HAC T-Coil Test Report Report No. : HFBFJZ-WTW-P22040598-1 Applicant : Kyocera Corporation % Kyocera International, Inc. Address : 8611 Balboa Avenue, San Diego, CA 92123 Product : Feature Phone FCC ID : V65E4811 Brand : Kyocera Model No. : E4811 Series Model No. : E4811NC (refer to section 2 for more details) Standards : FCC 47 CFR Part 20.19, ANSI C63.19-2011 KDB 285076 D01 v05, KDB 285076 D02 v03r01, KDB 285076 D03 v01r04 Sample Received Date : Apr. 22, 2022 Date of Testing : May 30, 2022 ~ Jun. 07, 2022 T-Rating Summary : T4 Lab Address : No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan Test Location : No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City, Taiwan **CERTIFICATION:** The above equipment have been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch – Lin Kou Laboratories**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's HAC characteristics under the conditions specified in this report. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product certification, approval, or endorsement by TAF or any government agencies. Prepared By: Vera Huang / Specialist Approved By: Gordon Lin / Manager FCC Accredited No.: TW0003 This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at https://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Report Format Version 5.0.0 Page No. : 1 of 23 Report No. : HFBFJZ-WTW-P22040598-1 Issued Date : Jul. 22, 2022 Page No. : 2 of 23 Issued Date : Jul. 22, 2022 # **Table of Contents** | Rel | ease C | ontrol Record | 3 | |-----|--------|--|----| | 1. | | nary of Maximum T-Rating | | | 2. | | iption of Equipment Under Test | | | 3. | | F-Coil Measurement System | | | | 3.1 | SPEAG DASY6 System | | | | _ | 3.1.1 Robot | | | | | 3.1.2 AM1D Probe | | | | | 3.1.3 Audio Magnetic Calibration Coil (AMCC) | ç | | | | 3.1.4 Audio Magnetic Measuring Instrument (AMMI) | ç | | | | 3.1.5 Data Acquisition Electronics (DAE) | ç | | | | 3.1.6 Phantoms | | | | | 3.1.7 Device Holder | | | | 3.2 | System Calibration | | | | 3.3 | EUT Measurements Reference and Plane | | | | 3.4 | HAC T-Coil Measurement Procedure | | | | 3.5 | Test System Setup and Audio Input Level | | | | 3.6 | Test System Setup for OTT VoIP | | | 4. | HAC N | Measurement Evaluation | 19 | | | 4.1 | Measurement Criteria | 19 | | | | 4.1.1 Field Intensity | 19 | | | | 4.1.2 Frequency Response | 19 | | | | 4.1.3 Signal Quality | 20 | | | 4.2 | EUT Configuration and Setting | 20 | | | 4.3 | HAC T-Coil Testing Results | | | | | 4.3.1 WCDMA CMRS Voice Testing Results | 20 | | | | 4.3.1 VoLTE Testing Results | 20 | | | | 4.3.2 VoWiFi Testing Results | | | 5. | Calibr | ation of Test Equipment | | | 6. | Measu | rement Uncertainty | 22 | | 7 | Inform | nation of the Testing Laboratories | 23 | Annex A. Plots of HAC T-Coil Measurement Annex B. HAC T-Coil Test Result Annex C. Calibration of Test Equipment List Annex Z. Calibration Certificate for Probe ## **Release Control Record** | Report No. | Reason for Change | Date Issued | |------------------------|-------------------|---------------| | HFBFJZ-WTW-P22040598-1 | Initial release | Jul. 22, 2022 | Report Format Version 5.0.0 Page No. : 3 of 23 Report No.: HFBFJZ-WTW-P22040598-1 Issued Date : Jul. 22, 2022 ## 1. Summary of Maximum T-Rating | Mode | Band | CMRS Voice
T-Rating | VoLTE
T-Rating | VoWiFi
T-Rating | OTT Voice
Calling
T-Rating | | | |------------------|---------|------------------------|-------------------|--------------------|----------------------------------|----|--| | WCDMA | Band II | T4 | N/A | N/A | N/A | | | | WCDIVIA | Band V | T4 | N/A | N/A | IN/A | | | | | Band 2 | | T4 | | N/A | | | | | Band 4 | N/A | T4 | N/A | | | | | FDD-LTE | Band 5 | | T4 | | | | | | | Band 12 | | T4 | | | | | | | Band 13 | | T4 | | | | | | | 2.4G | | | T4 | | | | | | 5.2G | | | | | T4 | | | WLAN | 5.3G | N/A | N/A N/A | T4 | N/A | | | | | 5.6G | | | T4 | | | | | | 5.8G | | | T4 | | | | | T-Rating Summary | | | 7 | Γ4 | | | | #### Note: - 1. The HAC T-Coil limit (T-Rating Category T3) is specified in FCC 47 CFR part 20.19 and ANSI C63.19. - 2. The device T-Coil rating is determined by the minimum rating. Report Format Version 5.0.0 Page No. : 4 of 23 Report No. : HFBFJZ-WTW-P22040598-1 Issued Date : Jul. 22, 2022 ## 2. <u>Description of Equipment Under Test</u> | EUT Type | Feature Phone | |-----------------------------------|---| | FCC ID | V65E4811 | | Brand Name | Kyocera | | Model Name | E4811 | | Series Model Name | E4811NC | | Tx Frequency Bands
(Unit: MHz) | WCDMA Band II: 1852.4 ~ 1907.6
WCDMA Band V: 826.4 ~ 846.6
LTE Band 2: 1850.7 ~ 1909.3
LTE Band 4: 1710.7 ~ 1754.3
LTE Band 5: 824.7 ~ 848.3
LTE Band 12: 699.7 ~ 715.3
LTE Band 13: 779.5 ~ 784.5
WLAN: 2412 ~ 2462, 5180 ~ 5240, 5260 ~ 5320, 5500 ~ 5720, 5745 ~ 5825
Bluetooth: 2402 ~ 2480 | | Uplink Modulations | WCDMA: QPSK
LTE: QPSK, 16QAM
802.11b: DSSS
802.11a/g/n/ac: OFDM
Bluetooth: GFSK, π/4-DQPSK, 8-DPSK | | Antenna Type | Internal fixed monopole | | EUT Stage | Identical Prototype | #### Note: 1. All models are listed as below. | Brand | Model | Difference | |---------|---------|-------------------------| | Kyonoro | E4811 | with Camera function | | Kyocera | E4811NC | without Camera function | - 2. The WLAN/BT module (Brand: Mediatek, Model: MT6631) was installed in the EUT. - 3. The above EUT information is declared by manufacturer and for more detailed features description please refers to the manufacturer's specifications or User's Manual. #### **List of Accessory:** | | Brand Name | Kyocera | |---------|--------------|-------------------------| | Dottom | Model Name | SCP-73LBPS | | Battery | Power Rating | 3.8Vdc, 1770mAh, 6.8 Wh | | | Туре | Li-ion | Report Format Version 5.0.0 Page No. : 5 of 23 Report No. : HFBFJZ-WTW-P22040598-1 Issued Date : Jul. 22, 2022 ## Air Interface and Operational Mode: | Air
Interface | Bands | Transport
Type | ANSI C63.19
Tested | Simultaneous
But Not Tested | Name of Voice Service | Power
Reduction | |--|------------------------|-------------------|---|--------------------------------|---------------------------|--------------------| | | II | VO | VEC | WI AN OF DT | ONADO Vais a (1) | No | | WCDMA | V | VO | YES | WLAN or BT | CMRS Voice ⁽¹⁾ | No | | | HSPA | VD | No | WLAN or BT | N/A | No | | | 2 | | | | | No | | | 4 | | | | | No | | FDD-LTE | 5 | VD | YES | WLAN or BT | VoLTE ⁽¹⁾ | No | | | 12 | | | | | No | | | 13 | | | | | No | | | 2.4G | VD | YES | | VoWIFI ⁽²⁾ | No | | | 5.2G | | YES | WWAN VoWIFI(2) | \/o\\/!E1(2) | No | | WLAN | 5.3G | VD | | | | No | | | 5.6G | VD | TES | | VOVVIEI | No | | | 5.8G | | | | | No | | Bluetooth | 2.4G | DT | No | WWAN | N/A | No | | Transport Type | | | Note | | | | | VO = Legacy Cellular Voice Service | | | 1. Reference level in accordance with 7.4.2.1 of ANSI C63.19-2011 and the July 2012 VoLTE | | | 2012 VoLTE | | DT = Digital Transport Only (No Voice) | | | interpretation. | | | | | VD = IP Voice Ser | vice over Digital Tran | sport | 2. Reference level | is -20 dBm0 in accordance with | FCC KDB 285076 D02. | | Report Format Version 5.0.0 Page No. : 6 of 23 Report No.: HFBFJZ-WTW-P22040598-1 Issued Date : Jul. 22, 2022 ## 3. HAC T-Coil Measurement System ## 3.1 SPEAG DASY6 System The SPEAG DASY6 system consists of high precision robot, probe alignment sensor, phantom, robot controller, controlled measurement server and near-field probe. The robot includes six axes that can move to the precision position of the DASY6 software defined. The DASY6 software can define the area that is detected by the probe. The robot is connected to controlled box. Controlled measurement server is connected to the controlled robot box. The DAE includes amplifier, signal multiplexing, AD converter, offset measurement and surface detection. It is connected to the Electro-optical coupler (EOC). The EOC performs the conversion form the optical into digital electric signal of the DAE and transfers data to the PC. Fig-3.1 DASY6 System Setup Report Format Version 5.0.0 Page No. : 7 of 23 Report No. : HFBFJZ-WTW-P22040598-1 Issued Date : Jul. 22, 2022 #### 3.1.1 Robot The DASY6 system uses the high precision robots from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY6: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application: - High precision (repeatability ±0.035 mm) - · High reliability (industrial design) - · Jerk-free straight movements - Low ELF interference (the closed metallic construction shields against motor control fields) #### 3.1.2 AM1D Probe The AM1D probe is an active probe with a single sensor. It is fully RF-shielded and has a rounded tip 6 mm in diameter incorporating a pickup coil with its center offset 3 mm from the tip and the sides. The symmetric signal preamplifier in the probe is fed via the shielded symmetric output cable from the AMMI with a 48V "phantom" voltage supply. The 7-pin connector on the back in the axis of the probe does not carry any signals. It is mounted to the DAE for the correct orientation of the sensor. If the probe axis is tilted 54.7 degrees from the vertical, the sensor is approximately vertical when the signal connector is at the underside of the probe (cable hanging downwards). | Model | AM1DV3 | | |---------------|---|---| | Sampling Rate | 0.1 kHz to 20 kHz
RF sensitivity < -100 dB | | | Preamplifier | Symmetric, 40 dB | | | Dynamic Range | -60 to 40 dB A/m | | | Calibration | at 1kHz | | | Dimensions | Tip diameter : 6 mm
Length : 290 mm | - | Report Format Version 5.0.0 Page No. : 8 of 23 Report No. : HFBFJZ-WTW-P22040598-1 Issued Date : Jul. 22, 2022 ## 3.1.3 Audio Magnetic Calibration Coil (AMCC) The AMCC is a Helmholtz Coil designed for calibration of the AM1D probe. The two horizontal coils generate a homogeneous magnetic field in the z direction. The DC input resistance is adjusted by a series resistor to approximately 50 Ohm, and a shunt resistor of 10 Ohm permits monitoring the current with a scale of 1:10. | Signal | Connector | Resistance | | |--------------|--------------------|--|--| | Coil In | BNC | Typically 50 Ohm | | | Coil Monitor | BNO | 10 Ohm ±1%
(100mV corresponding to 1 A/m) | | | Dimensions | 370 x 370 x 196 mm | | Service of the servic | ## 3.1.4 Audio Magnetic Measuring Instrument (AMMI) The AMMI is a desktop 19-inch unit containing a sampling unit, a waveform generator for test and calibration signals, and a USB interface. | Sampling Rate | 48 kHz / 24 bit | | |---------------------------|---|--| | Dynamic Range | 100 dB (with AM1DV3 probe) | | | Test Signal
Generation | User selectable and predefined (via PC) | | | Calibration | Auto-calibration / full system calibration using AMCC with monitor output | | | Dimensions | 482 x 65 x 270 mm | | ### 3.1.5 Data Acquisition Electronics (DAE) | Model | DAE3, DAE4 | | | |-------------------------|---|--|--| | Construction | Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY embedded system (fully remote controlled). Two step probe touch detector for mechanical surface detection and emergency robot stop. | | | | Measurement
Range | -100 to +300 mV (16 bit resolution and two range settings: 4mV, 400mV) | | | | Input Offset
Voltage | < 5µV (with auto zero) | | | | Input Bias Current | < 50 fA | | | | Dimensions | 60 x 60 x 68 mm | | | Report Format Version 5.0.0 Page No. : 9 of 23 Report No. : HFBFJZ-WTW-P22040598-1 Issued Date : Jul. 22, 2022 ## 3.1.6 Phantoms | Model | Test Arch | M | |--------------|--|---| | Construction | Enables easy and well defined positioning of the phone and validation dipoles as well as simple teaching of the robot. | | | Dimensions | Length: 370 mm
Width: 370 mm
Height: 370 mm | | ## 3.1.7 Device Holder | Model | Mounting Device | | |--------------|---|--| | Construction | The Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to ANSI C63.19. | | | Material | РОМ | | Report Format Version 5.0.0 Page No. : 10 of 23 Report No. : HFBFJZ-WTW-P22040598-1 Issued Date : Jul. 22, 2022 #### 3.2 System Calibration For correct and calibrated measurement of the voltages and ABM field, DASY6 will perform a calibration job as below. In phase 1, the audio output is switched off, and a 200 mV_{pp} symmetric rectangular signal of 1 kHz is generated and internally connected directly to both channels of the sampling unit (Coil in, Probe in). In phase 2, the audio output is off, and a 20 mV $_{pp}$ symmetric 100 Hz signal is internally connected. The signals during phases 1 and 2 are available at the output on the rear panel of the AMMI. However, the output must not be loaded, in order to avoid influencing the calibration. An RMS voltmeter would indicate 100 mV $_{RMS}$ during the first phase and 10 mV $_{RMS}$ during the second phase. After the first two phases, the two input channels are both calibrated for absolute measurements of voltages. The resulting factors are displayed above the multi-meter window. After phases 1 and 2, the input channels are calibrated to measure exact voltages. This is required to use the inputs for measuring voltages with their peak and RMS value. In phase 3, a multi-sine signal covering each third-octave band from 50 Hz to 10 kHz is generated and applied to both audio outputs. The probe should be positioned in the center of the AMCC and aligned in the z-direction, the field orientation of the AMCC. The "Coil In" channel is measuring the voltage over the AMCC internal shunt, which is proportional to the magnetic field in the AMCC. At the same time, the "Probe In" channel samples the amplified signal picked up by the probe coil and provides it to a numerical integrator. The ratio of the two voltages in each third-octave filter leads to the spectral representation over the frequency band of interest. The Coil signal is scaled in dBV, and the Probe signal is first integrated and normalized to show dB A/m. The ratio probe-to-coil at the frequency of 1 kHz is the sensitivity which will be used in the consecutive T-Coil jobs. Report Format Version 5.0.0 Page No. : 11 of 23 Report No.: HFBFJZ-WTW-P22040598-1 Issued Date : Jul. 22, 2022 ### 3.3 EUT Measurements Reference and Plane The EUT is mounted in the device holder. The acoustic output of the EUT will coincide with the center point of the area formed by the dielectric wire and the middle bar of the arch's top frame. Then EUT will be moved vertically upwards until it touches the frame. Figure 3.5 illustrates the three standard probe orientations. Position 1 is the perpendicular (axial) orientation of the probe coil. Orientation 2 is the transverse (radial) orientation. The space between the measurement positions is not fixed. It is recommended that a scan of the EUT be done for each probe coil orientation and that the maximum level recorded be used as the reading for that orientation of the probe coil. - (1) The reference plane is the planar area that contains the highest point in the area of the phone that normally rests against the user's ear. It is parallel to the centerline of the receiver area of the phone and is defined by the points of the receiver-end of the EUT handset that, in normal handset use, rest against the ear. - (2) The measurement plane is parallel to, and 10 mm in front of the reference plane. - (3) The reference axis is normal to the reference plane and passes through the center of the receiver speaker section or it may be centered on a secondary inductive source. - (4) The measurement points may be located where the perpendicular (axial) and transverse (radial) field intensity measurements are optimum with regard to the requirements. However, the measurement points should be near the acoustic output of the EUT and shall be located in the same half of the phone as the EUT receiver. In a EUT handset with a centered receiver and a circularly symmetrical magnetic field, the measurement axis and the reference axis would coincide. - (5) The relative spacing of each measurement orientations is not fixed. The perpendicular (axial) and transverse (radial) orientations should be chosen to select the optimal position. - (6) The measurement point for the axial position is located 10 mm from the reference plane on the measurement axis. Fig-3.5 Axis and Planes Report Format Version 5.0.0 Page No. : 12 of 23 Report No. : HFBFJZ-WTW-P22040598-1 Issued Date : Jul. 22, 2022 ## 3.4 HAC T-Coil Measurement Procedure According to ANSI C63.19-2011, the T-Coil test procedure for wireless communications device is as below. - 1. Position the EUT in the test setup and connect the EUT RF connector to a base station simulator. - 2. The drive level to the EUT is set such that the reference input level specified in Table 7.1 is input to the base station simulator in the 1 kHz, 1/3 octave band. This drive level shall be used for the T-Coil signal test (ABM1) at f = 1 kHz. Either a sine wave at 1025 Hz or a voice-like signal, band-limited to the 1 kHz 1/3 octave, as defined in 7.4.2, shall be used for the reference audio signal. If interference is found at 1025 Hz, an alternate nearby reference audio signal frequency may be used. The same drive level will be used for the ABM1 frequency response measurements at each 1/3 octave band center frequency. The EUT volume control may be set at any level up to maximum, provided that a signal at any frequency at maximum modulation would not result in clipping or signal overload. - 3. Determine the magnetic measurement locations for the EUT, if not already specified by the manufacturer, as described in 7.4.4.1.1 and 7.4.4.2. - 4. At each measurement location, measure and record the desired T-Coil magnetic signals (ABM1 at f_i) as described in 7.4.4.2 in each individual ISO 266-1975 R10 standard 1/3 octave band. The desired audio band input frequency (f_i) shall be centered in each 1/3 octave band maintaining the same drive level as determined in Step 2 and the reading taken for that band. Equivalent methods of determining the frequency response may also be employed, such as fast Fourier transform (FFT) analysis using noise excitation or input—output comparison using simulated speech. The full-band integrated or half-band integrated probe output, as described in D.9, may be used, as long as the appropriate calibration curve is applied to the measured result, so as to yield an accurate measurement of the field magnitude. (The resulting measurement shall be an accurate measurement in dB A/m.) All measurements of the desired signal shall be shown to be of the desired signal and not of an undesired signal. This may be shown by turning the desired signal on and off with the probe measuring the same location. If the scanning method is used, the scans shall show that all measurement points selected for the ABM1 measurement meet the ambient and test system noise criterion in 7.3.1. - 5. At the measurement location for each orientation, measure and record the undesired broadband audio magnetic signal (ABM2) as described in 7.4.4.4 with no audio signal applied (or digital zero applied, if appropriate) using Aweighting, and the half-band integrator. Calculate the ratio of the desired to undesired signal strength (i.e., signal quality). - 6. Determine the category that properly classifies the signal quality based on Table 8.5. Report Format Version 5.0.0 Page No. : 13 of 23 Report No. : HFBFJZ-WTW-P22040598-1 Issued Date : Jul. 22, 2022 Fig-3.6 T-Coil Measurement Test Setup Fig-3.7 T-Coil Signal Test Flowchart Report Format Version 5.0.0 Page No. : 14 of 23 Report No. : HFBFJZ-WTW-P22040598-1 Issued Date : Jul. 22, 2022 ### 3.5 Test System Setup and Audio Input Level The test setup shown in below is to extend DASY6 system with the capability of Audio Band Magnetic (ABM) measurements according to standard ANSI C63.19-2011. Together with the HAC RF extension, it permits complete characterization of the emissions of a wireless device (WD). The signals measured during these tests represent the field picked up by the T-Coil of a hearing aid. Using DASY52 software, these orthogonal axes can be scanned with a probe incorporating a single sensor coil. The WD is mounted on the Test Arch Phantom. The acoustic center of the WD is mounted in such a way that it is centered, and this represents the reference for the combination of ABM and RF field evaluation. The ABM fields of the WD (frequency range <20 kHz) are scanned with a fully RF-shielded active 1-D probe. The probe axis is oriented in the space diagonal to the three orthogonal axes, and its single sensor can be oriented to the axes by 120 degree rotation. The probe signal is evaluated by an Audio Magnetic Measurement Instrument (AMMI) which is interfaced to the DASY52 computer via USB. The AMMI also provides test and calibration signals and interfaces to the Helmholtz Audio Magnetic Calibration Coil (AMCC). Through the connector at the AMMI, predefined or user-definable audio signals are available for injection into the WD during the test. Fig-3.8 System Setup for T-Coil Testing According to KDB 285076 D02, T-Coil testing for VoLTE and VoWiFi requires test instrumentation that can (1) for the system to be able to establish an IP call from/to the handset under test, (2) through an IMS (IP Multimedia Subsystem) and SIP/IP server, (3) to an analog audio adapter containing the permissible set of codecs used by the device under test, and (4) inject the necessary C63.19 test tones at the average speech level for the measurement. The test setup is illustrated in Figure 3.9. The R&S CMW500 was used as system simulator for VoLTE and VoWiFi T-Coil testing. The DAU (Data Application Unit) in CMW500 integrates IMS and SIP/IP server that can establish VoLTE and Wi-Fi calling, and transport the test tones from AMMI (Audio Magnetic Measuring Instrument) to EUT. Report Format Version 5.0.0 Page No. : 15 of 23 Report No. : HFBFJZ-WTW-P22040598-1 Issued Date : Jul. 22, 2022 **Wi-Fi Calling:** This device supports Wi-Fi calling which is an extended feature of the carriers CMRS service to offload VoLTE calls onto local area networks over Wi-Fi via the internet and is subject to HAC assessment for phones with a HAC rating. The evaluation of HAC for Wi-Fi calling follows the same test procedures and methods described in the previous section for VoLTE and the CMW 500 is also used to originate the Wi-Fi calling. The only difference is that the audio reference level is set at -20 dBm0 for Wi-Fi calling per KDB 285076 D02 requirement. Fig-3.9 Testing Setup for VoLTE, and VoWiFi Calling According to KDB 285076 D02 and ANSI C63.19-2011, the applied reference input level applied at the calibrated reference point for legacy protocols fixed to specific air-interfaces are defined in 7.4.2.1 Table 7.1 of ANSI C63.19-2011 or the ANSI C63.19-2011 VoLTE interpretation of July 2012 with -16 dBm0. The normal speech input level for HAC T-coil tests shall be set to -16 dBm0 for GSM, WCDMA and VoLTE, and -18 dBm0 for CDMA. The technical description below shows a possibility to evaluate and set the correct level with the HAC T-Coil setup with an R&S communication tester with codec. For protocols not listed in Table 7.1 of ANSI C63.19-2011 or the ANSI C63.19-2011 VoLTE interpretation, the average speech level of -20 dBm0 should be used. For VoWiFi and OTT Calling, the average speech level of -20 dBm0 was used for testing. #### Reference Audio Input Level: - -16 dBm0 is used for GSM, WCDMA, and VoLTE - -18 dBm0 is used for CDMA - -20 dBm0 is used for VoWiFi, and OTT Calling Report Format Version 5.0.0 Page No. : 16 of 23 Report No. : HFBFJZ-WTW-P22040598-1 Issued Date : Jul. 22, 2022 ## **HAC T-Coil Test Report** The speech levels with the settings at the AF connector of R&S CMW500 have been calibrated, and it can be set manually to ensure the specific full-scale speech level during T-Coil testing. For an example, the gain setting for -16 dBm0 has been calculated through below formula. 3.14 dBm0 = X dBV = -3.01 dBV $-16 \text{ dBm0} = L_{-16dBm0} \text{ dBV} = -22.00 \text{ dBV}$ Gain $100 = G \, dBV = 3.13 \, dBV$ Difference for -16 dBm0 = $D_{-16dBm0} = L_{-16dBm0} - G = -22 - 3.13 = -25.13 dBV$ Resulting Gain for -16 dBm0 = $10 \land (D_{-16dBm0} / 20) \times 100 = 5.54$ Gain Setting = Resulting Gain x Required Gain Factor Gain setting for voice $1kHz = 5.54 \times 4.33 = 23.99$ Gain setting for voice $300-3kHz = 5.54 \times 8.48 = 46.98$ The gain setting for other signal types need to be adjusted to achieve the same average level. Those signal types have the following differences/factors compared to the 1 kHz sine signal: | Signal Type | Duration
(s) | BWC
(dB) | Required
Gain Factor | | |--------------------|-----------------|-------------|-------------------------|--| | 1 kHz sine | - | 0.0 | 1.00 | | | 48k_voice_1kHz | 1 | 0.16 | 4.33 | | | 48k_voice_300-3000 | 2 | 10.8 | 8.48 | | Report Format Version 5.0.0 Page No. : 17 of 23 Report No. : HFBFJZ-WTW-P22040598-1 Issued Date : Jul. 22, 2022 ## 3.6 Test System Setup for OTT VoIP **OTT Calling:** VoIP capabilities require HAC assessment when voice calls are supported over the cellular or Wi-Fi data connection via pre-installed applications. This assessment is subject to Pre-Approval Guidance. The test setup for OTT calling uses the R&S CMW500 as a base station simulator to establish a wireless data call through cellular or Wi-Fi air interface to the device under test. The CMW500's data application unit is connected via internet (Ethernet connection to router) to the OTT service such as Google Duo. An auxiliary device is also connected to the OTT service via a wireless router. A VoIP call is then established between the DUT and the auxiliary device via the VoIP service. The auxiliary device includes special version software that allows it to configure and monitor the OPUS codec bit rate during the OTT call. An investigation is made across all supported codec bit rates and across the various air interfaces (e.g. EGPRS, HSPA, EV-DO, FDD-LTE, TDD-LTE, Wi-Fi etc.) between DUT and CMW500 to determine the worst case T-Coil rating. According to KDB 285076 D02v03, the average speech level of -20 dBm0 should be used when the protocol is not listed in ANSI C63.19-2011 or ANSI C63.19-2011 VoLTE interpretation. Hence, the testing audio signal from AMMI Audio Out has been calibrated for all test signal types (1 kHz sine, 1 kHz voice and 300 to 3 kHz voice) to determine the gain settings required to inject the audio signal at a level of **-20 dBm0** into the auxiliary device during HAC T-Coil tests for OTT calling. Fig-3.10 Testing Setup for OTT Calling The calibration to set the AMMI gain level at the input to the auxiliary device is performed as follows: - A real time audio analyzer application on the auxiliary device¹ is used to measure the audio level into the device. The AMMI gain values are adjusted to obtain a signal level of 0 dBFS at the auxiliary audio input for the 1 kHz sine wave signal. - 2. The gain value recorded in step (1) above is then reduced by 23.14 dB to obtain a signal level of -23.14 dBFS, (equivalent to -20 dBm0), at the auxiliary device's audio input. The gain values are confirmed using the real time audio analyzer to verify the signal level. - 3. The gain values calculated in step 2 are adjusted for the 1 kHz voice and 300 to 3 kHz voice signals using the correction values noted in section 3.5. Note 1: The gain and algorithmic processing in the acoustic path of the auxiliary device are disabled to ensure that the measured signal level is the signal level at the input to the codec. Report Format Version 5.0.0 Page No. : 18 of 23 Report No. : HFBFJZ-WTW-P22040598-1 Issued Date : Jul. 22, 2022 ## 4. HAC Measurement Evaluation ## 4.1 Measurement Criteria The HAC Standard ANSI C63.19-2011 represents performance requirements for acceptable interoperability of hearing aids with wireless communications devices. When these parameters are met, a hearing aid operates acceptably in close proximity to a wireless communications device. #### 4.1.1 Field Intensity When measured as specified in this standard, the T-Coil signal shall be ≥ -18 dB (A/m) at 1 kHz, in a 1/3 octave band filter for all orientations. #### 4.1.2 Frequency Response The frequency response of the axial component of the magnetic field, measured in 1/3 octave bands, shall follow the below response curve, over the frequency range 300 Hz to 3000 Hz. Figure 4.1 and Figure 4.2 provide the boundaries for the specified frequency. These response curves are for true field strength measurements of the T-Coil signal. Thus the 6 dB/octave probe response has been corrected from the raw readings. Fig-4.1 Boundaries for EUT with a field ≤ -15 dB (A/m) at 1 kHz Fig-4.2 Boundaries for EUT with a field > -15 dB (A/m) at 1 kHz Report Format Version 5.0.0 Page No. : 19 of 23 Report No. : HFBFJZ-WTW-P22040598-1 Issued Date : Jul. 22, 2022 ## 4.1.3 Signal Quality The worst signal quality of the three T-Coil signal measurements shall be used to determine the T-Coil mode category per below table. | Category | Telephone Parameters WD Signal Quality
(Signal to Noise Ratio, in dB) | | | | |-------------|--|--|--|--| | Category T1 | 0 – 10 | | | | | Category T2 | 10 – 20 | | | | | Category T3 | 20 – 30 | | | | | Category T4 | > 30 | | | | ## 4.2 EUT Configuration and Setting For HAC T-Coil testing, the EUT was linked and controlled by base station emulator. Communication between the EUT and the emulator was established by coaxial connection. The EUT was set from the emulator to radiate maximum output power during HAC testing. Also EUT was set to mute on, maximum volume, and backlight off during T-Coil testing. ## 4.3 HAC T-Coil Testing Results #### 4.3.1 WCDMA CMRS Voice Testing Results Refer to Annex B. #### 4.3.1 VoLTE Testing Results Refer to Annex B. #### 4.3.2 VoWiFi Testing Results Refer to Annex B. Test Engineer : Willy Chang Report Format Version 5.0.0 Page No. : 20 of 23 Report No. : HFBFJZ-WTW-P22040598-1 Issued Date : Jul. 22, 2022 # 5. Calibration of Test Equipment Refer to Annex C. Report Format Version 5.0.0 Page No. : 21 of 23 Report No. : HFBFJZ-WTW-P22040598-1 Issued Date : Jul. 22, 2022 ## 6. Measurement Uncertainty | Error Description | Uncertainty Value (±%) | Probability
Distribution | Divisor | Ci
(ABM1) | Ci
(ABM2) | Standard
Uncertainty
(ABM1) | Standard
Uncertainty
(ABM2) | |--------------------------------------|------------------------|-----------------------------|------------|--------------|--------------|-----------------------------------|-----------------------------------| | Probe Sensitivity | | | | | | | | | Reference Level | 3.0 | Normal | 1 | 1 | 1 | ± 3.0 % | ± 3.0 % | | AMCC Geometry | 0.4 | Rectangular | √3 | 1 | 1 | ± 0.2 % | ± 0.2 % | | AMCC Current | 1.0 | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % | | Probe Positioning During Calibration | 0.07 | Rectangular | $\sqrt{3}$ | 1 | 1 | ± 0.04 % | ± 0.04 % | | Noise Contribution | 0.02 | Rectangular | √3 | 0.0143 | 1 | ± 0.0 % | ± 0.01 % | | Frequency Slope | 5.9 | Rectangular | √3 | 0.1 | 1 | ± 0.3 % | ± 3.4 % | | Probe System | | | | | | | | | Repeatability / Drift | 1.0 | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % | | Linearity / Dynamic Range | 0.6 | Rectangular | √3 | 1 | 1 | ± 0.3 % | ± 0.3 % | | Acoustic Noise | 1.0 | Rectangular | √3 | 0.1 | 1 | ± 0.1 % | ± 0.6 % | | Probe Angle | 2.3 | Rectangular | √3 | 1 | 1 | ± 1.3 % | ± 1.3 % | | Spectral Processing | 0.9 | Rectangular | √3 | 1 | 1 | ± 0.5 % | ± 0.5 % | | Integration Time | 0.6 | Normal | 1 | 1 | 5 | ± 0.6 % | ± 3.0 % | | Field Distribution | 0.2 | Rectangular | √3 | 1 | 1 | ± 0.1 % | ± 0.1 % | | Test Signal | | | | | | | | | Ref. Signal Spectral
Response | 0.6 | Rectangular | √3 | 0 | 1 | ± 0.0 % | ± 0.3 % | | Positioning | | | | | | | | | Probe Positioning | 1.9 | Rectangular | √3 | 1 | 1 | ± 1.1 % | ± 1.1 % | | Phantom Thickness | 0.9 | Rectangular | √3 | 1 | 1 | ± 0.5 % | ± 0.5 % | | EUT Positioning | 1.9 | Rectangular | √3 | 1 | 1 | ± 1.1 % | ± 1.1 % | | External Contributions | | | | | | | | | RF Interference | 0.0 | Rectangular | √3 | 1 | 0.3 | ± 0.0 % | ± 0.0 % | | Test Signal Variation | 2.0 | Rectangular | √3 | 1 | 1 | ± 1.2 % | ± 1.2 % | | Combined Standard Uncertainty | | | | | ± 4.0 % | ± 6.1 % | | | Coverage Factor for 95 % | | | | | K = 2 | | | | Expanded Uncertainty | | | | | | ± 8.0 % | ± 12.2 % | **Uncertainty Budget for HAC T-Coil** Report Format Version 5.0.0 Page No. : 22 of 23 Report No. : HFBFJZ-WTW-P22040598-1 Issued Date : Jul. 22, 2022 ## 7. Information of the Testing Laboratories We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025. If you have any comments, please feel free to contact us at the following: #### Taiwan Huaya Lab: Add: No. 19, Huaya 2nd Rd., Guishan Dist., Taoyuan City 333, Taiwan Tel: +886-(0)3-318-3232 Fax: +886-(0)3-211-5834 #### Taiwan Linkou Lab: Add: No. 47-2, Baodoucuokeng, Linkou Dist., New Taipei City 244, Taiwan Tel: +886-(0)2-2605-2180 Fax: +886-(0)2-2605-2943 #### Taiwan Hsinchu Lab1: Add: E-2, No. 1, Lixing 1st Rd., East Dist., Hsinchu City 300, Taiwan Tel: +886-(0)3-666-8565 Fax: +886-(0)3-666-8323 #### Taiwan Hsinchu Lab2: Add: No. 49, Ln. 206, Wende Rd., Qionglin Township, Hsinchu County 307, Taiwan Tel: +886-(0)3-512-0595 Fax: +886-(0)3-512-0568 #### Taiwan Xindian Lab: Add: B2F., No. 215, Sec. 3, Beixin Rd., Xindian Dist., New Taipei City 231, Taiwan Tel: +886-(0)2-8914-5882 Fax: +886-(0)2-8914-5840 Email: service.adt@tw.bureauveritas.com Web Site: https://ee.bureauveritas.com.tw/BVInternet/Default The road map of all our labs can be found in our web site also. ---END--- Report Format Version 5.0.0 Page No. : 23 of 23 Report No. : HFBFJZ-WTW-P22040598-1 Issued Date : Jul. 22, 2022