WSCT



WSET

TEST REPORT

FCC ID: 2ADYY-CM5

Product: Mobile Phone 5

WSET

Model No.: CM5

**Trade Mark: TECNO** 

Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

Issued Date: 04 December 2024

WSCT

Issued for:

**TECNO MOBILE LIMITED** 

WSCI

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET **FOTAN NT HONGKONG** 

WSCT

WSET

Issued By:

World Standardization Certification & Testing Group(Shenzhen) Co., Ltd.

Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China

TEL: +86-755-26996192

FAX: +86-755-86376605

WSE1

Note: This report shall not be reproduced except in full, without the written approval of World Standardization Certification Testing Group (Shenzhen) Co., Ltd. This document may be altered or revised by World Standardization Certification& Testing Group (Shenzhen) Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only

apply to the tested sample.

WSET

W5ET"

W5ET

W5 C7

深圳世标检测认证股份有限公司 World Standardization Certification& Testing Group(Shenzhen) Co.,Ltd

Page 1 of 175





Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

W5CT

|     |                  |                              | TABLE OF CON    | TENTS       |       | /             |        |
|-----|------------------|------------------------------|-----------------|-------------|-------|---------------|--------|
|     | W5ET°            | W5CT <sup>®</sup>            | W5              | 57°         | W5LT° | W             | SET .  |
|     |                  |                              |                 |             |       |               |        |
|     | 1 TEST CERTIFIC  | _                            | X               | X           |       | 3             |        |
|     | 2 EUT DESCRIPT   |                              |                 |             |       | 4             |        |
| /W  | TEST DESCRIP     |                              | WSCT            | W5 ET       | W     | 5 <i>[T</i> ° | /      |
|     |                  | EMENT UNCER'<br>VIRONMENT AN |                 |             |       | 5             |        |
|     |                  |                              | S OF TEXT SOFTW | ARE SETTING |       | 7             |        |
|     |                  |                              | ORT UNITS (COND |             |       | 8             |        |
|     | 4 SUMMARY OF T   |                              |                 |             |       | 9             | SET D  |
|     | 5 MEASUREMENT    | INSTRUMENT                   | ΓS              |             |       | 10            |        |
|     | 6 FACILITIES AND | ACCREDITAT                   | IONS            |             |       | 11            |        |
| 4   | 6.1 FACILITIE    |                              |                 | (m)         | \ /   | 11            | ,      |
| / W |                  | ITATIONS                     | WSET            | W5 ET       |       | <b>917</b>    | /      |
|     | 7 TEST RESULTS   |                              |                 |             |       | 12            |        |
|     |                  | ON FROM TEST                 | MEASUREMENT     |             |       | 12<br>13      |        |
| _   |                  | D EMISSION ME                |                 |             |       |               |        |
|     |                  | A REQUIREMEN                 |                 |             | WSCT  | 39            | SET°   |
|     |                  | N BANDWIDTH                  |                 |             |       | 40            |        |
|     |                  |                              | OUTPUT POWER    |             |       | 63            |        |
| 4   |                  | SPECTRAL DEN                 |                 | /11/2/22    |       | 88            |        |
|     |                  | NCY STABILITY                |                 | W5 CT       |       | 112           | /      |
|     |                  | GE EMISSIONS                 | SELECTION (DFS) |             |       | 137<br>163    |        |
|     | 8 TEST SETUP PH  |                              |                 |             |       | 175           |        |
|     |                  |                              |                 | -           |       |               |        |
| _   | W5 CT            | W5 ET                        | W5 L            |             | WSET  |               | SET®   |
|     | / \              |                              |                 |             |       |               |        |
|     | <b>\</b> /       |                              |                 |             |       | $\wedge$      |        |
| W   | SET WS           | CT                           | WSET            | WSET        | /1/   | SCT           |        |
|     |                  |                              |                 |             |       |               |        |
|     | $\sim$           | $\times$                     |                 |             | X     |               | $\vee$ |
|     |                  |                              |                 |             |       |               |        |
|     | WS CT"           | WSET                         | W5L             | 7           | WSET  | W             | SET    |
|     |                  |                              |                 |             |       |               |        |
|     | $\times$         |                              | $\times$        | X           |       | X             |        |
| /   |                  |                              |                 |             | /     |               |        |
| W   | SET WS           | ET"                          | WSET            | W5 ET       | W     | SET .         |        |
|     |                  |                              |                 |             |       |               |        |
|     |                  |                              |                 |             |       |               |        |

TEL: 0086-755-26996192 26996053 26996144

ation& Testi

Page 2 of 175





Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

W5CT

# 1 Test Certification

Product: Mobile Phone

Model No.:

CM5

Additional (%)
Model:

NSET

TECNO

Applicant:

**TECNO MOBILE LIMITED** 

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN

MEI STREET FOTAN NT HONGKONG

Manufacturer:

**TECNO MOBILE LIMITED** 

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN

MEI STREET FOTAN NT HONGKONG

Date of receipt:

29 September 2024

**Date of Test:** 

29 September 2024 to 04 December 2024

Applicable Standards:

FCC CFR Title 47 FCC Part 15 Subpart E

WS CT

WSET

The above equipment has been tested by World Standardization Certification & Testing Group(Shenzhen)Co., Ltd. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

WSET

W557

(Wang Xiang)

WSLT

WSET

WSLI

Tested By:

Warf Kiarf

Checked By:

( Qin Shuiquan)

WSIT

D 4

WSL

W5

Approved By:

(Li Huaibi)

Date: DE

\*

WSIT

WELT

W5CT

WSFI

WSIT

WSET

WSET

WELL

WSF

WS ET

177.7

WSIT

WSCT

WSCT

TO THOM & PATION

DD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province. China.

Member of the WSCT Group (WSCT SA)

ail: fengbing.wang@wsct-cert.com Http:

深圳世标检测认证股份有限公司 World Standardisation Confidentions To

World Standardization Certification& Testing Group (Shenzhen) Co.,Ltd

Page 3 of 175

WSET

W5/

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

7°



Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

W5CT°

# 2 **EUT Description**

|   | WELL                 | FT WEFT WEFT WE                                                                                                                                                  | ET      |
|---|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| _ | Product:             | Mobile Phone                                                                                                                                                     |         |
|   | Model No.:           | CM5                                                                                                                                                              |         |
|   | Trade Mark:          | TECNO SET WSET WSET                                                                                                                                              | /       |
|   | Software version:    | CM5-H8918                                                                                                                                                        | X       |
|   | Hardware version:    | V1.2 W5 C7 W5 C7                                                                                                                                                 | ET.     |
|   | Operation Frequency: | Band 1: 5180-5240 MHz Band 2: 5260-5320 MHz Band 3: 5500-5700 MHz Band 4: 5745-5825 MHz  W5 [7]                                                                  |         |
|   | Modulation type:     | IEEE 802.11a/n/ac: OFDM<br>(BPSK/QPSK/16QAM/64QAM/256QAM)                                                                                                        | otag    |
|   | Antenna Type:        | PIFA Antenna                                                                                                                                                     |         |
| / | Antenna Gain         | -3.19dBi                                                                                                                                                         | S C T 1 |
|   |                      | Adapter: U450TSB Input: 100-240V~50/60Hz 1.8A Output: 5.0V3.0A 15.0W or 5.0V-10.0V4.5A or 11.0V4.1A 45.0W MAX Rechargeable Li-ion Polymer Battery Model: BL-54AT |         |
| / | Operating Voltage:   | Rated Voltage: 3.91V Rated Capacity: 5100mAh Nominal Energy:19.95Wh Typical Capacity: 5200mAh Limited Charge Voltage: 4.50V                                      | ET      |
|   | Remark:              | N/A.                                                                                                                                                             |         |

WSET

WS CT

NSC.

WS CI

Note: 1. N/A stands for no applicable.

2. The antenna gain is provided by the customer. For any reported data issues caused by the antenna gain, World Standardization Certification&Testing Group (Shenzhen) Co., Ltd assumes no responsibility.

3. The laboratory shall be responsible for all information in the report, except for the information provided by the client. The data provided by the client should be clearly identified. In addition, when the information provided by the client may affect the validity of the results, a disclaimer should be included in the report. When the laboratory is not responsible for sampling (such as when the sample is provided by the customer), the results should be declared in the report as applicable to the received sample.

WSCT WSCT WSCT WSCT

AWSET N

WSIT

WSIT

**awset** 

WSCT WSCT Strang Group (Shenzion)

WS ET

WSIT

WSIT

AWS LT

ADD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chir TEL: 0086-755-26996192 26998053, 26998144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.co

深圳世标检测认证股份有限公司 World Standard Fation Certification& Testing Group(Shenzhen) Co.,Ltd

**ac-MRA** 

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2



| 3.1 MEA   | SURFME         | NT UNCERTAINTY                                        | Wall                 | W-LI            |
|-----------|----------------|-------------------------------------------------------|----------------------|-----------------|
| J. I WILL | No.            | Item                                                  | Uncertainty          |                 |
|           | 1              | Conducted Emission Test                               | ±3.2dB               |                 |
| WSET      | 2W5 CT         | RF power, conducted                                   | ±0.16dB              | LT°             |
| $\times$  | 3              | Spurious emissions, conducted                         | ±0.21dB              | $\times$        |
|           | 4              | All emissions, radiated(<1GHz)                        | ±4.7dB               |                 |
| W5 CT     | 5              | All emissions, radiated(>1GHz)                        | ±4.7dB <b>W5</b> [T] | W5CT*           |
|           | 6              | Temperature                                           | ±0.5°C               |                 |
|           | 7              | Humidity                                              | ±2%                  |                 |
| W5 CT     | 8 <i>N5 CT</i> | Receiver Spurious Emissions                           | ±2.5%7               | CT <sup>®</sup> |
|           | 9              | Transmitter Unwanted Emissions in the Spurious Domain | ±2.5%                |                 |
| W5 ET®    | 10             | Transmitter Unwanted Emission in the out-of Band      | ±1.3%                | WSCT            |
|           | 11             | Occupied Channel Bandwidth                            | ±2.4%                |                 |
| X         | X              | X                                                     | X                    | X               |

Note:

- 1. The reported uncertainty of measurement y ± U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.
- 2. The Ulab is less than Ucispr, compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;non-compliance is deemed to occur if any measured disturbance level exceeds the disturbance
- 3. For conducted emission test of laboratory have a measurement uncertainty greater than that specified in harmonized standard, this equipment can still be used provided that an
- adjustment is made follows: any additionan uncertainty in the test system over and above that specified in harmonized standard should be used to tighter the test requirements-making the test harder to pass. This procedure will ensure that a test system not comliant with harmonized standard does not increase the probability of passing a EUT that would otherwise have failed a test if a test system comliant with harmonized standard had been used.

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Ave TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605

tion& Tes

Page 5 of 175







Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

W5 CT°

#### 3.2 TEST ENVIRONMENT AND MODE

| / | Operating Environment:       |                                                                                        | 5 C I |
|---|------------------------------|----------------------------------------------------------------------------------------|-------|
|   | Temperature:                 | 25.0 °C                                                                                |       |
|   | Humidity:                    | 56 % RH                                                                                |       |
| \ | Atmospheric Pressure: W5 [7] | 1010 mbar <i>W5 ET W5 ET</i>                                                           |       |
|   | Test Mode:                   |                                                                                        | X     |
|   | Engineering mode:            | Keep the EUT in continuous transmitting by select channel and modulations(The value of | 5 C T |

duty cycle is 98.46%)

W5ET°

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. For the full battery state and The output power to the maximum state.

WSET"

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

| CT  | Test Mode    | Description              |   |
|-----|--------------|--------------------------|---|
|     | Mode 1       | 802.11a                  |   |
|     | Mode 2       | 802.11n20                |   |
| _/  | Mode 3       | W5 ET 802.11n40 W5 ET    | _ |
|     | Mode 4       | 802.11ac20               |   |
|     | Mode 5       | 802.11ac40               |   |
| CT. | Mode 6/5 [7] | W5 [7] 802.11ac80 W5 [7] | ſ |

Note:

- (1) The measurements are performed at the highest, lowest available channels.
- (2) The EUT use new battery.

(3) Record the worst case of each test item in this report.

(3) Necord the worst case of each test term in this report

SET

WSCT WSCT WSCT

W5 CT

WSIT

WSIT

4W5LT

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chi TEL: 0086-755-26996192 26998053, 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

深圳世标检测认证股份有限公司
World Standard ration Certification & Testing Group (Shenzhen) Co.,Lt



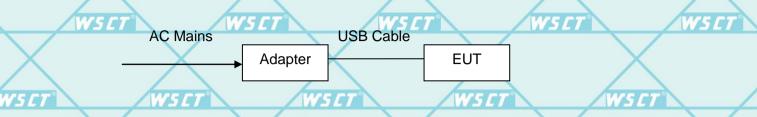
Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

W5 CT

| 3.3 TABLE O | F PARAMETER                           | S OF T        | EXT SO   | FTWAF        | RE SET           | TING          |              | $\times$     |              |               | X         |               |
|-------------|---------------------------------------|---------------|----------|--------------|------------------|---------------|--------------|--------------|--------------|---------------|-----------|---------------|
| WSET        |                                       | SET           |          |              | SET              |               |              | NS C1        |              | _/            | W5 E      | 7°            |
| $\times$    | Test program                          |               |          | *#           | *#3646           | 633#*#        | *            |              |              | <b>X</b>      |           |               |
| WELL        | Mode                                  |               | WEE      | Test         | Freque           | ency (Mi      | Hz)          |              | W            | - CT          |           | ,             |
| WSET        |                                       | $\overline{}$ | 4W5L     |              | NCB: 2           |               | 74           |              |              | CT 1          |           | /             |
| X           | 802.11a                               | 5180          | 5240     | 5260         | 5320             | 5500          | 5700         | 5745         | 5825         |               | X         |               |
| WSET        | 802.11n                               | 5180          | 5240     | 5260         | 5320             | 5500          | 5700         | 5745         | 5825         | ,             | WSC       | 7             |
|             | 802.11ac                              | 5180          | 5240     | 5260         | 5320             | 5500          | 5700         | 5745         | 5825         | /             |           |               |
| X           | 802.11n                               | 5100          | 5230     |              | NCB: 4           |               | 5670         | E755         | 5705         | X             |           |               |
| WS CT       | 802.1111                              | 5190<br>5190  | 5230     | 5270<br>5270 | 5310<br>5310     | 5510<br>5510  | 5670<br>5670 | 5755<br>5755 | 5795<br>5795 | ET.           |           |               |
|             | 002.11ac                              | 3190          | 3230     |              | NCB: 8           | l             | 3070         | 3733         | 3793         |               |           |               |
| X           | 802.11ac                              | 5210          | 5290     | 5530         | 5610             | 5775          |              | X            |              |               | X         |               |
| WSET        |                                       | SET           |          |              | SET              | \             |              | N5 CT        |              | ,             | W5 C      | 7             |
|             |                                       |               |          |              |                  |               |              |              |              | $\mathcal{I}$ |           |               |
|             |                                       |               |          |              |                  |               |              |              |              |               |           |               |
| WSET        | WSCT                                  | /             | W5C      | 7°           |                  | W5            | CT°          |              | W            | SET"          |           | /             |
|             |                                       | $\checkmark$  |          |              | $\times$         |               |              | $\bigvee$    |              |               |           |               |
|             |                                       |               |          |              |                  |               |              |              |              |               |           |               |
| WSET        | W                                     | SET®          |          | W            | 'S ET'           | <del>\</del>  | -/           | W5 CT        |              | _/            | W5 C      | 7°\           |
| $\times$    | $\times$                              |               | $\times$ |              |                  |               |              |              |              | $\times$      |           |               |
|             |                                       |               |          |              |                  |               |              |              |              |               |           |               |
| WSCT        | WSCT                                  |               | 4W5 C    |              |                  | _W5           | <i>ET</i> \  |              | W            | 5 C T         |           | $\overline{}$ |
| X           |                                       | X             |          |              | X                |               |              | X            |              |               | X         |               |
| WSET        | \ <u>\</u>                            | SCT°          |          | 6            | SET <sup>®</sup> |               |              | W5 ET        |              |               | W5 C      |               |
|             | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |               |          |              | 244              | $\overline{}$ |              |              |              | $\overline{}$ |           |               |
| X           | X                                     |               | X        |              |                  | $\rightarrow$ |              |              |              | X             |           |               |
| WSET        | WSET                                  |               | W5C      | 7            |                  | W5            | CT           |              | W            | S C T         |           |               |
|             |                                       |               |          |              | /                |               |              | \/           |              |               |           | /             |
| X           |                                       | X             |          | ,            | X                |               |              | X            |              |               | X         |               |
| WSET        | W                                     | SET           |          | W            | SET              |               |              | W5 CT        |              | ncation       | 18 Testin | 7°            |
|             |                                       |               |          |              |                  |               |              |              | Y            | S             | SCHOUL    |               |
|             |                                       |               |          |              |                  |               |              |              | rdizati      | W.S           | ET        | Shenz         |

Page 7 of 175




W5 CI



Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

W5CT°

#### CONFIGURATION OF SYSTEM UNDER TEST



(EUT: Mobile Phone)

## 3.4 DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| Item | Equipment | Mfr/Brand | Model/Type No. | Series No. | Note | X   |
|------|-----------|-----------|----------------|------------|------|-----|
| 1    | Adapter   | WSCT /    | U450TSB        | WSIT       | 1    | WSI |
| 2    | Earphone  |           | N/A            |            | 1/   |     |

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
  - (2) For detachable type I/O cable should be specified the length in cm in <code>"Length "</code> column.
  - (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

|      | (4) The adapter supp | ly by the applicant. | WSET | W5ET*    | WSET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------|----------------------|----------------------|------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WSCT | WSET                 | WSET                 |      |          | SCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | WSET                 | WSET                 | WSLT | WSET     | WSCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| WSCT | WSCT                 | WSCI                 | WS   | E7 W     | SCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | WSET                 | WSET                 | WSET | $\times$ | $\times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| X    | X                    | X                    |      |          | Costincations Testing Cooling (Signature Control of Con |

TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-Member of the WSCT Group (WSCT SA) 深圳世标检测认证股份有限公司 World Standard Zation Certification& Testing Group( Shenzher

Page 8 of 175

WSCT

W5E7



**IC-MRA** Malalalala

Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

#### **SUMMARY OF TEST RESULTS** 4

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

Test procedures according to the technical standards:

|  | -   | ,,,16 |
|--|-----|-------|
|  |     |       |
|  | _4% |       |

| FCC Part15 Subpart C&E |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Standard<br>Section    | Test Item                                                                                                    | Judgment                                                                                                                                                                                                                                                                                                                                                                                                                     | Remark                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| 2.1049<br>15.403(i)    | 26dB & 99% Bandwidth                                                                                         | PASS                                                                                                                                                                                                                                                                                                                                                                                                                         | Complies                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| 15.407(e)              | 6dB Spectrum Bandwidth                                                                                       | PASS                                                                                                                                                                                                                                                                                                                                                                                                                         | Complies                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| 15.407(a)              | Maximum Conducted Output Power                                                                               | PASS                                                                                                                                                                                                                                                                                                                                                                                                                         | Complies                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| 15.407(a)              | Power Spectral Density                                                                                       | PASS                                                                                                                                                                                                                                                                                                                                                                                                                         | Complies 5 C7                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| 15.407(b)              | Unwanted Emissions                                                                                           | PASS                                                                                                                                                                                                                                                                                                                                                                                                                         | Complies                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| 15.207 <i>5 [ [ ]</i>  | AC Conducted Emission W5 [7]                                                                                 | PASS W5                                                                                                                                                                                                                                                                                                                                                                                                                      | Complies                                                                                                                                                                                                                                                                                                                                                                                                              | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 15.407(g)              | Frequency Stability                                                                                          | PASS                                                                                                                                                                                                                                                                                                                                                                                                                         | Complies                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| 15.407(c)              | Automatically Discontinue Transmission                                                                       | PASS                                                                                                                                                                                                                                                                                                                                                                                                                         | Complies                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 15.203 &<br>15.407(a)  | Antenna Requirement                                                                                          | PASS                                                                                                                                                                                                                                                                                                                                                                                                                         | Complies                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| 15.407(h)              | Transmit Power Control (TPC) and Dynamic Frequency Selection (DFS)                                           | PASS                                                                                                                                                                                                                                                                                                                                                                                                                         | Complies                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                        | Section  2.1049 15.403(i) 15.407(e)  15.407(a)  15.407(b)  15.2075  15.407(c)  15.203 & 15.407(a)  15.407(h) | Standard Section  2.1049 15.403(i)  26dB & 99% Bandwidth  15.407(e)  6dB Spectrum Bandwidth  Maximum Conducted Output Power  15.407(a)  Power Spectral Density  15.407(b)  Unwanted Emissions  15.207  AC Conducted Emission  15.407(g)  Frequency Stability  15.407(c)  Automatically Discontinue Transmission  15.203 & Antenna Requirement  15.407(h)  Transmit Power Control (TPC) and Dynamic Frequency Selection (DFS) | Standard Section  2.1049 15.403(i)  26dB & 99% Bandwidth  PASS  15.407(e)  6dB Spectrum Bandwidth  PASS  15.407(a)  Maximum Conducted Output Power  PASS  15.407(b)  Unwanted Emissions  PASS  15.407(g)  Frequency Stability  PASS  15.407(c)  Automatically Discontinue Transmission  PASS  15.203 & Antenna Requirement  PASS  15.407(h)  Transmit Power Control (TPC) and Dynamic Frequency Selection (DFS)  PASS | Standard<br>SectionTest ItemJudgmentRemark2.1049<br>15.403(i)26dB & 99% BandwidthPASSComplies15.407(e)6dB Spectrum BandwidthPASSComplies15.407(a)Maximum Conducted<br>Output PowerPASSComplies15.407(a)Power Spectral DensityPASSComplies15.407(b)Unwanted EmissionsPASSComplies15.207AC Conducted EmissionPASSComplies15.407(g)Frequency StabilityPASSComplies15.407(c)Automatically Discontinue TransmissionPASSComplies15.203 &<br>15.407(a)Antenna RequirementPASSComplies15.407(h)Transmit Power Control (TPC) and<br>Dynamic Frequency Selection (DFS)PASSComplies |  |  |  |

NOTE:

(1)" N/A" denotes test is not applicable in this test report.

W5 CT W5E1 WS CT

WSET

W5 CT°

W5C1

Page 9 of 175

W51



W5 E

W5 C

World Standardization Certification & Testing Group (Shenzhen) Co.,ltd.

W5CT



Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

# **5 MEASUREMENT INSTRUMENTS**

| J   | WSCT                                       | WELL                      | WELT             |                  | VECT                | WS               | F |
|-----|--------------------------------------------|---------------------------|------------------|------------------|---------------------|------------------|---|
| 7   | NAME OF<br>EQUIPMENT                       | MANUFACTURER              | MODEL            | SERIAL<br>NUMBER | Calibration<br>Date | Calibration Due. | 5 |
| 7°  | Test software                              | - /w                      | EZ-EMC           | CON-03A          | - W                 | CT ·             |   |
|     | Test software                              | /                         | MTS8310          | -                | \ <u>-</u>          | -                |   |
|     | EMI Test Receiver                          | R&S                       | ESCI             | 100005           | 11/04/2024          | 11/03/2025       |   |
| _   | W5 (LISN                                   | W AFJ                     | LS165 E 7        | 16010222119      | 11/04/2024          | 11/03/2025       | Ľ |
|     | LISN(EUT)                                  | Mestec                    | AN3016           | 04/10040         | 11/04/2024          | 11/03/2025       |   |
| 7   | Universal Radio<br>Communication<br>Tester | R&S W                     | CMU 200          | 1100.0008.02     | 11/04/2024          | 11/03/2025       |   |
|     | Coaxial cable                              | Megalon                   | LMR400           | N/A              | 11/04/2024          | 11/03/2025       |   |
|     | GPIB cable                                 | Megalon                   | GPIB             | N/A              | 11/04/2024          | 11/03/2025       |   |
| _   | Spectrum Analyzer                          | R&S                       | FSU <sup>5</sup> | 100114           | 11/04/2024          | 11/03/2025       | L |
|     | Pre Amplifier                              | H.P.                      | HP8447E          | 2945A02715       | 11/04/2024          | 11/03/2025       |   |
|     | Pre-Amplifier                              | CDSI                      | PAP-1G18-38      |                  | 11/04/2024          | 11/03/2025       |   |
| 7 1 | Bi-log Antenna                             | SCHWARZBECK               | VULB9168         | 01488            | 7/29/2024           | 7/28/2025        |   |
|     | 9*6*6 Anechoic                             | X                         | - X              |                  | 11/04/2024          | 11/03/2025       | < |
|     | Horn Antenna                               | COMPLIANCE<br>ENGINEERING | CE18000          | - /              | 11/04/2024          | 11/03/2025       | Ľ |
| /   | Horn Antenna                               | SCHWARZBECK               | BBHA9120D        | 9120D-631        | 11/04/2024          | 11/03/2025       |   |
|     | Cable                                      | TIME MICROWAVE            | LMR-400          | N-TYPE04         | 11/04/2024          | 11/03/2025       |   |
| 7°  | System-Controller                          | ccs                       | N/A              | w N/A            | N.C.R               | N.C.R            |   |
|     | Turn Table                                 | ccs                       | N/A              | N/A              | N.C.R               | N.C.R            |   |
|     | Antenna Tower                              | ccs                       | N/A              | N/A              | N.C.R               | N.C.R            |   |
| /   | RF cable                                   | Murata                    | MXHQ87WA300<br>0 |                  | 11/04/2024          | 11/03/2025       | Ľ |
|     | Loop Antenna                               | EMCO                      | 6502             | 00042960         | 11/04/2024          | 11/03/2025       |   |
|     | Horn Antenna                               | SCHWARZBECK               | BBHA 9170        | 1123             | 11/04/2024          | 11/03/2025       |   |
|     | Power meter                                | Anritsu                   | ML2487A          | 6K00003613       | 11/04/2024          | 11/03/2025       |   |
|     | Power sensor                               | Anritsu                   | MX248XD          |                  | 11/04/2024          | 11/03/2025       | < |
|     | Spectrum Analyzer                          | Keysight                  | N9010B           | MY60241089       | 11/04/2024          | 11/03/2025       | Ţ |
|     |                                            |                           |                  |                  |                     | au au            | - |

WSCT

DD: Building A-B,Baoli'an Industrial Park,No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chi EL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

深圳世标检测认证股份有限公司



Member of the WSCT Group (WSCT SA)

Page 10 of 175





Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

# **Facilities and Accreditations**

6.1 FACILITIES

W5C

All measurement facilities used to collect the measurement data are located at

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China of the World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6.2 ACCREDITATIONS

ANAB - Certificate Number: AT-3951

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (ANAB). Certification Number: AT-3951

WSCI WSEI

Page 11 of 175

W5 ET



W5L

W5L

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

W5 CI



#### **Test Results and Measurement Data** 7

# 7.1 CONDUCTED EMISSION MEASUREMENT

POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

| ý | FREQUENCY (MHz)  | Class A    | (dBuV)  | Class B    | (dBuV)    | Standard  |
|---|------------------|------------|---------|------------|-----------|-----------|
|   | FREQUENCT (MITZ) | Quasi-peak | Average | Quasi-peak | Average   | Statiuatu |
|   | 0.15 -0.5        | 79.00      | 66.00   | 66 - 56 *  | 56 - 46 * | FCC       |
|   | 0.50 -5.0        | 73.00      | 60.00   | 56.00      | 46.00     | FCC       |
|   | 5.0 -30.0        | 73.00      | 60.00   | 60.00      | 50.00     | FCC       |

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " \* " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

|   | Receiver Parameters   | Setting          | LE. |
|---|-----------------------|------------------|-----|
|   | Attenuation           | 10 dB            |     |
| \ | Start Frequency       | 0.15 MHz         |     |
| Ž | Stop Frequency W5 [T] | W5 [30 MHz W5 [T |     |
|   | IF Bandwidth          | 9 kHz            |     |

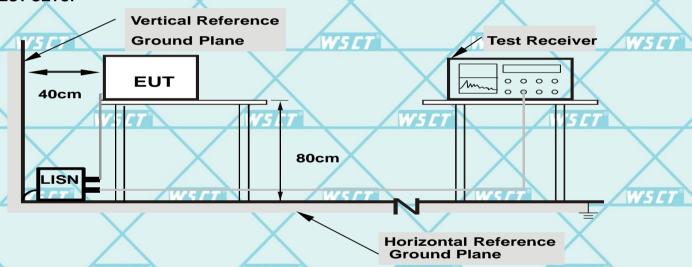
| WSCT WSCT WSCT WSCT      |    |
|--------------------------|----|
| WSCT WSCT WSCT WSCT WSCT | 77 |
| WSET WSET WSET WSET      |    |





Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

## 7.1.1 TEST PROCEDURE


- a. The EUT was placed 0.4 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- h Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d LISN at least 80 cm from nearest part of EUT chassis.
- e For the actual test configuration, please refer to the related Item -EUT Test Photos.

#### 7.2 DEVIATION FROM TEST STANDARD

No deviation

WSCT

#### **TEST SETUP**



Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

WSET

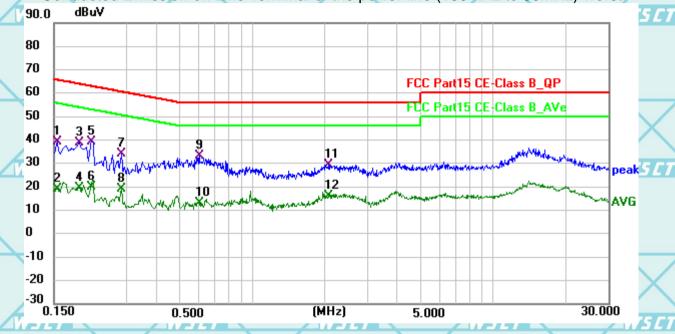
#### **EUT OPERATING CONDITIONS**

The EUT is working in the Normal link mode. All modes have been tested and normal link mode is

Devices subject to Part 15 must be tested for all available U.S. voltages and frequencies (such as a nominal 120 VAC, 60 Hz and 240 VAC, 50 Hz) for which the device is capable of operation. So, The configuration 120 VAC, 60 Hz and 240 VAC, 50 Hz were tested respectively, but only the worst configuration (120 VAC, 60 Hz) shown here.






Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

W5 C1

#### **TEST RESULTS**

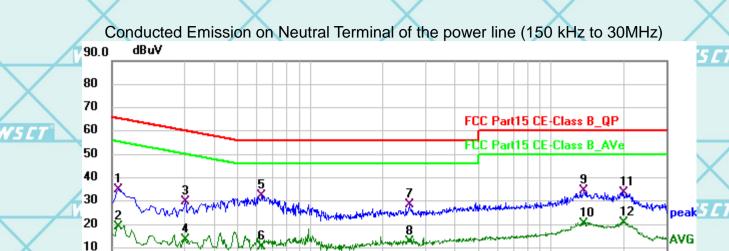
WS CT

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)-worst



|   | No. | Frequency<br>(MHz) | Reading (dBuV) | Factor<br>(dB) | Level<br>(dBuV) | Limit<br>(dBuV) | Margin<br>(dB) | Detector | ı |
|---|-----|--------------------|----------------|----------------|-----------------|-----------------|----------------|----------|---|
|   | 1   | 0.1545             | 18.62          | 20.73          | 39.35           | 65.75           | -26.40         | QP       |   |
|   | 2   | 0.1545             | -1.51          | 20.73          | 19.22           | 55.75           | -36.53         | AVG      |   |
|   | 3   | 0.1905             | 18.10          | 20.70          | 38.80           | 64.01           | -25.21         | QP       |   |
| C | 4   | 0.1905             | -1.05          | 20.70          | 19.65           | 54.01           | -34.36         | AVG      | / |
|   | 5   | 0.2130             | 18.68          | 20.68          | 39.36           | 63.09           | -23.73         | QP       |   |
|   | 6   | 0.2130             | -0.57          | 20.68          | 20.11           | 53.09           | -32.98         | AVG      |   |
|   | 7   | 0.2850             | 13.30          | 20.64          | 33.94           | 60.67           | -26.73         | QP       |   |
|   | 8   | 0.2850             | -1.73          | 20.64          | 18.91           | 50.67           | -31.76         | AVG      |   |
|   | 9 * | 0.6000             | 12.62          | 20.52          | 33.14           | 56.00           | -22.86         | QP       |   |
| ا | 10  | 0.6000             | -7.39          | 20.52          | 13.13           | 46.00           | -32.87         | AVG      |   |
| L | 11  | 2.0670             | 8.88           | 20.61          | 29.49           | 56.00           | -26.51         | QP       |   |
|   | 12  | 2.0670             | -4.70          | 20.61          | 15.91           | 46.00           | -30.09         | AVG      |   |

Remark: All the modes have been investigated, and only worst mode is presented in this report.


W5

W5 C





Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2



12/5/

0 -10 -20 -30

0.150 0.500

(MHz)

5.000

30.000

Frequency Reading Factor Limit Level Margin No. Detector (dBuV) (dBuV) (dBuV) (dB) (MHz) (dB) QP 1 0.159014.41 20.72 35.13 65.52 -30.392 0.1590 -1.5620.72 19.16 55.52 -36.36AVG 3 0.3030 9.03 20.63 29.66 60.16 -30.50QP 4 0.3030 -7.2320.63 13.40 50.16 -36.76AVG 5 QP 0.6270 11.99 20.53 32.52 56.00 -23.486 0.6270 -10.1520.53 10.38 46.00 -35.62AVG 7 7.72 QP 2.5845 20.60 28.32 56.00 -27.688 2.5845 -7.9820.60 12.62 46.00 -33.38 AVG QP 9 13.6455 14.23 20.25 34.48 60.00 -25.5210 13.6455 0.28 20.25 20.53 50.00 -29.47AVG WS QP 11 19.9229 13.38 20.26 33.64 60.00-26.3612 19.9229 0.62 20.26 20.88 50.00 -29.12AVG

Note1:

Freq. = Emission frequency in MHz

AWSLT

WSIT

Reading level  $(dB\mu V)$  = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss

Measurement ( $dB\mu V$ ) = Reading level ( $dB\mu V$ ) + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$ 

 $Q.P. = Quasi-Peak \quad AVG = average$ 

\* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

SET WSET WSE

nue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.
376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

深圳世标检测认证股份有限公司
World Standard Zation Certification& Testing Group(Shenzhen)

lember of the WSCT Group (WSCT 8A)

Page 15 of 175

WSE

WSCT

WELL

WSCI

Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

### 7.3 RADIATED EMISSION MEASUREMENT

Radiated Emission Limits (Frequency Range 9kHz-1000MHz)

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall W5 E within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

|   | Frequencies           | Field Strength     | Measurement Distance       |
|---|-----------------------|--------------------|----------------------------|
| _ | (MHz)                 | (micorvolts/meter) | (meters)                   |
|   | 0.009~0.490           | 2400/F(KHz)        | 300                        |
|   | 0.490~1.705           | 24000/F(KHz)       | 30                         |
| ĺ | /5 [T 1.705~30.0 W5 [ | 7° 30 W5 CT°       | M30 ET                     |
|   | 30~88                 | 100                | 3                          |
|   | 88~216                | 150                | 3                          |
|   | 216~960               | W5 [7200           | <b>W5LT</b> 3 <b>W5L</b> T |
|   | Above 960             | 500                | 3                          |

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

| EDEOLIENCY (MH-) | Limit (dBuV/m) (at 3M) |                              |  |  |
|------------------|------------------------|------------------------------|--|--|
| FREQUENCY (MHz)  | PEAK                   | AVERAGE                      |  |  |
| Above 1000       | W5 C 74                | <b>W5</b> [T" 54 <b>W5</b> [ |  |  |

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

|                                 |                                                 | 4   |
|---------------------------------|-------------------------------------------------|-----|
| Spectrum Parameter              | Setting                                         |     |
| Attenuation                     | SCT WSCT Auto                                   |     |
| Start Frequency                 | 1000 MHz                                        |     |
| Stop Frequency                  | 10th carrier harmonic                           | X   |
| RB / VB (emission in restricted | 1 MHz / 1 MHz for Peak, 1 MHz / 1Hz for Average | 5 C |
| band)                           |                                                 |     |

|   | Receiver Parameter        | Setting                          |
|---|---------------------------|----------------------------------|
| 1 | Attenuation               | 5 CT W5 CAuto W5 CT              |
|   | Start ~ Stop Frequency    | 9kHz~150kHz / RB 200Hz for QP    |
|   | Start ~ Stop Frequency    | 150kHz~30MHz / RB 9kHz for QP    |
| 1 | W5 Start ~ Stop Frequency | 30MHz~1000MHz / RB 120kHz for QP |

Page 16 of 175

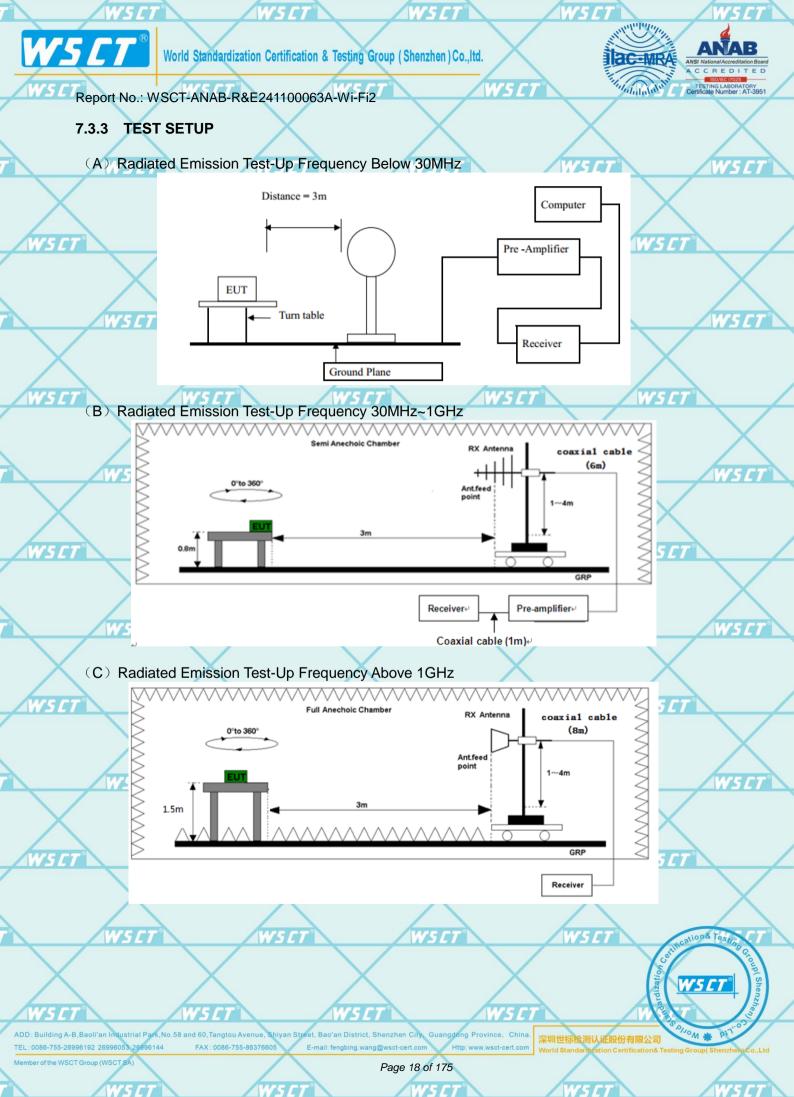




Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

#### **TEST PROCEDURE**

a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.


b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.

- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

|      | ortnogonal axis. The wo | rst case emissions were rep | ported                           | $\wedge$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
|------|-------------------------|-----------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 7.   | 3.2 DEVIATION FROM      | TEST STANDARD               | SET WS                           | ET" WSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| WSCT | No deviation            | WSET                        | WSET                             | WSET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|      | WSET                    | $\times$                    | $\langle \ \ \rangle$            | SET WSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>A</b> |
| WSCT | WSET                    | WSET                        | WSET                             | WSET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|      | WSCT                    | WSET W                      | $\langle \ \rangle$              | WS CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7        |
| WSCT | WSET                    | WSET                        | WSET                             | W5 ET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
|      | WSCT                    | $\times$                    | $\langle \hspace{0.1cm} \rangle$ | $\times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| X    | X                       | X                           | X                                | SET WSET SELECTION STORY OF SHORY OF SH |          |

Page 17 of 175



Mahalalala



World Standardization Certification & Testing Group (Shenzhen) Co.,ltd.

Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

W5CT°

#### 7.3.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

7.3.5 RESULTS (BELOW 30 MHZ)

WS ET

| •• | O REGOLIO DELOT | 7 00 1111 12) |          |        |                   |
|----|-----------------|---------------|----------|--------|-------------------|
|    | Freq.           | Reading       | Limit    | Margin | State             |
|    | (MHz)           | (dBuV/m)      | (dBuV/m) | (dB)   | P/F               |
|    | MSLI            | V S           |          | 121    | M2 <sup>b</sup> / |
|    | X               | X             |          | 🗙      | Р                 |

Note 1: The symbol of "--" in the table which means not application.

Note 2: For the test data above 1 GHz, According the ANSI C63.10-2013, where limits are specified for both average and peak (or quasi-peak) detector functions, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement.

Note 3: The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Note 4: The EUT is working in the Normal link mode below 1 GHz. All modes have been tested and normal link mode is worst.

| WSET | WSET | WSET                             | WSET | WSET     |                     |
|------|------|----------------------------------|------|----------|---------------------|
| WS   |      |                                  |      |          | WSET                |
| WSET | WSET | WSCT                             | WSET | WSET     |                     |
| WS   |      |                                  |      |          | WSCT                |
| WSET | WSET | WSET                             | WSET | WSET     |                     |
| WS   |      | $\langle \hspace{0.1cm} \rangle$ |      | <b>/</b> | Tesi                |
| X    | X    | X                                | X    | W.5      | Testing Coup (Shenz |

DD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chir EL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

深圳世标检测认证股份有限公司 World Standard Zation Certification & Testing Group( Shenzhen) Co.,Ltd





Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

## 7.3.6 TEST RESULTS (BETWEEN 30M - 1000 MHZ)


Please refer to following diagram for individual

**Below 1GHz** 

AWS CT

### Horizontal:

W5 ET



WSCT

|   |     |                    |                   |                  |                   |                   |                | / 11//   |                |
|---|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|----------------|
|   | No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | Height<br>(cm) |
|   | 1   | 35.2203            | 40.11             | -19.47           | 20.64             | 40.00             | -19.36         | QP       | 100            |
| 1 | 2   | 93.1948            | 41.32             | -24.18           | 17.14             | 43.50             | -26.36         | QP       | 100            |
|   | 3   | 157.0762           | 42.14             | -19.46           | 22.68             | 43.50             | -20.82         | QP       | 100            |
|   | 4   | 184.0859           | 43.55             | -22.59           | 20.96             | 43.50             | -22.54         | QP       | 100            |
| 5 | 5   | 214.4203           | 43.19             | -24.10           | 19.09             | 43.50             | -24.41         | QP       | 100            |
|   | 6 * | 261.8604           | 49.21             | -21.56           | 27.65             | 46.00             | -18.35         | QP       | 100            |

IWS CT"

Remark: All the modes have been investigated, and only worst mode is presented in this report.

WSLT

**4W5L**1

WSIT

WSIT

WSIT

WSCT

WSIT

AWSET"

WSIT

wardizatio,

W5CT°

IWS LT

WSIT

AWS LT

DD: Building A-B,Baoll'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Ch EL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.com

深圳世标检测认证股份有限公司 World Standard vation Certification& Testin

esting Group(Shenzhen) Co.,Ltd

Member of the WSCT Group (WSCT SA)

Page 20 of 175

WSF





WS CT

Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

Vertical:



| No. | Frequency<br>(MHz) | Reading (dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector |
|-----|--------------------|----------------|------------------|-------------------|-------------------|----------------|----------|
| 1 * | 30.0132            | 53.89          | -19.12           | 34.77             | 40.00             | -5.23          | QP       |
| 2   | 56.2221            | 46.71          | -19.89           | 26.82             | 40.00             | -13.18         | QP       |
| 3   | 71.0492            | 49.68          | -22.37           | 27.31             | 40.00             | -12.69         | QP       |
| 4   | 82.6844            | 52.36          | -24.02           | 28.34             | 40.00             | -11.66         | QP       |
| 5   | 132.1626           | 38.69          | -20.23           | 18.46             | 43.50             | -25.04         | QP       |
| 6   | 161.0501           | 44.03          | -19.67           | 24.36             | 43.50             | -19.14         | QP       |

Note1:

Freq. = Emission frequency in MHz

Reading level (dBµV) = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss - Amplifier factor.

Measurement  $(dB\mu V)$  = Reading level  $(dB\mu V)$  + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

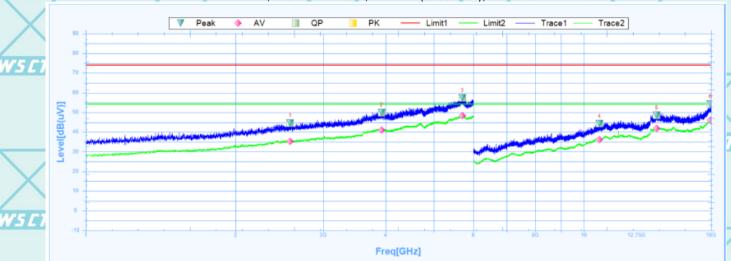
Margin (dB) = Measurement (dB $\mu$ V) – Limits (dB $\mu$ V)

Page 21 of 175

W5C1



Mahalalala


Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

## **TEST RESULTS (ABOVE 1GHZ)**

Note: 1. The spurious above 18G is noise only, do not show on the report.

2. Report and only recorded the worst-case scenario 802.11a.

11a, 1 GHz to 18 GHz, Channel (5180 MHz), ANT H



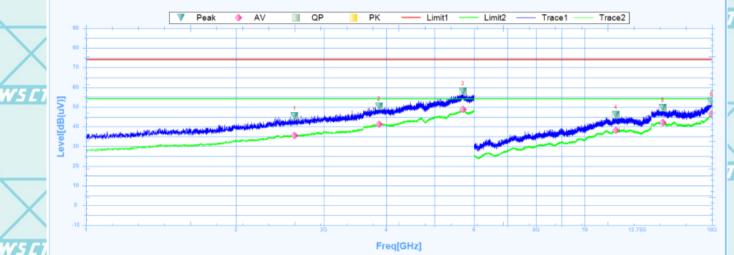
|   | Suspu | ited Data Lis  | st                  |                |                   |               |                |            |            |       |         |
|---|-------|----------------|---------------------|----------------|-------------------|---------------|----------------|------------|------------|-------|---------|
|   | NO.   | Freq.<br>[MHz] | Reading<br>[dB(uV)] | Factor<br>[dB] | Level<br>[dB(uV)] | Limit<br>[dB] | Margin<br>[dB] | Deg<br>[°] | Polarity   | Trace | Verdict |
|   | 1     | 2573.1250      | 44.65               | 27.69          | 16.96             | 74            | -29.35         | 258.1      | Horizontal | PK    | Pass    |
|   | 1     | 2573.1250      | 35.29               | 27.69          | 7.6               | 54            | -18.71         | 258.1      | Horizontal | AV    | Pass    |
| Ž | 2     | 3926.8750      | 49.98               | 29.52          | 20.46             | 74            | -24.02         | 308.3      | Horizontal | PK    | Pass    |
|   | 2     | 3926.8750      | 41.07               | 29.52          | 11.55             | 54            | -12.93         | 308.3      | Horizontal | AV    | Pass    |
|   | 3     | 5702.5000      | 57.34               | 32.32          | 25.02             | 74            | -16.66         | 186.3      | Horizontal | PK    | Pass    |
|   | 3     | 5702.5000      | 48.41               | 32.32          | 16.09             | 54            | -5.59          | 186.3      | Horizontal | AV    | Pass    |
|   | 4     | 10752.0000     | 44.26               | 14.69          | 29.57             | 74            | -29.74         | 176.2      | Horizontal | PK    | Pass    |
| J | 4     | 10752.0000     | 36.12               | 14.69          | 21.43             | 54            | -17.88         | 176.2      | Horizontal | AV    | Pass    |
|   | 5     | 13999.5000     | 48.53               | 19.12          | 29.41             | 74            | -25.47         | 1.5        | Horizontal | PK    | Pass    |
|   | 5     | 13999.5000     | 41.88               | 19.12          | 22.76             | 54            | -12.12         | 1.5        | Horizontal | AV    | Pass    |
| I | 6     | 17946.0000     | 54.23               | 23.55          | 30.68             | 74            | -19.77         | 79.4       | Horizontal | PK    | Pass    |
| L | 6     | 17946.0000     | 46.12               | 23.55          | 22.57             | 54            | -7.88          | 79.4       | Horizontal | AV    | Pass    |

|   | 6 17946.0000 | 46.12 | 23.55  | 22.57 | 54   | -7.88 | 79.4 | Horizontal | AV | Pass |  |
|---|--------------|-------|--------|-------|------|-------|------|------------|----|------|--|
|   | W5CT         |       | VS CT° |       | WSET |       | W    | SET        |    | WSCT |  |
| X |              | X     |        | X     |      | X     |      |            | X  |      |  |

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Aver

深圳世标检测认证股份有限公司

W5L




ANSI National Accreditation Board

Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

W5CT"

## 11a, 1 GHz to 18 GHz, Channel (5180 MHz), ANT V



Susputed Data List Reading **Factor** Level Limit Margin Deg Freq. NO. Verdict Polarity Trace [MHz] [dB(uV)] [dB] [dB(uV)] [dB] [dB] [°] 2617.5000 45.45 27.74 17.71 74 -28.55 356.6 Vertical PK Pass 35.43 54 356.6 2617.5000 27.74 7.69 -18.57 Vertical ΑV Pass 74 2 -0.1 PK Pass 3867.5000 50.31 29.38 20.93 -23.69 Vertical -0.1 ΑV Pass 3867.5000 41.2 29.38 54 -12.8 11.82 Vertical WSC. 3 5696.8750 58.06 32.32 74 -15.94 292.6 PΚ Pass 25.74 Vertical 5696.8750 48.68 32.32 16.36 54 -5.32 292.6 ΑV Pass 3 Vertical 11545.5000 46.03 16.21 29.82 74 -27.97 4.2 Vertical PΚ Pass 11545.5000 38.13 16.21 21.92 54 -15.87 4.2 Vertical ΑV Pass 5 14334.0000 49.56 18.79 30.77 74 -24.44 51.8 Vertical PK Pass 5 14334.0000 42.08 18.79 23.29 54 -11.92 51.8 ΑV Pass Vertical 6 17964.0000 52.8 23.67 29.13 74 -21.2 275.4 PK Pass Vertical 17964.0000 46.53 23.67 22.86 54 -7.47 275.4 ΑV Pass Vertical

WSCT WSCT WSCT WSCT WSCT

WSCT WSCT WSCT WSCT WSCT

WSCT WSCT WSCT WSCT

WSET WSET WSET WSET

WSCT WSCT WSCT WSCT

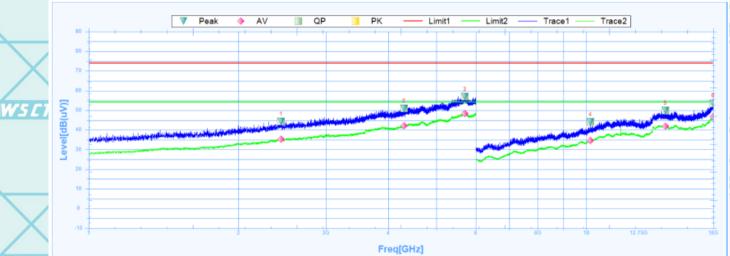
ADD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.com

Member of the WSCT Group (WSCT SA)

深圳世标检测认近股份有限公司 World Standardization Certificationを Testing Group (Shenzhen) Co.,Ltd

ation& Testi

W5 CT






Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

W5CT°

11a, 1 GHz to 18 GHz, Channel (5240 MHz), ANT H



W5 C

W5 E

| - | Suspu | usputed Data List |                     |                |                   |               |                |            |            |       |         |  |
|---|-------|-------------------|---------------------|----------------|-------------------|---------------|----------------|------------|------------|-------|---------|--|
|   | NO.   | Freq.<br>[MHz]    | Reading<br>[dB(uV)] | Factor<br>[dB] | Level<br>[dB(uV)] | Limit<br>[dB] | Margin<br>[dB] | Deg<br>[°] | Polarity   | Trace | Verdict |  |
|   | 1     | 2433.7500         | 44.38               | 27.37          | 17.01             | 74            | -29.62         | 213.3      | Horizontal | PK    | Pass    |  |
|   | 1     | 2433.7500         | 35.28               | 27.37          | 7.91              | 54            | -18.72         | 213.3      | Horizontal | AV    | Pass    |  |
|   | 2     | 4303.7500         | 50.9                | 30.25          | 20.65             | 74            | -23.1          | 172.6      | Horizontal | PK    | Pass    |  |
|   | 2     | 4303.7500         | 42.07               | 30.25          | 11.82             | 54            | -11.93         | 172.6      | Horizontal | AV    | Pass    |  |
| r | 3     | 5701.8750         | 56.99               | 32.32          | 24.67             | 74            | -17.01         | 237.2      | Horizontal | PK    | Pass    |  |
| L | 3     | 5701.8750         | 48.38               | 32.32          | 16.06             | 54            | -5.62          | 237.2      | Horizontal | AV    | Pass    |  |
|   | 4     | 10200.0000        | 44.22               | 12.98          | 31.24             | 74            | -29.78         | 27.2       | Horizontal | PK    | Pass    |  |
|   | 4     | 10200.0000        | 34.74               | 12.98          | 21.76             | 54            | -19.26         | 27.2       | Horizontal | AV    | Pass    |  |
|   | 5     | 14419.5000        | 49.78               | 18.7           | 31.08             | 74            | -24.22         | 127.5      | Horizontal | PK    | Pass    |  |
|   | 5     | 14419.5000        | 41.99               | 18.7           | 23.29             | 54            | -12.01         | 127.5      | Horizontal | AV    | Pass    |  |
|   | 6     | 17989.5000        | 53.51               | 23.86          | 29.65             | 74            | -20.49         | 359.5      | Horizontal | PK    | Pass    |  |
|   | 6     | 17989.5000        | 46.71               | 23.86          | 22.85             | 54            | -7.29          | 359.5      | Horizontal | AV    | Pass    |  |

W5 C7 WS CT

W5 ET

深圳世标检测认证股份有限公司

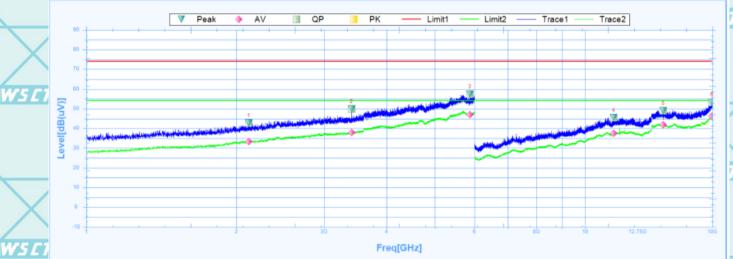
W5CT°

ation& Testi

WSET

W51

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.


lac-MRA

ANÇAB
ANSI National Accreditation Board
A C C R E D I T E D

Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

W5CT"





|   | Suspu | ited Data Lis  | it                  |                |                   |               |                |            |          |       |         |
|---|-------|----------------|---------------------|----------------|-------------------|---------------|----------------|------------|----------|-------|---------|
|   | NO.   | Freq.<br>[MHz] | Reading<br>[dB(uV)] | Factor<br>[dB] | Level<br>[dB(uV)] | Limit<br>[dB] | Margin<br>[dB] | Deg<br>[°] | Polarity | Trace | Verdict |
|   | 1     | 2118.1250      | 42.9                | 26.3           | 16.6              | 74            | -31.1          | 360.1      | Vertical | PK    | Pass    |
| / | 1     | 2118.1250      | 33.38               | 26.3           | 7.08              | 54            | -20.62         | 360.1      | Vertical | AV    | Pass    |
| / | 2     | 3402.5000      | 49.77               | 28.44          | 21.33             | 74            | -24.23         | 96.2       | Vertical | PK    | Pass    |
|   | 2     | 3402.5000      | 37.88               | 28.44          | 9.44              | 54            | -16.12         | 96.2       | Vertical | AV    | Pass    |
| 9 | 3     | 5876.2500      | 57.29               | 32.6           | 24.69             | 74            | -16.71         | 360.1      | Vertical | PK    | Pass    |
|   | 3     | 5876.2500      | 47.1                | 32.6           | 14.5              | 54            | -6.9           | 360.1      | Vertical | AV    | Pass    |
|   | 4     | 11418.0000     | 45.45               | 15.9           | 29.55             | 74            | -28.55         | 243.6      | Vertical | PK    | Pass    |
|   | 4     | 11418.0000     | 37.42               | 15.9           | 21.52             | 54            | -16.58         | 243.6      | Vertical | AV    | Pass    |
|   | 5     | 14349.0000     | 49.06               | 18.77          | 30.29             | 74            | -24.94         | 219.6      | Vertical | PK    | Pass    |
|   | 5     | 14349.0000     | 41.83               | 18.77          | 23.06             | 54            | -12.17         | 219.6      | Vertical | AV    | Pass    |
|   | 6     | 17965.5000     | 53.29               | 23.68          | 29.61             | 74            | -20.71         | 241.2      | Vertical | PK    | Pass    |
| 1 | 6     | 17965.5000     | 46.4                | 23.68          | 22.72             | 54            | -7.6           | 241.2      | Vertical | AV    | Pass    |

| X    | X    | X     | X    | X    |
|------|------|-------|------|------|
|      |      |       |      |      |
| W5CT | WSCT | W5CT° | WSET | W5CT |

WSCT WSCT WSCT WSCT

WS CT

WSCT WSCT WSCT

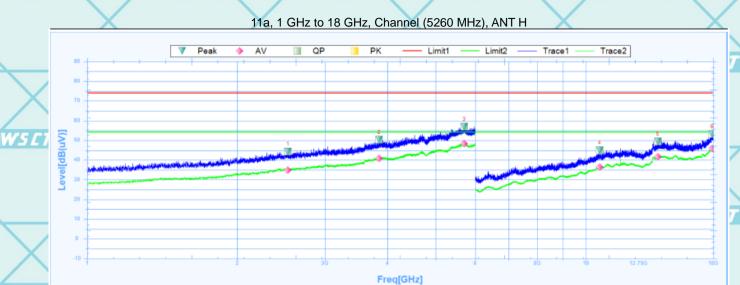
WSCT WSCT WSCT WSCT

ADD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chir TEL: 0086-755-26996192 26998053, 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

深圳世标检测认证股份有限公司
World Standard gation Certification& Testing Group( Shenzhen) Co., L

W5CT°

WS CT


W5 CT





Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

W5CT



WS E

W5 E

| _ | Suspu | ited Data Lis  | st                  |                |                   |               |                |            |            |       |         |
|---|-------|----------------|---------------------|----------------|-------------------|---------------|----------------|------------|------------|-------|---------|
|   | NO.   | Freq.<br>[MHz] | Reading<br>[dB(uV)] | Factor<br>[dB] | Level<br>[dB(uV)] | Limit<br>[dB] | Margin<br>[dB] | Deg<br>[°] | Polarity   | Trace | Verdict |
|   | 1     | 2526.2500      | 44.39               | 27.63          | 16.76             | 74            | -29.61         | 86.4       | Horizontal | PK    | Pass    |
| , | 1     | 2526.2500      | 34.85               | 27.63          | 7.22              | 54            | -19.15         | 86.4       | Horizontal | AV    | Pass    |
|   | 2     | 3850.6250      | 50.41               | 29.34          | 21.07             | 74            | -23.59         | 214.3      | Horizontal | PK    | Pass    |
|   | 2     | 3850.6250      | 40.78               | 29.34          | 11.44             | 54            | -13.22         | 214.3      | Horizontal | AV    | Pass    |
| Ţ | 3     | 5705.0000      | 57.03               | 32.33          | 24.7              | 74            | -16.97         | 276.5      | Horizontal | PK    | Pass    |
| L | 3     | 5705.0000      | 48.39               | 32.33          | 16.06             | 54            | -5.61          | 276.5      | Horizontal | AV    | Pass    |
|   | 4     | 10656.0000     | 45.02               | 14.53          | 30.49             | 74            | -28.98         | 339        | Horizontal | PK    | Pass    |
|   | 4     | 10656.0000     | 36.33               | 14.53          | 21.8              | 54            | -17.67         | 339        | Horizontal | AV    | Pass    |
|   | 5     | 13933.5000     | 49.43               | 18.93          | 30.5              | 74            | -24.57         | 358.7      | Horizontal | PK    | Pass    |
|   | 5     | 13933.5000     | 41.63               | 18.93          | 22.7              | 54            | -12.37         | 358.7      | Horizontal | AV    | Pass    |
| 1 | 6     | 17914.5000     | 53.23               | 23.35          | 29.88             | 74            | -20.77         | 111        | Horizontal | PK    | Pass    |
|   | 6     | 17914 5000     | 45.88               | 23.35          | 22 53             | 54            | -8 12          | 111        | Horizontal | AV    | Pass    |

WSET WSET WSET WSET

WSCT WSCT WSCT WSCT

WSCT WSCT WSCT WSCT WSCT

WSCT WSCT WSCT WSCT

WSET WSET WSET

DD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China EL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.com

深圳世标检测认证股份有限公司 World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd

W5CT°

ation& Testi,

Page 26 of 175

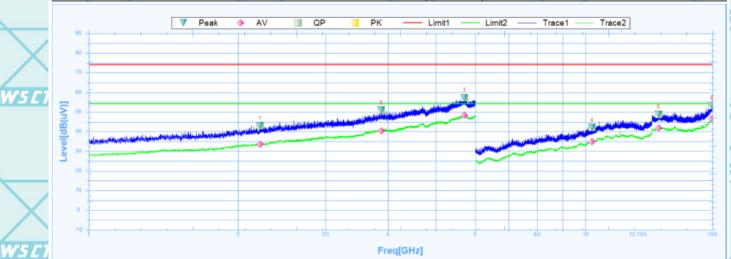
lember of the WSCT Group (WSCT SA)

WSET

W5L

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

W5 CT






Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

W5CT"

11a, 1 GHz to 18 GHz, Channel (5260 MHz), ANT V



|   | Suchi | ted Data Lis   | ·+                  |                |                   |               |                |            |          |       |         |
|---|-------|----------------|---------------------|----------------|-------------------|---------------|----------------|------------|----------|-------|---------|
|   | Juspu | iteu Data Lis  |                     |                |                   |               |                |            |          |       |         |
|   | NO.   | Freq.<br>[MHz] | Reading<br>[dB(uV)] | Factor<br>[dB] | Level<br>[dB(uV)] | Limit<br>[dB] | Margin<br>[dB] | Deg<br>[°] | Polarity | Trace | Verdict |
|   | 1     | 2211.8750      | 42.99               | 26.62          | 16.37             | 74            | -31.01         | 346        | Vertical | PK    | Pass    |
| / | 1     | 2211.8750      | 33.57               | 26.62          | 6.95              | 54            | -20.43         | 346        | Vertical | AV    | Pass    |
|   | 2     | 3879.3750      | 50.89               | 29.41          | 21.48             | 74            | -23.11         | 1.6        | Vertical | PK    | Pass    |
|   | 2     | 3879.3750      | 40.37               | 29.41          | 10.96             | 54            | -13.63         | 1.6        | Vertical | AV    | Pass    |
| 킾 | 3     | 5702.5000      | 57.26               | 32.32          | 24.94             | 74            | -16.74         | 145.2      | Vertical | PK    | Pass    |
|   | 3     | 5702.5000      | 48.4                | 32.32          | 16.08             | 54            | -5.6           | 145.2      | Vertical | AV    | Pass    |
|   | 4     | 10303.5000     | 42.2                | 13.29          | 28.91             | 74            | -31.8          | 0          | Vertical | PK    | Pass    |
|   | 4     | 10303.5000     | 34.87               | 13.29          | 21.58             | 54            | -19.13         | 0          | Vertical | AV    | Pass    |
|   | 5     | 14023.5000     | 48.72               | 19.1           | 29.62             | 74            | -25.28         | 199.4      | Vertical | PK    | Pass    |
|   | 5     | 14023.5000     | 41.95               | 19.1           | 22.85             | 54            | -12.05         | 199.4      | Vertical | AV    | Pass    |
|   | 6     | 17970.0000     | 53.25               | 23.72          | 29.53             | 74            | -20.75         | 154        | Vertical | PK    | Pass    |
| 1 | 6     | 17970.0000     | 46.54               | 23.72          | 22.82             | 54            | -7.46          | 154        | Vertical | AV    | Pass    |

| X     | X    | X    | X                 | X    |
|-------|------|------|-------------------|------|
| W5 CT | WSLT | WSET | WSET <sup>®</sup> | WSCT |

WSCT WSCT WSCT WSCT

WSET

WSCT WSCT WSCT

WSCT WSCT WSCT WSCT WSCT

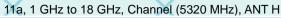
DD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chi EL: 0086-755-26996192 26998053, 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

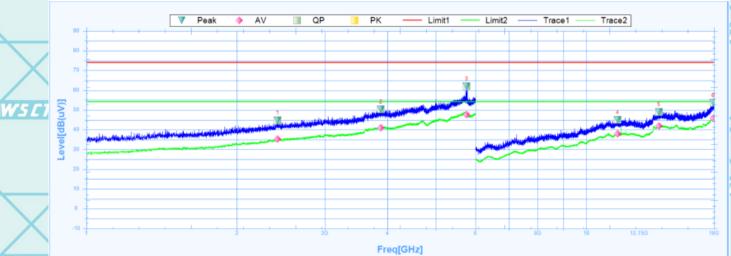
W5 CT

深圳世标检测认证股份有限公司 World Standard ation Certification& Testing Group( Shenzhen) Co.,Ltd

W5 CT°

ation& Testi


W5 ET






Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

W5CT"





W5E

W5 E

|    | Suspu | ited Data Lis  | st                  |                |                   |               |                |            |            |       |         |
|----|-------|----------------|---------------------|----------------|-------------------|---------------|----------------|------------|------------|-------|---------|
|    | NO.   | Freq.<br>[MHz] | Reading<br>[dB(uV)] | Factor<br>[dB] | Level<br>[dB(uV)] | Limit<br>[dB] | Margin<br>[dB] | Deg<br>[°] | Polarity   | Trace | Verdict |
|    | 1     | 2412.5000      | 44.77               | 27.3           | 17.47             | 74            | -29.23         | 115.3      | Horizontal | PK    | Pass    |
|    | 1     | 2412.5000      | 35.26               | 27.3           | 7.96              | 54            | -18.74         | 115.3      | Horizontal | AV    | Pass    |
|    | 2     | 3882.5000      | 50.23               | 29.42          | 20.81             | 74            | -23.77         | 277.8      | Horizontal | PK    | Pass    |
| /  | 2     | 3882.5000      | 41.1                | 29.42          | 11.68             | 54            | -12.9          | 277.8      | Horizontal | AV    | Pass    |
| 1  | 3     | 5763.1250      | 61.96               | 32.42          | 29.54             | 74            | -12.04         | 360        | Horizontal | PK    | Pass    |
| 24 | 3     | 5763.1250      | 47.68               | 32.42          | 15.26             | 54            | -6.32          | 360        | Horizontal | AV    | Pass    |
|    | 4     | 11547.0000     | 44.91               | 16.22          | 28.69             | 74            | -29.09         | 220.8      | Horizontal | PK    | Pass    |
|    | 4     | 11547.0000     | 37.96               | 16.22          | 21.74             | 54            | -16.04         | 220.8      | Horizontal | AV    | Pass    |
|    | 5     | 13963.5000     | 48.95               | 19.02          | 29.93             | 74            | -25.05         | 311.7      | Horizontal | PK    | Pass    |
|    | 5     | 13963.5000     | 41.86               | 19.02          | 22.84             | 54            | -12.14         | 311.7      | Horizontal | AV    | Pass    |
| /  | 6     | 17938.5000     | 53.58               | 23.51          | 30.07             | 74            | -20.42         | 359.5      | Horizontal | PK    | Pass    |
|    | 6     | 17938.5000     | 45.81               | 23.51          | 22.3              | 54            | -8.19          | 359.5      | Horizontal | AV    | Pass    |

WSET WSET WSET WSET

WSCT WSCT WSCT WSCT WSCT

WSCT WSCT WSCT WSCT

WSCT WSCT WSCT WSCT

WSCT WSCT WSCT WSCT

ADD: Building A-B, Baoil'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chin FEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

深圳世标检测认近股份有限公司 World Standardization Certificationを Testing Group (Shenzhen) Co.,Ltd

W5CT°

ation& Testi

Page 28 of 175

Member of the WSCT Group (WSCT SA)

WSET

W5 E

W5 CT

W5CT

W5CT

Member of the WSCT Group (WSCT SA)

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

W5 CT





Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

W5CT"

W5 CT

## 11a, 1 GHz to 18 GHz, Channel (5320 MHz), ANT V



|   | Suspu | ited Data Lis  | st                  |                |                   |               |                |            |          |       |         |
|---|-------|----------------|---------------------|----------------|-------------------|---------------|----------------|------------|----------|-------|---------|
|   | NO.   | Freq.<br>[MHz] | Reading<br>[dB(uV)] | Factor<br>[dB] | Level<br>[dB(uV)] | Limit<br>[dB] | Margin<br>[dB] | Deg<br>[°] | Polarity | Trace | Verdict |
|   | 1     | 2332.5000      | 43.93               | 27.03          | 16.9              | 74            | -30.07         | 270.6      | Vertical | PK    | Pass    |
|   | 1     | 2332.5000      | 33.84               | 27.03          | 6.81              | 54            | -20.16         | 270.6      | Vertical | AV    | Pass    |
|   | 2     | 4369.3750      | 51.42               | 30.36          | 21.06             | 74            | -22.58         | 5.4        | Vertical | PK    | Pass    |
|   | 2     | 4369.3750      | 42.8                | 30.36          | 12.44             | 54            | -11.2          | 5.4        | Vertical | AV    | Pass    |
| Ĺ | 3     | 5988.7500      | 57.2                | 32.78          | 24.42             | 74            | -16.8          | 90.2       | Vertical | PK    | Pass    |
|   | 3     | 5988.7500      | 48.07               | 32.78          | 15.29             | 54            | -5.93          | 90.2       | Vertical | AV    | Pass    |
|   | 4     | 11745.0000     | 46.7                | 16.11          | 30.59             | 74            | -27.3          | 271        | Vertical | PK    | Pass    |
|   | 4     | 11745.0000     | 43.06               | 16.11          | 26.95             | 54            | -10.94         | 271        | Vertical | AV    | Pass    |
|   | 5     | 14320.5000     | 49.64               | 18.79          | 30.85             | 74            | -24.36         | 356.6      | Vertical | PK    | Pass    |
|   | 5     | 14320.5000     | 41.56               | 18.79          | 22.77             | 54            | -12.44         | 356.6      | Vertical | AV    | Pass    |
|   | 6     | 17914.5000     | 53.43               | 23.35          | 30.08             | 74            | -20.57         | 223.2      | Vertical | PK    | Pass    |
|   | 6     | 17914.5000     | 46.01               | 23.35          | 22.66             | 54            | -7.99          | 223.2      | Vertical | AV    | Pass    |

| WSCT     | WSCT | WSET     | WSET | WSET |
|----------|------|----------|------|------|
| $\times$ | X    | $\times$ | X    | X    |

WSET

ADD: Building A-B,Baoil'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chin. TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

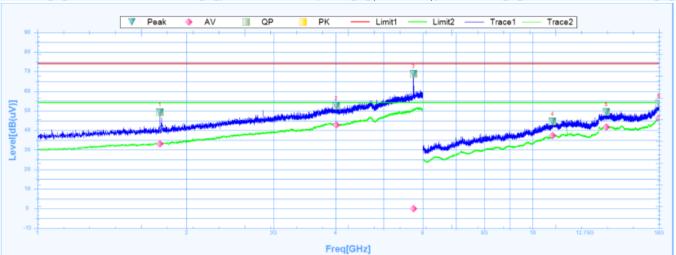
WSET

| 深圳世标栓測认证股份有限公司 | World Standard Zation Certification & Testing Group (Shenzhen) Co.,Ltr

W5CT°

ation& Testin

W5CT






Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

W5CT°

11a, 1 GHz to 18 GHz, Channel (5500 MHz), ANT H



W5 C

W5 E

| 4 | Susputed Data List |                |                     |                |                   |               |                |            |            |       |         |
|---|--------------------|----------------|---------------------|----------------|-------------------|---------------|----------------|------------|------------|-------|---------|
| ı | NO.                | Freq.<br>[MHz] | Reading<br>[dB(uV)] | Factor<br>[dB] | Level<br>[dB(uV)] | Limit<br>[dB] | Margin<br>[dB] | Deg<br>[°] | Polarity   | Trace | Verdict |
|   | 1                  | 1766.8750      | 49.28               | 24.98          | 24.3              | 74            | -24.72         | 39.9       | Horizontal | PK    | Pass    |
|   | 1                  | 1766.8750      | 33.19               | 24.98          | 8.21              | 54            | -20.81         | 39.9       | Horizontal | AV    | Pass    |
|   | 2                  | 4012.5000      | 52.51               | 29.72          | 22.79             | 74            | -21.49         | 185.8      | Horizontal | PK    | Pass    |
|   | 2                  | 4012.5000      | 42.88               | 29.72          | 13.16             | 54            | -11.12         | 185.8      | Horizontal | AV    | Pass    |
|   | 3                  | 5742.5000      | 68.79               | 32.39          | 36.4              | 74            | -5.21          | 142.7      | Horizontal | PK    | Pass    |
| 4 | 3                  | 5742.5099      | 0                   | 32.39          | -32.39            | 54            | -54            | 10.3       | Horizontal | AV    | Pass    |
|   | 4                  | 10971.0000     | 44.6                | 15.46          | 29.14             | 74            | -29.4          | 191        | Horizontal | PK    | Pass    |
| - | 4                  | 10971.0000     | 37.25               | 15.46          | 21.79             | 54            | -16.75         | 191        | Horizontal | AV    | Pass    |
|   | 5                  | 14088.0000     | 49.36               | 19.04          | 30.32             | 74            | -24.64         | -0.1       | Horizontal | PK    | Pass    |
|   | 5                  | 14088.0000     | 41.73               | 19.04          | 22.69             | 54            | -12.27         | -0.1       | Horizontal | AV    | Pass    |
|   | 6                  | 17995.5000     | 53.7                | 23.9           | 29.8              | 74            | -20.3          | 238.8      | Horizontal | PK    | Pass    |
|   | 6                  | 17995.5000     | 46.37               | 23.9           | 22.47             | 54            | -7.63          | 238.8      | Horizontal | AV    | Pass    |

| W5 CT     | W5 CT ° | W5 ET | W5 C     | 7° WS | ET                    |
|-----------|---------|-------|----------|-------|-----------------------|
|           |         | X     | X        | X     | X                     |
| W5ET WSET | WSET    | WSCT  | WSET WSE | WSET  | WS CT                 |
| WS        |         | 567   | WSET     | X     | attications Testing C |
|           |         |       |          |       | Str.                  |

WSIT

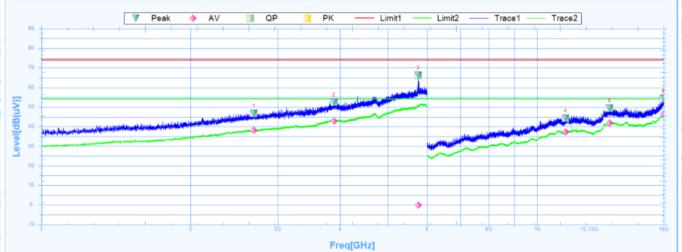
WSIT

MEET

W5 CT

ADD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chir TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

深圳世标检测认证股份有限公司
World Standard Zation Certification & Testing Group (Shenzh






Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

W5CT°





WS CI

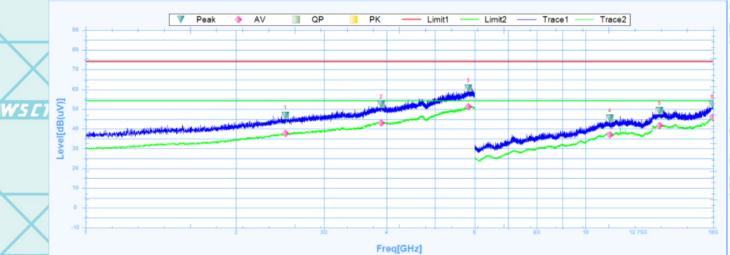
W5 E

| Su | sputed Data Li | st                  |                |                   |               |                |            |          |       |         |
|----|----------------|---------------------|----------------|-------------------|---------------|----------------|------------|----------|-------|---------|
| N  | o. Freq. [MHz] | Reading<br>[dB(uV)] | Factor<br>[dB] | Level<br>[dB(uV)] | Limit<br>[dB] | Margin<br>[dB] | Deg<br>[°] | Polarity | Trace | Verdict |
| 1  | 2683.1250      | 46.77               | 27.82          | 18.95             | 74            | -27.23         | 49.4       | Vertical | PK    | Pass    |
| 1  | 2683.1250      | 38.06               | 27.82          | 10.24             | 54            | -15.94         | 49.4       | Vertical | AV    | Pass    |
| 2  | 3890.6250      | 52.59               | 29.44          | 23.15             | 74            | -21.41         | 212        | Vertical | PK    | Pass    |
| 2  | 3890.6250      | 42.8                | 29.44          | 13.36             | 54            | -11.2          | 212        | Vertical | AV    | Pass    |
| 3  | 5754.3750      | 66.14               | 32.41          | 33.73             | 74            | -7.86          | 2.2        | Vertical | PK    | Pass    |
| 3  | 5754.4159      | 0                   | 32.41          | -32.41            | 54            | -54            | 360        | Vertical | AV    | Pass    |
| 4  | 11410.5000     | 44.42               | 15.88          | 28.54             | 74            | -29.58         | 1.1        | Vertical | PK    | Pass    |
| 4  | 11410.5000     | 37.35               | 15.88          | 21.47             | 54            | -16.65         | 1.1        | Vertical | AV    | Pass    |
| 5  | 14011.5000     | 49.35               | 19.12          | 30.23             | 74            | -24.65         | 0.5        | Vertical | PK    | Pass    |
| 5  | 14011.5000     | 41.98               | 19.12          | 22.86             | 54            | -12.02         | 0.5        | Vertical | AV    | Pass    |
| 6  | 17976.0000     | 54.26               | 23.76          | 30.5              | 74            | -19.74         | 319.6      | Vertical | PK    | Pass    |
| 6  | 17976.0000     | 46.34               | 23.76          | 22.58             | 54            | -7.66          | 319.6      | Vertical | AV    | Pass    |

| W5 CT W  | SET WSET | WSET     | WSET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | $\times$ |          | $\times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| WSET     | W5CT°    | W5 ET W  | SCT° WSCT°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\times$ | $\times$ | $\times$ | $\times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| WSET     | SCT WSCT | WSET     | W5ET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| WSET     | WSET     | W5ET W   | 5 CT cations Tostic CT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          |          |          | SCT Catheations Testing Constitutions Testing Constitution Constitution Testing Consti |

DD: Building A-B,Baoli'an Industrial Park,No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chin EL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

深圳世标检测认近股份有限公司 World Standardization Certificationを Testing Group (Shenzhen) Co.,Ltd






Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

W5CT





WSE.

W5L

| 2 | Suspu | ited Data Lis  | st                  |                |                   |               |                |            |            |       |         |
|---|-------|----------------|---------------------|----------------|-------------------|---------------|----------------|------------|------------|-------|---------|
|   | NO.   | Freq.<br>[MHz] | Reading<br>[dB(uV)] | Factor<br>[dB] | Level<br>[dB(uV)] | Limit<br>[dB] | Margin<br>[dB] | Deg<br>[°] | Polarity   | Trace | Verdict |
|   | 1     | 2508.1250      | 46.89               | 27.61          | 19.28             | 74            | -27.11         | -0.1       | Horizontal | PK    | Pass    |
|   | 1     | 2508.1250      | 37.67               | 27.61          | 10.06             | 54            | -16.33         | -0.1       | Horizontal | AV    | Pass    |
| / | 2     | 3905.0000      | 52.54               | 29.47          | 23.07             | 74            | -21.46         | 359.5      | Horizontal | PK    | Pass    |
| \ | 2     | 3905.0000      | 43                  | 29.47          | 13.53             | 54            | -11            | 359.5      | Horizontal | AV    | Pass    |
| _ | 3     | 5828.1250      | 60.69               | 32.52          | 28.17             | 74            | -13.31         | 23.6       | Horizontal | PK    | Pass    |
| Z | 3     | 5828.1250      | 51.16               | 32.52          | 18.64             | 54            | -2.84          | 23.6       | Horizontal | AV    | Pass    |
|   | 4     | 11185.5000     | 45.45               | 15.75          | 29.7              | 74            | -28.55         | 213.2      | Horizontal | PK    | Pass    |
|   | 4     | 11185.5000     | 37.17               | 15.75          | 21.42             | 54            | -16.83         | 213.2      | Horizontal | AV    | Pass    |
|   | 5     | 14068.5000     | 49.11               | 19.06          | 30.05             | 74            | -24.89         | 14.4       | Horizontal | PK    | Pass    |
|   | 5     | 14068.5000     | 41.73               | 19.06          | 22.67             | 54            | -12.27         | 14.4       | Horizontal | AV    | Pass    |
| / | 6     | 17941.5000     | 52.58               | 23.53          | 29.05             | 74            | -21.42         | 213.2      | Horizontal | PK    | Pass    |
|   | 6     | 17941.5000     | 45.82               | 23.53          | 22.29             | 54            | -8.18          | 213.2      | Horizontal | AV    | Pass    |

WSET WSET WSET WSET

WSCT WSCT WSCT WSCT

WSCT WSCT WSCT WSCT WSCT

WEST WEST

WSET WSET WSET

ND: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chin.
EL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.com

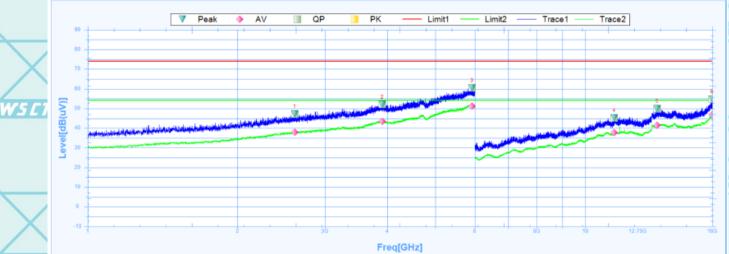
a. 深圳世标检测认近股份有限公司
World Standardization Certification& Testing Group( Shenzhen) Co.,Ltd

W5CT<sup>®</sup>

ation& Testi

WSCT WSC

WSE






Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

W5CT°





W5 E

W5 E

|   | Suspu | ited Data Lis  | st                  |                |                   |               |                |            |          |       |         |
|---|-------|----------------|---------------------|----------------|-------------------|---------------|----------------|------------|----------|-------|---------|
|   | NO.   | Freq.<br>[MHz] | Reading<br>[dB(uV)] | Factor<br>[dB] | Level<br>[dB(uV)] | Limit<br>[dB] | Margin<br>[dB] | Deg<br>[°] | Polarity | Trace | Verdict |
|   | 1     | 2606.8750      | 47.28               | 27.73          | 19.55             | 74            | -26.72         | 241.2      | Vertical | PK    | Pass    |
| J | 1     | 2606.8750      | 38.04               | 27.73          | 10.31             | 54            | -15.96         | 241.2      | Vertical | AV    | Pass    |
|   | 2     | 3908.7500      | 52.01               | 29.48          | 22.53             | 74            | -21.99         | 127.6      | Vertical | PK    | Pass    |
|   | 2     | 3908.7500      | 43.45               | 29.48          | 13.97             | 54            | -10.55         | 127.6      | Vertical | AV    | Pass    |
|   | 3     | 5924.3750      | 60.44               | 32.68          | 27.76             | 74            | -13.56         | 0          | Vertical | PK    | Pass    |
| L | 3     | 5924.3750      | 51.22               | 32.68          | 18.54             | 54            | -2.78          | 0          | Vertical | AV    | Pass    |
|   | 4     | 11439.0000     | 45.2                | 15.95          | 29.25             | 74            | -28.8          | 178.6      | Vertical | PK    | Pass    |
|   | 4     | 11439.0000     | 37.63               | 15.95          | 21.68             | 54            | -16.37         | 178.6      | Vertical | AV    | Pass    |
|   | 5     | 13942.5000     | 49.89               | 18.95          | 30.94             | 74            | -24.11         | 275.4      | Vertical | PK    | Pass    |
|   | 5     | 13942.5000     | 41.47               | 18.95          | 22.52             | 54            | -12.53         | 275.4      | Vertical | AV    | Pass    |
|   | 6     | 17986.5000     | 54.7                | 23.83          | 30.87             | 74            | -19.3          | 42.4       | Vertical | PK    | Pass    |
|   | 6     | 17986.5000     | 46.69               | 23.83          | 22.86             | 54            | -7.31          | 42.4       | Vertical | AV    | Pass    |

| WSET | WSCT | WSET | WSET         | W5CT   |
|------|------|------|--------------|--------|
|      |      |      |              |        |
| Y    |      |      | $\mathbf{X}$ | $\sim$ |
|      |      |      |              |        |
|      |      |      |              |        |

深圳世标检测认证股份有限公司

W5CT°

Page 33 of 175





Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

WSCT"

11a, 1 GHz to 18 GHz, Channel (5745 MHz), ANT H



W5E

W5 E

W5 CI

| Sus | puted Data Lis | st                  |                |                   |               |                |            |            |       |         |
|-----|----------------|---------------------|----------------|-------------------|---------------|----------------|------------|------------|-------|---------|
| NO  | Freq.<br>[MHz] | Reading<br>[dB(uV)] | Factor<br>[dB] | Level<br>[dB(uV)] | Limit<br>[dB] | Margin<br>[dB] | Deg<br>[°] | Polarity   | Trace | Verdict |
| 1   | 2761.8750      | 45.69               | 27.91          | 17.78             | 74            | -28.31         | 357.4      | Horizontal | PK    | Pass    |
| 1   | 2761.8750      | 37.16               | 27.91          | 9.25              | 54            | -16.84         | 357.4      | Horizontal | AV    | Pass    |
| 2   | 4231.8750      | 50.96               | 30.12          | 20.84             | 74            | -23.04         | -0.1       | Horizontal | PK    | Pass    |
| 2   | 4231.8750      | 42.67               | 30.12          | 12.55             | 54            | -11.33         | -0.1       | Horizontal | AV    | Pass    |
| 3   | 5793.7500      | 62.02               | 32.47          | 29.55             | 74            | -11.98         | 206.4      | Horizontal | PK    | Pass    |
| 3   | 5793.7500      | 52.65               | 32.47          | 20.18             | 54            | -1.35          | 206.4      | Horizontal | AV    | Pass    |
| 4   | 11746.5000     | 45.33               | 16.11          | 29.22             | 74            | -28.67         | 357.1      | Horizontal | PK    | Pass    |
| 4   | 11746.5000     | 39.15               | 16.11          | 23.04             | 54            | -14.85         | 357.1      | Horizontal | AV    | Pass    |
| 5   | 13981.5000     | 50.04               | 19.07          | 30.97             | 74            | -23.96         | 360.1      | Horizontal | PK    | Pass    |
| 5   | 13981.5000     | 41.81               | 19.07          | 22.74             | 54            | -12.19         | 360.1      | Horizontal | AV    | Pass    |
| 6   | 17976.0000     | 53.27               | 23.76          | 29.51             | 74            | -20.73         | 151.1      | Horizontal | PK    | Pass    |
| 6   | 17976 0000     | 46.35               | 23.76          | 22.59             | 54            | -7.65          | 151.1      | Horizontal | Δ\/   | Page    |

WSCT WSCT WSCT WSCT WSCT

WSCT WSCT WSCT WSCT WSCT

WSCT WSCT WSCT WSCT

WSET WSET WSET

WSET WSET WSET WSET

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chin TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

深圳世标检测认证股份有限公司
World Standard attion Certification& Testing Groupt Shenzhen Co..Ltd

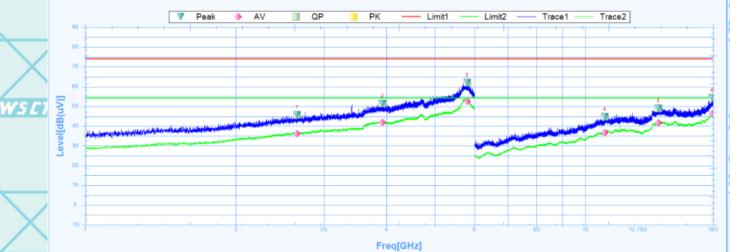
W5CT<sup>®</sup>

ation& Testi

VSCT

WSCT WSC


Page 34 of 175






Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

W5CT"





WSE

| 7 |       |                |                     |                |                   |               |                |            |          |       |         |
|---|-------|----------------|---------------------|----------------|-------------------|---------------|----------------|------------|----------|-------|---------|
| L | Suspu | ited Data Lis  | st                  |                |                   |               |                |            |          |       |         |
|   | NO.   | Freq.<br>[MHz] | Reading<br>[dB(uV)] | Factor<br>[dB] | Level<br>[dB(uV)] | Limit<br>[dB] | Margin<br>[dB] | Deg<br>[°] | Polarity | Trace | Verdict |
|   | 1     | 2650.0000      | 45.57               | 27.78          | 17.79             | 74            | -28.43         | 323.7      | Vertical | PK    | Pass    |
| - | 1     | 2650.0000      | 36.22               | 27.78          | 8.44              | 54            | -17.78         | 323.7      | Vertical | AV    | Pass    |
| / | 2     | 3928.7500      | 51.37               | 29.53          | 21.84             | 74            | -22.63         | 287.8      | Vertical | PK    | Pass    |
| / | 2     | 3928.7500      | 42.03               | 29.53          | 12.5              | 54            | -11.97         | 287.8      | Vertical | AV    | Pass    |
|   | 3     | 5800.6250      | 62.07               | 32.48          | 29.59             | 74            | -11.93         | 40.3       | Vertical | PK    | Pass    |
| Z | 3     | 5800.6250      | 52.55               | 32.48          | 20.07             | 54            | -1.45          | 40.3       | Vertical | AV    | Pass    |
|   | 4     | 10930.5000     | 44.71               | 15.23          | 29.48             | 74            | -29.29         | 306.6      | Vertical | PK    | Pass    |
|   | 4     | 10930.5000     | 36.69               | 15.23          | 21.46             | 54            | -17.31         | 306.6      | Vertical | AV    | Pass    |
|   | 5     | 13998.0000     | 49.07               | 19.11          | 29.96             | 74            | -24.93         | 251.6      | Vertical | PK    | Pass    |
|   | 5     | 13998.0000     | 41.67               | 19.11          | 22.56             | 54            | -12.33         | 251.6      | Vertical | AV    | Pass    |
| 1 | 6     | 17949.0000     | 54.23               | 23.57          | 30.66             | 74            | -19.77         | 69.9       | Vertical | PK    | Pass    |
|   | 6     | 17949.0000     | 46.43               | 23.57          | 22.86             | 54            | -7.57          | 69.9       | Vertical | AV    | Pass    |

|   | W5CT  | W5 CT | WSET  | W5   | ET W  | 5 CT |
|---|-------|-------|-------|------|-------|------|
|   |       | X     | X     | X    | X     | X    |
|   |       | WSET  | W5 ET | WSET | WSET  | WSET |
| 7 | W5 ET | WSET  | WSET  | W.5  | ET W. | SET  |
|   |       | X     | X     | X    | X     | X    |

WSCT

W5 CT

WSIT

W5CT°

na. 深圳世标检测认证股份有限公司
World Standard Zation Certification& Testing Group (Shenzhen) Co.,Li

D: Building A-B,Baoll'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chin.: 0086-755-26996192 26998053, 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com





Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

IWS CT

11a, 1 GHz to 18 GHz, Channel (5825 MHz), ANT H



W5 C

W5 C

| N . | Suspu | ited Data Lis  | st                  |                |                   |               |                |            |            |       |         |
|-----|-------|----------------|---------------------|----------------|-------------------|---------------|----------------|------------|------------|-------|---------|
|     | NO.   | Freq.<br>[MHz] | Reading<br>[dB(uV)] | Factor<br>[dB] | Level<br>[dB(uV)] | Limit<br>[dB] | Margin<br>[dB] | Deg<br>[°] | Polarity   | Trace | Verdict |
|     | 1     | 2564.3750      | 45.85               | 27.68          | 18.17             | 74            | -28.15         | 265.1      | Horizontal | PK    | Pass    |
|     | 1     | 2564.3750      | 35.84               | 27.68          | 8.16              | 54            | -18.16         | 265.1      | Horizontal | AV    | Pass    |
|     | 2     | 4241.2500      | 51.87               | 30.13          | 21.74             | 74            | -22.13         | 301        | Horizontal | PK    | Pass    |
|     | 2     | 4241.2500      | 42.38               | 30.13          | 12.25             | 54            | -11.62         | 301        | Horizontal | AV    | Pass    |
|     | 3     | 5701.8750      | 61.81               | 32.32          | 29.49             | 74            | -12.19         | 248.4      | Horizontal | PK    | Pass    |
| 1   | 3     | 5701.8750      | 52.64               | 32.32          | 20.32             | 54            | -1.36          | 248.4      | Horizontal | AV    | Pass    |
|     | 4     | 11551.5000     | 45.01               | 16.21          | 28.8              | 74            | -28.99         | 141.5      | Horizontal | PK    | Pass    |
|     | 4     | 11551.5000     | 37.68               | 16.21          | 21.47             | 54            | -16.32         | 141.5      | Horizontal | AV    | Pass    |
|     | 5     | 14130.0000     | 49.49               | 19             | 30.49             | 74            | -24.51         | 0.7        | Horizontal | PK    | Pass    |
|     | 5     | 14130.0000     | 41.56               | 19             | 22.56             | 54            | -12.44         | 0.7        | Horizontal | AV    | Pass    |
|     | 6     | 17982.0000     | 53.51               | 23.8           | 29.71             | 74            | -20.49         | 360        | Horizontal | PK    | Pass    |
|     | 6     | 17982 0000     | 46.29               | 23.8           | 22 49             | 54            | -7 71          | 360        | Horizontal | AV    | Pass    |

| WSLT     | WSCT     | WSET     | W        | TET W    | (SET               |
|----------|----------|----------|----------|----------|--------------------|
|          | X        | $\times$ | $\times$ | $\times$ | $\times$           |
|          | WSET     | WSET     | WSCT     | WSET     | WSET               |
| $\times$ | $\times$ | $\times$ |          | <b>/</b> | $\times$           |
| WSET     | WSCT     | WSCT     | W        | ET W     | /SET°              |
|          | $\times$ | $\times$ | $\times$ |          | $\times$           |
|          |          |          |          |          |                    |
|          | WS CT°   | WSCT     | WSET     | WSET     | acation& Testing   |
|          | WSCT     | WSET     | WSET     | WSET     | Setting County She |

DD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chin. EL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

深圳世标检测认证股份有限公司
World Standardization Certification& Testing Group( Shenzhen) Co.,Ltd

Member of the WSCT Group (WSCT SA)

Page 36 of 175

WSET

WSCT

lac-MRA

ANSI National Accreditation Board
A C C R E D I T E D

SOURCE FOOL
TESTING SOOR TODAY

Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

W5CT"

11a, 1 GHz to 18 GHz, Channel (5825 MHz), ANT V



WSE

| _ | Suspu | ited Data Lis  | st .                |                |                   |               |                |            |          |       |         |
|---|-------|----------------|---------------------|----------------|-------------------|---------------|----------------|------------|----------|-------|---------|
|   | NO.   | Freq.<br>[MHz] | Reading<br>[dB(uV)] | Factor<br>[dB] | Level<br>[dB(uV)] | Limit<br>[dB] | Margin<br>[dB] | Deg<br>[°] | Polarity | Trace | Verdict |
|   | 1     | 2492.5000      | 44.38               | 27.57          | 16.81             | 74            | -29.62         | 0          | Vertical | PK    | Pass    |
| _ | 1     | 2492.5000      | 35.72               | 27.57          | 8.15              | 54            | -18.28         | 0          | Vertical | AV    | Pass    |
|   | 2     | 3796.8750      | 51.54               | 29.21          | 22.33             | 74            | -22.46         | 53.5       | Vertical | PK    | Pass    |
| \ | 2     | 3796.8750      | 41.38               | 29.21          | 12.17             | 54            | -12.62         | 53.5       | Vertical | AV    | Pass    |
| 7 | 3     | 5710.0000      | 61.48               | 32.34          | 29.14             | 74            | -12.52         | 90.6       | Vertical | PK    | Pass    |
| L | 3     | 5710.0000      | 52.68               | 32.34          | 20.34             | 54            | -1.32          | 90.6       | Vertical | AV    | Pass    |
|   | 4     | 11175.0000     | 44.36               | 15.77          | 28.59             | 74            | -29.64         | 360.1      | Vertical | PK    | Pass    |
|   | 4     | 11175.0000     | 37.32               | 15.77          | 21.55             | 54            | -16.68         | 360.1      | Vertical | AV    | Pass    |
|   | 5     | 13632.0000     | 48.33               | 18.06          | 30.27             | 74            | -25.67         | 281.4      | Vertical | PK    | Pass    |
|   | 5     | 13632.0000     | 41.11               | 18.06          | 23.05             | 54            | -12.89         | 281.4      | Vertical | AV    | Pass    |
| 1 | 6     | 17952.0000     | 53.33               | 23.59          | 29.74             | 74            | -20.67         | 0.4        | Vertical | PK    | Pass    |
|   | 6     | 17952.0000     | 45.96               | 23.59          | 22.37             | 54            | -8.04          | 0.4        | Vertical | AV    | Pass    |

#### Note:

- 1. All emissions not reported were more than 20dB below the specified limit or in the noise floor.
- 2. Emission Level= Reading Level+ Probe Factor +Cable Loss.
- 3. Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

| measured |      |      |      | trength is too small to be |
|----------|------|------|------|----------------------------|
| WSET     | WSCT | WSET | WSET | WSCT                       |
| W5       |      |      |      |                            |
|          |      |      |      | Cortill So City            |

WSCT

W5 CT°

WSCT

W5CT°

ww.wsct-cert.com World St

深圳世标检测认证股份有限公司 World Standard zation Certification& Testing Group( Shenzhen) Co.,Ltr



W5C

WS C

W5 E

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

W5C1

**IAC-MRA** Certificate Number : AT-3951

W5C1

W5CI

W5 CI

Mahalalala

Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

### 7.3.8 RESTRICTED BANDS REQUIREMENTS

|   | lest Result(Only recorded the worst case in the report): |          |                   |                   |                 |        |              |          | / |
|---|----------------------------------------------------------|----------|-------------------|-------------------|-----------------|--------|--------------|----------|---|
|   | Frequency                                                | Reading  | Correct<br>Factor | Emission<br>Level | Limit           | Margin | Polar        | Detector |   |
|   | (MHz)                                                    | (dBuV/m) | dB/m              | (dBuV/m)          | (dBuV/m)        | (dB)   | H/V          |          |   |
| Ž |                                                          | W5CT°    | 802.11            | a(6Mbps) Test     | channel:36      | CT°    |              | W5 CT°   |   |
|   | 5150                                                     | 57.00    | -5.24             | 51.76             | 68.23           | 16.47  | H            | PK       |   |
|   | 5150                                                     | 51.52    | -5.24             | 46.28             | 54              | 7.72   | H            | AV       |   |
|   | 5150 _ T                                                 | 57.38    | <b>V-4.87</b>     | 52.51             | <b>75</b> 68.23 | 15.72  | 5 <u>V</u> 7 | PK       | / |
|   | 5150                                                     | 50.09    | -4.87             | 45.22             | 54              | 8.78   | V            | AV       |   |
| - |                                                          |          | 802.11            | a(6Mbps) Test     | channel:48      |        |              | $\wedge$ | İ |
| Ý | 5350                                                     | 57.70    | -5.24             | 52.46             | 68.23           | 15.77  | Н            | PK_      |   |
|   | 5350                                                     | 50.89    | -5.24             | 45.65             | 54              | 8.35   | H            | AV       |   |
|   | 5350                                                     | 54.19    | -4.87             | 49.32             | 68.23           | 18.91  | V            | PK       |   |
|   | 5350                                                     | 49.90    | -4.87             | 45.03             | <b>75 - 54</b>  | 8.97   | 5 VT         | AV       | / |
|   |                                                          |          | 802.11a           | (6Mbps) Test      | channel: 165    |        |              |          |   |
|   | 5850                                                     | 60.18    | -5.24             | 54.94             | 122.23          | 67.29  | Н            | PK       |   |
| y | 5850                                                     | 60.06    | -4.87             | 55.19             | 122.23          | 67.04  | V            | PK       |   |
|   | Note: From Fr                                            |          | i NALI            |                   |                 |        |              |          |   |

Note: Freq. = Emission frequency in MHz

Reading level  $(dB\mu V)$  = Receiver reading

Corr. Factor (dB) = Attenuation factor + Cable loss

Level  $(dB\mu V)$  = Reading level  $(dB\mu V)$  + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

Margin (dB) = Level (dB $\mu$ V) – Limits (dB $\mu$ V)

W5 C

W5 CI W5 C1 W5C1

WS CT

WS ET

深圳世标检测认证股份有限公司

W5 CT

ation& Testi

W5 C1

Page 38 of 175

WSET





Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

## 7.4 ANTENNA REQUIREMENT

## Standard Applicable

If transmitting antenna directional gain is greater than 6 dBi, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

# Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

#### **Antenna Gain**

The Bluetooth antenna is a PIFA Antenna. it meets the standards, and the best case gain of the antenna is -3.19dBi.

| WSET | WSET                             | WSCT   | WSET | WSET             |                |
|------|----------------------------------|--------|------|------------------|----------------|
|      | $\langle \hspace{0.1cm} \rangle$ | CT W.S |      |                  | WS CT          |
| WSET | WSET                             | WSET   | WSET | WSET             |                |
|      | $\langle \hspace{0.1cm} \rangle$ | CT WS  |      |                  | WS CT          |
| WSCT | WSET                             | WSET   | WSCT | WSCT             | ,              |
|      | $\langle \hspace{0.1cm} \rangle$ | CT WS  |      |                  | NS CT          |
| WSET | WSET                             | WSET   | WSCT | WSET             | ,              |
|      | $\langle \hspace{0.1cm} \rangle$ | CT WS  |      | <b></b>          |                |
| WELL | AVE CT.                          | Weet   | West | Continuations to | Gioup (Shenzhe |

CT. WE CT.

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Ave

TEL: 0086-755-26996192 26996053 26996144

Page 39 of 175

WSCT





Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

## 7.5 EMISSION BANDWIDTH 7.5.1 TEST EQUIPMENT

Please refer to Section 5 this report.

#### TEST PROCEDURE

| X        | 7.5.2 TEST PF             | ROCEDURE                                | X                                                         |               |
|----------|---------------------------|-----------------------------------------|-----------------------------------------------------------|---------------|
|          | -26dB Bandwidth           | and 99% Occupied Bandwidth:             |                                                           |               |
| WS CI    | Test Method:              | a)The transmitter was radiated to the s | spectrum analyzer in peak hold mode.                      |               |
|          | rest wetrod.              |                                         | emission that is 26 dB down from the peak of the          | $\overline{}$ |
|          |                           |                                         |                                                           |               |
|          | X                         |                                         | setting of the analyzer. Readjust RBW and repeat          |               |
|          |                           | measurement as needed until the RBV     |                                                           |               |
|          |                           | ing – 26dB Bandwidth:                   | Test Equipment Setting – 99%% Bandwidth:                  | MECET         |
|          | a)Attenuation: Auto       |                                         | a)Span: 1.5 times to 5.0 times the OBW                    | AW3L/         |
|          | b)Span Frequency: >       |                                         | b)RBW: 1 % to 5 % of the OBW                              |               |
| X        |                           | tely 1% of the emission bandwidth       | c)VBW: ≥ 3 x RBW                                          |               |
|          | d)VBW: VBW > RE           | 3W                                      | d)Detector: Peak                                          |               |
|          | e)Detector: Peak          |                                         | e)Trace: Max Hold                                         |               |
| WS C1    | f)Trace: Max Hold         | W5CT W5CT                               | WSET" WSET"                                               |               |
|          | g)Sweep Time: Auto        |                                         |                                                           |               |
|          | 6 dB Bandwidth:           | \ <del>T</del>                          |                                                           |               |
|          | Test Method:              | a)The transmitter was radiated to the   |                                                           |               |
|          |                           |                                         | with KDB789033 D02 v01 for Compliance Testing of          |               |
|          | WSET                      |                                         | structure (U-NII) Devices - section (C) Emission          | WSCT          |
|          | - LIPES                   | Bandwidth.                              | mad in accordance with KDDCCC044 D04 v00r04               |               |
|          |                           | Emissions                               | med in accordance with KDB662911 D01 v02r01               |               |
| X        |                           | Testing of Transmitters with Multiple C | Outpute in the Come Band                                  |               |
|          |                           | d)Measured the spectrum width with p    | ower higher than 6dB helew carrier                        |               |
|          | Test Equipment Sett       |                                         |                                                           |               |
| W5 CI    | a)Attenuation: Auto       |                                         | e)Detector: Peak                                          |               |
|          | b)Span Frequency: >       |                                         | f)Trace: Max Hold                                         |               |
|          | c)RBW: 100kHz             | > oub Bandwidth                         | g)Sweep Time: Auto                                        |               |
|          |                           |                                         | g)sweep Time. Auto                                        |               |
|          | d)VBW: $\geq 3 \times RB$ |                                         |                                                           |               |
|          |                           | cted Output Power Measurement:          | WCTT" WCTT"                                               | WSCT          |
|          | Test Method:              | a)The transmitter output (antenna port  |                                                           |               |
|          |                           |                                         | with KDB789033 D02 v01 for Compliance Testing of          |               |
| X        |                           |                                         | structure (U-NII) Devices - section (E) Maximum           |               |
|          |                           |                                         | ement using a Power Meter (PM) =>b) Method PM-G           |               |
| MARIE CO |                           | (Measurement using a gated RF avera     |                                                           |               |
| W5 [1    |                           |                                         | rmed in accordance with KDB662911 D01 v02r01              | <del></del>   |
|          |                           | Emissions                               | N                                                         |               |
|          | X                         | Testing of Transmitters with Multiple C | outputs in the Same Band.                                 | X             |
|          |                           |                                         | ed output power with multiple antenna systems, add        |               |
|          | T . F C                   | every result of the values by mathema   |                                                           |               |
|          |                           | ing: Detector - Average                 | WSCT WSCT                                                 | W5CT"         |
|          | Power Spectral D          |                                         | Overs assessed DE switch to the assessment and beautiful. |               |
|          | Test Method:              |                                         | t) was connected RF switch to the spectrum analyzer.      |               |
|          |                           |                                         | with KDB789033 D02 v01 for Compliance Testing of          |               |
|          |                           |                                         | structure (U-NII) Devices - section (F) Maximum Power     |               |
| W5C1     |                           | Spectral Density (PSD).                 | rmed in accordance KDB662911 D01 v02r01 in-Band           |               |
| WELS.    |                           | Power                                   | illied in accordance NDD002311 D01 V02101 III-Band        |               |
|          |                           |                                         | s (a) Measure and sum the spectra across the              | \/            |
|          | X                         |                                         | s (a) incasure and sum the spectra across the             | X             |
|          |                           | outputs.                                |                                                           |               |

TEL: 0086-755-26996192 26996053 26996144

frequency bins is computed in the same way.

obtain the value for

the other

Page 40 of 175

e)For 5.725~5.85 GHz, the measured result of PSD level must add 10log(500kHz/RBW)

d)When measuring first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3 and so on up to the Nth output to

the first frequency bin of the summed spectrum. The summed spectrum value for each of

ation& Test

WS CT





Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

and the final result should ≤ 30 dBm. Test Equipment Setting: a)Attenuation: Auto e)Detector: RMS f)Trace: AVERAGE b)Span Frequency: Encompass the entire emissions bandwidth (EBW) of the signal g)Sweep Time: Auto c)RBW: 1000 kHz h)Trace Average: 100 times d)VBW: 3000 kHz Note: If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.

Frequency Stability Measurement: a) The transmitter output (antenna port) was connected to the spectrum analyzer. Test Method: b)EUT have transmitted absence of modulation signal and fixed channelize. c)Set the spectrum analyzer span to view the entire absence of modulation emissions d)Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings. e)fc is declaring of channel frequency. Then the frequency error formula is (fc-f)/fc × 106 the limit is less than ±20ppm (IEEE 802.11nspecification). f)The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of nominal value g)Extreme temperature is 0°C~40°C Test Equipment Setting: a)Attenuation: Auto e)Sweep Time: Auto b)Span Frequency: Entire absence of modulation emissions bandwidth c)RBW: 10 kHz d)VBW: 10 kHz

#### CONFIGURATION OF THE EUT

Same as section 3.4 of this report

Same as section 3.5 of this report.

#### 7.5.4 EUT OPERATING CONDITION

ADD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Av TEL: 0086-755-26996192 26996053 26996144





Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

W5 CT

## 7.5.5 LIMIT

|            | -26dB Bandwidth                         | and 99% Occupied Bandwidth:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                            |              |
|------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------|
|            | Limit:                                  | No restriction limits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WE CT                                                                      | WELT         |
|            | -6 dB Bandwidth:                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AND LI                                                                     | M-3LI        |
| \ /        | Limit:                                  | For digital modulation systems, the m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | inimum 6dB bandwidth shall be at least 500 kHz.                            |              |
| X          | Test Equipment Se                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                                                          |              |
|            | a)Attenuation: Auto                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e)Detector: Peak                                                           |              |
|            | b)Span Frequency                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f)Trace: Max Hold                                                          |              |
| V5 CT      | c)RBW: 100kHz                           | WSET WSET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | g)Sweep Time: Auto 5 E 7                                                   | 7°           |
|            | d)VBW: ≥ 3 x RBW                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | g/out-of-                                                                  |              |
|            |                                         | cted Output Power Measurement:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                            |              |
|            | maximum conduct                         | <b>⊠</b> 5.15~5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25 GHz                                                                     | X            |
|            | Limit of Outdoor                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Limit of Indoor access point:                                              |              |
|            |                                         | ducted output power over the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | The maximum conducted output power over the                                | August 1     |
|            |                                         | operation shall not exceed 1 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | frequency band of operation shall not exceed 1 W                           | WSLI         |
|            |                                         | the maximum antenna gain does not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (30dBm) provided the maximum antenna gain does                             |              |
|            |                                         | nsmitting antennas of directional gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | not                                                                        |              |
| $\wedge$   |                                         | are used, both the maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | exceed 6 dBi. If transmitting antennas of directional                      |              |
| / `        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |              |
| VE CT      |                                         | power and the maximum power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | gain greater than 6 dBi are used, both the maximum                         |              |
| <u>FIJ</u> |                                         | all be reduced by the amount in dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | conducted output power and the maximum power                               |              |
|            |                                         | gain of the antenna exceeds 6 dBi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | spectral density shall be reduced by the amount in                         |              |
|            |                                         | p. at any elevation angle above 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | dB                                                                         | X            |
|            |                                         | red from the horizon must not exceed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | that the directional gain of the antenna exceeds 6 dBi.                    |              |
|            | 125 mW (21 dBm).                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |              |
|            |                                         | pint-to-point access points:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Limit of Mobile and portable client devices:                               | W5CT         |
|            |                                         | ducted output power over the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | The maximum conducted output power over the                                | /            |
|            |                                         | operation shall not exceed 1 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | frequency band of operation shall not exceed 250                           |              |
|            |                                         | int-to-point U-NII devices may employ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mW                                                                         |              |
|            |                                         | ctional gain up to 23 dBi without any                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (24dBm) provided the maximum antenna gain does                             |              |
|            |                                         | uction in the maximum conducted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | not                                                                        |              |
|            |                                         | aximum power spectral density. For                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | exceed 6 dBi. If transmitting antennas of directional                      |              |
|            |                                         | transmitters that employ a directional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | gain greater than 6 dBi are used, both the maximum                         |              |
|            |                                         | ter than 23 dBi, a 1 dB reduction in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | conducted output power and the maximum power                               | V            |
|            |                                         | ed output power and maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | spectral density shall be reduced by the amount in                         |              |
|            |                                         | nsity is required for each 1 dB of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | dB                                                                         |              |
|            | antenna gain in exc                     | Jess of 23 dbl.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | that the directional gain of the antenna exceeds 6 dBi.                    | WSCT         |
|            | /                                       | ⊠5.25-5.35 GHz & ∑                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                            |              |
|            | The maximum con                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | y bands of operation shall not exceed the lesser of 250                    |              |
|            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mission bandwidth in megahertz. If transmitting                            |              |
|            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | both the maximum conducted output power and the                            |              |
| VEFT       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | amount in dB that the directional gain of the antenna                      | 7.0          |
|            | exceeds 6 dBi.                          | section definity shall be reduced by the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | amount in ab that the directional gain of the amenia                       |              |
|            | 0.0000000000000000000000000000000000000 | ⊠5.725~5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .85 GHz                                                                    |              |
|            | The maximum con-                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | by band of operation shall not exceed 1 W (30dBm). If                      | X            |
|            | transmitting antenn                     | as of directional gain greater than 6 dF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bi are used, both the maximum conducted output                             |              |
|            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | educed by the amount in dB that the directional gain of                    | ATTENDED TO  |
|            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U-NII devices operating in this band may employ                            | WSET         |
|            | transmitting antenr                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |              |
| X          | directional gain gre                    | eater than 6 dBi without any correspond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ding reduction in transmitter conducted power.                             |              |
|            | Power Spectral D                        | ensity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                            |              |
|            |                                         | ⊠5.15~5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25 CH7                                                                     |              |
| VS CT      | □Limit of Outdoor                       | access point: 17 dBm/MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Limit of Indoor access point: 17 dBm/MHz                                   | 7            |
|            |                                         | pint-to-point access points: 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Limit of Mobile and portable client devices: 11                            |              |
|            | dBm/MHz                                 | The to point doods points. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dBm/MHz                                                                    |              |
|            | ☐5.25-5.35 GHz                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11 dBm/MHz                                                                 |              |
|            | □5.25-5.35 GHZ                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11 dBm/MHz                                                                 |              |
|            | ⊠5.725~5.85 GHz                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30 dBm/500kHz                                                              | ation& Testi |
|            | Frequency Stabili                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OU GIDHI/OUGH IZ                                                           | a ding       |
| \ /        | Limit:                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the band of operation under all conditions of normal                       | 130          |
| X          | LIIIII.                                 | operation as specified in the user's manual results of the specified in the specif |                                                                            | WSCT She     |
|            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | anual. $\frac{1}{2}$ ance shall be $\pm 20$ ppm maximum for the 5 GHz band | WSCT S       |
| 11-11-1    |                                         | (IEEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                            | Zin.         |
|            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |              |

Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

W5 CT



802.11n specification).

# 7.5.6 TEST RESULT

W5 E

WS ET

## -26dB Bandwidth and 99% Occupied Bandwidth

| Ż | Product      | : EUT-Sample W5 L7                                                | Test Mode   | : See section 3.4 |
|---|--------------|-------------------------------------------------------------------|-------------|-------------------|
|   | Test Item    | : -26dB Bandwidth/-6dB Bandwidth<br>and 99% Occupied<br>Bandwidth | Temperature | : 25 ℃            |
|   | Test Voltage | : DC 3.91V                                                        | Humidity    | : 56%RH           |
|   | Test Result  | : PASS                                                            |             |                   |

## -26Db&99% Bandwidth

| -2    | $\sigma$ DD $\alpha$ 99 | % Danuwiui      | D .                       |                       |                                 |         |
|-------|-------------------------|-----------------|---------------------------|-----------------------|---------------------------------|---------|
| S C T | Mode                    | Frequency (MHz) | -26 dB Bandwidth<br>(MHz) | 99%dB Bandwidth (MHz) | Limit -26 dB<br>Bandwidth (MHz) | Verdict |
|       | a                       | 5180            | 19.77                     | 16.385                | 0.5                             | Pass    |
|       | a                       | 5240            | 19.64                     | 16.405                | 0.5                             | Pass    |
|       | a                       | 5260            | 19.76                     | 16.380                | 0.5                             | Pass    |
|       | $\Delta V_{a} S L$      | 5320            | 19.63                     | 16.371                | -0.5                            | Pass    |
|       | а                       | 5500            | 19.62                     | 16.390                | 0.5                             | Pass    |
| X     | а                       | 5700            | 19.60                     | 16.368                | 0.5                             | Pass    |
|       | n20                     | 5180            | 21.74                     | 17.570                | 0.5                             | Pass    |
| S C T | n20                     | 5240            | 19.81 ws                  | 17.571 WS             | 0.5 WS                          | Pass    |
|       | n20                     | 5260            | 21.75                     | 17.571                | 0.5                             | Pass    |
|       | n20                     | 5320            | 19.85                     | 17.553                | 0.5                             | Pass    |
|       | n20                     | 5500            | 21.71                     | 17.569                | 0.5                             | Pass    |
|       | n20                     | 5700            | 21.76                     | 17.571                | 0.5                             | Pass    |
|       | n40                     | 5190            | 40.75                     | 35.980                | 0.5                             | Pass    |
|       | n40                     | 5230            | 40.88                     | 36.016                | 0.5                             | Pass    |
| X     | n40                     | 5270            | 40.44                     | 36.013                | 0.5                             | Pass    |
|       | n40                     | 5310            | 42.12                     | 35.980                | 0.5                             | Pass    |
| S E T | n40                     | 5510            | 44.539                    | 35.978 W/5/           | 0.5 W 5                         | Pass    |
|       | n40                     | 5670            | 52.13                     | 36.010                | 0.5                             | Pass    |
|       | ac20                    | 5180            | 19.93                     | 17.532                | 0.5                             | Pass    |
|       | ac20                    | 5240            | 20.13                     | 17.542                | 0.5                             | Pass    |
|       | ac20                    | 5260            | 19.94                     | 17.551                | 0.5                             | Pass    |
|       | ac20                    | 5320            | 19.97                     | 17.546                | 0.5                             | Pass    |
|       | ac20                    | 5500            | 19.99                     | 17.565                | 0.5                             | Pass    |
| X     | ac20                    | 5700            | 20.37                     | 17.579                | 0.5                             | Pass    |
|       | ac40                    | 5190            | 40.27                     | 35.940                | 0.5                             | Pass    |
| SET"  | ac40                    | 5230            | 40.34 1/5                 | 35.955 W5             | 0.5 WS                          | Pass    |
|       | ac40                    | 5270            | 51.13                     | 36.115                | 0.5                             | Pass    |
|       | ac40                    | 5310            | 46.81                     | 36.064                | 0.5                             | Pass    |
|       | ac40                    | 5510            | 39.99                     | 35.959                | 0.5                             | Pass    |
|       | ac40                    | 5670            | 40.59                     | 35.959                | 0.5                             | Pass    |
|       | ac80                    | 5210            | 91.37                     | 75.349                | 0.5                             | Pass    |
|       | ac80                    | 5290            | 80.37                     | 75.363                | 0.5                             | Pass    |
| X     | ac80                    | 5530            | 80.67                     | 75.145                | 0.5                             | Pass    |
| 1     | ac80                    | 5610            | 80.54                     | 75.217                | 0.5                             | Pass    |
| EFT   |                         | WELT            | WSC                       | WEI                   |                                 |         |

Page 43 of 175





Report No.: WSCT-ANAB-R&E241100063A-Wi-Fi2

W5 CT

## -6dB&99% Bandwidth

| •             | abaco 70 | Banawiatii |                 |                 |                 |         |     |
|---------------|----------|------------|-----------------|-----------------|-----------------|---------|-----|
|               | Mode     | Frequency  | -6 dB Bandwidth | 99%dB Bandwidth | Limit -6 dB     | Verdict |     |
|               |          | (MHz)      | (MHz)           | (MHz)           | Bandwidth (MHz) |         | CT" |
|               | а        | 5745       | 15.83           | 16.330          | 0.5             | Pass    |     |
| X             | а        | 5825       | 12.27           | 16.340          | 0.5             | Pass    |     |
|               | n20      | 5745       | 13.81           | 17.531          | 0.5             | Pass    |     |
| A             | n20      | 5825       | 13.89           | 17.540          | 0.5             | Pass    |     |
| W5CT"         | n40      | 5755       | 35.12           | 35.886          | 0.5             | Pass    | _/  |
|               | n40      | 5795       | 33.85           | 35.920          | 0.5             | Pass    |     |
|               | ac20     | 5745       | 15.10           | 17.550          | 0.5             | Pass    |     |
|               | ac20     | 5825       | 15.09           | 17.549          | 0.5             | Pass    |     |
|               | ac40     | 5755       | W5 € 35.06      | W 5 35.819      | W5/0.5          | Pass    | CT° |
| $\overline{}$ | ac40     | 5795       | 33.75           | 35.826          | 0.5             | Pass    |     |
| X             | ac80     | 5775       | 75.10           | 75.163          | 0.5             | Pass    |     |
|               |          |            |                 |                 |                 |         |     |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4010  | 0100  | 00.00  | 00.010 | 7 7 70.0   | 1 400         |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|--------|--------|------------|---------------|------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ac40  | 5795  | 33.75  | 35.826 | 0.5        | Pass          |      |
| X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ac80  | 5775  | 75.10  | 75.163 | 0.5        | Pass          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |        |        |            |               |      |
| W5 ET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | WSET  | W5 ET  | WSET   | W5.        | 7             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |        |        |            |               | 7    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X     |       | X      | X      | X          | $\rightarrow$ |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |        |        |            |               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W5 ET |       | W5 CT  | WSET   | WSCT       | W5            | CT°  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |        |        |            |               |      |
| X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | X     | X      | X      | X          |               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |        |        |            |               |      |
| W5 CT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | WSET  | W5 ET  | WSET   | W5 L       |               | _/   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |        |        |            |               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X     |       | X      |        | X          | X             |      |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |       |        |        |            |               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W5 CT |       | WSET   | WSET   | WSLT       | W5            | 47 N |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |        |        |            |               |      |
| X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |       | X      | X      | X          |               |      |
| Anna de la constante de la con |       | (m)   |        |        | A /        |               |      |
| W5CT°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | WSET  | W5ET   | WSET   | W5         |               | -/   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |        |        |            |               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |        |        |            |               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WSET  |       | W5 CT° | WSET   | WSET       | W5            | CT°  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       | MP14   |        | Walt       | - July        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |        |        | $\searrow$ |               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |        |        |            |               |      |
| W5 ET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | W5ET* | W5ET"  | W5 ET  | W5         |               |      |
| / 11713                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |       |        |        |            |               | /    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X     |       |        |        |            | \ \           |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |        |        |            |               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W5 CT |       | WSET   | WSET   | WSLT       | wsc7          | CT°  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |        |        | , so       | 100           | 201  |
| X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | X     | X      | X      | dization   | MCC CT        | p(SI |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |        |        | diz        | WP14          | nen. |

TEL: 0086-755-26996192 26996053 26996144





