

Report No.:	MTi210119011-06E1
Date of issue:	Mar. 17, 2021
Applicant:	Shenzhen Powerqi Technology
	Co., Ltd.
Product name:	Magnetic Wireless Car Charger
Model(s):	LC24C, LC23C
FCC ID:	2AFP2LC24C

Shenzhen Microtest Co., Ltd. http://www.mtitest.com

Instructions

- 1. The report shall not be partially reproduced without the written consent of the laboratory;
- 2. The test results of this report are only responsible for the samples submitted;
- 3. This report is invalid without the seal and signature of the laboratory;
- 4. This report is invalid if transferred, altered or tampered with in any form without authorization;
- 5. Any objection to this report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Table of Contents

1	GI	ENERA	AL INFORMATION	5
	1.1	Featl	JRE OF EQUIPMENT UNDER TEST (EUT)	5
	1.2		MODE	
	1.3	EUT	TEST SETUP	5
	1.4	ANCIL	LARY EQUIPMENT	5
2	SL	JMMA	ARY OF TEST RESULT	6
	2.1	Oper	ATION CHANNEL LIST	6
	2.2	TEST (CHANNEL	6
3	TE	ST FA	CILITIES AND ACCREDITATIONS	7
	3.1	TESTI	LABORATORY	7
	3.2	Envir	RONMENTAL CONDITIONS	7
	3.3	MEAS	SUREMENT UNCERTAINTY	7
4	LIS	ST OF	TEST EQUIPMENT	8
5	TE	EST RE	SULTS	9
	5.1	ANTE	NNA REQUIREMENT	9
	0.1	1.1	Standard requirement	
		1.2	EUT Antenna	
	5.2	COND	DUCTED EMISSION	0
	5	2.1	Limits1	0
	5	2.2	Test Procedures1	0
	5	2.3	Test Setup1	0
	5	2.4	Test Result1	0
	5.3	Radia	ATED EMISSION	1
	5	3.1	Limits1	
	5	3.2	Test Procedures1	2
		3.3	Test Setup1	3
		3.4	Test Result1	
	5.4	Occu	IPIED BANDWIDTH	
	• •	4.1	Test method1	7
	5.4	4.2	Test result	7
PI	нотос	GRAPH	IS OF THE TEST SETUP1	8
PI	нотос	GRAPH	IS OF THE EUT1	9

Mi	icr	Dte	est
微	测	检	测

	-		
Applicant's name	: Shenzhen Powerqi Technology Co., Ltd.		
Address	2nd Floor, A4 Building, Block A, Fangxing Science & Tech. Park, Longgang District, Shenzhen, China		
Manufacturer's Name	Shenzhen	Powerqi Technology Co., Ltd.	
Address		A4 Building, Block A, Fangxing Science & Tech. Park, District, Shenzhen, China	
Product description			
Product name	: Magnetic V	Nireless Car Charger	
Trademark	: Powerqi		
Model Name	LC24C		
Serial Model	LC23C		
Standards	: FCC Part 1	15C	
Test procedure	ANSI C63.	10-2013	
Date of Test			
Date (s) of performance of tests		Mar. 01, 2021 ~Mar. 15, 2021	
Test Result:		Pass	
	r test (EUT)	ted by Shenzhen Microtest Co., Ltd. and the test results is in compliance with the FCC requirements. And it is fied in the report.	
Testing Engineer	:	Danny An	
		(Danny Xu)	
Technical Manager	:	Leo su	
		(Leo Su)	
Authorized Signatory	:	Tom Kue	
		(Tom Xue)	

1 GENERAL INFORMATION

1.1 Feature of equipment under test (EUT)

F	
Product name:	Magnetic Wireless Car Charger
Model name:	LC24C, LC23C
Model difference:	All the models are the same circuit and RF module, except the appearance and model No.
Operation frequency:	115–205 kHz
Modulation type:	ASK
Max output power:	15W
Antenna type:	Coil Antenna
Power supply:	DC 9V from adapter AC 120V/60Hz or DC 9V from car charger DC 24V
Battery:	N/A
Adapter information:	N/A
EUT serial number:	MTi210119011-06-S0001

1.2 Test mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Test mode	Description
Mode 1	TX

Note:

1: The test modes were carried out for all operation modes. The final test mode of the EUT was the worst test mode for EMI, and its test data was showed.

2: EUT is tested under full load.

1.3 EUT test setup

See photographs of the test setup in the report for the actual setup and connections between EUT and support equipment.

1.4 Ancillary equipment

Equipment	Model	S/N	Manufacturer
Adapter	HW-090200CH0	/	Huizhou BYD Electronics Co., Ltd.
Load	/	/	/
Battery	/	/	/

Car charger	/	/	/
ear charger	,	'	,

2 Summary of Test Result

Item	FCC Part No.	Description of Test	Result
1	FCC PART 15.203	Antenna requirement	Pass
2	FCC PART 15.207	Conducted emission	N/A
3	FCC PART 15.209	Radiated emission	Pass
4	FCC Part 15.215	20dB bandwidth	Pass

2.1 Operation channel list

Channel	Frequency (kHz)
Low	115
Middle	141
High	205

2.2 Test channel

Channel	Frequency (kHz)
Middle	141

3 Test Facilities and Accreditations

3.1 Test laboratory

Test Laboratory	Shenzhen Microtest Co., Ltd
Location	101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao' an District, Shenzhen, Guangdong, China.
FCC Registration No.:	448573

3.2 Environmental conditions

Temperature:	15ºC~35ºC
Humidity	20%~75%
Atmospheric pressure	98kPa~101kPa

3.3 Measurement uncertainty

Measurement Uncertainty for a Level of Confidence of 95 %, U=2xUc(y)

RF frequency	1 x 10-7
RF power, conducted	±1 dB
Conducted emission(150kHz~30MHz)	± 2.5 dB
Radiated emission(30MHz~1GHz)	± 4.2 dB
Radiated emission (above 1GHz)	± 4.3 dB
Temperature	±1 degree
Humidity	± 5 %

4 List of test equipment

检测

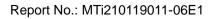
Micr©test

测

微

Test Receiver OG Broadband ina ifier Vector Signal erator Series Analog nal Generator Signal Analyzer Signal Analyzer esized eper	Rohde≻ hwarz schwarab eck Hewlett-P ackard Agilent Agilent Agilent Agilent Agilent	ESCI7 VULB 9163 8447F N5182A E4421B N9030A N9020A 83752A	101166 9163-133 8 3113A061 50 MY49060 455 GB40051 240 MY51350 296 MY50143 483 3610A019 57	2020/06/04 2020/06/05 2020/06/03 2020/06/03 2020/06/04 2020/06/04 2020/06/04	2021/06/03 2021/06/04 2021/06/02 2021/06/03 2021/06/03 2021/06/03 2021/06/03
ifier Vector Signal erator Series Analog nal Generator Signal Analyzer Signal Analyzer nesized eper	eck Hewlett-P ackard Agilent Agilent Agilent Agilent	8447F N5182A E4421B N9030A N9020A 83752A	8 3113A061 50 MY49060 455 GB40051 240 MY51350 296 MY50143 483 3610A019	2020/06/04 2020/06/03 2020/07/03 2020/06/04 2020/06/04	2021/06/03 2021/06/02 2021/07/04 2021/06/03 2021/06/03
Vector Signal erator Series Analog nal Generator Signal Analyzer Signal Analyzer nesized eper	ackard Agilent Agilent Agilent Agilent Agilent	N5182A E4421B N9030A N9020A 83752A	50 MY49060 455 GB40051 240 MY51350 296 MY50143 483 3610A019	2020/06/03 2020/07/03 2020/06/04 2020/06/04	2021/06/02 2021/07/04 2021/06/03 2021/06/03
erator Series Analog nal Generator Signal Analyzer Signal Analyzer nesized eper	Agilent Agilent Agilent Agilent	E4421B N9030A N9020A 83752A	455 GB40051 240 MY51350 296 MY50143 483 3610A019	2020/07/03 2020/06/04 2020/06/04	2021/07/04 2021/06/03 2021/06/03
al Generator Signal Analyzer Signal Analyzer nesized oper	Agilent Agilent Agilent	N9030A N9020A 83752A	240 MY51350 296 MY50143 483 3610A019	2020/06/04 2020/06/04	2021/06/03
Signal Analyzer nesized eper	Agilent Agilent	N9020A 83752A	296 MY50143 483 3610A019	2020/06/04	2021/06/03
nesized eper	Agilent	83752A	483 3610A019		
eper	-			2020/06/04	2021/06/03
ower Supply	Agilent				
		E3632A	MY40027 695	2020/06/04	2021/06/03
Test Receiver	Rohde≻ hwarz	ESCS30	100210	2020/06/04	2021/06/03
Limiter	Schwarzb eck	VSTD 9561-F	00679	2020/06/03	2021/06/02
cial mains ork	Schwarzb eck	NSLK 8127	NSLK 8127 #841	2020/06/04	2021/06/03
e Loop Antenna	Schwarzb eck	FMZB 1519 B	00044	2020/06/05	2021/06/04
ifier	Agilent	8449B	3008A024 00	2020/07/03	2021/07/04
nometer Clock dity Monitor	-	HTC-1	/	2020/06/07	2021/06/06
Loop Antenna	DATETEK	LA-001	77140963 4	2020/06/05	2021/06/04
i	e Loop Antenna ifier nometer Clock dity Monitor _oop Antenna	e Loop Antenna Schwarzb eck ifier Agilent nometer Clock dity Monitor - Loop Antenna DATETEK	orkecke Loop AntennaSchwarzb eckFMZB 1519 BifierAgilent8449Bmometer Clock dity Monitor-HTC-1Loop AntennaDATETEKLA-001	orkeck#841e Loop AntennaSchwarzb eckFMZB 1519 B00044ifierAgilent8449B3008A024 00mometer Clock dity Monitor-HTC-1/Loop AntennaDATETEKLA-00177140963 4	OFK eck #841 e Loop Antenna Schwarzb eck FMZB 1519 B 00044 2020/06/05 ifier Agilent 8449B 3008A024 00 2020/07/03 nometer Clock dity Monitor - HTC-1 / 2020/06/07 oop Antenna DATETEK LA-001 77140963 2020/06/05

5 Test Results


5.1 Antenna requirement

5.1.1 Standard requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device

5.1.2 EUT Antenna

The EUT antenna is Coil Antenna. It comply with the standard requirement. In case of replacement of broken antenna the same antenna type must be used.

5.2 Conducted emission

5.2.1 Limits

For the following equipment, when designed to be connected to the public utility (AC) power line the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies shall not exceed the limits in the following tables. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal using a 50 μ H/50 ohms line impedance stabilization network (LISN).

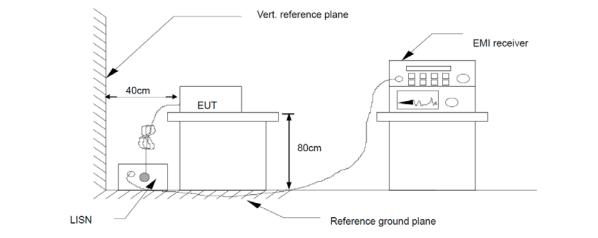
Frequency	Conducted li	mit (dBµV)
(MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.5 -5	56	46
5 -30	60	50

Note:

the limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

5.2.2 Test Procedures

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.


Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN is at least 80 cm from nearest part of EUT chassis.

For the actual test configuration, please refer to the related Item – photographs of the test setup.

5.2.3 Test Setup

5.2.4 Test Result

Note: The device is a DC power supply and does not apply to conducted emissions.

5.3 Radiated emission

5.3.1 Limits

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

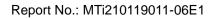
LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Class B (dBu\	//m) (at 3M)
FREQUENCT (MILZ)	PEAK	AVERAGE
Above 1000	74	54

Notes:

The limit for radiated test was performed according to FCC PART 15C.

The tighter limit applies at the band edges.


Emission level (dBuV/m)=20log Emission level (uV/m).

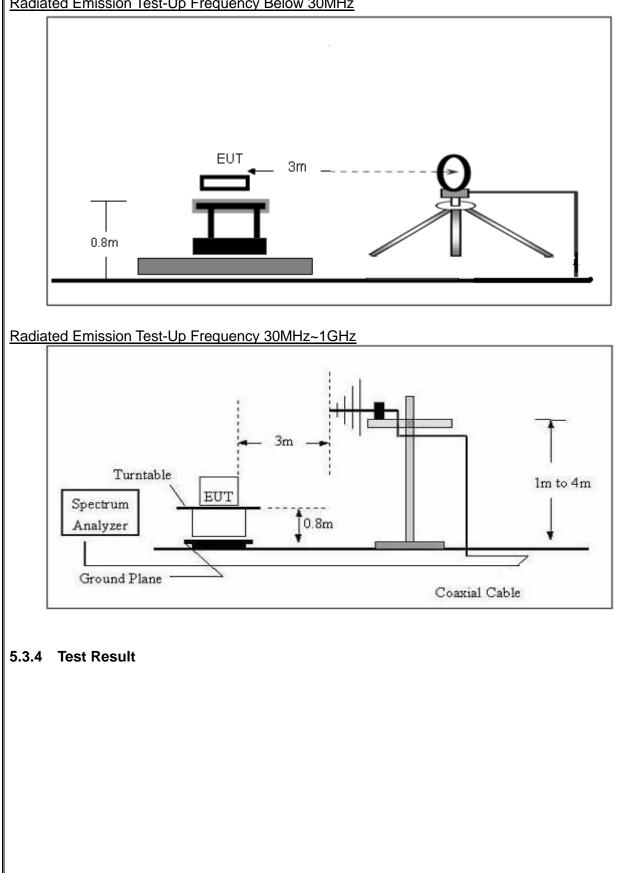
FREQUENCY RANGE OF RADIATED MEASUREMENT (For unintentional radiators)

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)
Below 1.705	30
1.705 – 108	1000
108 - 500	2000
500 - 1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

5.3.2 Test Procedures


- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 25GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-chamber test. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8m; above 1GHz, the height was 1.5m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.
- g. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.
- h. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

Note: Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

5.3.3 Test Setup

Radiated Emission Test-Up Frequency Below 30MHz

Frequency range (9kHz – 30MHz)

UT:	Magnetic \	Nireless Car	Charger	Model N	Name:	LC24C)
Pressure:	101kPa			Test mo	ode:	Mode	1
Fest voltage	e: DC 9V fror	m adapter AC	120V/60Hz			<u>.</u>	
120.0 dBu	W/m						_
110							
100							
90							
80							
70					FCC 15C Radiation	Below 1GHz	
60		2 X				Margin -6	dB
50							
50							
AD MA	4	 	а Х				
40 M	www.hulumanahuluman	Melan mon	And man an article	5	<u>6</u>		
40 ///// 30 ///	WWWWWWWWWWWWW	Murin man	Marana	Maran Manga	Mar Mymywlw	mannand	MANN Pea
	WWWWWWWWWWWWWWWWWW	Mehanin lang	Maran Marana	Anen water	WW Wymywlw	m/hunaum/	/ ^w ///w/w ^{/pea}
40 MM 30 20 10 0.0	WWWWWWWWWWWWWWW	Mehanin lenan	Mrunn nn m	American Mangar	ww. Www.www.	m Munanand	WWWW pea
10	WWWWWWWWWWWWWWW		<u>З</u> <u>Лрцини лрлици</u> 200 (MHz)	American Marina American American American American Am American American A	5.000	Munand	₩ [₩] ₩₩₩ 30.000
10 0.0				Anim Mating A.		Mrrwww/	
10 0.0 0.009	Frequency	Reading	200 (MHz) Factor	Level	5.000	Margin	30.000
10 0.0		0.3	200 (MHz)		5.000		
10 0.0 0.009	Frequency	Reading	200 (MHz) Factor	Level	5.000	Margin	30.000
10 0.0 0.009 No.	Frequency (MHz)	Reading (dBuV)	200 (MHz) Factor (dB/m)	Level (dBuV/m)	5.000 Limit (dBuV/m)	Margin (dB)	30.00
10 0.0 0.009 No.	Frequency (MHz) 0.0985	Reading (dBuV) 22.21	200 (МН2) Factor (dB/m) 22.32	Level (dBuV/m) 44.53	5.000 Limit (dBuV/m) 107.74	Margin (dB) -63.21	30.00 Detector
10 0.0 0.009 No. 1 2	Frequency (MHz) 0.0985 0.1276	0.3 Reading (dBuV) 22.21 42.97	200 (MHz) Factor (dB/m) 22.32 21.88	Level (dBuV/m) 44.53 64.85	Limit (dBuV/m) 107.74 105.49	Margin (dB) -63.21 -40.64 -53.12	30.00 Detector QP QP
10 0.0 0.009 No. 1 2 3	Frequency (MHz) 0.0985 0.1276 0.3818	0.3 Reading (dBuV) 22.21 42.97 21.06	200 (MHz) Factor (dB/m) 22.32 21.88 21.79	Level (dBuV/m) 44.53 64.85 42.85	Limit (dBuV/m) 107.74 105.49 95.97	Margin (dB) -63.21 -40.64	30.00 Detector QP QP QP

4 !

5

6

167.8243

172.5988

175.6516

51.60

51.04

48.44

-14.08

-13.84

-13.67

QP

QP

QP

-5.98

-6.30

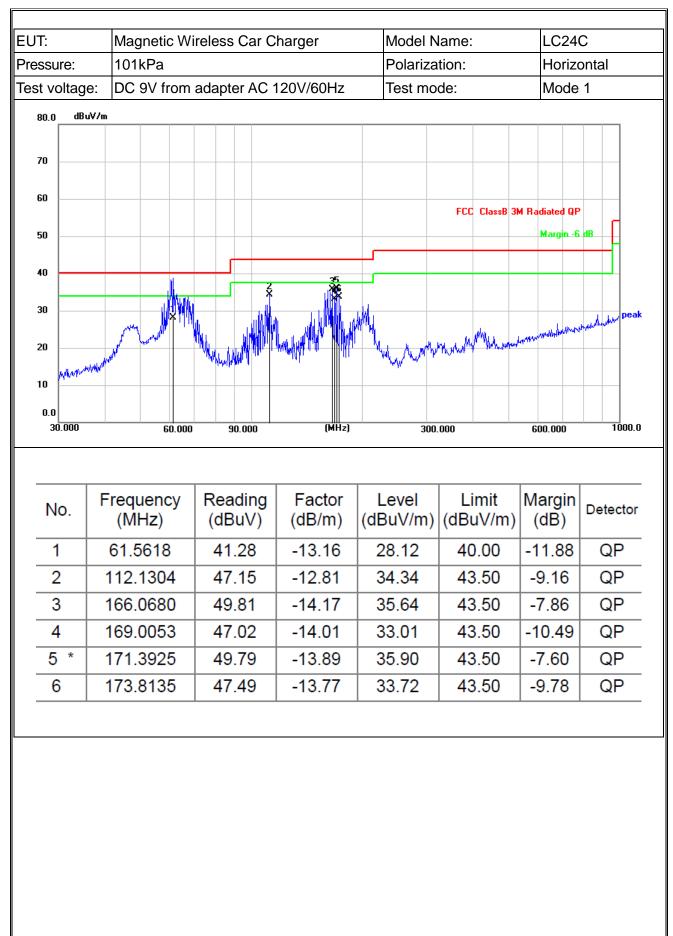
-8.73

Frequency range (30MHz - 1GHz)

UT:	Magnetic W	/ireless Car C	Charger	Model Na	ame:	LC24C	
ressure:	101kPa			Polarizat	ion:	Vertical	
est voltage:	DC 9V from	adapter AC	120V/60Hz	Test mod	e:	Mode 1	
80.0 dBuV/	m						
70							
60					FCC ClassB 3M	4 Radiated OR	
50						Margin -6	l d
			3.				
40	2 X		200]			
30	<u>Å</u>	hure aller			money Manusel	oredones released by a series	, AW MANN Peak
30	<u>Å</u>	Murry Marrison Marries			n market and the second s	onderson allowed references	white the seak
30 20	<u>Å</u>		(MHz)	300.		600.000	1000.0
30 20 10 0.0			(MHz)	300.			
30 20 10 0.0 30.000			Factor	J 300. Level dBuV/m)	Limit	600.000 Margin	1000.0
30 20 10 0.0 30.000	Frequency	90.000 Reading	Factor	Level	Limit	600.000 Margin	1000.0
30 20 10 0.0 30.000	Frequency (MHz)	90.000 Reading (dBuV)	Factor (dB/m) (d	Level dBuV/m)	Limit (dBuV/m)	600.000 Margin (dB)	1000.0

37.52

37.20


34.77

43.50

43.50

43.50

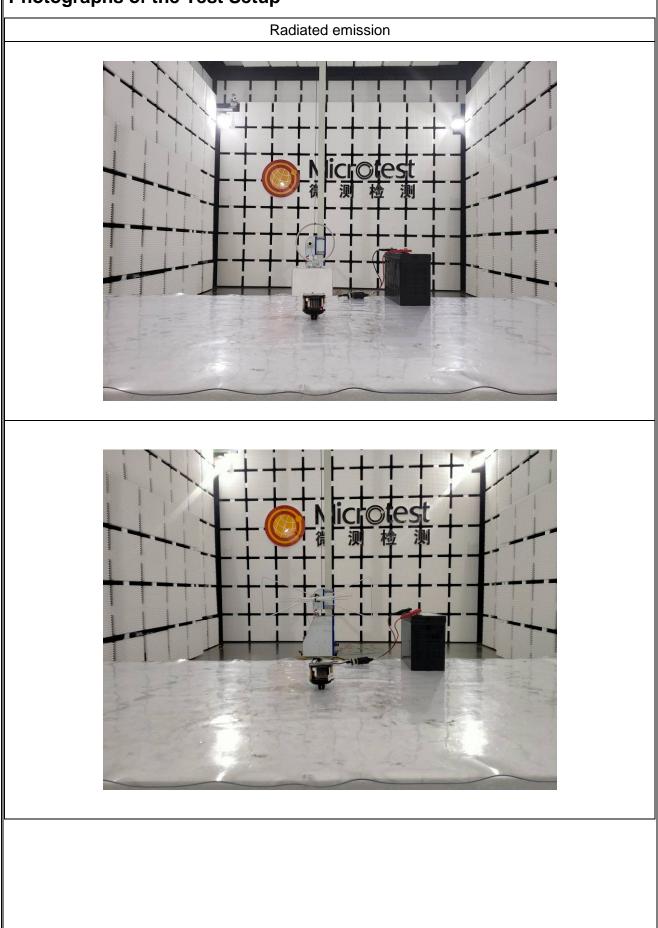
5.4 Occupied bandwidth

5.4.1 Test method

Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW ≥1% of the 20 dB bandwidth VBW ≥RBW Sweep = auto Detector function = peak Trace = max hold The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta

marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth and 99% occupied bandwidth of the emission.

5.4.2 Test result


Frequency (kHz)	20dB emission bandwidth (kHz)	99% occupied bandwidth (kHz)
141	8.116	6.929

Test plots as below:

Photographs of the Test Setup

Photographs of the EUT

See the APPENDIX 1- EUT PHOTO.

----END OF REPORT----

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao' an District, Shenzhen, Guangdong, China.Tel: (86-755)88850135Fax: (86-755) 88850136Web:www.mtitest.comE-mail: mti@51mti.com