

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Langing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China

Tel: +86-755-27521059 Fax: +86-755-27521011 http://www.sz-ctc.org.cn

TEST REPORT

Report No.: CTC2024200206

FCC ID.....: **2APPZ-I60**

Applicant: Fanvil Technology Co., Ltd

10/F Block A, Dualshine Global Science Innovation Center, Address.....

Honglang North 2nd Road, Bao'an District, Shenzhen, China

Manufacturer....: Fanvil Technology Co., Ltd

10/F Block A, Dualshine Global Science Innovation Center, Address....:

Honglang North 2nd Road, Bao'an District, Shenzhen, China

Product Name: **Video Door Phone**

Trade Mark:

i60 Model/Type reference....:

Listed Model(s):

Standard: FCC Rules Part 15.225

Date of receipt of test sample.....: Aug. 27, 2024

Date of testing..... Aug. 27, 2024 ~ Aug. 31, 2024

Date of issue....: Sep. 03, 2024

Result....: **PASS**

Compiled by:

(Printed name + signature) Lucy Lan

Supervised by:

(Printed name + signature) Eric Zhang lucy lan

Zi - Zhang

Jahas

Approved by:

(Printed name + signature) Totti Zhao

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

		Table of Contents	Page
1.	TEST	SUMMARY	3
		TEST STANDARDS	
	1.2.	REPORT VERSION	
	1.3.	TEST DESCRIPTION	
	1.4.	TEST FACILITY	
	1.5.	MEASUREMENT UNCERTAINTY	∠
	1.6.	ENVIRONMENTAL CONDITIONS	5
	1.7.	EUT OPERATION STATE	5
2.	GEN	ERAL INFORMATION	6
	2.1.	CLIENT INFORMATION	6
	2.2.	GENERAL DESCRIPTION OF EUT	€
	2.3.	ACCESSORY EQUIPMENT INFORMATION	
	2.4.	MEASUREMENT INSTRUMENTS LIST	8
3.	TEST	ITEM AND RESULTS	9
	3.1.	CONDUCTED EMISSION	9
	3.2.	RADIATED EMISSION	
	3.3.	BANDWIDTH	21
	3.4.	FIELD STRENGTH OF THE FUNDAMENTAL	23
	3.5.	FREQUENCY STABILITY	26
	3.6.	ANTENNA REQUIREMENT	28

Page 3 of 28

Report No.: CTC2024200206

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.225: Operation within the band 13.110-14.010MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report Version

Revised No.	Report No.	Date of issue	Description
01	CTC2024200206	Sep. 03, 2024	Original

1.3. Test Description

FCC Part 15.225							
Test Item	Test Engineer						
Conducted Emission	15.207	Pass	Evan				
Radiated Emissions	15.209&15.225(d)	Pass	Evan				
Field Strength of the Fundamental	15.209&15.225(d)	Pass	Lucy Lan				
Occupied Bandwidth	15.215	Pass	Lucy Lan				
Antenna requirement	15.203	Pass	Lucy Lan				
Frequency Stability	15.225(e)	Pass	Lucy Lan				

Note:

N/A: Not applicable.

The measurement uncertainty is not included in the test result.

Page 4 of 28 Report No.: CTC2024200206

1.4. Test Facility

Address of the report laboratory

CTC Laboratories, Inc.

Add: Room 101 of Building B, Room 107, 108, 207, 208 of Building A, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained inour files. Registration 951311, Aug 26, 2017.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: http://yz.cnca.cn

Test Items Notes Measurement Uncertainty Transmitter power conducted 0.42 dB (1) 2.14 dB Transmitter power Radiated (1) Conducted spurious emissions 9kHz~40GHz 1.60 dB (1) Radiated spurious emissions 9kHz~40GHz 2.20 dB (1)Conducted Emissions 9kHz~30MHz 3.20 dB (1) Radiated Emissions 30~1000MHz 4.70 dB (1) Radiated Emissions 1~18GHz 5.00 dB (1) Radiated Emissions 18~40GHz 5.54 dB (1) Occupied Bandwidth -----(1)

1.6. Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	21°C~27°C
Relative Humidity:	40%~60%
Air Pressure:	101kPa

1.7. EUT Operation State

The EUT has been tested under typical operating condition. The applicant provides normal EUT, in the state of charge, to maintain continuous transmission mode for testing.

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 6 of 28

Report No.: CTC2024200206

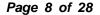
2. GENERAL INFORMATION

2.1. Client Information

Applicant:	Fanvil Technology Co., Ltd
Address:	10/F Block A, Dualshine Global Science Innovation Center, Honglang North 2nd Road, Bao'an District, Shenzhen, China
Manufacturer:	Fanvil Technology Co., Ltd
Address:	10/F Block A, Dualshine Global Science Innovation Center, Honglang North 2nd Road, Bao'an District, Shenzhen, China
Factory:	Fanvil Technology Co., Ltd
Address:	10/F Block A, Dualshine Global Science Innovation Center, Honglang North 2nd Road, Bao'an District, Shenzhen, China

2.2. General Description of EUT

Product Name:	Video Door Phone
Trade Mark:	Fanvil
Model/Type reference:	i60
Listed Model(s):	
Power Supply:	DC 12V/1A or POE 48V/0.3A
Temperature Range:	-20℃ ~60℃
Hardware version:	/
Software version:	
RF Parameter	
Modulation:	ASK
Operation frequency:	13.56MHz
Antenna type:	FPC Antenna



2.3. Accessory Equipment Information

Equipment Information							
Name	Model	S/N	Manufacturer				
Adapter	YS-SKY120150B01P						
NFC Card	/	/	/				
Cable Information	Cable Information						
Name	Shielded Type	Ferrite Core	Length				
/	/	/	1				
Test Software Information							
Name	Version	/	1				
/	/	1	/				

Accreditation Administration of the People's Republic of China: http://yz.cnca.cn

2.4. Measurement Instruments List

Tonsce	Tonscend JS0806-2 Test system							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until			
1	Spectrum Analyzer	R&S	FSV40-N	101331	Mar. 21 2025			
2	MXA Signal Analyzer	Keysight	N9020A	MY46471737	Dec. 12, 2024			
3	RF Control Unit	Tonscend	JS0806-2	/	Aug. 21, 2025			
4	High and low temperature test chamber	ESPEC	MT3035	/	Mar. 21, 2025			
5	Test Software	Tonscend	JS1120-3	V3.3.38	/			

Radia	Radiated emission							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until			
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9163	01026	Dec. 18, 2024			
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-647	Sep. 25, 2025			
3	Test Receiver	Keysight	N9038A	MY56400071	Dec. 12, 2024			
4	Broadband Amplifier	SCHWARZBECK	BBV9743B	259	Dec. 12, 2024			
5	Mirowave Broadband Amplifier	SCHWARZBECK	BBV9718C	111	Dec. 12, 2024			
6	Loop Antenna	ETS	6507	1446	Dec. 12, 2024			
7	3m chamber 3	YIHENG	EE106	/	Aug. 28, 2026			
8	Test Software	FARA	EZ-EMC	FA-03A2	/			

Condu	Conducted Emission								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until				
1			ENV216	101112	Dec. 12, 2024				
2			ENV216	Dec. 12, 2024					
3	EMI Test Receiver	R&S	ESCS30	100353	Dec. 12, 2024				
4	4 ISN CAT6 Schwarz 5 ISN CAT5 Schwarz		NTFM 8158	CAT6-8158-0046	Dec. 12, 2024				
5			NTFM 8158	CAT5-8158-0046	Dec. 12, 2024				
6	Test Software	R&S	EMC32	6.10.10	/				

Note:

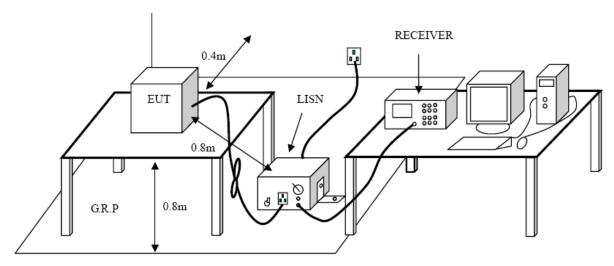
- 1. The Cal. Interval was one year.
- 2. The cable loss has calculated in test result which connection between each test instruments.

CTC Laboratories, Inc.

3. TEST ITEM AND RESULTS

3.1. Conducted Emission

Limit


FCC CFR Title 47 Part 15 Subpart C Section 15.207

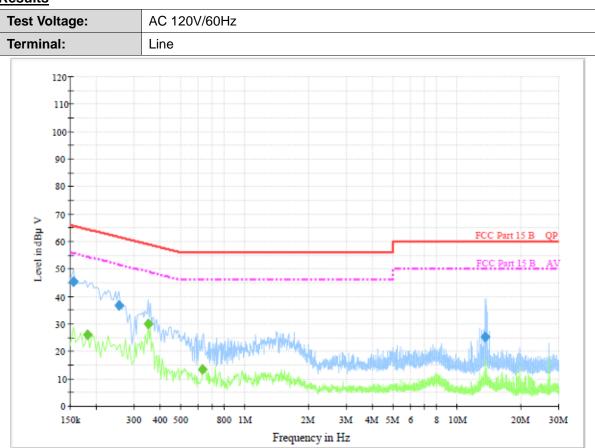
Fraguency range (MHz)	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

Test Configuration

Test Procedure


- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.

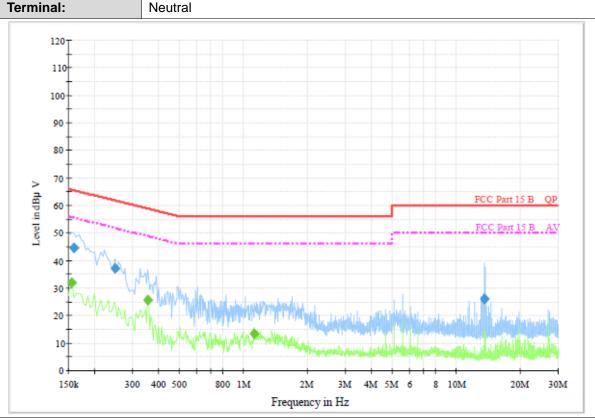
Test Mode

Please refer to the clause 1.7.

Test Results

Final Measurement Detector 1

Frequency (MHz)	QuasiPeak (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.154500	45.3	1000.00	9.000	On	L1	9.5	20.5	65.8	
0.253500	36.7	1000.00	9.000	On	L1	9.5	24.9	61.6	
13.492500	25.1	1000.00	9.000	On	L1	9.8	34.9	60.0	


Final Measurement Detector 2

	Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
ı	0.181500	26.0	1000.00	9.000	On	L1	9.5	28.4	54.4	
ſ	0.348000	30.0	1000.00	9.000	On	L1	9.5	19.0	49.0	
	0.631500	13.5	1000.00	9.000	On	L1	9.5	32.5	46.0	

Emission Level = Read Level + Correct Factor

Test Voltage: AC 120V/60Hz

Final Measurement Detector 1

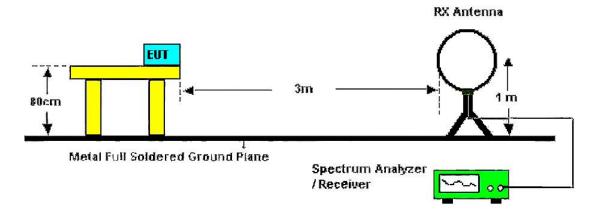
Frequency (MHz)	QuasiPeak (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.159000	44.6	1000.00	9.000	On	N	9.5	20.9	65.5	
0.249000	37.3	1000.00	9.000	On	N	9.4	24.5	61.8	
13.438500	25.9	1000.00	9.000	On	N	9.7	34.1	60.0	

Final Measurement Detector 2

Frequency	Average	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit	Comment
(MHz)	(dBµ V)	Time	(kHz)			(dB)	(dB)	(dBµ	
		(ms)						V)	
0.154500	32.0	1000.00	9.000	On	N	9.5	23.8	55.8	
0.352500	25.8	1000.00	9.000	On	N	9.4	23.1	48.9	
1.117500	13.5	1000.00	9.000	On	N	9.4	32.5	46.0	

Emission Level = Read Level + Correct Factor

3.2. Radiated Emission

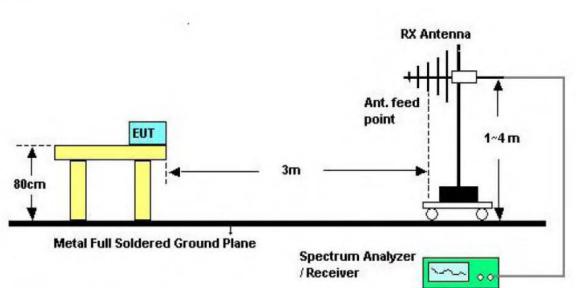

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.209

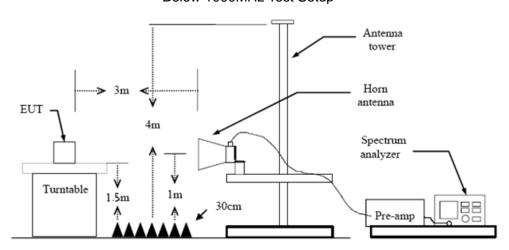

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F (kHz)	300
0.490~1.705	24000/F (kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

Fraguency Banga (MHz)	dBµV/m (at 3 meters)			
Frequency Range (MHz)	Peak	Average		
Above 1000	74	54		

Test Configuration



Below 30MHz Test Setup



Below 1000MHz Test Setup

Above 1GHz Test Setup

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.

Page 14 of 28

Report No.: CTC2024200206

- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) 9Hz 150kHz:

RBW=300 Hz, VBW=1 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) 150kHz - 30MHz:

RBW=10 kHz, VBW=30 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(4) 30MHz - 1GHz:

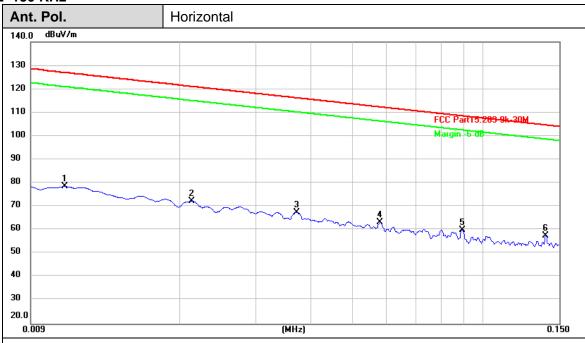
RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(5) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

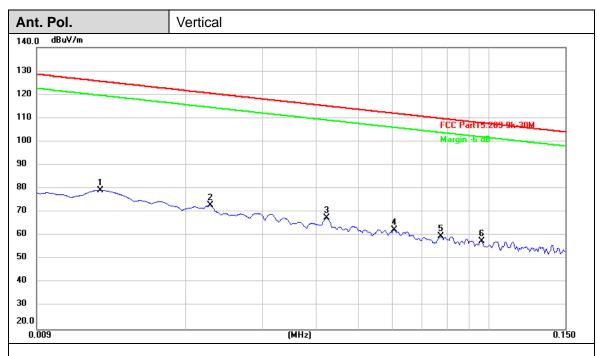
RBW=1MHz, VBW=3MHz RMS detector for Average value.


Test Mode

Please refer to the clause 1.7.

Test Result

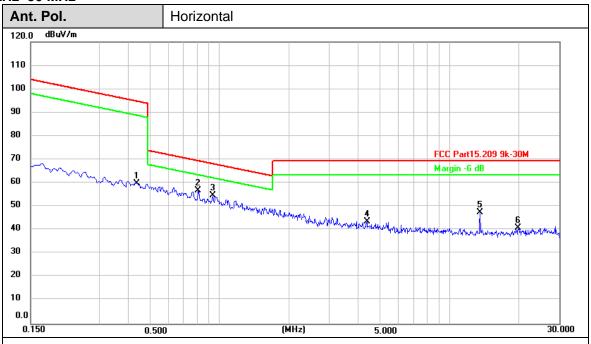
9 KHz~150 KHz



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	0.0108	50.34	28.18	78.52	126.92	-48.40	peak
2	0.0212	49.31	22.99	72.30	121.06	-48.76	peak
3	0.0370	47.25	20.42	67.67	116.23	-48.56	peak
4	0.0579	44.02	19.21	63.23	112.34	-49.11	peak
5	0.0896	41.92	18.21	60.13	108.55	-48.42	peak
6 *	0.1397	39.40	18.12	57.52	104.69	-47.17	peak

Remarks

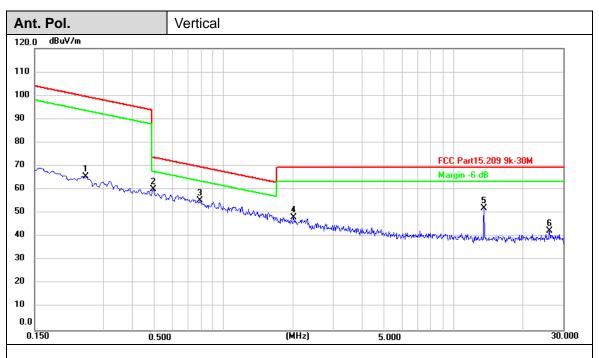
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	0.0126	52.11	27.21	79.32	125.58	-46.26	peak
2	0.0225	50.12	22.75	72.87	120.55	-47.68	peak
3	0.0421	47.56	19.84	67.40	115.11	-47.71	peak
4	0.0604	43.23	19.17	62.40	111.97	-49.57	peak
5	0.0773	41.45	18.16	59.61	109.83	-50.22	peak
6	0.0962	39.55	17.96	57.51	107.93	-50.42	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

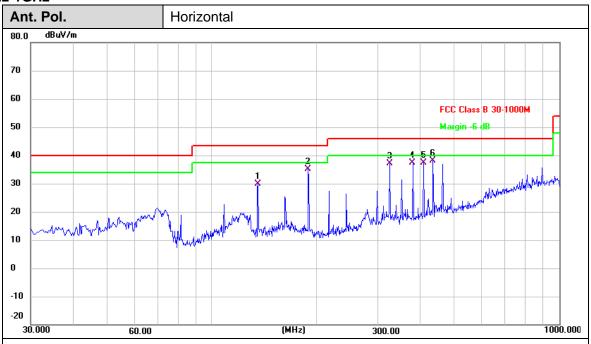
150 KHz~30 MHz



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	0.4366	42.19	17.75	59.94	94.80	-34.86	peak
2 *	0.8082	38.91	17.99	56.90	69.47	-12.57	peak
3	0.9336	36.73	17.95	54.68	68.22	-13.54	peak
4	4.3753	25.70	18.08	43.78	69.50	-25.72	peak
5	13.5601	29.73	17.83	47.56	69.50	-21.94	peak
6	19.9599	23.71	17.37	41.08	69.50	-28.42	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

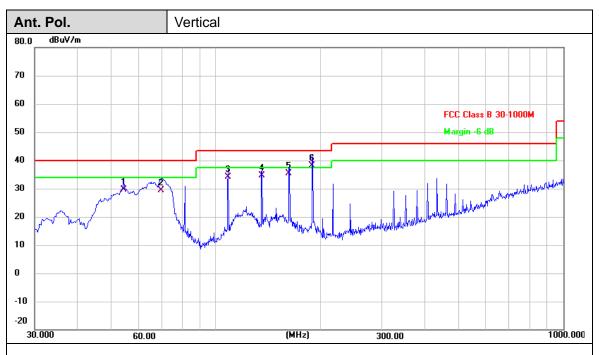


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	0.2500	47.85	17.70	65.55	99.64	-34.09	peak
2 *	0.4948	42.05	17.99	60.04	73.72	-13.68	peak
3	0.7873	37.37	18.01	55.38	69.69	-14.31	peak
4	2.0126	29.98	18.05	48.03	69.50	-21.47	peak
5	13.5586	34.28	17.83	52.11	69.50	-17.39	peak
6	26.1419	25.46	17.11	42.57	69.50	-26.93	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

30MHz-1GHz



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	135.7300	47.11	-17.13	29.98	43.50	-13.52	QP
2	189.7267	53.92	-18.79	35.13	43.50	-8.37	QP
3	325.5267	52.02	-15.00	37.02	46.00	-8.98	QP
4	379.5232	50.87	-13.51	37.36	46.00	-8.64	QP
5	406.6833	50.13	-12.73	37.40	46.00	-8.60	QP
6 *	433.8433	49.91	-11.90	38.01	46.00	-7.99	QP

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	54.2500	46.40	-16.73	29.67	40.00	-10.33	QP
2	69.7699	48.12	-18.78	29.34	40.00	-10.66	QP
3	108.5700	53.34	-19.23	34.11	43.50	-9.39	QP
4	135.7300	51.72	-17.13	34.59	43.50	-8.91	QP
5	162.5667	51.40	-16.14	35.26	43.50	-8.24	QP
6 *	189.7267	56.89	-18.79	38.10	43.50	-5.40	QP

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Page 21 of 28

Report No.: CTC2024200206

3.3. Bandwidth

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.215, RSS-Gen 6.6

Intentional radiators must be designed to ensure that the 20dB emission bandwidth in the specific band. 13.553~13.567MHz.

Test Configuration

Test Procedure

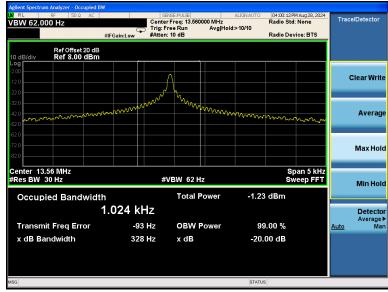
- The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. Spectrum Setting:

20dB bandwidth:

- (1) Set RBW ≥ 1% of the 20dB bandwidth.
- (2) Set the video bandwidth (VBW) ≥ RBW.
- (3) Detector = Peak.
- (4) Trace mode = Max hold.
- (5) Sweep = Auto couple.

Occupied Bandwidth:

- (1) Set RBW = 1% ~ 5% occupied bandwidth.
- (2) Set the video bandwidth (VBW) ≥ 3 RBW.
- (3) Detector = Peak.
- (4) Trace mode = Max hold.
- (5) Sweep = Auto couple.)


Test Mode

Please refer to the clause 1.7.

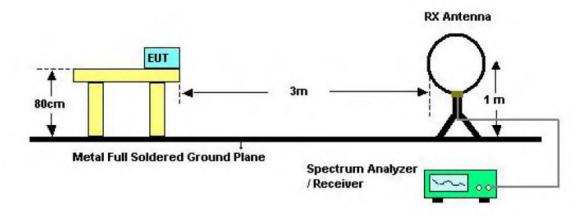
Test Results



Channel Frequency (MHz)	20dB Bandwidth (Hz)	Occupied Bandwidth (Hz)	Result
13.56	328	1024	PASS
Agilant Spectrum Api	1		

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: http://yz.cnca.cn

3.4. Field Strength of the Fundamental


Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.225(a)(b)(c)

Fundamental frequency(MHz)	Field strength of fundamental (uV/m @30m)	Field strength of fundamental (dBuV/m @3m)			
13.553-13.567	15848	124.0			
13.410-13.553&13.567-13.710	334	90.5			
13.110-13.410&13.710-14.010	106	80.5			

Note: Limit dBuV/m @3m =Limit dBuV/m @30m +40*log(30/3)= Limit dBuV/m @30m + 40.

Test Configuration

Below 30MHz Test Setup

Test Procedure

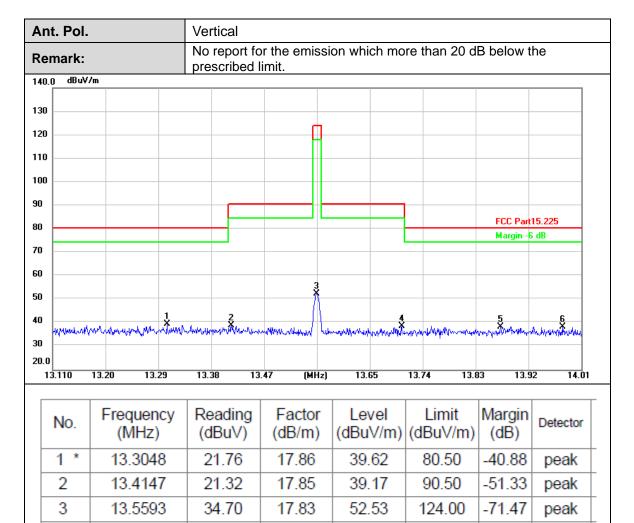
- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.

Test Mode

Please refer to the clause 1.7.

CTC Laboratories, Inc.

Test Result


An	t. Pol.				Horizontal											
Rei	mark:					lo report for the emission which more than 20 dB below the rescribed limit.						ie				
140.0) dBuV.	/m														_
130																
120																-
110																+
100																$\frac{1}{2}$
90																-
80													FCC Part15.225		4	
70													M	largin -6	dB	1
60																
50								3								
40	manhan				1 X	. 1	2	()	4 		5	proceeding (J.Maybra)			-6-	
30	property (pub.	dampayayay	YMMM/AMI	Aranthan	humanyh	production (ester-Warsh	Mundaling	Marana Again	Muhara	many many from	Mark Company	personal Particular	V94~~ww	harrightens	*
20.0																
13	3.110	13.20	13.	29	13.3	8	13.47	(MH	z) 13	.65	13.7	4 13	.83	13.92	14	.01

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	13.3560	21.58	17.85	39.43	80.50	-41.07	peak
2	13.4790	22.17	17.84	40.01	90.50	-50.49	peak
3	13.5599	31.96	17.83	49.79	124.00	-74.21	peak
4	13.6242	21.23	17.83	39.06	90.50	-51.44	peak
5	13.7302	20.92	17.82	38.74	80.50	-41.76	peak
6	13.9668	20.47	17.79	38.26	80.50	-42.24	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Remarks:

4

5

6

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

17.82

17.80

17.79

38.64

38.46

38.47

90.50

80.50

80.50

-51.86

-42.04

-42.03

peak

peak

peak

20.82

20.66

20.68

2.Margin value = Level -Limit value

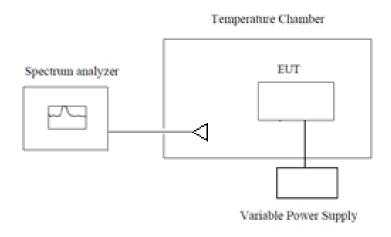
13.7040

13.8727

13.9787

Page 26 of 28

Report No.: CTC2024200206



3.5. Frequency Stability

Limit

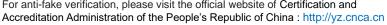
The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%(\pm 100 \text{ppm})$ of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

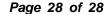
Test Configuration

Test Procedure

- 1. The equipment under test was connected to an external power supply.
- 2. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators.
- 3. The EUT was placed inside the temperature chamber.
- 4. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 25℃ operating frequency as reference frequency.
- 5. Turn EUT off and set the chamber temperature to -20° C. After the temperature stabilized for approximately 30 minutes recorded the frequency.
- Repeat step measure with 10[°]C increased per stage until the highest temperature of +60[°]C reached.

Test Mode


Please refer to the clause 1.7.



Test Result

Test Env	vironment	Frequency	Doviction(npm)	Limit(nnm)	Result	
Voltage	Temperature(°C)	Reading(MHz)	Deviation(ppm)	Limit(ppm)		
	0	13.559926	-5.46	±100	Pass	
	10	13.559926	-5.46	±100	Pass	
Vnom	20	13.559926	-5.46	±100	Pass	
	30	13.559926	-5.46	±100	Pass	
	40	13.559926	-5.46	±100	Pass	
85% Vnom	20	13.559926	-5.46	±100	Pass	
115% Vnom	20	13.559926	-5.46	±100	Pass	

3.6. Antenna Requirement

Requirement

Result

RSS-Gen Issue 5 Section 8.3:

The applicant for equipment certification, as per RSP-100, must provide a list of all antenna types that may be used with the licence-exempt transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. Licence-exempt transmitters that have received equipment certification may operate with different types of antennas. However, it is not permissible to exceed the maximum equivalent isotropically radiated power(e.i.r.p.) limits specified in the applicable standard (RSS) for licence-exempt apparatus.

PASS. The EUT has an induction coil with a frequency of 13.56MHz. Note: Antenna use a permanently attached antenna which is not replaceable. Not using a standard antenna jack or electrical connector for antenna replacement. The antenna has to be professionally installed (please provide method of installation). Which in accordance to RSS-Gen.8.3, please refer to the internal photos.
