

Element Materials Technology

(formerly PCTEST) 18855 Adams Court, Morgan Hill, CA 95037 USA Tel. 408.538.5600 http://www.Element.com

MEASUREMENT REPORT FCC PART 15.407 / ISED RSS-247 DFS

Applicant Name:

Apple Inc. One Apple Park Way Cupertino, CA 95014 United States Date of Testing: 10/25/2024 - 1/14/2025 Test Report Issue Date: 1/25/2025 Test Site/Location: Element Materials Technology, Morgan Hill, CA, USA Test Report Serial No.: 1C2410210076-08.BCG

BCGA3354

579C-A3354

Apple Inc.

APPLICANT:

FCC ID:

IC:

Application Type: Model/HVIN: EUT Type: Max. RF Output Power:

Frequency Range:

FCC Classification:

ISED Specification:

Test Procedure(s):

FCC Rule Part(s):

Certification A3354 Client Only Device, No Radar Detection Capability 122.180 mW (20.87 dBm) Conducted (802.11n UNII Band 2A) 152.055 mW (21.82 dBm) Conducted (802.11n UNII Band 2C) 5250 – 5350 MHz (UNII-2A Band) 5470 – 5725 MHz (UNII-2C Band) Unlicensed National Information Infrastructure (UNII) Part 15 Subpart E (15.407) RSS-247 Issue 3 KDB 905462 D02 v02

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in KDB 905462 D02 v02 Compliance Measurement Procedures for Unlicensed-National Information Infrastructure Devices Operating in the 5.25 – 5.35 GHz and 5.47 – 5.725 GHz Bands Incorporating Dynamic Frequency Selection. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RJ Ortanez Executive Vice President

FCC ID: BCGA3354 IC: 579C-A3354	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 1 of 29
1C2410210076-08.BCG	10/25/2024 - 1/14/2025	Tablet Device	Page 1 of 38
		·	V/ 40 C 40/07/0000

V 10.6 10/27/2023

TABLE OF CONTENTS

1.0	INTRODUCTION	3
	1.1 SCOPE	
	1.2 ELEMENT TEST LOCATION	3
	1.3 TEST FACILITY / ACCREDITATIONS	
2.0	PRODUCT INFORMATION	4
-	2.1 EQUIPMENT DESCRIPTION	
	2.2 DEVICE CAPABILITIES	5
	2.3 ANTENNA DESCRIPTION	6
	2.4 TEST SUPPORT EQUIPMENT	
	2.5 MASTER PARAMETERS	6
	2.6 SOFTWARE AND FIRMWARE	
	2.7 EMI SUPPRESSION DEVICE(S)/MODIFICATIONS	
3.0	DESCRIPTION OF TESTS	7
	3.1 EVALUATION PROCEDURE	
	3.2 ENVIRONMENTAL CONDITIONS	7
4.0	ANTENNA REQUIREMENTS	
5.0	MEASUREMENT UNCERTAINTY	
6.0	TEST EQUIPMENT CALIBRATION DATA	
7.0	DESCRIPTION OF DYNAMIC FREQUENCY SELECTION TEST	
1.0	7.1 APPLICABILITY	
	7.1.1 MASTER DEVICES:	
	7.1.2 CLIENT DEVICES:	
	7.2 DFS DETECTION THRESHOLD VALUES	3
	7.3 DFS RESPONSE REQUIREMENTS1	
	7.4 PARAMETERS OF DFS TEST SIGNALS1	5
	7.5 SYSTEM OVERVIEW AND PROCEDURE1	7
	7.6 SYSTEM CALIBRATION:1	8
8.0	EUT COMMUNICATION MODES	0
9.0	TEST RESULTS	4
	9.1 SUMMARY	4
	9.1.1 CHANNEL LOADING MODE 1: 2	26
	9.1.2 CHANNEL LOADING MODE 2: 2	
	9.1.3 CHANNEL LOADING MODE 3:	
	9.1.4 CHANNEL LOADING MODE 4:	
	9.1.5 CHANNEL MOVE/ CLOSING TRANSMISSION TIME MODE 1:	
	9.1.6 CHANNEL MOVE/ CLOSING TRANSMISSION TIME MODE 2:	
	9.1.8 CHANNEL MOVE/ CLOSING TRANSMISSION TIME MODE 4:	
	9.2 NON-OCCUPANCY PERIOD	
	9.2.1 NON-OCCUPANCY PERIOD (30 MINUTES) MODE 1:	34
	9.2.2 NON-OCCUPANCY PERIOD (30 MINUTES) MODE 2:	85
	9.2.3 NON-OCCUPANCY PERIOD (30 MINUTES) MODE 3:	86
	9.2.4 NON-OCCUPANCY PERIOD (30 MINUTES) MODE 4:	
10.0	CONCLUSION	8

FCC ID: BCGA3354 IC: 579C-A3354	element	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 2 of 29
1C2410210076-08.BCG	10/25/2024 - 1/14/2025	Tablet Device	Page 2 of 38
			V/ 10 6 10/27/2023

1.0 INTRODUCTION

1.1 Scope

This report has been prepared to demonstrate compliance with the requirements for Dynamic Frequency Selection (DFS) as stated in KDB 905462 D02 v02. As of July 20, 2007, all devices operating in the 5250 – 5350 MHz and/or the 5470 – 5725 MHz bands (excluding 5600-5650MHz for ISED Canada) must comply with the DFS requirements.

1.2 Element Test Location

These measurement tests were conducted at the Element Materials Technology facility located at 18855 Adams Court, Morgan Hill, CA 95037. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014 and KDB 414788 D01 v01r01.

1.3 Test Facility / Accreditations

Measurements were performed at Element Materials Technology located in Morgan Hill, CA 95037, U.S.A.

- Element Materials Technology is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.02 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- Element Washington DC LLC TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- Element Materials Technology facility is a registered (22831) test laboratory with the site description on file with ISED.
- Element Washington DC LLC is a Recognized U.S. Certification Assessment Body (CAB # US0110) for ISED Canada as designated by NIST under the U.S. and Canada Mutual Recognition Agreements (MRAs).

FCC ID: BCGA3354 IC: 579C-A3354	element	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 3 of 38
1C2410210076-08.BCG	10/25/2024 - 1/14/2025	0/25/2024 - 1/14/2025 Tablet Device	
102410210070-08.BCG	10/23/2024 - 1/14/2023	Tablet Device	V/ 10 6 10/27/2022

PRODUCT INFORMATION 2.0

2.1 **Equipment Description**

The Equipment Under Test (EUT) is the Apple Tablet Device FCC ID: BCGA3354, IC: 579C-A3354. The test data contained in this report pertains only to the emissions due to the EUT's UNII transmitter. As the EUT does not have radar detection capability it was evaluated as a Client Only Device. All test results reported herein are applicable to the sample selected for testing.

Mode of Operation:

Master Device	
Client Device (No radar detection)	\square
Client Device with Radar Detection	

Test Device Serial No.: DMQHKQKFJJ

FCC ID: BCGA3354 IC: 579C-A3354	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N: Test Dates:		EUT Type:	Dage 4 of 20
1C2410210076-08.BCG	10/25/2024 - 1/14/2025	Tablet Device	Page 4 of 38

2.2 Device Capabilities

This device contains the following capabilities:

802.11b/g/n/ax WLAN, 802.11a/n/ac/ax UNII, Bluetooth (1x, EDR, LE1M, LE2M)

Channel puncturing function is not supported for this device.

Band 1		Band 2A		Band 2C		Band 3
Frequency (MHz)	Ch.	Frequency (MHz)	Ch.	Frequency (MHz)	Ch.	Frequency (MHz)
5180	52	5260	100	5500	149	5745
:	:	:	:	:	:	:
5210	56	5280	116	5580	157	5785
:	:	:	:	:	:	:
5240	64	5320	144	5720	165	5825
	Frequency (MHz) 5180 : 5210 :	Frequency (MHz) Ch. 5180 52 : : 5210 56 : :	Frequency (MHz) Ch. Frequency (MHz) 5180 52 5260 : : : : 5210 56 5280 : : : :	Frequency (MHz) Ch. Frequency (MHz) Ch. 5180 52 5260 100 : : : : 100 : 56 5280 116 : : : : :	Frequency (MHz) Ch. Frequency (MHz) Ch. Frequency (MHz) 5180 52 5260 100 5500 : : : : 100 5500 : 56 5280 116 5580 : : : : :	Frequency (MHz) Ch. Frequency (MHz) Ch. Frequency (MHz) Ch. 5180 52 5260 100 5500 149 : : : : : 100 5500 149 : : : : : 116 5580 157 : : : : : : : :

Table 2-1. 802.11a / 802.11n / 802.11ac / 802.11ax (20MHz) Frequency / Channel Operations

	Band 1
Ch.	Frequency (MHz)
38	5190
:	:
46	5230

	Band 2A
Ch.	Frequency (MHz)
54	5270
:	:
62	5310

. . .

	Band 2C
Ch.	Frequency (MHz)
102	5510
	:
110	5550
	:
142	5710

	Band 3
Ch.	Frequency (MHz)
151	5755
:	:
159	5795

Table 2-2. 802.11n / 802.11ac / 802.11ax (40MHz BW) Frequency / Channel Operations

	Band 1		Band 2A		Band 2C		Band 3
Ch.	Frequency (MHz)						
42	5210	58	5290	106	5530	155	5775
				:	:		
				138	5690		

Table 2-3. 802.11ac / 802.11ax (80MHz BW) Frequency / Channel Operations

FCC ID: BCGA3354 IC: 579C-A3354	element MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage E of 20
1C2410210076-08.BCG	10/25/2024 - 1/14/2025	Tablet Device	Page 5 of 38
			V/ 10 6 10/27/2023

2.3 Antenna Description

Frequency	Antenna Gain (dBi)		
[GHz]	Antenna WF7a	Antenna WF8	
5.150 – 5.250	4.1	3.4	
5.250 – 5.350	4.8	4.6	
5.470 – 5.725	4.6	5.1	
5.725 – 5.850	4.6	4.9	

Following antenna gains provided by manufacturer were used for the testing.

Table 2-5. Highest Antenna Gain

2.4 Test Support Equipment

The following equipment was used in support of the DFS testing.

Device	Manufacturer	Model	Description	S/N:	FCC ID:
		A1521	Access Point	C86L3BA8FJ1R	BCGA1521
Master	Apple	MacBook Air	Controller	C02P41RZG086	QDS- BRCM1072
	Netgear RAXE500		Access Point	6JX215GA10A5	PY320300508
Client	Apple	Apple TV	Controller	C0754033HHFP	BCGA1625
		MacBook Air	Controller	C02P41RZG086	QDS- BRCM1072
		Spartan	USB-C Cable	000MKTR02U	N/A
	Dell	U24177HJ	Monitor Display	0RXP1N-74261- 71Q-0APL-A01	N/A

Table 2-6. Test Support Equipment List

2.5 Master Parameters

Parameters of Master:		
Minimum Antenna Gain	1.4 dBi	
EIRP Level:	>23 dBm	
Access Point Software Version	7.7.9	

Table 2-7. Parameters of Master

2.6 Software and Firmware

The test was done with firmware version 22D8 installed on the EUT.

2.7 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

FCC ID: BCGA3354 IC: 579C-A3354	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 6 of 20
1C2410210076-08.BCG	10/25/2024 - 1/14/2025	Tablet Device	Page 6 of 38
			V 10.6 10/27/2023

3.0 **DESCRIPTION OF TESTS**

3.1 Evaluation Procedure

The measurement procedures described in KDB 905462 D02 v02 were used in the measurement of the EUT. Radiated test methodology was used for the DFS evaluation procedure of the EUT. No deviations to the test procedure and test methods occurred during the evaluation of the EUT.

Deviation from measurement procedure.....None

3.2 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: BCGA3354 IC: 579C-A3354	element MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dago 7 of 29
1C2410210076-08.BCG	10/25/2024 - 1/14/2025	Tablet Device	Page 7 of 38

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the EUT are permanently attached.
- There are no provisions for connection to an external antenna.

Conclusion:

The EUT complies with the requirement of §15.203.

FCC ID: BCGA3354 IC: 579C-A3354	element MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 9 of 29
1C2410210076-08.BCG	10/25/2024 - 1/14/2025	Tablet Device	Page 8 of 38
1C2410210076-08.BCG	10/25/2024 - 1/14/2025	Tablet Device	F age 0 01 30

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.23-2012. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty
Time	± 0.02%

FCC ID: BCGA3354 IC: 579C-A3354	element MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 0 of 29
1C2410210076-08.BCG	10/25/2024 - 1/14/2025	Tablet Device	Page 9 of 38

V 10.6 10/27/2023

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal. Date	Cal. Interval	Cal. Due Date	Serial No.
Aeroflex	3025C	PXI RF Synthesizer	03/06/2023	Biennial	03/06/2025	302570726
Aeroflex	3035C	PXI RF Digitizer	03/06/2023	Biennial	03/06/2025	303570427
ETS-Lindgren	3117	Double Ridged Guide Antenna (1-18 GHz)	04/09/2024	Annual	04/09/2025	00218555
MECA	780-10-9.500	RF Directional Coupler*	8/24/2024	Annual	8/24/2025	N/A
Mini-Circuits	ZN2PD-9G-S+	2 Ways DC Pass Power Splitter*	10/18/2024	Annual	10/18/2025	SF456200530
Keysight Technology	N9040B	UXA Signal Analyzer	03/10/2024	Annual	03/10/2025	MY57212015
Rohde & Schwarz	TC-TA18	Vivaldi Antenna	8/02/2024	Annual	8/02/2025	101063

Table 6-1. Test Equipment List

Note:

- 1. For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.
- 2. * denotes passive equipment that have been internally verified/calibrated.

	nical Manager
Test Report S/N: Test Dates: EUT Type:	10 of 29
1C2410210076-08.BCG 10/25/2024 - 1/14/2025 Tablet Device Page 10	10 of 38

7.0 DESCRIPTION OF DYNAMIC FREQUENCY SELECTION TEST

7.1 Applicability

The following table from KDB 905462 D02 v02 lists the applicable requirements for the DFS testing. The device evaluated in this report is considered a client device without radar detection capability.

	Operational Mode			
Requirement	Master	Client Without Radar Detection	Client with Radar Detection	
Non-Occupancy Period	Yes	Not required	Yes	
DFS Detection Threshold	Yes	Not required	Yes	
Channel Availability Check Time	Yes	Not required	Not required	
U-NII Detection Bandwidth	Yes	Not required	Yes	

Table 7-1. DFS Applicability

	Operational Mode				
Requirement	Master	Client Without Radar Detection	Client with Radar Detection		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Closing Transmission Time	Yes	Yes	Yes		
Channel Move Time	Yes	Yes	Yes		
U-NII Detection Bandwidth	Yes	Not required	Yes		

Table 7-2. DFS Applicability During Normal Operation

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client without Radar Detection
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link
All other tests	Any single BW mode	Not required

Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

Table 7-3. Additional Requirement for Devices with Multiple Bandwidth Modes

FCC ID: BCGA3354 IC: 579C-A3354	element MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 11 of 20
1C2410210076-08.BCG	10/25/2024 - 1/14/2025	Tablet Device	Page 11 of 38
			V 10.6 10/27/2023

Per KDB 905462 D02 v02 the operational behavior and individual DFS requirements associated with these modes are as follows:

7.1.1 Master Devices:

- a) The Master Device will use DFS in order to detect Radar Waveforms with received signal strength above the DFS Detection Threshold in the 5250 – 5350 MHz and 5470 – 5725 MHz bands. DFS is not required in the 5150 – 5250 MHz or 5725 – 5850 MHz bands.
- b) Before initiating a network on a Channel, the Master Device will perform a Channel Availability Check for a specified time duration (Channel Availability Check Time) to ensure that there is no radar system operating on the Channel, using DFS described under subsection a) above.
- c) The Master Device initiates a U-NII network by transmitting control signals that will enable other U-NII devices to Associate with the Master Device.
- d) During normal operation, the Master Device will monitor the Channel (In-Service Monitoring) to ensure that there is no radar system operating on the Channel, using DFS described under a).
- e) If the Master Device has detected a Radar Waveform during In-Service Monitoring as described under d), the Operating Channel of the U-NII network is no longer an Available Channel. The Master Device will instruct all associated Client Device(s) to stop transmitting on this Channel within the Channel Move Time. The transmissions during the Channel Move Time will be limited to the Channel Closing Transmission Time.
- f) Once the Master Device has detected a Radar Waveform it will not utilize the Channel for the duration of the Non-Occupancy Period.
- g) If the Master Device delegates the In-Service Monitoring to a Client Device, then the combination will be tested to the requirements described under d) through f) above.

7.1.2 Client Devices:

- a) A Client Device will not transmit before having received appropriate control signals from a Master Device.
- b) A Client Device will stop all its transmissions whenever instructed by a Master Device to which it is associated and will meet the Channel Move Time and Channel Closing Transmission Time requirements. The Client Device will not resume any transmissions until it has again received control signals from a Master Device.
- c) If a Client Device is performing In-Service Monitoring and detects a Radar Waveform above the DFS Detection Threshold, it will inform the Master Device. This is equivalent to the Master Device detecting the Radar Waveform and d) through f) of section 5.1.1 apply.
- d) Irrespective of Client Device or Master Device detection the Channel Move Time and Channel Closing Transmission Time requirements remain the same.
- e) The client test frequency must be monitored to ensure no transmission of any type has occurred for 30 minutes. Note: If the client moves with the master, the device is considered compliant if nothing appears in the client nonoccupancy period test. For devices that shutdown (rather than moving channels), no beacons should appear.

FCC ID: BCGA3354 IC: 579C-A3354	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 12 of 29
1C2410210076-08.BCG	10/25/2024 - 1/14/2025	Tablet Device	Page 12 of 38
			V 10.6 10/27/2023

DFS Detection Threshold Values 7.2

The DFS detection thresholds are defined for Master devices and Client Devices with In-service monitoring. These detection thresholds are listed in the following table.

Maximum Transmit Power	Value (See Notes 1, 2, and 3)
EIRP ≥ 200 milliwatt	-64 dBm
EIRP < 200 milliwatt and power spectral density < 10 dBm/MHz	-62 dBm
EIRP < 200 milliwatt that do not meet the power spectral density requirement	-64 dBm
Note 1: This is the level at the input of the receiver assuming a 0 dBi receive an	itenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note 3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

Table 7-4: Detection Thresholds for Master Devices and Client Devices with Radar Detection

FCC ID: BCGA3354 IC: 579C-A3354	element MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 13 of 38
1C2410210076-08.BCG	10/25/2024 - 1/14/2025	Tablet Device	raye 13 01 30

7.3 DFS Response Requirements

DFS response requirements for Master and Client Devices are listed in the following table.

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds See Note1
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Note 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the U- NII 99% transmission power bandwidth. See Note 3.

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

control signals will not count quiet periods in between transmissions.

frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Table 7-5: DFS Response Requirements

FCC ID: BCGA3354 IC: 579C-A3354	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 14 of 29
1C2410210076-08.BCG	10/25/2024 - 1/14/2025	Tablet Device	Page 14 of 38
			V/ 10 6 10/27/2022

7.4 Parameters of DFS Test Signals

As the EUT is a Client Device with no Radar Detection only one type radar pulse is required for the testing. Radar Pulse type 0 was used in the evaluation of the Client device for the purpose of measuring the Channel Move Time and the Channel Closing Transmission Time. Table 7-6 lists the parameters for the Short Pulse Radar Waveforms. A plot of the Radar Pulse Type 0 used for testing is included in Section 7.6 of this report.

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
0	1	1428	18	See Note 1	See Note 1
		Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a	$Roundup\left\{\frac{1}{360},\frac{19.10^6}{PRI_{\mu sec}}\right\}$		
1	1	Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A		60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggrega	ate (Radar Type:	s 1-4)		80%	120

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

Table 7-6: Parameters for Short Pulse Radar Waveforms

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per <i>Burst</i>	Number of <i>Bursts</i>	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50 - 100	5 - 20	1000 – 2000	1 - 3	8 - 20	80%	30

Table 7-7. Parameters for Long Pulse Radar Waveforms

FCC ID: BCGA3354 IC: 579C-A3354	element MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 15 of 29
1C2410210076-08.BCG	10/25/2024 - 1/14/2025	Tablet Device	Page 15 of 38
1C2410210076-08.BCG	10/25/2024 - 1/14/2025	Tablet Device	V 10 6 10/27/20

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

Table 7-8. Parameters for Frequency Hopping Radar Waveforms

FCC ID: BCGA3354 IC: 579C-A3354	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 16 of 29
1C2410210076-08.BCG	10/25/2024 - 1/14/2025	Tablet Device	Page 16 of 38
102410210070-00.DCG	10/20/2024 - 1/14/2023		V 40 C 40/07/2022

7.5 System Overview and Procedure

DFS Test Setup per KDB 905462 D02 V02:

Radiated DFS Test Setup	\square
Conducted DFS Test Setup	

KDB 905462 D02 v02 describes radiated test setup and conducted test setup. DFS testing was performed using radiated test setup, as seen in Figure 7-1 below. One channel was selected in Band UNII-2C, between 5470-5725 MHz, for testing.

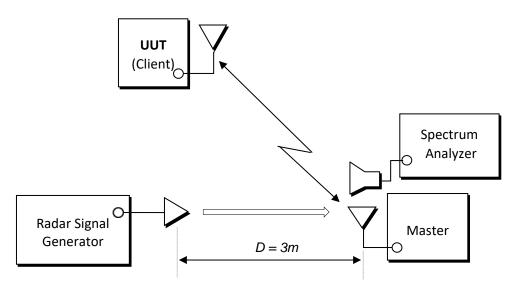


Figure 7-1. Radiated Test Setup for DFS

- 1. The "Aeroflex PXI DFS Radar Simulator and Analyzer Test Suite" is setup to provide a simulated radar pulse at the frequency that the Master and Client are operating. A Type 0 radar pulse was used.
- 2. The Client Device (EUT) is set up per the diagram in Figure 7-1 and communications between the Master device and the Client is established.
- 3. The FCC video test file is streamed from the Master to the Client to properly load the network.
- 4. The "Aeroflex PXI DFS Radar Simulator and Analyzer Test Suite" is set to record and display 12 seconds of time, starting from where the simulated radar is generated. This time domain plot captures any transmissions occurring up to and after 10 seconds. Aggregate time is computed to ensure compliance. (Note: the channel may be different since the Master and Client have changed channels due to the detection of the initial radar pulse.)
- 5. After the initial radar burst the channel is monitored for 30 minutes to ensure no transmissions or beacons occur. A second monitoring setup is used to verify that the Master and Client have both moved to different channels.

Test Report S/N: Test Dates: EUT Type:	•
Dans 17 of 20	
1C2410210076-08.BCG 10/25/2024 - 1/14/2025 Tablet Device Page 17 of 38	

7.6 System Calibration:

The following equipment setup was used to calibrate the Radar Waveform. A spectrum analyzer was used to establish the test signal level for each radar type. During this process, there were no transmissions by either the Master or Client Device. The spectrum analyzer was switched to the zero span (Time Domain) mode at the frequency of the Radar Waveform generator. Peak detection was utilized. The spectrum analyzer resolution bandwidth (RBW) and video bandwidth (VBW) were set to 3MHz.

The signal generator amplitude is adjusted so that the power level measured at the spectrum analyzer is equal to the DFS detection threshold -64 dBm. The required radiated threshold at the antenna port is -64dBm + 0dBi + 1dB = -63 dBm (Section 7.2).

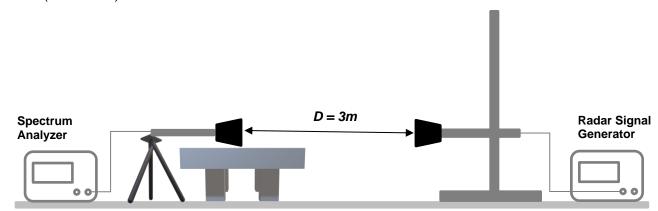


Figure 7-2. Radar Waveform Calibration

FCC ID: BCGA3354 IC: 579C-A3354	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 19 of 29
1C2410210076-08.BCG	10/25/2024 - 1/14/2025	Tablet Device	Page 18 of 38

V 10.6 10/27/2023

Radar Waveform Calibration Plot:

The radiated plots of the Radar Pulse Signals (Type 0) are given below after performing the system calibration as described in Section 7.6.

Short Pulse Radar Type 0:

Contert 5.530000000 GHz Center 5.530000000 GHz Center 5.530000000 GHz Center 5.530000000 GHz Contert 5.530000000 GHz VBW 3.0 MHz VBW 3.0 MHz Sweep 40.53 ms (32001 pts) Center 5.53000000 gHz		ectrum Analyzer	•																– f <mark>×</mark>
Production #Atten: 10 dB Def PNNNN Ref Offset 41.1 dB Mkr1 25.57 ms -63.17 dBm Auto Tune 00 dB/div Ref -58.10 dBm -63.17 dBm 60.1 1 0.1 -03.00 dBn 1 0.1 -03.00 dBn 60.1 1 0.1 -03.00 dBn 1 0.1 -03.00 dBn 60.1 1 0.1 -03.00 dBn 1 0.1 -03.00 dBn 60.1 1 0.1 -03.00 dBn 1 0.1 -03.00 dBn 60.1 1 0.1 -03.00 dBn 1 0.0 -03.00 dBn 78.1 1 0.1 -03.00 dBn 1 1 91.1 1 1 1 1 91.1 1 1 1 1 91.1 1 1 1 1 91.1 1 1 1 1 91.1 1 1 1 1 1 91.1 1 1 1 1 1 1 91.1 1 1 1 1 1 1 1 91.1 1 1 1	L)XI	RF	50 Ω DC				· ·	Dela	y-10.0		#A	vg Typ			10:2	TRAC	E 1 2 3 4 5	6	Frequency
681 0	10 dB/div			IFO											Mk	DE r1 2	5.57 m	N	Auto Tune
e81 Image: Start Freq e110 Image: Start Freq e110 Image: Start Freq e111 Image: Start Freq e111 <td></td> <td><u>1</u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												<u>1</u>							
-108 Image: state of the	-78.1																		
-118 -118	, ha a	delay delay state		would	dhe datalije			H jpgrag H g	linite d	di analia di	(11.15.16)	lden de la la la la		hephul. I.M.		hadoyanyu	paratel and		-
-138 -148		<mark>ood y de pij de de pij de</mark> de s	<mark>i a body</mark>	1 <u>,11,1,7,</u> 7,11	i depining d	n a star (f	un ((pan (pa				<mark>, W<mark>I</mark>MI) ^{WI}</mark>	line i li i en		nd na ann a	luinid <mark>ui</mark> t.				3.000000 MHz
Center 5.530000000 GHz Res BW 3.0 MHz VBW 3.0 MHz Sweep 40.53 ms (32001 pts)																			•
Res BW 3.0 MHz VBW 3.0 MHz Sweep 40.53 ms (32001 pts)	Center 5.		0 GHz													S	pan 0 <u>H</u> z	z L.	
					V	3W 3	3.0 M	IZ				ş	wee			ns (3	2001 pts	2	

Figure 7-3. 5530MHz – Radar Pulse Type 0 (80MHz)

FCC ID: BCGA3354 IC: 579C-A3354	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 20
1C2410210076-08.BCG	10/25/2024 - 1/14/2025	Tablet Device	Page 19 of 38
1C2410210076-08.BCG	10/25/2024 - 1/14/2025		V 10 6 10/27/2022

8.0 EUT COMMUNICATION MODES

The EUT was tested in 4 different test configurations,

Mode 1: Client Mode

Mode 2: Client to Client

Mode 3: Peer to Peer (EUT)

Mode 4: Peer to Peer (Apple TV)

Mode 1: Client Mode

Client is connected to Master (AP) via WLAN network and plays a video test file "6 ½ Magic Hours" in a Server (Laptop). This Server is connected to the Master (AP) via ethernet cable. The Vivaldi antenna is adjusted so that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold.

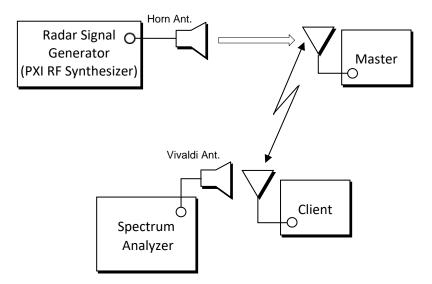


Figure 8-1. Test Setup (Mode 1)

FCC ID: BCGA3354 IC: 579C-A3354	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 20 of 29
1C2410210076-08.BCG	10/25/2024 - 1/14/2025	Tablet Device	Page 20 of 38
	•		V 10.6 10/27/2023

Mode 2: Client-to-Client Communications Mode

Client plays the video test file that is streamed to generate WLAN while linked to Master and streamed the video through Apple TV to Monitor display. The Vivaldi antenna is adjusted so that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold.

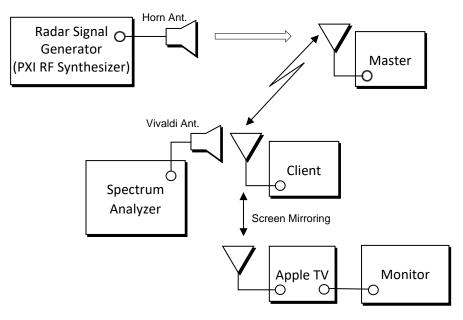


Figure 8-2. Test Setup (Mode 2)

FCC ID: BCGA3354 IC: 579C-A3354	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 21 of 38
1C2410210076-08.BCG	10/25/2024 - 1/14/2025	Tablet Device	Page 21 01 38

Mode 3: Peer-to-Peer (EUT) Communications Mode

Generate and inject additional transmission:

- 1. Client and Apple TV must be linked to the Master.
- 2. Client plays video that is saved within its internal storage and begin mirroring screen via Apple TV.
- 3. Connect the Apple TV and Client to the support laptop and initiate additional transmission using iPerf.
- 4. After the additional transmission is injected, the Client must be disconnected to the Master.
- 5. Client stops and re-start mirroring screen.

Client plays video that is saved within its internal storage and streamed through Apple TV to the Monitor display. The receive antenna/ monitoring antenna is placed near the EUT. Additional data traffic was sent from the EUT (Client) to Apple TV (Server) using iPerf. The Vivaldi antenna is adjusted so that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold.

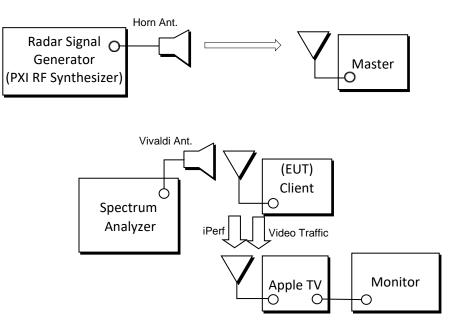


Figure 8-3. Test Setup (Mode 3)

FCC ID: BCGA3354 IC: 579C-A3354	element 🤤	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 29
1C2410210076-08.BCG	10/25/2024 - 1/14/2025	Tablet Device	Page 22 of 38

Mode 4: Peer-to-Peer (Apple TV) Communications Mode

Generate and inject additional transmission:

- 1. Client and Apple TV must be linked to the Master.
- 2. Client plays video that is saved within its internal storage and begin mirroring screen via Apple TV.
- 3. Connect the Apple TV and Client to the support laptop and initiate additional transmission using iPerf.
- 4. After the additional transmission is injected, the Client must be disconnected to the Master.
- 5. Client stops and re-start mirroring screen.

Client plays video that is saved within its internal storage and streamed through Apple TV to the Monitor display. The receive antenna/ monitoring antenna is placed near the Apple TV. Additional data traffic was sent from the Apple TV (Client) to the EUT (Server) using iPerf. The Vivaldi antenna is adjusted so that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold.

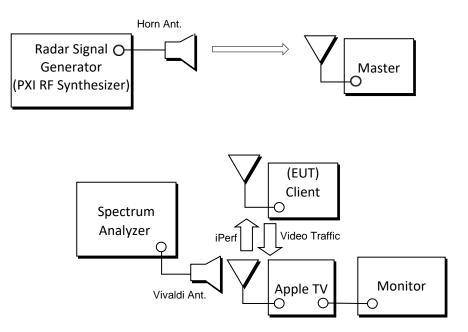


Figure 8-4. Test Setup (Mode 4)

In summary, for Modes 1 and Mode 2, Client is linked to the Master, and for Modes 3 and Mode 4, Client is not linked to the Master.

FCC ID: BCGA3354 IC: 579C-A3354	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 22 of 20
1C2410210076-08.BCG	10/25/2024 - 1/14/2025	Tablet Device	Page 23 of 38
E	•	·	V 10.6 10/27/2023

9.0 TEST RESULTS

9.1 Summary

Company Name:	Apple Inc.
FCC ID:	BCGA3354
IC:	<u>579C-A3354</u>
FCC Classification:	Unlicensed National Information Infrastructure (UNII)

	Mode	Parameter	Measured	Limit	Result
	mode	T di di neter	80MHz Bandwidth	Liint	Result
		Channel Move Time	0.923 s	10 seconds	Pass
	1 Client Mode	Channel Closing Transmission Time	< 200ms + 5.66 ms (aggregate)	200 ms + aggregate of 60ms over remaining 10 second period	Pass
ada)		Non- Occupancy Period	Monitored for 30 minutes with no client transmission	30 Minutes	Pass
Can		Channel Move Time	1.170 s	10 seconds	Pass
lz 1 ISED (4	2 Client to Client	Channel Closing Transmission Time	< 200ms + 6.41 ms (aggregate)	200 ms + aggregate of 60ms over remaining 10 second period	Pass
5725 MHz 0MHz for 2C Band		Non- Occupancy Period	Monitored for 30 minutes with no client transmission	30 Minutes	Pass
- 5 6501 1 - 2	3 Peer to Peer	Channel Move Time	0.994 s	10 seconds	Pass
5470 – 5725 MHz (excluding 5600-5650MHz for ISED Canada) UNII – 2C Band		Channel Closing Transmission Time	< 200ms + 6.85 ms (aggregate)	200 ms + aggregate of 60ms over remaining 10 second period	Pass
luding	(EUT)	Non- Occupancy Period	Monitored for 30 minutes with no client transmission	30 Minutes	Pass
(exc		Channel Move Time	1.056 s	10 seconds	Pass
Ŭ	4 Peer to Peer	Channel Closing Transmission Time	< 200ms + 6.68 ms (aggregate)	200 ms + aggregate of 60ms over remaining 10 second period	Pass
	(Apple TV)	Non- Occupancy Period	Monitored for 30 minutes with no client transmission	30 Minutes	Pass

Table 9-1. Summary of Test Results

Test Report S/N: Test Dates: EUT Type: Page 24 of 38	FCC ID: BCGA3354 IC: 579C-A3354	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
	Test Report S/N:	Test Dates:	EUT Type:	
1C2410210076-08.BCG 10/25/2024 - 1/14/2025 Tablet Device	1C2410210076-08.BCG	10/25/2024 - 1/14/2025	Tablet Device	

Notes:

- 1) The EUT was found to be compliant with the requirements for DFS as required for a Client Device per Part 15.407(h), RSS-247 and KDB 905462 D02 v02.
- 2) Automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The list is given below,
 - DFS threshold count v1.1
 - DFS Radar Simulator and Analyzer v2.8 (Aeroflex Inc.)
 - iPerf Software

IC: 579C-A3354	element	MEASUREMENT REPORT (CERTIFICATION)	Technical Manager
Test Report S/N: Te	est Dates:	EUT Type:	Technical Manager Page 25 of 38
1C2410210076-08.BCG 10	0/25/2024 - 1/14/2025	Tablet Device	

9.1.1 Channel Loading Mode 1:

Channel Loading Notes:

Per KDB 905462 D02 v02, timing plots are required with calculations demonstrating a minimum channel loading of approximately 17% or greater. Channel loading can be estimated by setting the spectrum analyzer for zero span and approximate the transmission time.

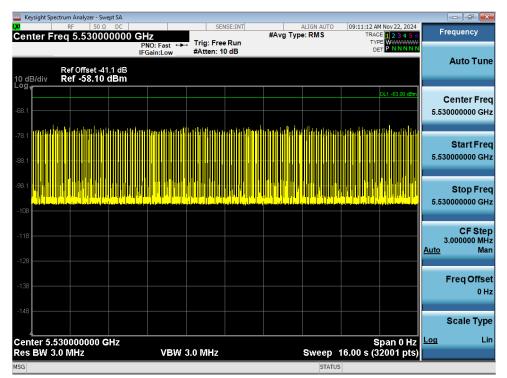


Figure 9-1. 5530MHz - Channel Loading - Mode 1 (80MHz)

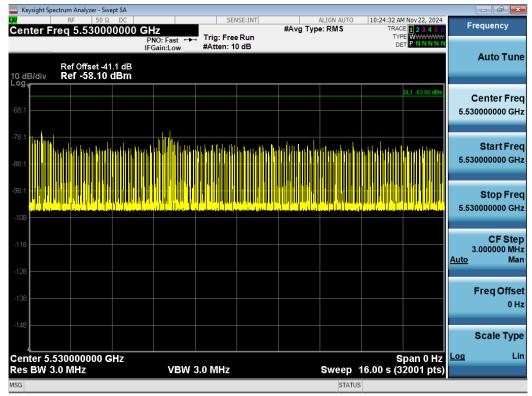


Figure 9-2. 5530MHz - Channel Loading Calculation - Mode 1 (80MHz)

FCC ID: BCGA3354 IC: 579C-A3354	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 26 of 29
1C2410210076-08.BCG	10/25/2024 - 1/14/2025	Tablet Device	Page 26 of 38
			V/ 10 6 10/27/2023

9.1.2 Channel Loading Mode 2:

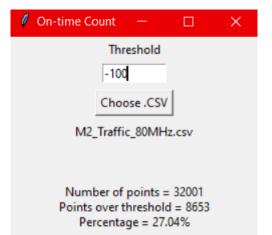


Figure 9-4. 5530MHz - Channel Loading Calculation - Mode 2 (80MHz)

FCC ID: BCGA3354 IC: 579C-A3354	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 27 of 38
1C2410210076-08.BCG	10/25/2024 - 1/14/2025	Tablet Device	
			V/ 10 6 10/27/2022

9.1.3 Channel Loading Mode 3:

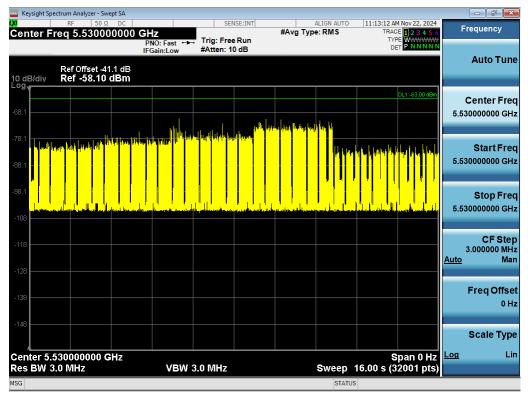


Figure 9-6. 5530MHz - Channel Loading Calculation - Mode 3 (80MHz)

FCC ID: BCGA3354 IC: 579C-A3354	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 28 of 38
1C2410210076-08.BCG	10/25/2024 - 1/14/2025	Tablet Device	
			V 10 6 10/27/2023

9.1.4 Channel Loading Mode 4:

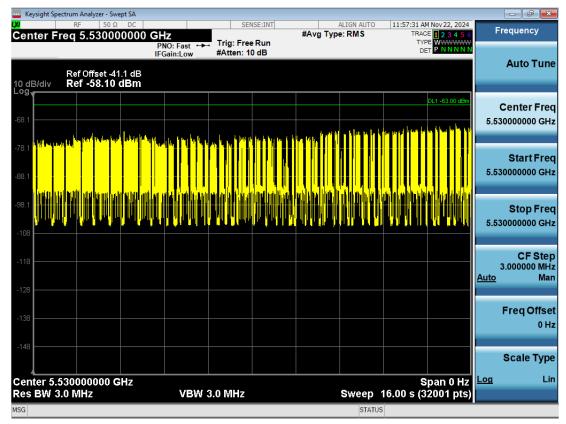
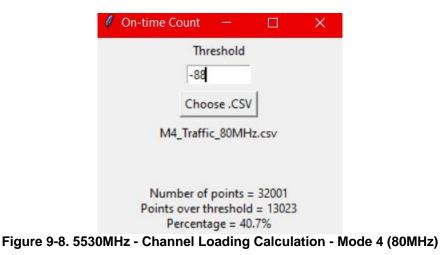



Figure 9-7. 5530 MHz - Channel Loading - Mode 4 (80MHz)

FCC ID: BCGA3354 IC: 579C-A3354	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 20
1C2410210076-08.BCG	10/25/2024 - 1/14/2025	Tablet Device	Page 29 of 38

9.1.5 Channel Move/ Closing Transmission Time Mode 1:

<u>Result</u>

Parameter	Measurement	Limits
	80MHz Bandwidth	
Channel Move Time	.923 s	10 seconds
Channel Closing Transmission Time	< 200ms + 5.66 ms (aggregate)	200 ms + aggregate of 60ms over remaining 10 second period

Notes:

- 1. The pulses shown in the plots below have been determined to be from the Master AP.
- 2. Marker Info and Aggregate time results are shown on the right side of the plots below.

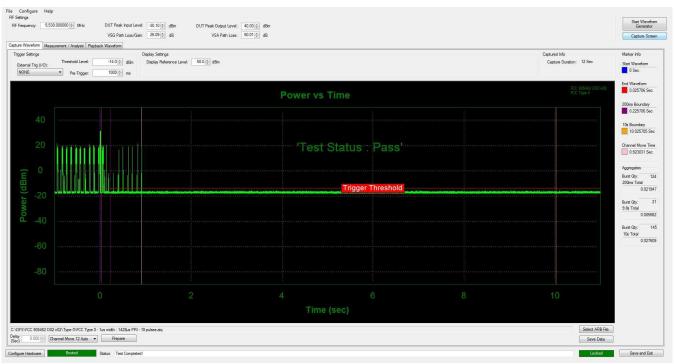


Figure 9-9. 5530MHz - Channel Move/ Closing Transmission Time - Mode 1 (80 MHz)

FCC ID: BCGA3354 IC: 579C-A3354	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 20 of 20
1C2410210076-08.BCG	10/25/2024 - 1/14/2025	Tablet Device	Page 30 of 38
1C2410210076-08.BCG	10/25/2024 - 1/14/2025	lablet Device	V 10 6 10/27

9.1.6 Channel Move/ Closing Transmission Time Mode 2:

Result:

Parameter	Measurement 80MHz Bandwidth	Limits
Channel Move Time	1.170 s	10 seconds
Channel Closing Transmission Time	< 200ms + 6.41 ms (aggregate)	200 ms + aggregate of 60ms over remaining 10 second period

Notes:

- 1. The pulses shown in the plots below have been determined to be from the Master AP.
- 2. Marker Info and Aggregate time results are shown on the right side of the plots below.

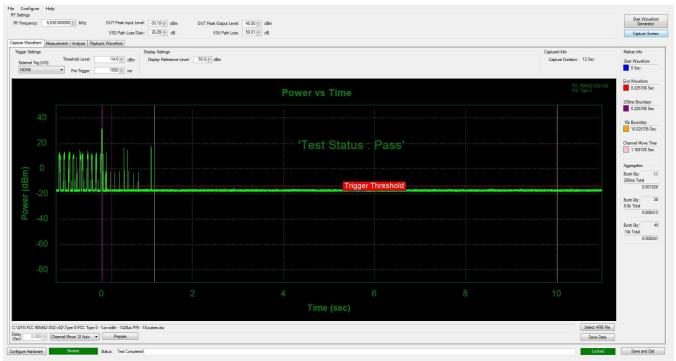


Figure 9-10. 5530MHz - Channel Move/ Closing Transmission Time - Mode 2 (80 MHz)

FCC ID: BCGA3354 IC: 579C-A3354	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Technical Manager Page 31 of 38
1C2410210076-08.BCG	10/25/2024 - 1/14/2025	Tablet Device	

9.1.7 Channel Move/ Closing Transmission Time Mode 3:

Result:

Parameter	Measurement 80MHz Bandwidth	Limits
Channel Move Time	.994 s	10 seconds
Channel Closing Transmission Time	< 200ms + 6.85 ms (aggregate)	200 ms + aggregate of 60ms over remaining 10 second period

Notes:

- 1. The pulses shown in the plots below have been determined to be from the Master AP.
- 2. Marker Info and Aggregate time results are shown on the right side of the plots below.

Figure 9-11. 5530MHz - Channel Move/ Closing Transmission Time - Mode 3 (80 MHz)

	Approved by: Technical Manager	MEASUREMENT REPORT (CERTIFICATION)	element	FCC ID: BCGA3354 IC: 579C-A3354
,	0	EUT Type:	Test Dates:	Test Report S/N:
Page 32 of 38	Tablet Device	10/25/2024 - 1/14/2025	1C2410210076-08.BCG	
	Page 32 of 38			•

9.1.8 Channel Move/ Closing Transmission Time Mode 4:

Result:

Parameter	Measurement 80MHz Bandwidth	Limits
Channel Move Time	1.056 s	10 seconds
Channel Closing Transmission Time	-	

Notes:

- 1. The pulses shown in the plots below have been determined to be from the Master AP.
- 2. Marker Info and Aggregate time results are shown on the right side of the plots below.

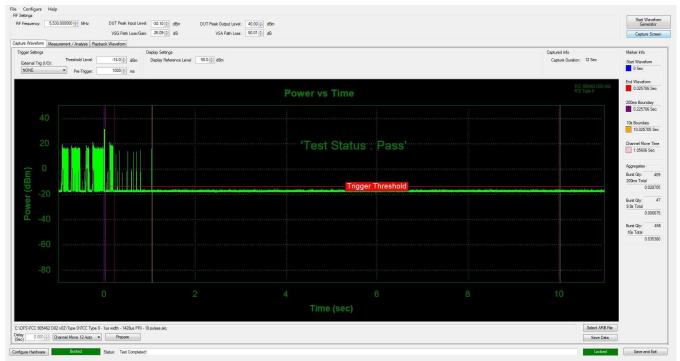


Figure 9-12. 5530MHz - Channel Move/ Closing Transmission Time - Mode 4 (80 MHz)

FCC ID: BCGA3354 IC: 579C-A3354	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 22 of 20
1C2410210076-08.BCG	10/25/2024 - 1/14/2025	Tablet Device	Page 33 of 38

9.2 Non-Occupancy Period

9.2.1 Non-Occupancy Period (30 Minutes) Mode 1:

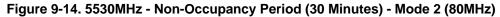
Notes:

1. No frequency transmission detected during the Non-Occupancy Period of 30 minutes monitoring.

Keysight Spectrum An								
<mark>⊯ R</mark> ⊧ Center Freq 5.				#Avg Type	ERMS	10:15:20 AM Nov 22 TRACE 1 2 3 TYPE WWW DET P N 1	3 4 5 6 WWW	Frequency
Ref O 10 dB/div Ref -	ffset -41.1 dB -58.10 dBm	FGam:Low #Atten.						Auto Tune
-68.1						DL1 -63.		Center Freq 530000000 GHz
-78.1							5.	Start Freq 530000000 GHz
-98.1 <mark>/*</mark>	le lit des stitten en forsket det tilleren til	nill to a glasticutra las con la ciana, con la ciana da const	ki a Kasi ata ita da atia Ulay, U	een an	lês terre met de tre the the d	na statistica y factifică de la statistică	5.1	Stop Freq 53000000 GHz
-118							Auto	CF Step 3.000000 MHz Man
-128								Freq Offset 0 Hz
-148	0000 GHz					Span	0 Hz Log	Scale Type Lin
Res BW 3.0 MH		VBW 3.0 MHz		S	weep 2.0	000 ks (32001	pts)	

Figure 9-13. 5530MHz - Non-Occupancy Period (30 Minutes) - Mode 1 (80MHz)

FCC ID: BCGA3354 IC: 579C-A3354	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 24 of 29
1C2410210076-08.BCG	10/25/2024 - 1/14/2025	Tablet Device	Page 34 of 38
			V/ 10 6 10/27/2022



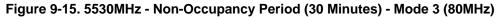
9.2.2 Non-Occupancy Period (30 Minutes) Mode 2:

Notes:

1. No frequency transmission detected during the Non-Occupancy Period of 30 minutes monitoring.

🛄 Keysight Sp	ectrum Analyzer - Swept SA						
	RF 50 Ω DC		SENSE:INT	ALIGI #Avg Type: R		MNov 22, 2024	Frequency
Center F	req 5.53000000	PNO: Fast ↔ IFGain:Low ≠	Trig: Free Run #Atten: 10 dB	#Avg Type. Ki	TYF	E U 2 3 4 5 0 E WWWWWW T P N N N N N	Auto Tune
10 dB/div Log _w	Ref Offset -41.1 dE Ref -58.10 dBm	3 1					
						DL1 -63.00 dBm	Center Freq
-68.1							5.53000000 GHz
-78.1							Otort Error
							Start Freq 5.53000000 GHz
-88.1							5.55000000 GHZ
-98.1							
	n an the structure to the structure of the	an interaction in the state of a state of the state of th	and and the second s	a ala ala ala ala ala a	u de plantest fil an dei ben beriten	oll on human an	Stop Freq
-108							5.530000000 GHz
-118							CF Step 3.000000 MHz
							<u>Auto</u> Man
-128							
400							Freq Offset
-138							0 Hz
-148							
							Scale Type
Contor-E	52000000 OU-						Log Lin
Res BW 3	530000000 GHz 3.0 MHz	VBW 3.0	MHz	Swe	ep 2.000 ks (3	pan 0 Hz 2001 pts)	
MSG					STATUS		

FCC ID: BCGA3354 IC: 579C-A3354	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 25 of 29
1C2410210076-08.BCG	10/25/2024 - 1/14/2025	Tablet Device	Page 35 of 38
			V/ 10 6 10/27/2022



9.2.3 Non-Occupancy Period (30 Minutes) Mode 3:

Notes:

1. No frequency transmission detected during the Non-Occupancy Period of 30 minutes monitoring.

🛄 Keysight Sp	ectrum Analyzer - Swept								
	RF 50 Ω		SE	NSE:INT	#Avg Typ		11:47:39 AM N	Nov 22, 2024	Frequency
Center F	req 5.530000	PNO: Fas IFGain:Lo			#AV9 Typ	e. Rivij	TYPE	U 2 3 4 5 6 WWWWWW P N N N N N P N N N N N	Auto Tune
10 dB/div Log _e	Ref Offset -41.1 Ref -58.10 d	l dB Bm							
							DI	_1 -63.00 dBm	Center Fred
-68.1									5.530000000 GH
-78.1									
									Start Free 5.530000000 GH;
-88.1									3.330000000 GH
-98.1									
	hi na ang kana di talan kasalar ka	nde haate e <mark>ksterne van deit. H</mark> i	a to the second states and with some	den standerer der bile		adault and a adat	a di sa mangan di san da sa	densissisi da sute	Stop Fred
-108									5.530000000 GH
-118									CF Step 3.000000 MH;
									<u>Auto</u> Mar
-128									
-138									Freq Offse
-130									0 H:
-148									
									Scale Type
Center 5	530000000 GH	7					Cn	an 0 Hz	Log Lir
Res BW 3			BW 3.0 MHz			weep 2	эр 2.000 ks (32	001 pt <u>s)</u>	
MSG						STATU			

FCC ID: BCGA3354 IC: 579C-A3354	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 26 of 29
1C2410210076-08.BCG	10/25/2024 - 1/14/2025	Tablet Device	Page 36 of 38
			V/ 10 6 10/27/2022

9.2.4 Non-Occupancy Period (30 Minutes) Mode 4:

Notes:

1. No frequency transmission detected during the Non-Occupancy Period of 30 minutes monitoring.

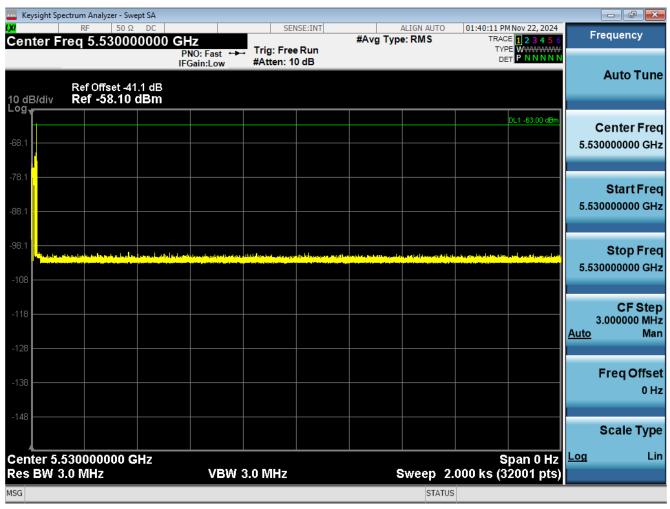


Figure 9-16. 5530MHz - Non-Occupancy Period (30 Minutes) - Mode 4 (80MHz)

FCC ID: BCGA3354 IC: 579C-A3354	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 27 of 20
1C2410210076-08.BCG	10/25/2024 - 1/14/2025 Tablet Device		Page 37 01 38
1C2410210076-08.BCG	10/25/2024 - 1/14/2025	Tablet Device	Page 37 of 38

10.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the **Apple Tablet Device FCC ID: BCGA3354**, **IC: 579C-A3354** is in compliance with the DFS requirements for a Client Device without radar detection in accordance with Part 15.407 of the FCC Rules and RSS-247 of the Innovation, Science and Economic Development Canada Rules.

FCC ID: BCGA3354 IC: 579C-A3354	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 38 of 38
1C2410210076-08.BCG	10/25/2024 - 1/14/2025 Tablet Device		raye so ul so