -/- -/-	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices			
Accreditation	Description	iption			
D-PL-12076-01-04		lecommunication and EMC Canada ps://www.dakks.de/as/ast/d/D-PL-12076-01-04e.pdf			
D-PL-12076-01-05		Telecommunication FCC requirements https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf			


ISED Testing Laboratory Recognized Listing Number: DE0001 FCC designation number: DE0002

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

5 Test environment

Temperature :		T _{nom} T _{max} T _{min}	+22 °C during room temperature tests No tests under extreme environmental conditions required. No tests under extreme environmental conditions required.
Relative humidity content	:		50 %
Barometric pressure	:		1021 hpa
		Vnom	3.0 V DC by batteries
Power supply	:	V _{max}	No tests under extreme environmental conditions required.
		V_{min}	No tests under extreme environmental conditions required.

6 Test item

6.1 General description

Kind of test item :	LoRa Device		
Model name :	ERS-2		
HMN :	-/-		
PMN :	ERS2, ERS2-lite, ERS2-CO2, ERS2-EYE, ERS2-Sound, ERS2-VOC, ERS2-CO2lite		
HVIN :	6		
FVIN :	3		
S/N serial number :	Rad. A81758FFFE09D2A3		
S/N senai number .	Cond. A81758FFFE09D2A6		
Hardware status :	6		
Software status :	3		
Firmware status :	NA		
Frequency band :	902 MHz to 928 MHz		
Type of radio transmission :	EHSS		
Use of frequency spectrum :	FHSS		
Type of modulation :	0-QPSK		
Number of channels :	64		
Antenna :	Integrated antenna		
Power supply :	3.0 V DC by batteries		
Temperature range :	-40°C to +85°C		

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report:

1-4299_22-02-01_AnnexA 1-4299_22-02-01_AnnexB 1-4299_22-02-01_AnnexD

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

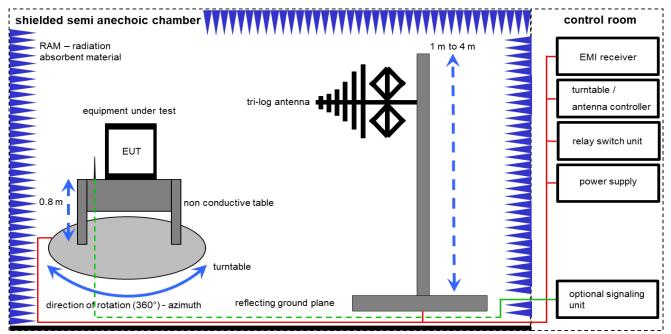
8 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Each block diagram listed can contain several test setup configurations. All devices belonging to a test setup are identified with the same letter syntax. For example: Column Setup and all devices with an A.

Agenda: Kind of Calibration


- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated

- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

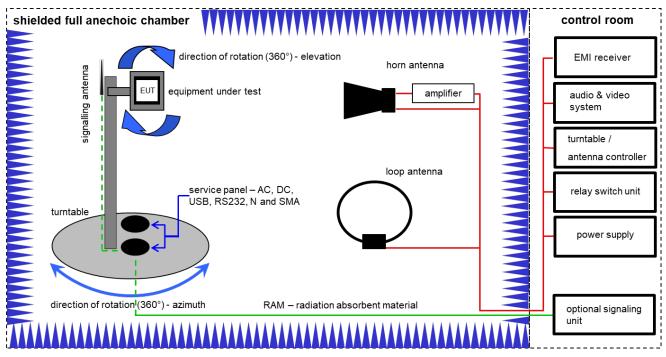
8.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter; EMC32 software version: 10.59.00

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)


Example calculation:

FS [dBµV/m] = 12.35 [dBµV/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dBµV/m] (35.69 µV/m)

Equipment table:

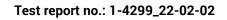
No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	А	Semi anechoic chamber	3000023	MWB AG	-/-	300000551	ne	-/-	-/-
3	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
4	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
5	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
6	A	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	318	300003696	vIKI!	30.09.2021	29.09.2023
7	Α	Turntable	2089-4.0	EMCO	-/-	300004394	ne	-/-	-/-
8	Α	PC	TecLine	F+W	-/-	300004388	ne	-/-	-/-
9	Α	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	09.12.2022	31.12.2023

8.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter

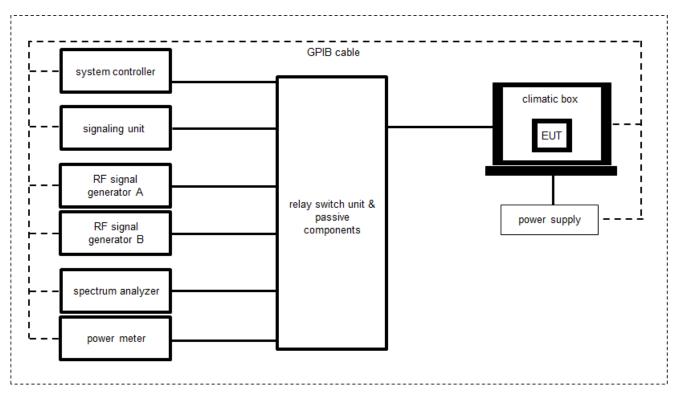
FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)


Example calculation:

FS [dBµV/m] = 40.0 [dBµV/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dBµV/m] (71.61 µV/m)

Equipment table:


No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А, В	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	vIKI!	02.08.2021	31.08.2023
2	С	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vlKl!	01.07.2021	31.07.2023
3	В	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789	ne	-/-	-/-
4	A, B, C	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22051	300004483	ev	-/-	-/-
5	A, B, C	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000032	300004510	ne	-/-	-/-
6	A, B, C	Computer	Intel Core i3 3220/3,3 GHz, Prozessor	-/-	2V2403033A54 21	300004591	ne	-/-	-/-
7	A, B, C	NEXIO EMV-Software	BAT EMC V2022.0.22.0	Nexio	-/-	300004682	ne	-/-	-/-
8	A, B, C	Anechoic chamber	-/-	TDK	-/-	300003726	ne	-/-	-/-
9	A, B, C	EMI Test Receiver 9kHz-26,5GHz	ESR26	Rohde & Schwarz	101376	300005063	k	13.12.2022	31.12.2023
10	В	RF-Amplifier	AMF-6F06001800-30- 10P-R	NARDA-MITEQ Inc	2011571	300005240	ev	-/-	-/-

cetecom advanced

8.3 Conducted measurements system

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A	Switch / Control Unit (including DC- Block, Splitter)	3488A	HP	-/-	300000929	ne	-/-	-/-
2	Α	Hygro-Thermometer	-/-, 5-45C, 20-100rF	Thies Clima	-/-	40000080	ev	15.09.2022	14.09.2024
3	A	Signal analyzer	FSV30	Rohde&Schwarz	1321.3008K30/ 103170	300004855	vlKI!	09.12.2022	31.12.2024
4	A	USB-GPIB-Interface	82357B	Agilent Technologies	MY54323070	300004852	ne	-/-	-/-
5	А	Tester Software C.BER	Version 5.0	CTC advanced GmbH	0001	400001379	ne	-/-	-/-
6	A	Switch matrix	RSM 1.1	CTC advanced GmbH	31534892	400001456	ev	20.09.2022	19.09.2023

9 Measurement uncertainty

Measurement uncertainty							
Test case	Uncertainty						
Antenna gain	± 3 dB						
Carrier frequency separation	± 21.5 kHz						
Number of hopping channels	-/-						
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative						
Maximum output power	±1 dB						
Detailed conducted spurious emissions @ the band edge	± 1 dB						
Band edge compliance radiated	± 3 dB						
Spurious emissions conducted	± 3 dB						
Spurious emissions radiated below 30 MHz	± 3 dB						
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB						
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB						
Spurious emissions radiated above 12.75 GHz	± 4.5 dB						

10 Summary of measurement results

\square	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier		Description		V	erdict		Date		Remark	
RF-Testing	CFR Part 15 RSS - 247, Issue 2				Ρ	assed	2	.023-08-	08	-/-
Test specification clause	Test case	Temperature conditions	Power source voltages	Mod	le	с	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4 (d)	Antenna gain	Nominal	Nominal	TX sin chanı	-	\boxtimes				-/-
§15.247(a)(1) RSS - 247 / 5.1 (b)	Carrier frequency separation	Nominal	Nominal	TX hop	ping	\boxtimes				-/-
§15.247(a)(1) RSS - 247 / 5.1 (d)	Number of hopping channels	Nominal	Nominal	TX hop	ping	\boxtimes				-/-
§15.247(a)(1) (iii) RSS - 247 / 5.1 (d)	Time of occupancy (dwell time)	Nominal	Nominal	TX hop	ping	X				-/-
§15.247(a)(1) RSS - 247 / 5.1 (a)	Spectrum bandwidth of a FHSS system bandwidth	Nominal	Nominal	TX sin chanı						-/-
§15.247(b)(1) RSS - 247 / 5.4 (b)	Maximum output power	Nominal	Nominal	TX sin chani	•	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge - conducted	Nominal	Nominal	TX hop	ping	X				-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance radiated	Nominal	Nominal	-/-		\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5	Spurious emissions conducted	Nominal	Nominal	TX sin chanı	•					-/-
§15.209(a) RSS - Gen	Spurious emissions radiated below 30 MHz	Nominal	Nominal	TX sin chanı	•	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated 30 MHz to 1 GHz	Nominal	Nominal	TX sin chann RX	el /	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated above 1 GHz	Nominal	Nominal	TX sin chann RX	el /	\boxtimes				-/-
§15.107(a) §15.207	Conducted emissions below 30 MHz (AC conducted)	Nominal	Nominal	TX hyl						-/-

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

Test report no.: 1-4299_22-02-02

11 Additional comments

Reference documents:	1-4299	_22-02-02_Annex_MR
Special test descriptions:	None	
Configuration descriptions:		64 channels with a nominal bandwidth of 125 kHz and 200 kHz el spacing: lowest channel 902.3 MHz middle channel 908.5 MHz highest channel 914.9 MHz
Test mode:	\boxtimes	Special software is used. EUT is transmitting pseudo random data by itself

12 Measurement results Part 1 FHSS

12.1 Antenna gain

Measurement:

Measurement parameters					
	1-4299_22-02-02_Annex_MR				
External result file	FCC 15.247 # Maximum peak conducted output				
	power ~ Generic 0G9 hopp				
Test setup	See sub clause 8.2 C (radiated)				
Test setup	See sub clause 9.3 A (conducted)				
Measurement uncertainty	See sub clause 9				

<u>Limits:</u>

FCC	IC					
Antenna gain						
with directional gains that do not exceed 6 dBi. E transmitting antennas of directional gain greater than	aph (b) of this section is based on the use of antennas xcept as shown in paragraph (c) of this section, if 6 dBi are used, the conducted output power from the d values in paragraphs (b)(1), (b)(2), and (b)(3) of this lirectional gain of the antenna exceeds 6 dBi.					

Results:

	Low channel	Middle channel	High channel
Conducted power / dBm	14.2	14.2	14.3
Radiated power / dBm	13.3	13.1	12.8
Gain / dBi (Calculated)	-0.9	-1.1	-1.5

12.2 Carrier Frequency Separation

Description:

Measurement of the carrier frequency separation of a hopping system. EUT in hopping mode.

Measurement:

Measurement parameters					
Detector	Peak				
Sweep time	Auto				
Resolution bandwidth	See plot				
Video bandwidth	See plot				
Span	See plot				
Trace mode	Max hold				
Test setup	See chapter 8.3A				
Measurement uncertainty	See chapter 9				

<u>Limits:</u>

FCC	IC				
Carrier frequency separation					
Minimum 25 kHz or two-thirds of the 20 dB bandwidth of the hopping system whichever is greater. The two-thirds of the					
20 dB bandwidth for IC is only valid f	or the ISM band 2400 – 2483.5 MHz.				

<u>Result:</u> The channel separation is 200 kHz.

Plots:

Plot 1: Frequency separation

Spectrum RefLevel 19.42 dBm Att 30 dB Mode Sweep 😑 1Pk Max 13.87 dBn 90ք:094400 MH; 10 ABm M1[1] -3 4, \mathcal{D} 0 dBr 10 dBm 20 dBm -30 dBm -40 dBm -50 dBm -60 dBm--70 dBm 1001 pts Span 1.0 MHz CF 908.5 MHz Marker Peak List X-value 908.041500 MHz 908.094400 MHz 908.317200 MHz Y-value 13.735 dBm 13.868 dBm 13.865 dBm X-value 908.472000 MHz 908.683800 MHz Y-value 13.826 dBm 13.844 dBm No No 4 29.01.2007 02:16:04 Measuring... 🚺 🚺 🚧

Date: 29.JAN.2007 02:16:04

12.3 Number of Hopping Channels

<u>D</u>

<u>Measurement:</u>

Measurement parameters					
Detector	Peak				
Sweep time	Auto				
Resolution bandwidth	See plots				
Video bandwidth	See plots				
Span	See plots				
Trace mode	Max hold				
Test setup	See chapter 8.3A				
Measurement uncertainty	See chapter 9				

<u>Limits:</u>

FCC	IC			
Number of hopping channels				
At least 25 non overlapping hopping channels. If the 20 dB bandwidth of the hopping channel is less than 250 kHz, the				
system shall use at lea	st 50 hopping channels.			

<u>Result:</u> The EUT uses 64 channels.

Plots:

Plot 1: Number of channels

Spect	um									
Ref Le	vel 18	3.89 dBm	Offset 8.4	7 dB 👄	RBW 100 kHz					
Att		30 dB	6 SWT 32.	1 m s 👄	VBW 300 kHz	Mode	Sweep			
SGL Co	unt 10	00000/10	0000				-			
1Pk Ma	эх									
						D	3[1]			-20.32 di
0 dBm-		m	m m m m m	YYYYY	TYTYYY			ويع بك بيال بديد	A.A.AME.	560 230 мн:
			1 1			M	1[1]`	r		1 13.98 dBn
dBm—	-		++						902	.516450 MH
2			1 1							PP 1
10 dBm	+		+						+	+ ī
			1 1							
20 dBm	-									
an dam										
30 dBm										
40 dBm										
to abili			1 1							
50 dBm	\rightarrow									
			1 1							
60 dBm	+									_
			1 1							
70 dBm	+		+ +						-	-
			1 1							
start 9	02.01	ИНz			32001	pts			Stop	916.0 MHz
arker										
Type	Ref	Trc	X-value		Y-value	Func	tion	Fur	nction Resu	ılt
M1		1	902.51645		13.98 dBm					
D2	M1	1	-387.04		-20.11 de					
D3	M1	1	12.56023	MHz	-20.32 dB	5				
							leady.		100	28.01.2007 07:42:20

Date: 28.JAN.2007 07:42:20

12.4 Average Time of Occupancy (dwell time)

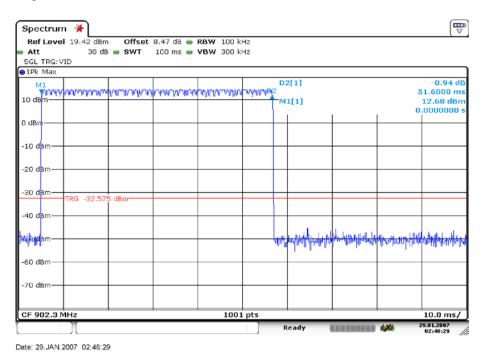
Measurement:

The measurement is performed in zero span mode to show that none of the 64 used channels is allocated more than 0.4 seconds within a 20 seconds interval.

<u>Limits:</u>

FCC	IC					
Average time of occupancy						
For frequency hopping systems operating in the 902- channel is less than 250 kHz, the system shall use at occupancy on any frequency shall not be greater tha bandwidth of the hopping channel is 250 kHz or greate and the average time of occupancy on any frequency s period.	least 50 hopping frequencies and the average time of an 0.4 seconds within 20 second period; if the 20 dB r, the system shall use at least 25 hopping frequencies					

Result:The time slot length is = 51.6 msNumber of hops / channel @ 20s = 1


Within 20 s period, the average time of occupancy in 20 s: 51.6 ms

→ The average time of occupancy = 51.6 ms

Plots:

Plot 1: Time slot length = 51.6ms

Plot 2: hops / channel @ 20s = 1

Spectrum	ب 🖌 ۱					
Ref Level	19.42	dBm Offset 8.47 dB	RBW 100 kHz			
Att	30	0 dB 👄 SWT 660 s	👄 VBW 300 kHz			
SGL TRG: V	ID					
∍1Pk Max						
		D2		D3[1]		-29.21 dB
10 dBm-		4				329.335 s
10 dbiii				M1[1]		-6.57 dBm
0 dBm						0.000 5
-						
-10 dBm-		_				
-20 dBm-		-				+
-30 dBm	TRG -32	.575 dBm	03			
-40 dBm		manument		and an all the second of		the second second bits in the second
-50 dBm			and a state of the			
-50 ubiii						
-60 dBm						
oo abiii						
-70 dBm						
CF 902.3 M	IHZ		1001 pt	s		66.0 s/
Marker					-	
Type Ret		X-value	Y-value	Function	Fun	ction Result
M1 D2 M	1 1	0.0 s 130.015 s	-6.57 dBm 20.87 dB			
D2 M		329.335 s	-29.21 dB			
20 14	1 1	529,000 3	25.21 00			T
	П			Ready		29.01.2007 03:02:46

Date: 29.JAN.2007 03:02:47

12.5 Spectrum bandwidth of a FHSS system

Measurement:

Measurement parameters				
External result file	1-4299_22-02-02_Annex_MR			
External result me	FCC 15.247 # Bandwidths ~ Generic 0G9 hopp			
Test setup	See chapter 8.3A			
Measurement uncertainty	See chapter 9			

<u>Limits:</u>

FCC	IC		
Spectrum bandwidth of a FHSS system			
The maximum allowed 20 dB bandwid	dth of the hopping channel is 500 kHz.		

<u>Result:</u>

Test Co	nditiona	20dB Bandwidth / kHz			
Test Co	nditions	Low channel	Middle channel	High channel	
T _{nom}	V _{nom}	145.0	144.0	144.0	

Test Co	nditiono	99% Bandwidth / kHz			
Test Co	nditions	Low channel	Middle channel	High channel	
T _{nom} V _{nom}		126.5	126.0	126.2	

12.6 Maximum Output Power

Measurement:

Measurement parameter				
	1-4299_22-02-02_Annex_MR			
External result file	FCC 15.247 # Maximum peak conducted output			
	power ~ Generic 0G9 hopp			
Used equipment:	See chapter 8.3A			
Measurement uncertainty:	See chapter 9			

<u>Limits:</u>

FCC	IC			
Maximum Output Power Conducted				
	928 MHz band: 1 watt (30 dBm) for systems employing for systems employing less than 50 hopping channels, paragraph (a)(1)(i) of this section.			

<u>Result:</u>

Test Co	nditions	Maximum Output Power Conducted / dBm				
100100	nantono	Low channel	Middle channel	High channel		
T _{nom} V _{nom}		14.2	14.2	14.3		

12.7 Detailed spurious emissions @ the band edge - conducted and radiated

Measurement:

Measurement parameters				
	1-4299_22-02-02_Annex_MR			
External result file	FCC 15.247 # TX spurious conducted 20dBc ~			
	Generic 0G9 hopp			
Test setup	See chapter 8.3A			
Measurement uncertainty	See chapter 9			

<u>Limits:</u>

FCC	IC

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.

<u>Results:</u> Compliant (See log file)

Plot 1: Hopping on, 20 dBc

Spectrum									
Ref Level	18.89 dB	m Offset 8	3.47 dB 👄	RBW 100 kH	z				
Att	30 c	iB 😑 SWT 🛛 3	2.1 ms 👄	VBW 300 kH	z Mode	sweep			
SGL Count	100000/:	100000				-			
∋1Pk Max									
Barrow	Y Y Y Y Y	mmm	\sim	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	MTTYT	D3[1]	m	~~~~~	-20.32 dB
				1.1.1		M1[1]	Ŷ	902	13.98 dBm .516450 MHz
dBm						1	1	1	DB
10 dBm							_		
-20 dBm						_	_		+
-30 dBm							_		
-40 dBm								_	
-50 dBm									
-60 dBm									
-70 dBm									
y o dom									
Start 902.0	MHz			3200	1 pts		1	Stop	916.0 MHz
larker									
Type Ref	Trc	X-value		Y-value	Fur	nction	Fu	nction Resu	ılt
M1	1	902.5164		13.98 dB					
D2 M1 D3 M1		-387.	04 kHz	-20.11 (
00 MI.	1 A	12,3002		20.32 0					20.01.2007
	Л				5	Ready			28.01.2007 07:42:20

Date: 28.JAN.2007 07:42:20

12.8 Spurious Emissions Conducted

Measurement:

Measurement parameter				
	1-4299_22-02-02_Annex_MR			
External result file	FCC 15.247 # TX spurious conducted 20dBc ~			
	Generic 0G9 hopp			
Used equipment:	See chapter 8.3 A			
Measurement uncertainty:	See chapter 9			

<u>Limits:</u>

FCC	IC				
TX spurious emissions conducted					
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below					

radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required

<u>Results:</u> Compliant (See log file)

12.9 Spurious Emissions Radiated < 30 MHz

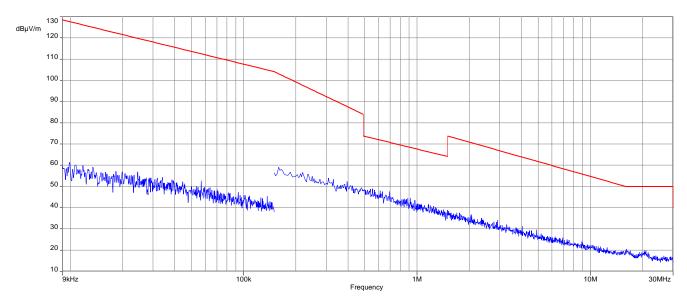
Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit channels are 00; 39 and 78. The measurement is performed in the mode with the highest output power. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

Measurement:

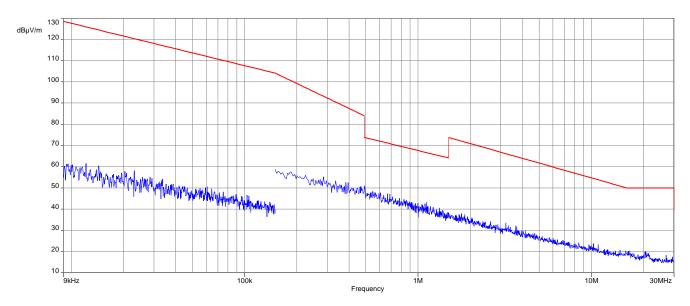
Measurement parameter					
Detector:	Peak / Quasi Peak				
Sweep time:	Auto				
Video bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz				
Resolution bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz				
Span:	9 kHz to 30 MHz				
Trace-Mode:	Max Hold				
Used equipment:	See chapter 8.2 C				
Measurement uncertainty:	See chapter 9				

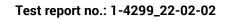
<u>Limits:</u>

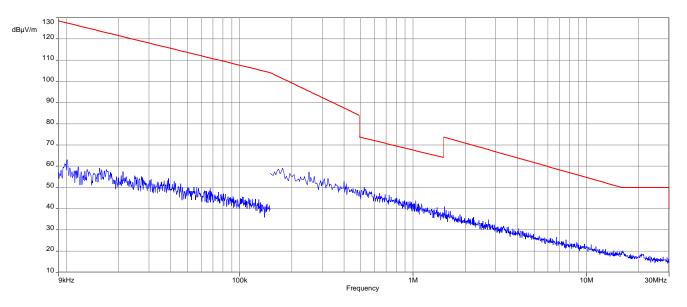

FCC		IC		
	<u>.</u>			
Frequency / MHz	Field strength	n / (dBμV/m)	Measuremen	t distance
0.009 - 0.490	2400/F(kHz)		300	
0.490 - 1.705	24000/F(kHz)		30	
1.705 - 30.0	30)	30	

Result:

	Spurious emission level								
Lowest channel Middle channel Highest channel						nel			
Frequency / MHz	Detector	Level / (dBµV/m)	Frequency / MHz	- Delector			Detector	Level / (dBµV/m)	




Plots:


Plot 1: TX-Mode low channel

Plot 2: TX-Mode mid channel

12.10 Spurious emissions radiated 30 MHz to 1 GHz

Measurement:

M	Measurement parameters				
Detector	Peak / Quasi Peak				
Sweep time	Auto				
Resolution bandwidth	3 x VBW				
Video bandwidth	120 kHz				
Span	30 MHz to 1 GHz				
Trace mode	Max hold				
Measured modulation	FHSS single channel mode				
Test setup	See sub clause 8.1 A				
Measurement uncertainty	See sub clause 9				

<u>Limits:</u>

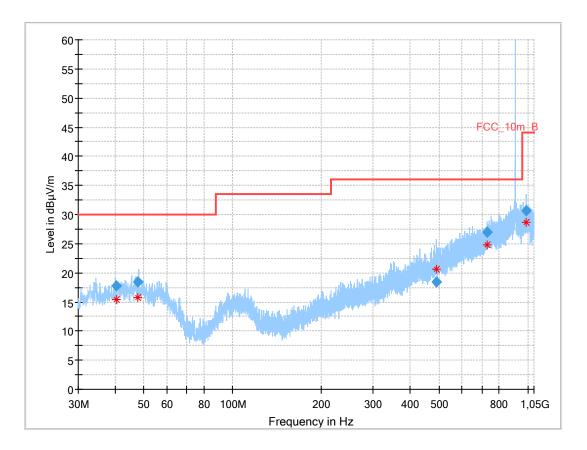
FCC			IC				
Band-edge (Band-edge Compliance of conducted and radiated emissions						
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).							
Frequency / MHz Field Strength / (dBµV/m) Measurement distance / m							
30 - 88 30.0 10							
88 - 216	33	.5	10				

36.0

54.0

216 - 960

Above 960


10

3

Plots:

Plot 1: 30 MHz - 1 GHz, horizontal & vertical polarisation, valid for all channels

Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
40.412	17.79	30.0	12.2	1000	120.0	98.0	V	-37	15
47.743	18.48	30.0	11.5	1000	120.0	169.0	V	20	16
491.966	18.42	36.0	17.6	1000	120.0	103.0	Н	142	20
730.082	26.96	36.0	9.0	1000	120.0	155.0	V	92	23
908.440	102.37	36.0	-66.4	1000	120.0	98.0	Н	174	26
985.316	30.66	44.0	13.3	1000	120.0	186.0	v	52	26

12.11 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed in the mode with the highest output power.

Measurement:

Measurement parameters				
Detector	Peak / RMS			
Sweep time	Auto			
Resolution bandwidth	1 MHz			
Video bandwidth	3 x RBW			
Span	1 GHz to 10 GHz			
Trace mode	Max hold			
Measured modulation	FHSS single channel mode			
Test setup	See sub clause 8.2 B			
Measurement uncertainty	See sub clause 9			

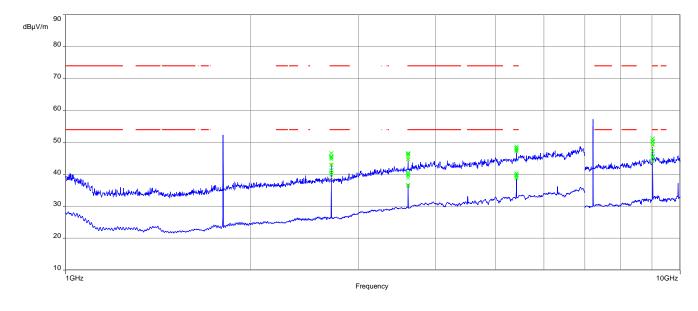
<u>Limits:</u>

FCC			ISED				
	TX spurious em	issions radiated					
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).							
	§15	.209					
Frequency (MHz)Field strength (dBµV/m)Measurement distance							
Above 960 54.0 (Average) 3							
Above 960	74.0 (Peak)	3				

<u>Result:</u>

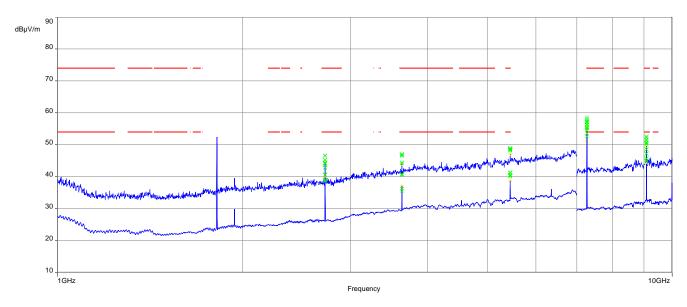
TX spurious emissions radiated									
L	owest chanr	nel	М	iddle chann	el	Highest channel			
Frequency / MHz	Detector	Level / (dBµV/m)	Frequency / MHz	Detector	Level / (dBµV/m)	Frequency / MHz	Detector	Level / (dBµV/m)	
2706	Peak	46.7	2725	Peak	46.6	2744	Peak	47.0	
2700	AVG	43.0	2725	AVG	42.8	2144	AVG	43.4	
3609	Peak	46.7	3634	Peak	47.0	3660	Peak	47.7	
3009	AVG	40.7	3034	AVG	40.8	3000	AVG	41.4	
5413	Peak	48.7	5450	Peak	48.9	7319	Peak	57.1	
5413	AVG	40.3	5450	AVG	41.3	7319	AVG	50.4*	
9023	Peak	51.3	7268	Peak	58.6	0140	Peak	51.5	
9023	AVG	47.3	/208	AVG	50.9*	9149	AVG	46.1	
/	Peak	-/-	0095	Peak	52.6	1	Peak	-/-	
-/-	AVG	-/-	9085	AVG	48.5	-/-	AVG	-/-	

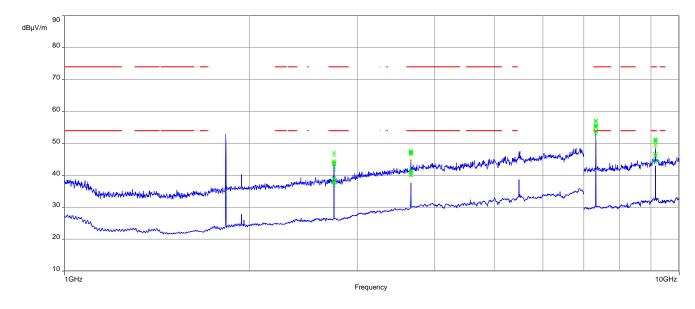
*) Average emission adjusting factor:


F = 20 * log (dwell time / 100 ms)

The dwell time of the longest possible transmission is 51.6 ms.

In a period of 100 ms, we have a maximum of 1 transmission and that implies a correction factor for spurious measurement emissions:


F = 20 * log (1 * 51.6 / 100) = -5.7 dB



Plot 1: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (lowest channel)

Plot 2: 1 GHz - 12.75 GHz, horizontal & vertical polarisation (middle channel)

Plot 3: 1 GHz - 12.75 GHz, horizontal & vertical polarisation (highest channel)

13 Glossary

FUT	Fruinment under test
EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
00	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
OOB	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz
0,110	

14 Document history

Version	Applied changes	Date of release
-/-	Initial release	2023-08-08

15 Accreditation Certificate – D-PL-12076-01-04

first page	last page
Eventset Deutsche Akkreditierungsstelle GmbH Intrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Occoreditation Wiltrage Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory Signatory to the Multilateral Agreements of DIN EN ISO/IEC 17025:2018 to carry out tests in the following for compatibility (EMC) for Canadian	Deutsche Akkreditierungsstelle GmbH Office Berlin Spittelmankt 10 10117 Berlin Gösz? Frankfurt am Main Bundesalles 100 38116 Braunschweig
Standards The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 07 pages. Registration number of the certificate: D-PL-12076-01-04 Frankfurt am Main, 09.06.2020 The certificote together with its annex reflects the status at the time of the date of issue. The current status of the scape of accreditation can be found in the disables of downlow Attractionary attracts of the scape of accreditation can be found in the disables of downlow Attractionary attracts of the scape of accreditation can be found in the disables of downlow Attractionary attracts of the scape of accreditation can be found in the disables of downlow Attractionary attracts of the scape of accreditation can be found in the disables of downlow Attractionary attracts of the scape of accreditation attracts defined and access the scape attracts of the scape of accreditation can be found in the disables of downlow Attractionary attracts of the scape of accreditation attracts defined and access the scape attracts of a scape attracts of a scape attracts of access the scape attracts of	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAkkS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAkks. The accreditation assessed by DAkks. The accreditation of the (1) 2622) and the hegulation (EC) to 752/002 of the European Polariment and of the call of Statistical by DAkks. The accreditation (Effect) of the cover polarized by the scope of the data of Statistical Devices of the scope of the scope of the data of Statistical Devices of the scope of the scope of the data of Statistical Accreditation of the European thron 124 of 91 July 2009. The up-to-date state of membership can be retrieved from the following websites: EX: www.upogean.accreditation.org LAC: www.lac.org LAC: www.lac.org LAC

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-04e.pdf

or

https://cetecomadvanced.com/files/pdfs/d-pl-12076-01-04_canada_tcemc.pdf

16 Accreditation Certificate – D-PL-12076-01-05

first page	last page
Every provide the state of	Office Berlin Spittelmarkt 10 10117 Berlin Office Frankfurt am Main Europa-Allee 52 60327 Frankfurt am Main Office Braunschweig Bundesallee 100 38116 Braunschweig Situation of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkrediterungsstelle GmbH (Dakks). Exempted is the unchanged form of separate disseminations of the cover heat by the conforming assessment bubby mentioned overled.
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-01.1t Comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 05 pages. Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Main, 09.06.2020 The certificate legther with its annex reflects the status at the time of the dete of issue. The current status of the scope of accredition can be found in the database of accredited badies of Database Advertiseurogystelle GmbH. http://www.datak.advert/content/foccredited-badies-disks	No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation was granted pursuant to the Act on the Accreditation Body (AkSstelleG) of 31 July 2009 (Federal Law Gazette 1 p. 2625) and the Begulation (EC) No 755/2008 of the European Parlament and of the Council of July 2008 estition auth requirements for accreditation and mixide surveillance relating to the marketing of products (Official Journal of the European Office European Cooperation for Accreditation to the Multilated Japerment(s for Accreditation and mixide surveillance relating to the marketing of products (Official Journal of the European Office European Cooperation for Accreditation (LAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EX: www.iacong LAC: www.iaf.nu

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-05e.pdf

or

https://cetecomadvanced.com/files/pdfs/d-pl-12076-01-05_tcb_usa.pdf