FCC PART 15 SUBPART C TEST REPORT

FCC PART 15 C (15.225)

Report Reference No.: GTS20211025002-1-3

FCC ID.:: 2A3QL-Q26

Compiled by

(position+printed name+signature) .: File administrators Peter Xiao

Supervised by

Test Engineer Oliver Ou (position+printed name+signature) .:

Approved by

(position+printed name+signature) .: Manager Simon Hu

Nov. 19, 2021 Date of issue:

Shenzhen Global Test Service Co.,Ltd. Representative Laboratory Name.:

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative

Address: Garden, No.98, Pingxin North Road, Shangmugu Community,

Pinghu Street, Longgang District, Shenzhen, Guangdong

Applicant's name..... Shenzhen PUTY Technology Co., Ltd.

No. 3 workshop 101,102 and 201, No. 8-3, Shuangxiu Road, Xiuxin Address:

community, Kenzi Street, Pingshan district, Shenzhen City, China,

518122

Test specification:

Standard....: FCC Part 15 C (15.225)

TRF Originator....: Shenzhen Global Test Service Co.,Ltd.

Master TRF: Dated 2014-12

Shenzhen Global Test Service Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Global Test Service Co.,Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Global Test Service Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description: **Portable Label Printer**

Trade Mark.....: **PUTY**

Manufacturer: Shenzhen PUTY Technology Co., Ltd.

Model/Type reference: Q26

Q28, T26, T28, PT26, PT28, Q20, Q21, T20, T21, PT20, PT21 List Model::

Modulation Type.....: **ASK**

Operation Frequency: 13.56 MHz

Hardware Version: N/A Software Version: N/A

Rating: DC 7.4V by Battery

Recharged by DC 5.0V

PASS Result:

Report No.: GTS20211025002-1-3 Page 2 of 25

TEST REPORT

Test Report No. :	GTS20211025002-1-3	Nov. 19, 2021
		Date of issue

Equipment under Test : Portable Label Printer

Model /Type : Q26

List Model : Q28, T26, T28, PT26, PT28, Q20, Q21, T20, T21, PT20, PT21

Applicant : Shenzhen PUTY Technology Co., Ltd.

Address : No. 3 workshop 101,102 and 201, No. 8-3, Shuangxiu Road, Xiuxin

community, Kenzi Street, Pingshan district, Shenzhen City, China,

518122

Manufacturer : Shenzhen PUTY Technology Co. , Ltd.

Address : No. 3 workshop 101,102 and 201, No. 8-3, Shuangxiu Road, Xiuxin

community, Kenzi Street, Pingshan district, Shenzhen City, China,

518122

Test Result: PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

1. TEST STANDARDS	<u>4</u>
2. SUMMARY	5
2.1. General Remarks	5
2.2. Product Description	5
2.3. Equipment Under Test	
2.4. Short description of the Equipment under Test (EUT)	6
2.5. Block Diagram of Test Setup	6
2.6. Related Submittal(s) / Grant (s)	6
2.7. EUT Exercise Software	6
2.8. Special Accessories	6
2.9. External I/O Cable	
2.10. Modifications	6
3. TEST ENVIRONMENT	7
3.1. Address of the test laboratory	7
3.2. Test Facility	7
3.3. Environmental conditions	7
3.4. Statement of the measurement uncertainty	
3.5. Summary of measurement results	
3.6. Equipments Used during the Test	9
4. RADIATED MEASUREMENT	10
4.1. Standard Applicable	10
4.2. Measuring Instruments and Setting	10
4.3. Test Procedures	11
4.4. Test Setup Layout	13
4.5. Test Results	14
5. FIELD STRENGTH OF FUNDAMENTAL EMISSIONS AND MASK MEASUREMENT	16
5.1. Block Diagram of Test Setup	16
5.2. Field strength of fundamental emissions limit and Mask limit	
5.3. Test Results	17
6. BANDWIDTH OF THE OPERATING FREQUENCY	18
6.1. Standard Applicable	
6.2. Test Result	
7. FREQUENCY STABILITY MEASUREMENT	
7.1. Standard Applicable	
7.1. Standard Applicable	
8. LINE CONDUCTED EMISSIONS	
8.1. Standard Applicable	
8.2. Block Diagram of Test Setup	
8.3. Test Results	
9. ANTENNA REQUIREMENTS	22
9.1. Standard Applicable	22
9.2. Antenna Connected Construction	22
9.2. Afterna Connected Construction	
9.2.1. Standard Applicable	
	22

10. TEST SETUP PHOTOS OF THE EUT	23
11. EXTERNAL AND INTERNAL PHOTOS OF THE EUT	25

Page 4 of 25

1. TEST STANDARDS

Report No.: GTS20211025002-1-3

The tests were performed according to following standards:

<u>FCC Rules Part 15.225</u>: RADIO FREQUENCY DEVICES. <u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices Report No.: GTS20211025002-1-3 Page 5 of 25

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample		Nov. 01, 2021
Testing commenced on	:	Nov. 01, 2021
Testing concluded on	:	Nov. 19, 2021

2.2. Product Description

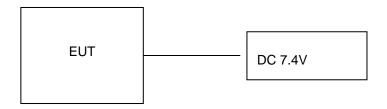
Product Name	Portable Label Printer
Trade Mark	PUTY
Model/Type reference	Q26
List Models	Q28, T26, T28, PT26, PT28, Q20, Q21, T20, T21, PT20, PT21
Model Declaration	PCB board, structure and internal of these model(s) are the same, Only the color, appearance and model name different, So no additional models were tested.
Power supply:	DC 7.4V by Battery Recharged by DC 5.0V
Sample ID	GTS20211025002-1-1# & GTS20211025002-1-2#
Bluetooth	
Operation frequency	2402-2480MHz
Channel Number	79 channels for Bluetooth (DSS) 40 channels for Bluetooth (DTS)
Channel Spacing	1MHz for Bluetooth (DSS) 2MHz for Bluetooth (DTS)
Modulation Type	GFSK, π/4-DQPSK, 8DPSK for Bluetooth (DSS) GFSK for Bluetooth (DTS)
Antenna Description	Internal Antenna, 0dBi(Max.) for 2.4G Band
RFID(13.56MHz)	
Frequency Range	13.56MHz
Channel Number	1
Modulation Type	ASK
Antenna Description	Internal Antenna, 0dBi (Max.)

Report No.: GTS20211025002-1-3 Page 6 of 25

2.3. Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank below)		


DC 7.4V

2.4. Short description of the Equipment under Test (EUT)

This is a Portable Label Printer

For more details, refer to the user's manual of the EUT.

2.5. Block Diagram of Test Setup

2.6. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID: 2A3QL-Q26** filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.7. EUT Exercise Software

N/A

2.8. Special Accessories

Manufacturer	Description	Model	Serial Number	Certificate
Shenzhen Shunxingda Telecommunications Equipment Co., Ltd.	Adapter	SXD-206		

Remark: The adapter is only used for auxiliary testing and is not shipped with the product

2.9. External I/O Cable

I/O Port Description	Quantity	Cable
DC IN Port	1	/

2.10. Modifications

No modifications were implemented to meet testing criteria.

Report No.: GTS20211025002-1-3 Page 7 of 25

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L8169)

Shenzhen Global Test Service Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2019 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA (Certificate No. 4758.01)

Shenzhen Global Test Service Co., Ltd. has been assessed by the American Association for Laboratory Accreditation (A2LA). Certificate No. 4758.01.

Industry Canada Registration Number. is 24189.

FCC Designation Number is CN1234.

FCC Registered Test Site Number is165725.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C		
Humidity:	30-60 %		
Atmospheric pressure:	950-1050mbar		

3.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Global Test Service Co.,Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen GTS laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 8 of 25 Report No.: GTS20211025002-1-3

3.5. Summary of measurement results

Applied Standard: FCC Part 15 Subpart C					
Test Items	FCC Rules	Test Sample	Result		
Line Conducted Emissions	§15.207(a)	GTS20211025002-1-1#	PASS		
Field Strength of Fundamental Emissions	§15.225(a)(b)(c)	GTS20211025002-1-1#	PASS		
Radiated Emissions	§15.225(d) & §15.209	GTS20211025002-1-1#	PASS		
20dB Bandwidth	§ 15.215	GTS20211025002-1-1#	PASS		
Frequency Stability	§15.225(e)	GTS20211025002-1-1#	PASS		
Antenna Requirement	§15.203	GTS20211025002-1-1#	PASS		

Remark:

- The measurement uncertainty is not included in the test result. 1.
- NA = Not Applicable; NP = Not Performed
 Note 1 Test results inside test report;
- Note 2 Test results in other test report (MPE Report). 4.
- We tested all test mode and recorded worst case in report

3.6. Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
LISN	CYBERTEK	EM5040A	E1850400105	2021/07/17	2022/07/16
LISN	R&S	ESH2-Z5	893606/008	2021/07/17	2022/07/16
EMI Test Receiver	R&S	ESPI3 101841-cd		2021/07/17	2022/07/16
EMI Test Receiver	R&S	ESCI7	101102	2021/09/19	2022/09/18
Spectrum Analyzer	Agilent	N9020A	MY48010425	2021/09/19	2022/09/18
Spectrum Analyzer	R&S	FSV40	100019	2021/07/17	2022/07/16
Vector Signal generator	Agilent	N5181A	MY49060502	2021/07/17	2022/07/16
Signal generator	Agilent	N5182A	3610AO1069	2021/09/19	2022/09/18
Climate Chamber	ESPEC	EL-10KA	A20120523	2021/09/19	2022/09/18
Controller	EM Electronics	Controller EM 1000	N/A	N/A	N/A
Horn Antenna	Schwarzbeck	BBHA 9120D	01622	2021/11/08	2022/11/07
Active Loop Antenna	Beijing Da Ze Technology ZN30900C 15006 Co.,Ltd.		15006	2021/09/19	2022/09/18
Bilog Antenna	Schwarzbeck	VULB9163	000976	2021/08/08	2022/08/07
Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	791	2021/09/19	2022/09/18
Amplifier	Schwarzbeck	BBV 9743	#202	2021/07/17	2022/07/16
Amplifier	Schwarzbeck	BBV9179	9719-025	2021/07/17	2022/07/16
Amplifier	EMCI	EMC051845B	980355	2021/07/17	2022/07/16
Temperature/Humidi ty Meter	Gangxing	CTH-608	02	2021/07/17	2022/07/16
High-Pass Filter	K&L	9SH10- 2700/X12750- O/O	KL142031	2021/07/17	2022/07/16
High-Pass Filter	K&L	41H10- 1375/U12750- O/O	KL142032	2021/07/17	2022/07/16
RF Cable(below 1GHz)	HUBER+SUHNE R	RG214	RE01	2021/07/17	2022/07/16
RF Cable(above 1GHz)	HUBER+SUHNE R	RG214	RE02	2021/07/17	2022/07/16
Data acquisition card	Agilent	U2531A	TW53323507	2021/07/17	2022/07/16
Power Sensor	Agilent	U2021XA	MY5365004	2021/07/17	2022/07/16
Test Control Unit	Tonscend	JS0806-1	178060067	2021/07/17	2022/07/16
Automated filter bank	Tonscend	JS0806-F	19F8060177	2021/07/17	2022/07/16
EMI Test Software	Tonscend	JS1120-1	Ver 2.6.8.0518	/	1
EMI Test Software	Tonscend	JS1120-3	Ver 2.5.77.0418	/	/
EMI Test Software	Tonscend	JS32-CE	Ver 2.5	/	1
EMI Test Software	Tonscend	JS32-RE	Ver 2.5.1.8	/	1

Note: The Cal.Interval was one year.

Report No.: GTS20211025002-1-3 Page 10 of 25

4. RADIATED MEASUREMENT

4.1. Standard Applicable

According to §15.209/ §15.205

15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
\1\ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293.	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(\2\)
13.36-13.41			, ,

^{\1\} Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

\2\ Above 38.6

According to §15.247 (d): 20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.2. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10 th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB/VB 200Hz/1KHz for QP/AVG
Start ~ Stop Frequency	150kHz~30MHz / RB/VB 9kHz/30KHz for QP/AVG
Start ~ Stop Frequency	30MHz~1000MHz / RB/VB 120kHz/1MHz for QP

Report No.: GTS20211025002-1-3 Page 11 of 25

4.3. Test Procedures

1) Sequence of testing 9 kHz to 30 MHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna height is 1.0 meter.
- --- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

- --- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).
- --- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.
- --- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter.
- --- The final measurement will be done with QP detector with an EMI receiver.
- --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

Report No.: GTS20211025002-1-3 Page 12 of 25

3) Sequence of testing 1 GHz to 18 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.
- --- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

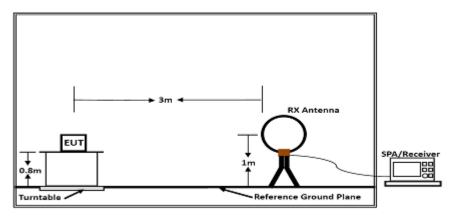
- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.
- --- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 18 GHz

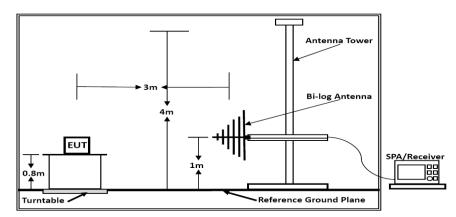
Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.

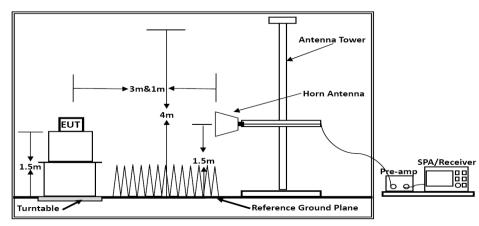
Premeasurement:


--- The antenna is moved spherical over the EUT in different polarizations of the antenna.

Final measurement:


- --- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

Report No.: GTS20211025002-1-3 Page 13 of 25


4.4. Test Setup Layout

Below 30MHz

Below 1GHz

Above 1GHz

Above 18 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1m.

Distance extrapolation factor = 20 log (specific distanc [3m] / test distance [1m]) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

Report No.: GTS20211025002-1-3 Page 14 of 25

4.5. Test Results

Temperature	24.5℃	Humidity	53.7%
Test Engineer	Oliver Ou	Configurations	NFC

PASS.

The test data please refer to following page:

9 KHz~30MHz

Freq. MHz	Reading dBuV	Factor dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark
0.092	33.84	20.54	54.38	108.33	-53.95	QP
0.990	25.66	20.48	46.14	67.69	-21.55	QP
2.910	32.11	20.30	52.41	69.54	-17.13	QP
8.537	30.85	20.32	51.17	69.54	-18.37	QP
13.564	66.39	20.18	86.57	124.00	-37.43	QP
18.980	31.37	20.12	51.49	69.54	-18.05	QP
21.670	32.19	19.94	52.13	69.54	-17.41	QP
27.580	32.17	19.95	52.12	69.54	-17.42	QP

*Note: Emission Level= Reading Level + Factor

Factor= Antenna Factor + Cable Loss

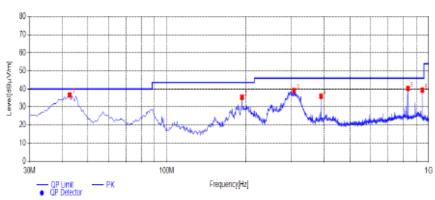
Margin = Emission Level Limit – Measured Values

[&]quot;--" means noise floor.

Report No.: GTS20211025002-1-3 Page 15 of 25

30MHz ~ 1GHz

Test Graph Test Graph Open Street S

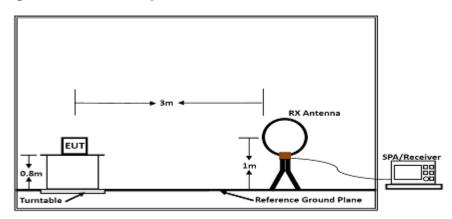

Susp	Suspected List										
NO.	Frequency [MHz]	Reading [dBµV/m]	Factor [dB]	Result [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity	Remark
1	42.1250	33.30	-8.01	25.29	40.00	14.71	100	277	PK	Horizonta	PASS
2	193.9300	49.74	-9.43	40.31	43.50	3.19	100	296	PK	Horizonta	PASS
3	305.4800	49.02	-6.97	42.05	46.00	3.95	100	3	PK	Horizonta	PASS
4	388.4150	43.33	-5.34	37.99	46.00	8.01	100	226	PK	Horizonta	PASS
5	485.4150	36.38	-3.20	33.18	46.00	12.82	100	31	PK	Horizonta	PASS
6	946.1650	35.27	2.28	37.55	46.00	8.45	100	264	PK	Horizonta	PASS

Note:1. Result ($dB\mu V/m$) = Reading($dB\mu V/m$) + Factor (dB) .

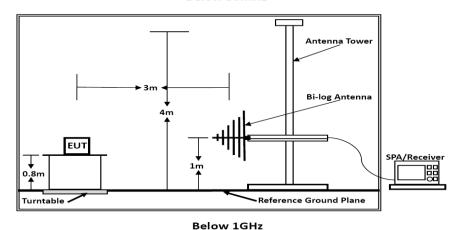
2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Vertical

Susp	Suspected List										
NO.	Frequency [MHz]	Reading [dBµV/m]	Factor [dB]	Result [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity	Remark
1	42.6100	43.60	-6.99	36.61	40.00	3.39	100	158	PK	Vertical	PASS
2	193.9300	45.10	-9.60	35.50	43.50	8.00	100	307	PK	Vertical	PASS
3	306.4500	46.31	-7.26	39.05	46.00	6.95	100	332	PK	Vertical	PASS
4	388.4150	41.81	-5.83	35.98	46.00	10.02	100	2	PK	Vertical	PASS
5	834.1300	38.97	1.40	40.37	46.00	5.63	100	146	PK	Vertical	PASS
6	946.1650	37.24	2.07	39.31	46.00	6.69	100	259	PK	Vertical	PASS


Note:1. Result ($dB\mu V/m$) = Reading($dB\mu V/m$) + Factor (dB) .

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).


Report No.: GTS20211025002-1-3 Page 16 of 25

5. FIELD STRENGTH OF FUNDAMENTAL EMISSIONS AND MASK MEASUREMENT

5.1. Block Diagram of Test Setup

Below 30MHz

5.2. Field strength of fundamental emissions limit and Mask limit

The field strength of fundamental emissions shall not exceed 15848 microvolts/meter at 30 meters. The emissions limit in this paragraph is based on measurement instrumentation employing a QP detector.

Frequencies	Field Strength	Field Strength	Field Strength
(MHz)	(microvolts/meter)	(dBµV/m) at 10m	(dBµV/m) at 3m
13.553 ~ 13.567MHz	15848 at 30m	103.08 (QP)	124 (QP)

Mask Limit:

Frequency (MHz)	Limit (dBuV/m)	Distance (m)
1.705-13.110	69.5	3
13.110-13.410	80.5	3
13.410-13.553	90.5	3
13.553-13.567	124.0	3
13.567-13.710	90.5	3
13.710-14.010	80.5	3
14.010-30.000	69.5	3

Report No.: GTS20211025002-1-3 Page 17 of 25

5.3. Test Results

Temperature	24.5℃	Humidity	53.7%
Test Engineer	Oliver Ou	Configurations	NFC

PASS.

The test data please refer to following page:

	Freq.(MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Pol.	Remark
1	13.56	66.31	20.64	86.95	124.0	Н	QP
2	13.53	13.88	20.64	34.52	90.5	Н	QP
3	13.62	14.64	20.64	35.28	90.5	Н	QP
4	13.19	14.61	20.64	35.25	80.5	Н	QP
5	13.01	13.81	20.64	34.45	69.5	Н	QP

*Note: Factor= Antenna Factor + Cable Loss

Emission level (dB μ V/m) = 20 log Emission level (μ V/m).

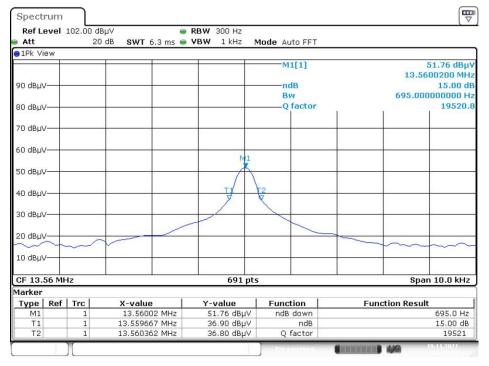
Measured distance is 3m.

All emissions emit from non-NFC function of digital unintentional emissions. All NFC's spurious emissions are below 20dB of limits.

Report No.: GTS20211025002-1-3 Page 18 of 25

6. BANDWIDTH OF THE OPERATING FREQUENCY

6.1. Standard Applicable


Intentional radiators must be designed to ensure that the 20 dB bandwidth of the emissions in the specific band (13.553 ~ 13.567MHz).

6.2. Test Result

Temperature	24.5℃	Humidity	53.7%
Test Engineer	Oliver Ou	Configurations	NFC

Carrier Frequency (MHz)	20dB Bandwidth (KHz)	F _L (MHz)	F _H (MHz)
13.56	0.695	13.559667	13.560362

Please refer to the test plot:

Date: 19.NOV.2021 14:07:44

Report No.: GTS20211025002-1-3 Page 19 of 25

7. FREQUENCY STABILITY MEASUREMENT

7.1. Standard Applicable

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% (100ppm) of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a full charged battery.

7.2. Test Result

Temperature	24.5℃	Humidity	53.7%
Test Engineer	Oliver Ou	Configurations	NFC

Voltage vs. Frequency Stability

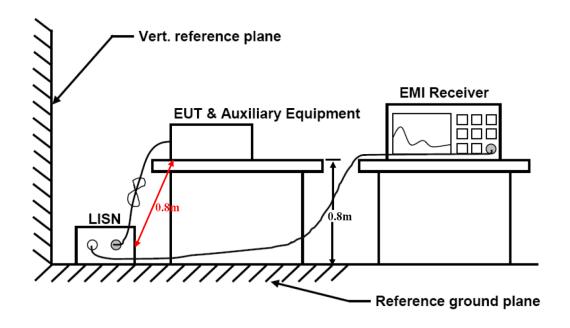
Voltage(V)	Measurement Frequency (MHz)	Deviation (KHz)	Deviation (ppm)	Limit (ppm)
DC 6.66V	13.560082	0.082	6.05	100
DC 7.4V	13.560086	0.086	6.34	100
DC 8.14V	13.560076	0.076	5.60	100

Temperature vs. Frequency Stability

Temperature (°C)	Measurement Frequency (MHz)	Deviation (KHz)	Deviation (ppm)	Limit (ppm)
-20	13.560065	0.065	4.79	100
-10	13.560076	0.076	5.60	100
0	13.560014	0.014	1.03	100
10	13.560091	0.091	6.71	100
20	13.560022	0.022	1.62	100
30	13.560094	0.094	6.93	100
40	13.560069	0.069	5.09	100
50	13.560021	0.021	1.55	100

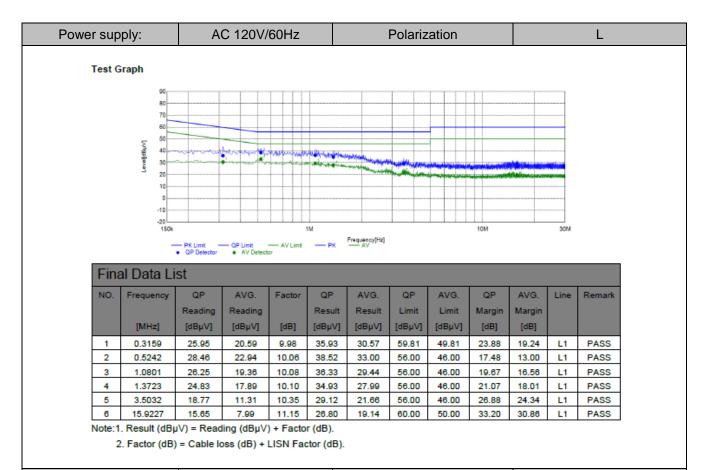
Report No.: GTS20211025002-1-3 Page 20 of 25

8. LINE CONDUCTED EMISSIONS

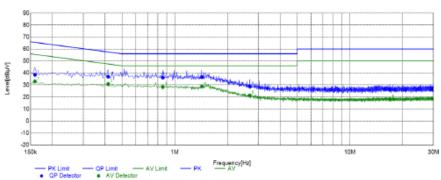

8.1. Standard Applicable

According to §15.207(a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range are listed as follows:

Frequency Range	Limits (dBµV)			
(MHz)	Quasi-peak	Average		
0.15 to 0.50	66 to 56	56 to 46		
0.50 to 5	56	46		
5 to 30	60	50		


^{*} Decreasing linearly with the logarithm of the frequency

8.2. Block Diagram of Test Setup



8.3. Test Results

Temperature	24.5℃	Humidity	53.7%
Test Engineer	Oliver Ou	Configurations	NFC

Power supply:	AC 120V/60Hz	Polarization	N
Test Graph			
90			

Fina	Final Data List											
NO.	Frequency	QP	AVG.	Factor	QP	AVG.	QP	AVG.	QP	AVG.	Line	Remark
		Reading	Reading		Result	Result	Limit	Limit	Margin	Margin		
	[MHz]	[dBµV]	[dBµV]	[dB]	[dBµV]	[dBµV]	[dBµV]	[dBµV]	[dB]	[dB]		
1	0.1591	28.36	22.96	10.05	38.41	33.01	65.51	55.51	27.10	22.50	N	PASS
2	0.4173	26.90	20.78	10.03	36.93	30.81	57.50	47.50	20.57	16.69	N	PASS
3	0.8548	26.07	18.33	10.06	36.13	28.39	56.00	46.00	19.87	17.61	N	PASS
4	1.4261	26.42	18.58	10.10	36.52	28.68	56.00	46.00	19.48	17.32	N	PASS
5	2.6795	18.63	11.09	10.24	28.87	21.33	56.00	46.00	27.13	24.67	N	PASS
6	16.9451	15.20	7.01	11.19	26.39	18.20	60.00	50.00	33.61	31.80	N	PASS

Note:1. Result (dBμV) = Reading (dBμV) + Factor (dB).

^{2.} Factor (dB) = Cable loss (dB) + LISN Factor (dB).

Report No.: GTS20211025002-1-3 Page 22 of 25

9. ANTENNA REQUIREMENTS

9.1. Standard Applicable

According to antenna requirement of §15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

9.2. Antenna Connected Construction

9.2.1. Standard Applicable

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

9.2.2. Antenna Connector Construction

The gains of antenna used for transmitting is 0dBi, and the antenna is a Loop antenna connect to PCB board and no consideration of replacement. Please see EUT photo for details.

9.2.3. Results: Compliance.

Report No.: GTS20211025002-1-3

10. TEST SETUP PHOTOS OF THE EUT

Photo of Radiated Emissions Measurement

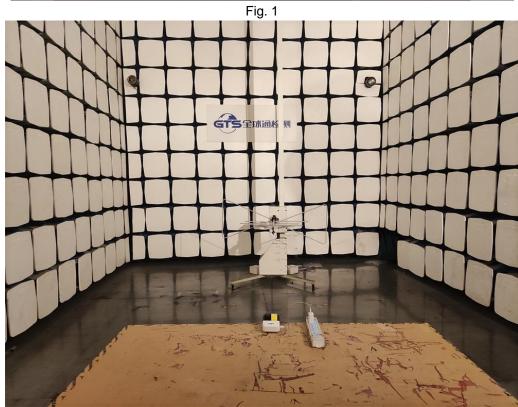


Fig. 2

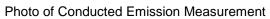


Fig. 3

Report No.: GTS20211025002-1-3 Page 25 of 25

11.	EXTERNAL	AND	INTERNAL	PHOTOS	ΟF	THE	EU.	Т
-----	----------	-----	----------	--------	----	-----	-----	---

Reference to the GTS20211025002-1-1.

.....End of Report.....