

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE200500402

FCC REPORT

Applicant: SWAGTEK

Address of Applicant: 10205 NW 19th St. Suite 101, Miami, FL, 33172

Equipment Under Test (EUT)

Product Name: 4G MIFI

Model No.: ML10, ATOM, M10N

Trade mark: LOGIC, iSWAG, UNONU

FCC ID: 055001720

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 06 May, 2020

Date of Test: 06 May, to 22 May, 2020

Date of report issued: 25 May, 2020

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	25 May, 2020	Original

Tested by:	Mike.ou	Date:	25 May, 2020	
	Test Engineer			

Reviewed by: Date: 25 May, 2020

Project Engineer

3 Contents

			Page
1	COVI	ER PAGE	1
2	VERS	SION	2
3		TENTS	
4	TEST	SUMMARY	4
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
		GENERAL DESCRIPTION OF E.U.T.	
		TEST ENVIRONMENT AND TEST MODE	
		DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	6
	5.6	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	6
		LABORATORY FACILITY	
		LABORATORY LOCATION	
	5.9	Test Instruments list	7
6	TEST	RESULTS AND MEASUREMENT DATA	8
	6.1	Antenna requirement:	8
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	12
		OCCUPY BANDWIDTH	
		Power Spectral Density	
		BAND EDGE	
	6.6.1	Conducted Emission Method	
	6.6.2	Radiated Emission Method	
		SPURIOUS EMISSION	
	6.7.1	Conducted Emission Method	
	6.7.2	Radiated Emission Method	
7	TEST	SETUP PHOTO	32
0	EUT /	CONSTRUCTIONAL DETAILS	22

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass

Remark:

Test Method:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

ANSI C63.4-2014 ANSI C63.10-2013

KDB 558074 D01 <u>15.247 Meas Guidance v05r02</u>

5 General Information

5.1 Client Information

Applicant:	SWAGTEK	
Address:	10205 NW 19th St. Suite 101, Miami, FL, 33172	
Manufacturer/ Factory:	SWAGTEK	
Address:	10205 NW 19th St. Suite 101, Miami, FL, 33172	

5.2 General Description of E.U.T.

5.2 General Description	OI E.O.11.
Product Name:	4G MIFI
Model No.:	ML10, ATOM, M10N
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.0 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-2800mAh
AC adapter:	Model: ML10
	Input: AC100-240V, 50/60Hz, 0.25A
	Output: DC 5.0V, 1A
Remark:	Model No.: ML10, ATOM, M10N, were identical inside, the electrical circuit design, layout, components used and internal wiring.
	ML10 model corresponds to the trademark LOGIC.
	ATOM model correspond to the trademark iSWAG.
	M10N model corresponds to the trademark UNONU
Test Sample Condition:	The test samples were provided in good working order with no visible
	defects.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and test mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Transmitting mode	Keep the EUT in continuous transmitting with modulation			

Report No: CCISE200500402

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.110~116, Building B, Jinyuan Business Building, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.9 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due date
				(mm-dd-yy)	(mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	044	03-07-2020	03-06-2021
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-07-2020	03-06-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2020	03-06-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2019	11-17-2020
EMI Test Software	AUDIX	E3	\	Version: 6.110919b	
Pre-amplifier	HP	8447D	2944A09358	03-07-2020	03-06-2021
Pre-amplifier	CD	PAP-1G18	11804	03-07-2020	03-06-2021
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-05-2020	03-04-2021
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2019	11-17-2020
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-05-2020	03-04-2021
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2020	03-06-2021
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2020	03-06-2021
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2020	03-06-2021
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0		

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-05-2020	03-04-2021
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-05-2020	03-04-2021
LISN	CHASE	MN2050D	1447	03-05-2020	03-04-2021
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2017	07-20-2020
Cable	HP	10503A	N/A	03-05-2020	03-04-2021
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919l	0

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement:

FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

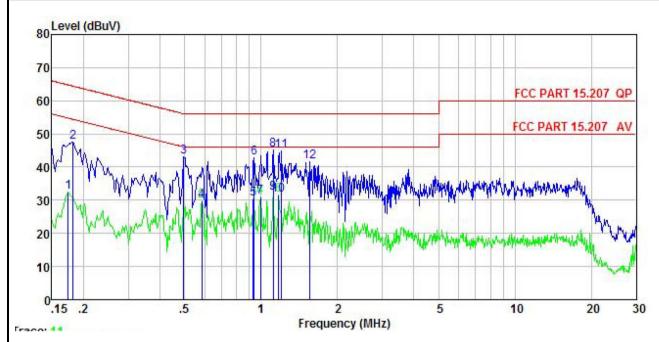
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

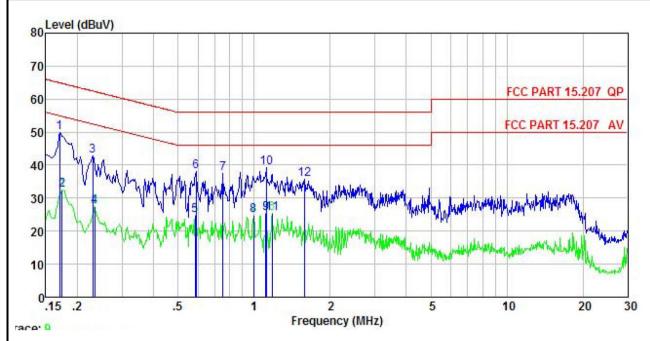
The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is 1.0 dBi.


6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207	7			
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B	Class B			
Receiver setup:	RBW=9kHz, VBW=30kHz				
Limit:	·	Limit (dBuV)		
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarithm	n of the frequency.			
Test procedure:	 The E.U.T and simulators line impedance stabilizati 500hm/50uH coupling im The peripheral devices at LISN that provides a 500 termination. (Please refer photographs). Both sides of A.C. line are interference. In order to fi positions of equipment ar according to ANSI C63.10 	on network (L.I.S.N.), whe pedance for the measuring also connected to the hm/50uH coupling impedent to the block diagram of the checked for maximum and the maximum emission all of the interface cab	nich provides a ing equipment. main power through a dance with 500hm the test setup and conducted on, the relative bles must be changed		
Test setup:	Reference LISN 40cm AUX Equipment E.U.T Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization New Test table height=0.8m	80cm Filter Filter Receiver	– AC power		
Test Instruments:	Refer to section 5.9 for details	Refer to section 5.9 for details			
Test mode:	Refer to section 5.3 for details	}			
Test results:	Passed				

Measurement Data:

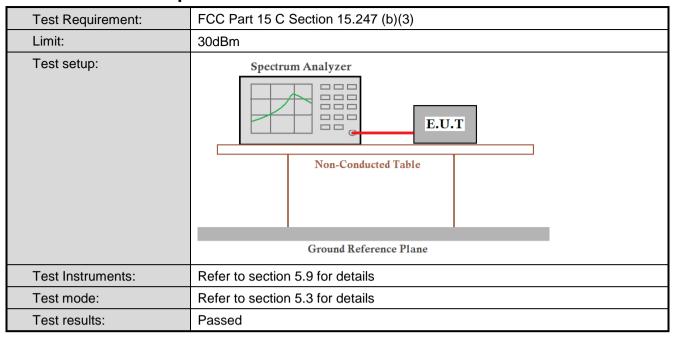
Product name:	4G MIFI	Product model:	ML10
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
_	MHz	dBu∀	<u>dB</u>	<u>ā</u> B	₫B	dBu∀	—dBu∀	<u>ab</u>	
1	0.174	22.32	-0.43	-0.11	10.77	32.55	54.77	-22.22	Average
2	0.182	37.33	-0.42	-0.12	10.77	47.56	64.42	-16.86	QP
3	0.497	32.96	-0.39	-0.32	10.76	43.01	56.05	-13.04	QP
4	0.585	19.75	-0.39	-0.37	10.76	29.75	46.00	-16.25	Average
1 2 3 4 5 6 7 8 9	0.933	19.68	-0.38	0.28	10.85	30.43			Average
6	0.938	32.11	-0.38	0.30	10.85	42.88	56.00	-13.12	QP
7	0.994	20.13	-0.38	0.44	10.87	31.06	46.00	-14.94	Average
8	1.117	34.39	-0.38	0.34	10.88	45.23		-10.77	
9	1.117	21.25	-0.38	0.34	10.88	32.09	46.00	-13.91	Average
10	1.172	20.69	-0.39		10.89	31.48			Average
11	1.203	34.12	-0.39	0.25	10.89	44.87		-11.13	
12	1.560	31.16	-0.40	-0.04	10.93	41.65		-14.35	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

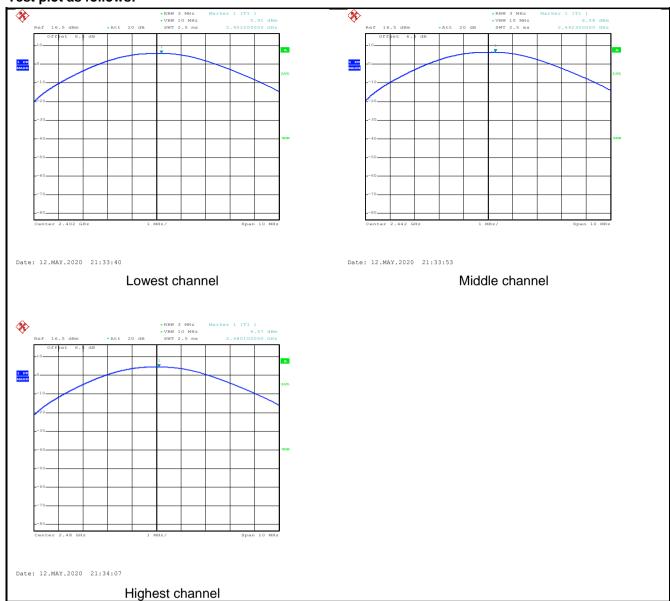
Product name:	4G MIFI	Product model:	ML10
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level		Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u>	<u>dB</u>	<u>dB</u>	dBu₹	dBu∇	<u>d</u> B	
1	0.170	39.66	-0.68	0.01	10.77	49.76	64.94	-15.18	QP
2	0.174	22.27	-0.69	0.00	10.77	32.35	54.77	-22.42	Average
3	0.230	32.66	-0.67	0.00	10.75	42.74	62.44	-19.70	QP
4	0.234	17.39	-0.67	0.00	10.75	27.47	52.30	-24.83	Average
1 2 3 4 5 6 7 8	0.585	14.71	-0.65	0.03	10.76	24.85	46.00	-21.15	Average
6	0.589	27.91	-0.65	0.03	10.76	38.05	56.00	-17.95	QP
7	0.751	27.41	-0.64	0.05	10.79	37.61	56.00	-18.39	QP
8	0.994	14.62	-0.63	0.08	10.87	24.94	46.00	-21.06	Average
	1.111	14.95	-0.64	0.09	10.88	25.28	46.00	-20.72	Average
10	1.117	29.05	-0.64	0.09	10.88	39.38	56.00	-16.62	QP
11	1.178	15.14	-0.64	0.10	10.89	25.49	46.00	-20.51	Average
12	1.577	25.21	-0.66	0.14	10.93	35.62	56.00	-20.38	QP

Notes:

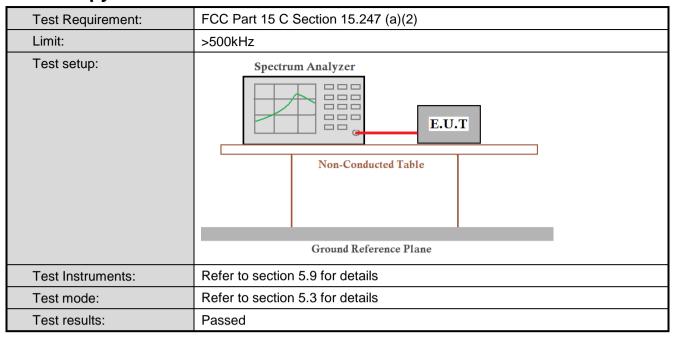
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

6.3 Conducted Output Power



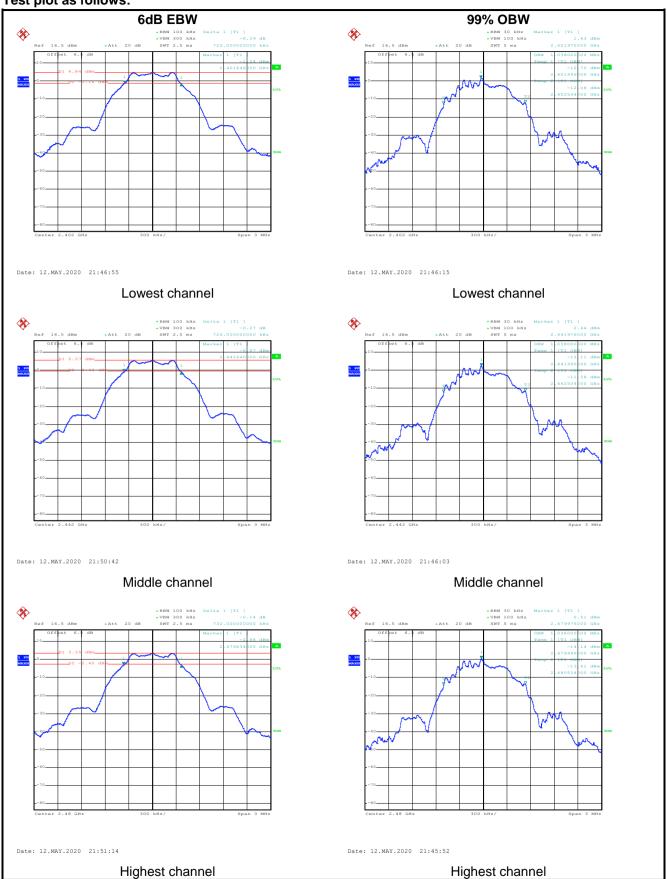
Measurement Data:

			-	
Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result	
Lowest	5.91			
Middle	6.58	30.00	Pass	
Highest	4.57			



Test plot as follows:

6.4 Occupy Bandwidth

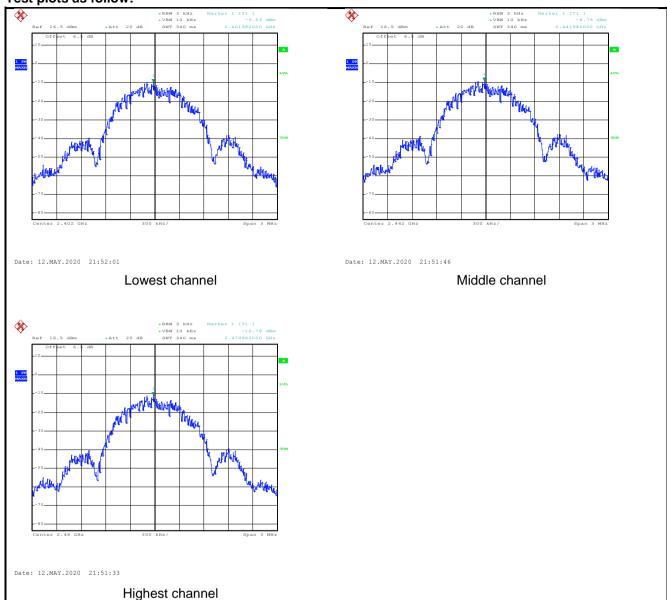


Measurement Data:

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	0.720			
Middle	0.726	>500	Pass	
Highest	0.732			
Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	1.038			
Middle	Middle 1.038		N/A	
Highest	1.038			

Test plot as follows:

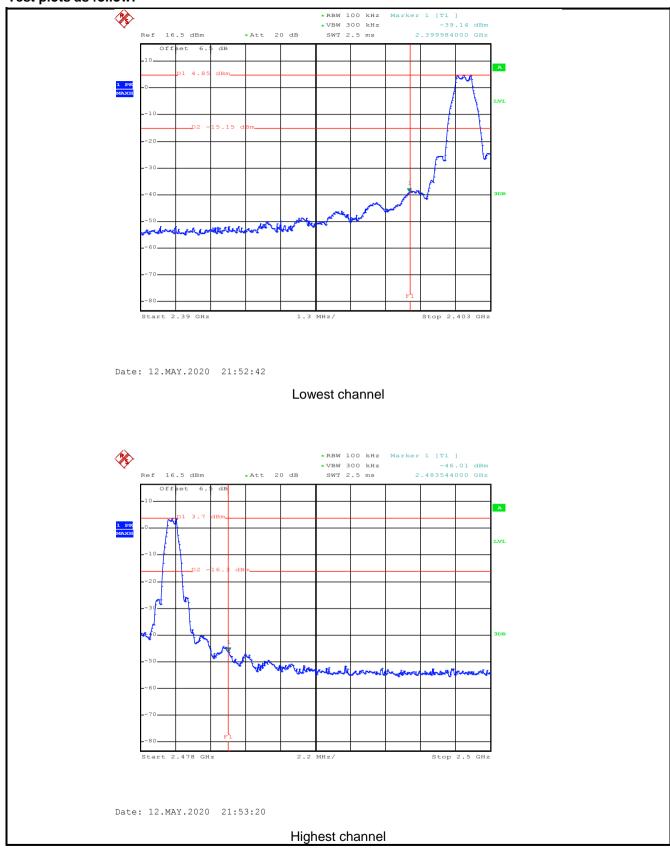
6.5 Power Spectral Density


Test Requirement:	FCC Part 15 C Section 15.247 (e)			
Limit:	8 dBm/3kHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.9 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Test CH	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
Lowest	-9.53		
Middle	-8.79	8.00	Pass
Highest	-10.78		

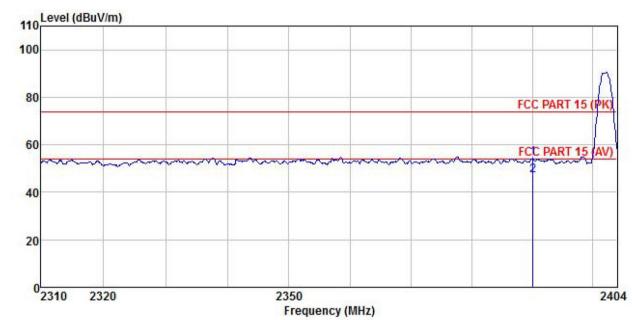
Test plots as follow:


6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

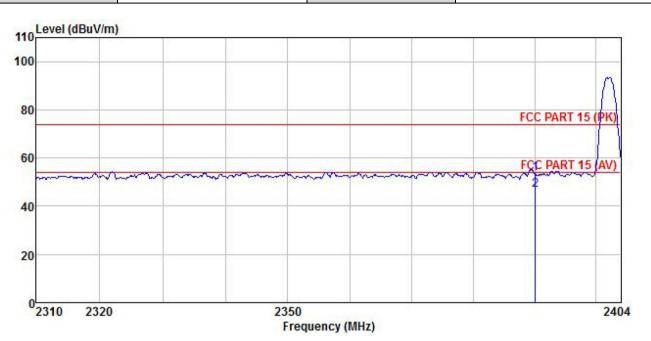
Test plots as follow:



6.6.2 Radiated Emission Method

Test Requirement:		Section 15.20	05 and 15.209			
Test Frequency Range:	2310 MHz to 2	2390 MHz and	2483.5MHz to 2	2500 MHz		
Test Distance:	3m					
Receiver setup:	Frequency	Detector	RBW	VBW	Remark	
	Above 1GHz	Peak	1MHz	3MHz	Peak Value	
		RMS	1MHz	3MHz	Average Value	
Limit:	Frequer	ncy Li	mit (dBuV/m @3		Remark	
	Above 10	GHz -	54.00		verage Value	
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 					
Test setup:	AE (T	urntable) Ground Test Receiver	Horn Antenna Reference Plane Pie- Amplifer Control	Antenna Tower		
Test Instruments:	Refer to section	on 5.9 for detai	ls			
Test mode:		on 5.3 for detail				
Test results:	Passed					

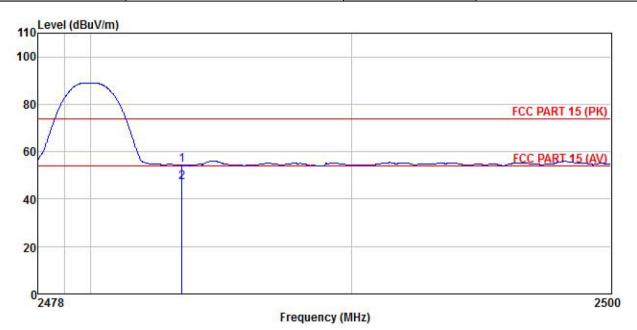
Product Name:	4G MIFI	Product Model:	ML10
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



	Freq		Antenna Factor						
	MHz	dBu∇	<u>dB</u> /m	 <u>ab</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

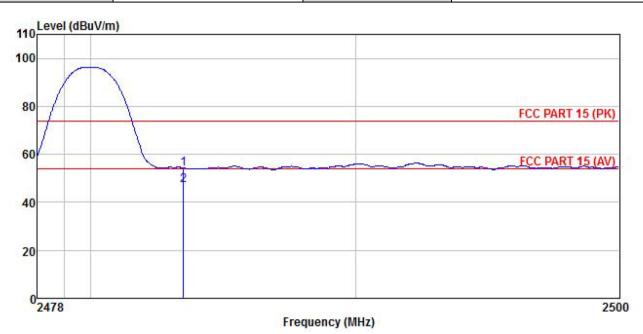
Product Name:	4G MIFI	Product Model:	ML10
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%



	Freq		Antenna Factor						
	MHz	dBu∜	—dB/m	 ₫B	₫B	dBuV/m	dBuV/m	dB	
1 2	2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	4G MIFI	Product Model:	ML10
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%



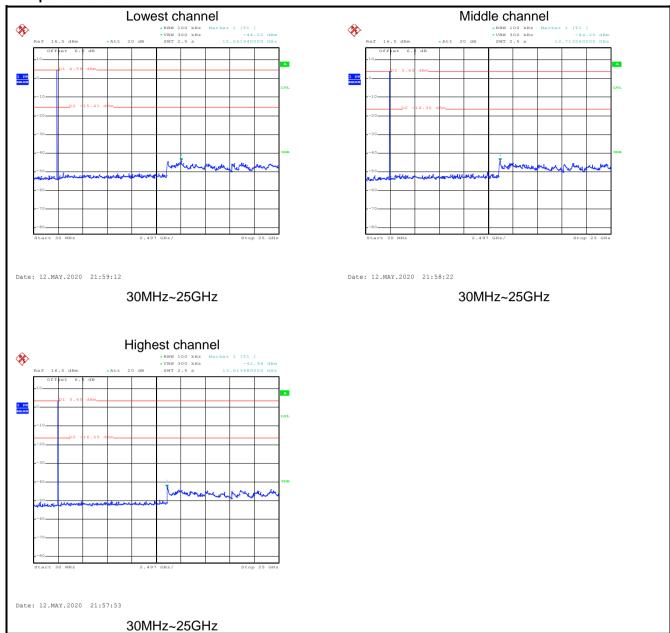
	Freq	KeadAntenna Level Factor		ntenna Cable Aux Pi Factor Loss Factor Fi		Preamp Factor	Level	Limit Line	Over Limit	Remark	
	MHz	dBu∜	<u>dB</u> /m		<u>ab</u>		$\overline{dBuV/m}$	dBuV/m			
1	2483.500 2483.500										

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	4G MIFI	Product Model:	ML10
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq	Read/ Level	Antenna Factor	Cable Loss	Aux Factor	Preamp Factor	Level	Limit Line		
=	MHz	₫₿uѶ	<u>dB</u> /m		<u>ab</u>	dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
	2483.500 2483.500									

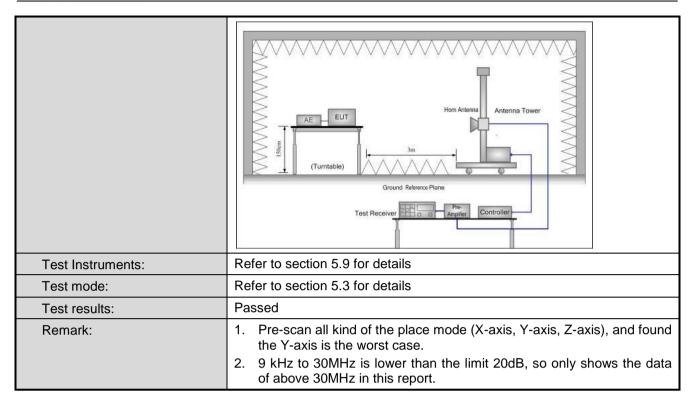
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.


6.7 Spurious Emission

6.7.1 Conducted Emission Method

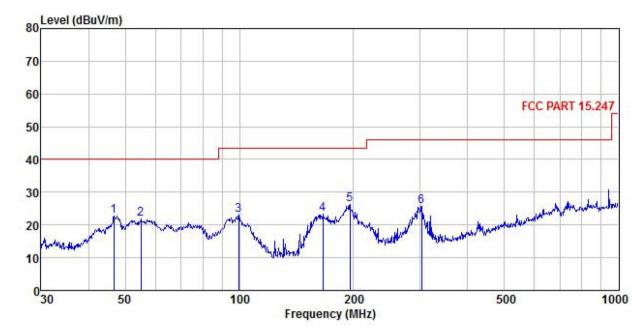
Test Requirement:	FCC Part 15 C Section 15.247 (d)							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 5.9 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							

Test plot as follows:



6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.20	5 and 15.209			
Test Frequency Range:	9kHz to 25GHz					
Test Distance:	3m					
Receiver setup:	Frequency	Detector	RBW	VB	sW	Remark
r toconton conap.	30MHz-1GHz	Quasi-peak	120KHz	3001	KHz	Quasi-peak Value
	A h 4 O l l -	Peak	1MHz	3M	Hz	Peak Value
	Above 1GHz	RMS	1MHz	3M	Hz	Average Value
Limit:	Frequency	y L	mit (dBuV/m @	3m)		Remark
	30MHz-88M	Hz	40.0		C	Quasi-peak Value
	88MHz-216N	ИHz	43.5		C	Quasi-peak Value
	216MHz-960I	MHz	46.0			Quasi-peak Value
	960MHz-1G	Hz	54.0		C	Quasi-peak Value
	Above 1GH	17	54.0			Average Value
			74.0		L	Peak Value table 0.8m(below
	antenna, we tower. 3. The antend the ground Both horized make the number of the test-record find the emistry of the EUT have 10 dE	was set 3 nd which was more than the ante deceiver system of the control of the c	varied from one the maximatical polarization, the Ending. In Maximum Home EUT in percent could leported. Other led to the re-tested	ne met um val tions of EUT was ed to he from 0 to Pea lold Mo oe stop wise the	er to ue of the as arraeights degreede. Was ped an eeming one	erference-receiving ble-height antenna four meters above the field strength. antenna are set to anged to its worst from 1 meter to 4 ees to 360 degrees tect Function and is 10 dB lower than and the peak values ssions that did not using peak, quasi-reported in a data
Test setup:	EUT	3m 4m 4m 0.8m 1m			Search Antenna Test ceiver —	1

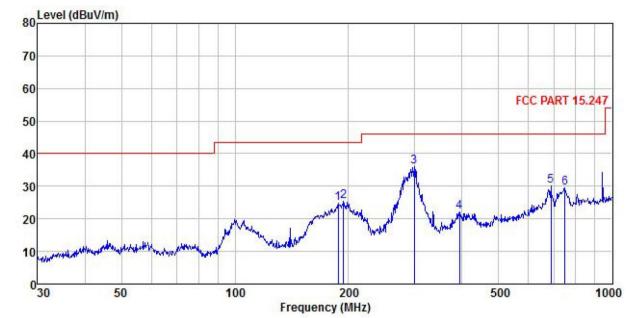


Measurement Data (worst case):

Below 1GHz:

Product Name:	4G MIFI	Product Model:	ML10
Test By:	Mike	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

		ReadAntenna						Limit		
	Freq	Level	Factor	Loss	Factor	Factor	Level	Line	Limit	Remark
	MHz	dBu∀	<u>dB</u> /m	<u>ap</u>	<u>ab</u>	<u>ab</u>	$\overline{\mathtt{dBuV/m}}$	dBu√/m	<u>ab</u>	
1	46.666	39.01	12.24	1.28	0.00	29.85	22.68	40.00	-17.32	QP
2	55.027	38.57	11.60	1.36	0.00	29.80	21.73	40.00	-18.27	QP
2	99.528	38.08	12.41	1.95	0.00	29.53	22.91	43.50	-20.59	QP
4	166.068	40.32	9.49	2.63	0.00	29.08	23.36	43.50	-20.14	QP
5	195.822	41.74	10.48	2.84	0.00	28.86	26.20	43.50	-17.30	QP
6	302.481	37.54	13.65	2.95	0.00	28.45	25.69	46.00	-20.31	QP
6. 	552, 101	001		2.00	3.00		20.00	10.00	23.01	***


Remark

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	4G MIFI	Product Model:	ML10
Test By:	Mike	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	ReadAntenna Freq Level Factor				Preamp Factor			Over Limit	Remark	
	MHz	dBu₹	dB/m	<u>ab</u>	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	187.753 193.773	40.81 41.13	10.23 10.40	2.78 2.82	0.00 0.00				-18.60 -18.02	
1 2 3 4 5 6	298. 268 393. 472	47.97 32.72	13.58 15.21	2.93 3.08	0.00 0.00			46.00	-9.97 -23.74	QP
5 6	687.151 750.108	34.33 33.19	20. 24 20. 60	4.10 4.36	0.00 0.00		29.97 29.67		-16.03 -16.33	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Above 1GHz

Test channel: Lowest channel									
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	45.80	31.02	6.80	2.44	41.81	44.25	74.00	-29.75	Vertical
4804.00	45.98	31.02	6.80	2.44	41.81	44.43	74.00	-29.57	Horizontal
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	40.65	31.02	6.80	2.44	41.81	39.10	54.00	-14.90	Vertical
4804.00	40.54	31.02	6.80	2.44	41.81	38.99	54.00	-15.01	Horizontal
Test channel: Middle channel									

Test channel: Middle channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	45.38	31.18	6.86	2.47	41.84	44.05	74.00	-29.95	Vertical	
4884.00	45.98	31.18	6.86	2.47	41.84	44.65	74.00	-29.35	Horizontal	
	Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	40.20	31.18	6.86	2.47	41.84	38.87	54.00	-15.13	Vertical	
4884.00	40.98	31.18	6.86	2.47	41.84	39.65	54.00	-14.35	Horizontal	

Test channel: Highest channel									
Detector: Peak Value									
Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
44.93	31.32	6.91	2.49	41.87	43.78	74.00	-30.22	Vertical	
45.87	31.32	6.91	2.49	41.87	44.72	74.00	-29.28	Horizontal	
Detector: Average Value									
Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
39.85	31.32	6.91	2.49	41.87	38.70	54.00	-15.30	Vertical	
41.34	31.32	6.91	2.49	41.87	40.19	54.00	-13.81	Horizontal	
	Level (dBuV) 44.93 45.87 Read Level (dBuV) 39.85	Level (dBuV) (dB/m) 44.93 31.32 45.87 31.32 Read Antenna Level Factor (dBuV) (dB/m) 39.85 31.32	Read Level (dBuV) Antenna (dB/m) Cable Loss (dB) 44.93 31.32 6.91 45.87 31.32 6.91 Read Level Factor (dBuV) Factor Loss (dB/m) Loss (dB/m) 39.85 31.32 6.91	Read Level Antenna Factor (dBuV) Cable Loss (dB) Aux Factor (dB) 44.93 31.32 6.91 2.49 45.87 31.32 6.91 2.49 Detector: Read Level Factor (dBuV) Cable Loss Factor (dB) Factor (dB) (dB) (dB) (dB) 39.85 31.32 6.91 2.49	Detector: Peak Value Read Level Factor (dBuV) (dB/m) Cable Loss Factor Factor Factor (dB) Factor Factor Factor Factor (dB) 44.93 31.32 6.91 2.49 41.87 45.87 31.32 6.91 2.49 41.87 Detector: Average Value Read Antenna Level Factor (dBuV) (dB/m) Cable Loss Factor Factor Factor Factor (dBuV) Factor (dB) (dB) (dB) 39.85 31.32 6.91 2.49 41.87	Detector: Peak Value Read Level (dBuV) Antenna (dBw) Cable Loss (dB) Aux Factor (dB) Preamp Factor (dBwV/m) Level (dBwV/m) 44.93 31.32 6.91 2.49 41.87 43.78 45.87 31.32 6.91 2.49 41.87 44.72 Detector: Average Value Read Level (dBuV) Antenna Level (dB) Cable Loss Factor (dB) Aux Factor Factor (dB) Level (dBuV/m) (dBuV) (dB) (dB) (dB) 41.87 38.70	Detector: Peak Value Cable Aux Preamp Level (dBuV) (dB/m) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/	Detector: Peak Value Cable Aux Preamp Level Limit Limit (dBuV) (dB/m) (dB) (dB	

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss + Aux Factor - Preamplifier Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.