

Test Report

Report No.: MTi240820012-06E4

Date of issue: 2024-12-20

Applicant: IC Nexus Co., Ltd

Product name: SBC_NSD_EC

EC4107, EC4110, EC4107, EC4105, EC4110-HL, EC4110-HL-KK3, EC4107-HL, EC4107-HL-KK3,

Model(s): EC4105-HL, EC4105-HL-KK3, NSD4110, NSD4110-HL, NSD4110-HL, NSD4107, NSD410

NSD4110-HL-KK3, NSD4107, NSD4107-HL, NSD4107-HL-KK3, NSD4105, NSD4105-HL, NSD4105-HL-KK3,

SBC4100

FCC ID: 2ACLCECNSDSBC410N60

Shenzhen Microtest Co., Ltd. http://www.mtitest.cn

The test report is only used for customer scientific research, teaching, internal quality control and other purposes, and is for internal reference only.

Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Table of contents

1	Gene	eral Description	5
	1.1 1.2 1.3 1.4 1.5	Description of the EUT Description of test modes Environmental Conditions Description of support units Measurement uncertainty	
2	Sumi	mary of Test Result	9
3	Test Facilities and accreditations		
	3.1	Test laboratory	10
4	List	of test equipment	11
5	Evalu	uation Results (Evaluation)	12
	5.1	Antenna requirement	12
6	Radio	o Spectrum Matter Test Results (RF)	12
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8	Conducted Emission at AC power line Duty Cycle Emission bandwidth and occupied bandwidth Maximum conducted output power Power spectral density Band edge emissions (Radiated) Undesirable emission limits (below 1GHz) Undesirable emission limits (above 1GHz)	
Pho	otogra	aphs of the test setup	89
Pho	otogra	aphs of the EUT	90
Apı	pendix	x A1: Emission bandwidth (26dB bandwidth)	92
	6.9 6.10	Appendix A2: Occupied channel bandwidth	
Apı	pendi	x B: Duty Cycle	120
Apı	pendix	x C: Maximum conducted output power	131
Apı	Appendix D: Maximum power spectral density		
Pho	otogra	aphs of the Test Setup	153
Pho	otogra	aphs of the EUT	154

	Test Result Certification				
Applicant:	IC Nexus Co., Ltd				
Address:	6F-1, No.3-2 Park Street, Nankang Software Park(NKSP), Taipei 115, Taiwan ROC				
Manufacturer:	IC Nexus Co., Ltd				
Address:	6F-1, No.3-2 Park Street, Nankang Software Park(NKSP), Taipei 115, Taiwan ROC				
Factory:	IC Nexus Co., Ltd				
Address:	6F-1, No.3-2 Park Street, Nankang Software Park(NKSP), Taipei 115, Taiwan ROC				
Product description					
Product name:	SBC_NSD_EC				
Trademark:	ICNexus				
Model name:	EC4107				
Series Model(s):	EC4110, EC4107, EC4105, EC4110-HL, EC4110-HL-KK3, EC4107-HL, EC4107-HL-KK3, EC4105-HL, EC4105-HL-KK3, NSD4110, NSD4110-HL, NSD4110-HL-KK3, NSD4107, NSD4107-HL, NSD4107-HL-KK3, NSD4105, NSD4105-HL, NSD4105-HL-KK3, SBC4100				
Standards:	47 CFR Part 15E				
Test Method:	KDB 789033 D02 General UNII Test Procedures New Rules v02r01 ANSI C63.10-2013				
Date of Test					
Date of test:	2024-11-11 to 2024-12-20				
Test result:	Pass				

Test Engineer :	James Qui
	(James Qin)
Reviewed By :	Dowid. Cel
	(David Lee)
Approved By :	leor chan
	(Leon Chen)

1 General Description

1.1 Description of the EUT

Product name:	SBC_NSD_EC
Model name:	EC4107
Series Model(s):	EC4110, EC4107, EC4105, EC4110-HL, EC4110-HL-KK3, EC4107-HL, EC4107-HL-KK3, EC4105-HL, EC4105-HL-KK3, NSD4110, NSD4110-HL, NSD4110-HL-KK3, NSD4107, NSD4107-HL, NSD4107-HL-KK3, NSD4105, NSD4105-HL, NSD4105-HL-KK3, SBC4100
Model difference:	All the models are the same circuit and module, except the model name.
Electrical rating:	Input: DC 12V
Accessories:	N/A
Hardware version:	PCB0N600
Software version:	android & Linux
Test sample(s) number:	MTi240820012-06S1007
RF specification	
Operating frequency range:	802.11a/n(HT20)/ac(HT20): U-NII Band 1: 5180MHz to 5240MHz; U-NII Band 3: 5745MHz to 5825MHz; 802.11n(HT40)/ac(HT40): U-NII Band 1: 5190MHz to 5230MHz; U-NII Band 3: 5755MHz to 5795MHz; 802.11ac(HT80): U-NII Band 1: 5210MHz; U-NII Band 3: 5775MHz
Channel number:	802.11a/n(HT20)/ac(HT20): U-NII Band 1: 4; U-NII Band 3: 5; 802.11n(HT40)/ac(HT40): U-NII Band 1: 2; U-NII Band 3: 2; 802.11ac(HT80): U-NII Band 1: 1; U-NII Band 3: 1;
Modulation type:	802.11a: OFDM(BPSK, QPSK, 16QAM, 64QAM); 802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM); 802.11ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM);
Antenna(s) type:	dipole
Antenna(s) gain:	3dBi

1.2 Description of test modes

No.	Emission test modes
Mode1	802.11a mode
Mode2	802.11n20 mode
Mode3	802.11n40 mode
Mode4	802.11ac20 mode
Mode5	802.11ac40 mode
Mode6	802.11ac80 mode

1.2.1 Operation channel list

U-NII Band 1

Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	38	5190	42	5210
40	5200	46	5230	/	1
44	5220	/	1	/	1
48	5240	/	/	/	/

U-NII Band 3

Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	151	5755	155	5775
153	5765	159	5795	/	1
157	5785	/	/	/	/
161	5805	/	/	/	1
165	5825	/	/	1	/

Test Channel List

Operation Band: 5150-5250 MHz

Bandwidth	Lowest Channel (LCH)	Middle Channel (MCH)	Highest Channel (HCH)
(MHz)	(MHz)	(MHz)	(MHz)
20	5180	5200	5240
40	5190	/	5230
80	5210	5210	5210

Operation Band: 5725-5850 MHz

Bandwidth	Lowest Channel (LCH)	Middle Channel (MCH)	Highest Channel (HCH)
(MHz)	(MHz)	(MHz)	(MHz)
20	5745	5785	5825
40	5755	/	5795
80	5775	5775	5775

Note: The test software provided by manufacturer is used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

Test Software: ComTool

For power setting, refer to below table.

Mode	LCH	MCH	HCH
802.11a	16	16	16
802.11n(HT20)	16	16	16
802.11n(HT40)	16	16	16
802.11ac(VHT20)	16	16	16
802.11ac(VHT40)	16	16	16
802.11ac(VHT80)	16	16	16

Mode	LCH	MCH	HCH
802.11a	16	16	16
802.11n(HT20)	16	16	16
802.11n(HT40)	16	16	16
802.11ac(VHT20)	16	16	16
802.11ac(VHT40)	16	16	16
802.11ac(VHT80)	16	16	16

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C
Humidity:	20% RH ~ 75% RH
Atmospheric pressure:	98 kPa ~ 101 kPa

1.4 Description of support units

Support equipment list								
Description	Model	Serial No.	Manufacturer					
Laptop	e485	1	Lenovo					
Adaptor	WDS050120	1	Wearnes GLOBAL CO., LTD.					
Support cable list	Support cable list							
Description	Length (m)	From	То					
1	1	1	/					

1.5 Measurement uncertainty

Measurement	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	±3.1dB
Time	±1 %
Occupied channel bandwidth	±3 %
RF output power, conducted	±1 dB
Power Spectral Density, conducted	±1 dB
Radiated spurious emissions (above 1GHz)	±5.3dB
Radiated spurious emissions (9kHz~30MHz)	±4.3dB
Radiated spurious emissions (30MHz~1GHz)	±4.7dB
Temperature	±1 °C
Humidity	± 5 %

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 Summary of Test Result

No.	Item	Standard	Requirement	Result
1	Antenna requirement	47 CFR Part 15E	Part 15.203	Pass
2	Conducted Emission at AC power line	47 CFR Part 15E	47 CFR Part 15.207(a)	Pass
3	Duty Cycle	47 CFR Part 15E		Pass
4	Emission bandwidth and occupied bandwidth	47 CFR Part 15E	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. 47 CFR Part 15.407(e)	Pass
5	Maximum conducted output power	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(3)(i)	Pass
6	Power spectral density	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(3)(i)	Pass
7	Band edge emissions (Radiated)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass
8	Undesirable emission limits (below 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(9)	Pass
9	Undesirable emission limits (above 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location:	101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Telephone:	(86-755)88850135
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573
IC Registration No.:	21760
CABID:	CN0093

4 List of test equipment

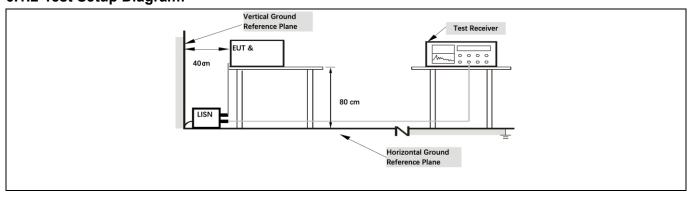
No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due				
	Conducted Emission at AC power line									
1	EMI Test Receiver	Rohde&schwarz	ESCI3	101368	2024-03-20	2025-03-19				
2	Artificial mains network	Schwarzbeck	NSLK 8127	183	2024-03-21	2025-03-20				
3	Artificial Mains Network	Rohde & Schwarz	ESH2-Z5	100263	2024-03-20	2025-03-19				
		Emission bandwic	Outy Cycle Ith and occupied anducted output spectral density	power						
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2024-03-20	2025-03-19				
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051240	2024-03-21	2025-03-20				
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20				
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2024-03-21	2025-03-20				
5	MXA Signal Analyzer	Agilent	N9020A	MY50143483	2024-03-21	2025-03-20				
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2024-03-21	2025-03-20				
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2024-03-21	2025-03-20				
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2024-03-20	2025-03-19				
9	DC Power Supply	Agilent	E3632A	MY40027695	2024-03-21	2025-03-20				
		Band edge Undesirable emi	emissions (Radi ssion limits (abo							
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19				
2	Double Ridged Broadband Horn Antenna	schwarabeck	BBHA 9120 D	2278	2023-06-17	2025-06-16				
3	Amplifier	Agilent	8449B	3008A01120	2024-03-20	2025-03-19				
4	MXA signal analyzer	Agilent	N9020A	MY54440859	2024-03-21	2025-03-20				
5	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20				
6	Horn antenna	Schwarzbeck	BBHA 9170	00987	2023-06-17	2025-06-16				
7	Pre-amplifier	Space-Dtronics	EWLAN1840 G	210405001	2024-03-21	2025-03-20				
	Undesirable emission limits (below 1GHz)									
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19				
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06-10				
3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03-23	2025-03-22				
4	Amplifier	Hewlett-Packard	8447F	3113A06184	2024-03-20	2025-03-19				

5 Evaluation Results (Evaluation)

5.1 Antenna requirement

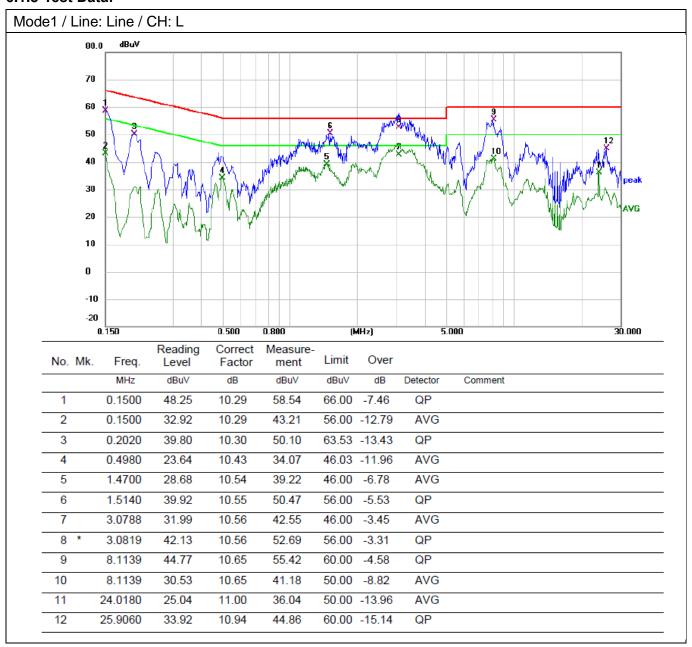
	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party
Test Requirement:	shall be used with the device. The use of a permanently attached antenna or
·	of an antenna that uses a unique coupling to the intentional radiator shall be
	considered sufficient to comply with the provisions of this section.

6 Radio Spectrum Matter Test Results (RF)


6.1 Conducted Emission at AC power line

Test Requirement:	47 CFR Part 15.207(a)					
Test Limit:	Frequency of emission (MHz)	Frequency of emission (MHz) Conducted limit (dBµV)				
		Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	*Decreases with the logarithm o	f the frequency.				
Test Method:	ANSI C63.10-2013 section 6.2					

6.1.1 E.U.T. Operation:


Operating Environment:							
Temperature:	Temperature: 25 °C Humidity: 59 % Atmospheric Pressure: 96 kPa						
Pre test mode:	Pre test mode: Mode1, Mode2, Mode3, Mode4, Mode5, Mode6						
Final test mode: All of the listed pre-test mode were tested, only the data of the worst mode (Mode1) is recorded in the report					of the worst mode		

6.1.2 Test Setup Diagram:

6.1.3 Test Data:

7.6700

8.0619

11.4019

11.5100

45.48

30.74

21.73

35.89

10.64

10.64

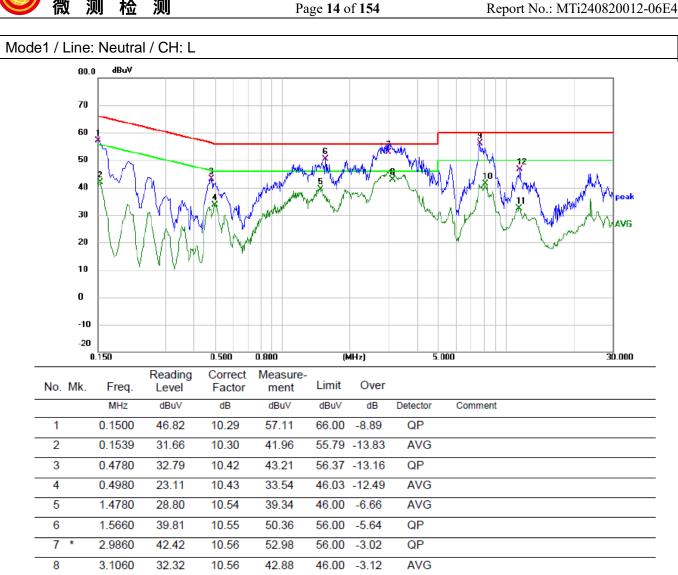
10.75

10.77

56.12

41.38

32.48


46.66

9

10

11

12

-3.88

-8.62

50.00 -17.52

60.00 -13.34

60.00

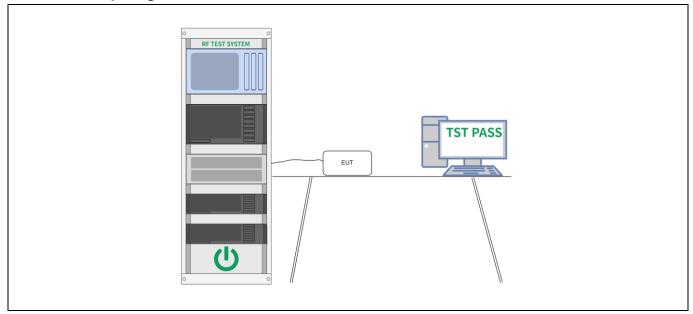
50.00

QP

AVG

AVG

QP


6.2 Duty Cycle

Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Limit:	No limits, only for report use.
Test Method:	ANSI C63.10-2013 section 12.2 (b)
Procedure:	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

6.2.1 E.U.T. Operation:

Operating Envi	Operating Environment:							
Temperature:	Temperature: 25 °C Humidity: 59 % Atmospheric Pressure: 101 kPa							
Pre test mode:	Pre test mode: Mode1, Mode2, Mode3, Mode4, Mode5, Mode6							
Final test mode: Mode1, Mode2, Mode3, Mode4, Mode5, Mode6								

6.2.2 Test Setup Diagram:

6.2.3 Test Data:

Please Refer to Appendix for Details.

6.3 Emission bandwidth and occupied bandwidth

Tost Poquiroment:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Requirement:	U-NII 3, U-NII 4: 47 CFR Part 15.407(e)
Test Limit:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
	U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
Test Method:	ANSI C63.10-2013, section 6.9 & 12.4 KDB 789033 D02, Clause C.2
Procedure:	Emission bandwidth: a) Set RBW = approximately 1% of the emission bandwidth. b) Set the VBW > RBW. c) Detector = peak. d) Trace mode = max hold. e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.
	Occupied bandwidth: a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise
	specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope
	shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
	 d) Step a) through step c) might require iteration to adjust within the specified range. e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace
	stabilizes) shall be used. f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
	g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points,
	beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the

total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is

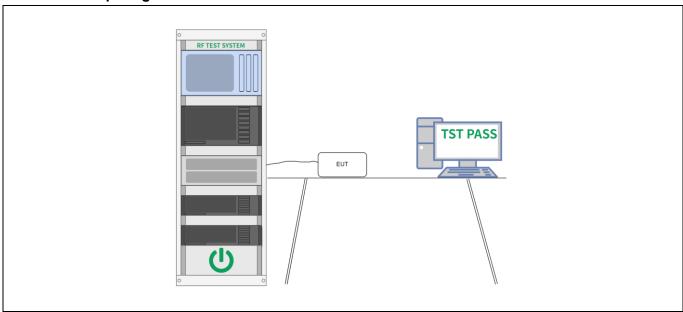
Report No.: MTi240820012-06E4

the difference between these two frequencies.

h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument

display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may

be reported in addition to the plot(s).


6 dB emission bandwidth:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) ≥ 3 >= RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.3.1 E.U.T. Operation:

Operating Environment:							
Temperature:	Temperature: 25 °C Humidity: 59 % Atmospheric Pressure: 101 kPa						
Pre test mode:	Pre test mode: Mode1, Mode2, Mode3, Mode4, Mode5, Mode6						
Final test mode	Final test mode: Mode1, Mode2, Mode3, Mode4, Mode5, Mode6						

6.3.2 Test Setup Diagram:

6.3.3 Test Data:

Please Refer to Appendix for Details.

6.4 Maximum conducted output power

47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) Test Requirement: 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(3)(i)		
	Test Requirement:	47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv)

Test Limit:

For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

Report No.: MTi240820012-06E4

For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power.

For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 23 dBi.

Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the

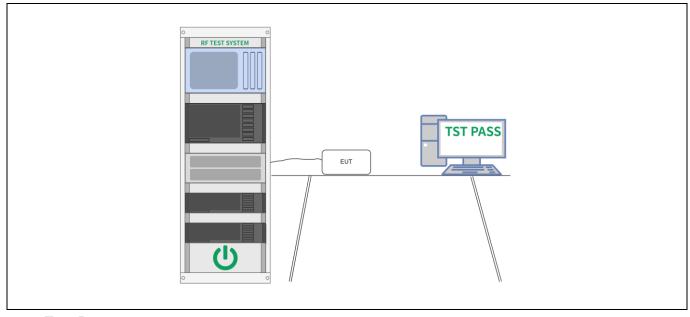
maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems,

omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems



	employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
Test Method:	ANSI C63.10-2013, section 12.3
Procedure:	Refer to ANSI C63.10-2013 section 12.3

6.4.1 E.U.T. Operation:

Operating Environment:						
Temperature:	25 °C		Humidity:	59 %	Atmospheric Pressure:	101 kPa
Pre test mode: Mode1, Mode2, Mode3, Mode4, Mode5, Mode6						
Final test mode: Mode1, Mode2, Mode3, Mode4, Mode5, Mode6						

6.4.2 Test Setup Diagram:

6.4.3 Test Data:

Please Refer to Appendix for Details.

Power spectral density

Test Requirement:	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(3)(i)
Toot Limit:	

Test Limit:

For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.

If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Report No.: MTi240820012-06E4

For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.

If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.

Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the

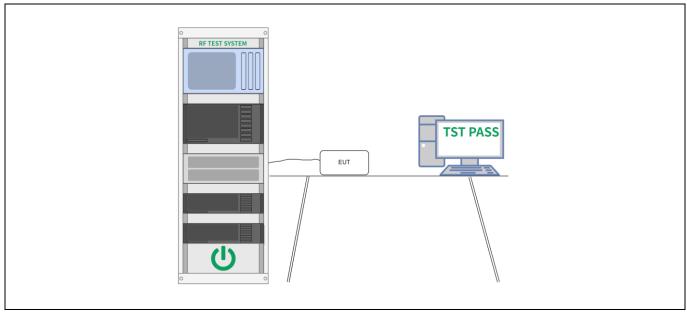
maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.

If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-topoint U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power.

Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

ANSI C63.10-2013, section 12.5 Test Method:



Procedure: Refer to ANSI C63.10-2013, section 12.5

6.5.1 E.U.T. Operation:

Operating Environment:							
Temperature:	Temperature: 25 °C Humidity: 59 % Atmospheric Pressure: 101 kPa						
Pre test mode: Mode1, Mode2, Mode3, Mode4, Mode5, Mode6							
Final test mode: Mode1, Mode2, Mode3, Mode4, Mode5, Mode6							

6.5.2 Test Setup Diagram:

6.5.3 Test Data:

Please Refer to Appendix for Details.

6.6 Band edge emissions (Radiated)

olo Balla bago olillot							
Test Requirement:	47 CFR Part 15.407(k 47 CFR Part 15.407(k 47 CFR Part 15.407(k	o)(4)					
Test Limit:	For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.						
	For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.						
	MHz MHz GHz						

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-	608-614	5.35-5.46
	16.69525		
2.1735-2.1905	16.80425-	960-1240	7.25-7.75
	16.80475		
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-	9.3-9.5
		1646.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-	13.25-13.4
		1722.2	
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-	2483.5-2500	17.7-21.4
	156.52525		
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-	240-285	3345.8-3358	36.43-36.5
12.52025			
12.57675-	322-335.4	3600-4400	(2)
12.57725			
13.36-13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.

Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

² Above 38.6

Frequency (MHz)	Field strength	Measuremen
	(microvolts/meter)	t distance
		(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100 **	3
88-216	150 **	3
216-960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.

In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

Test Method:

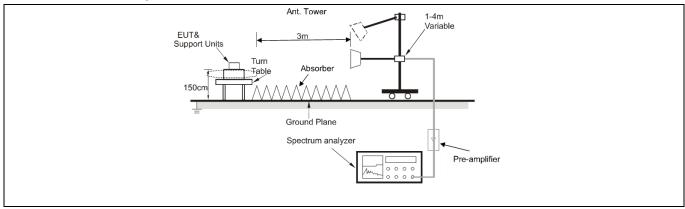
ANSI C63.10-2013, section 12.7.4, 12.7.6, 12.7.7

Procedure:

Above 1GHz:

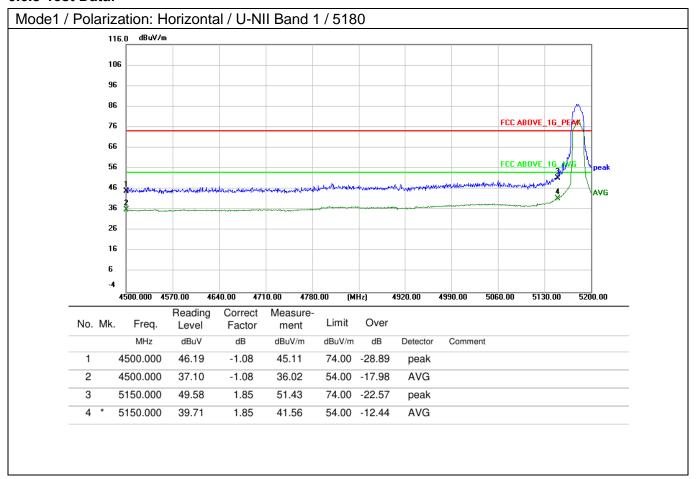
- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength

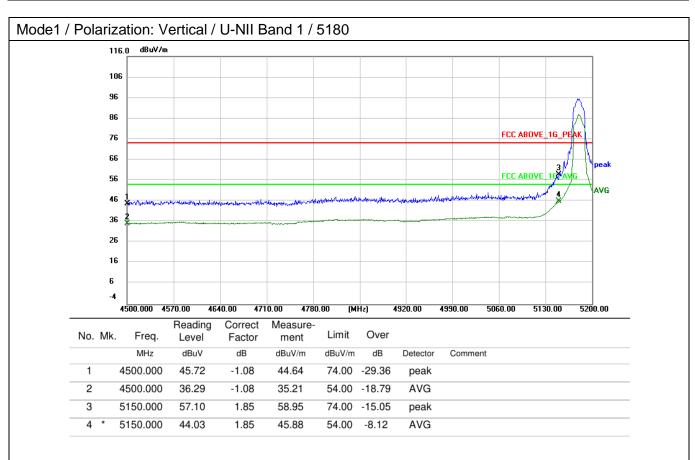
limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

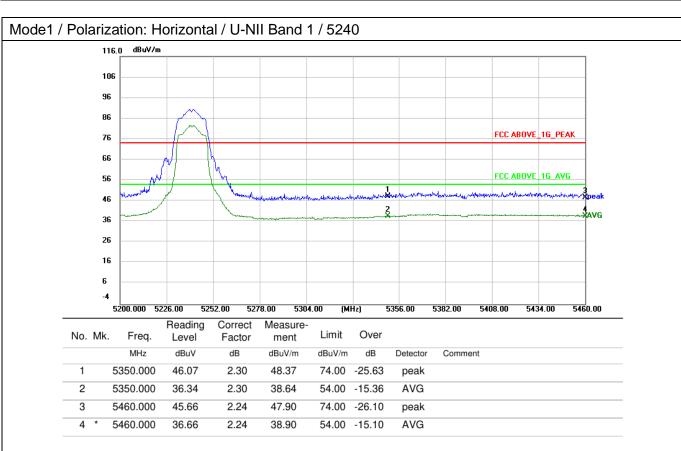

Report No.: MTi240820012-06E4

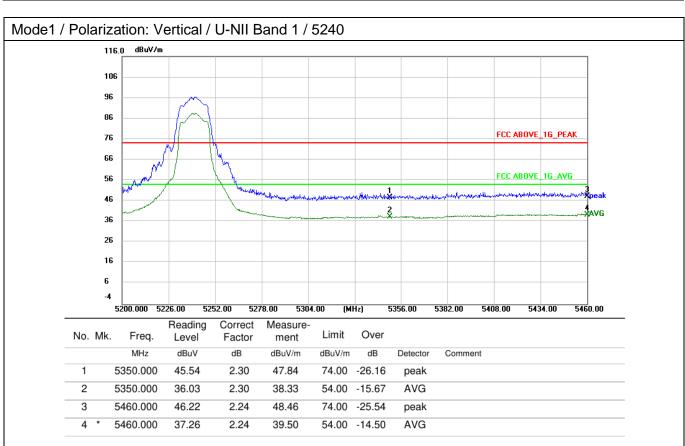
4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

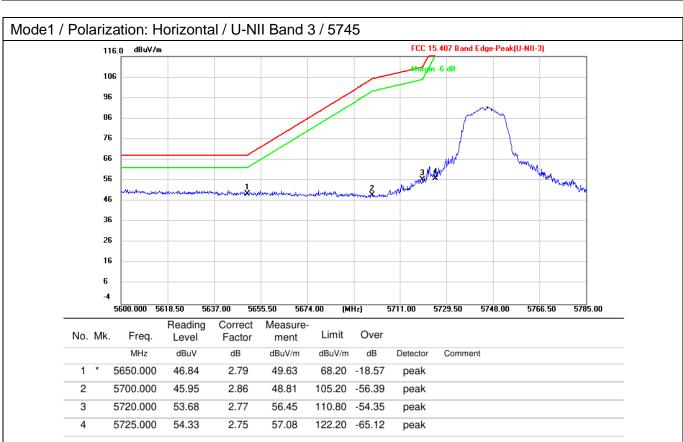
6.6.1 E.U.T. Operation:

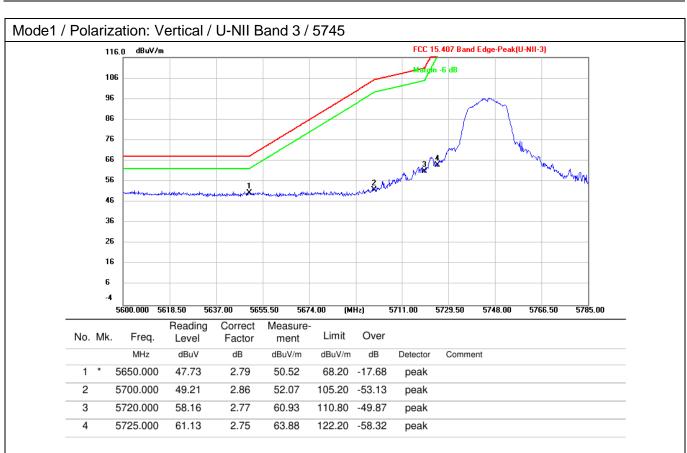

Operating Environment:							
Temperature:	Temperature: 26 °C Humidity: 54 % Atmospheric Pressure: 101.5 kPa						
Pre test mode: Mode1, Mode2, Mode3, Mode4, Mode5, Mode6							
Final test mode: Mode1, Mode2, Mode3, Mode4, Mode5, Mode6							

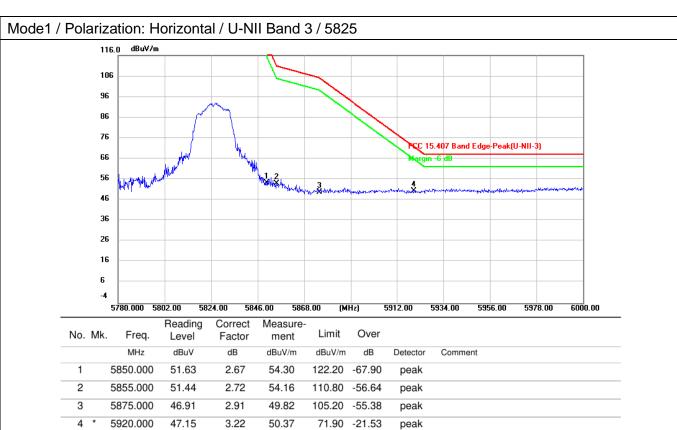

6.6.2 Test Setup Diagram:

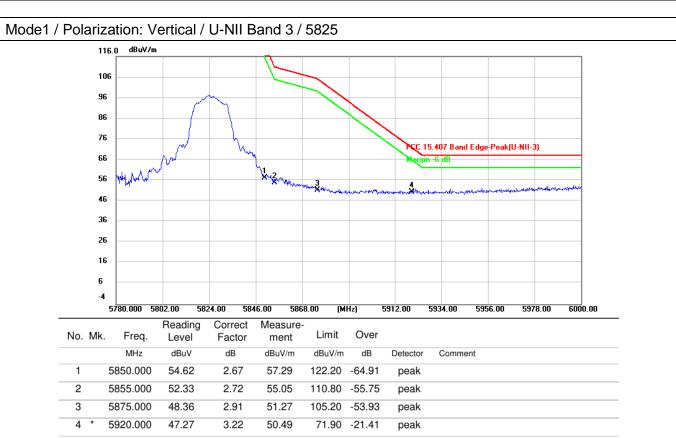


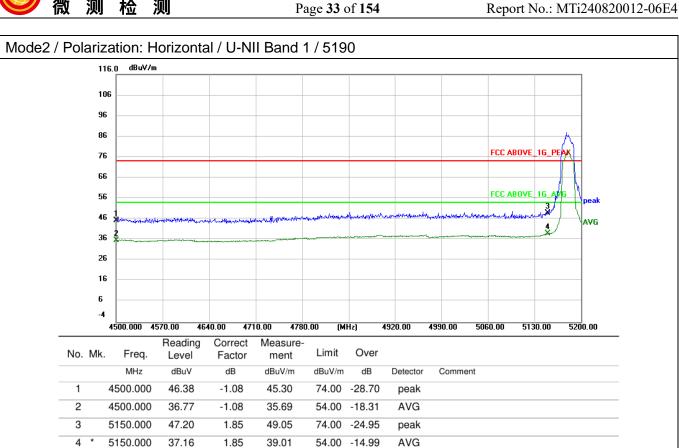


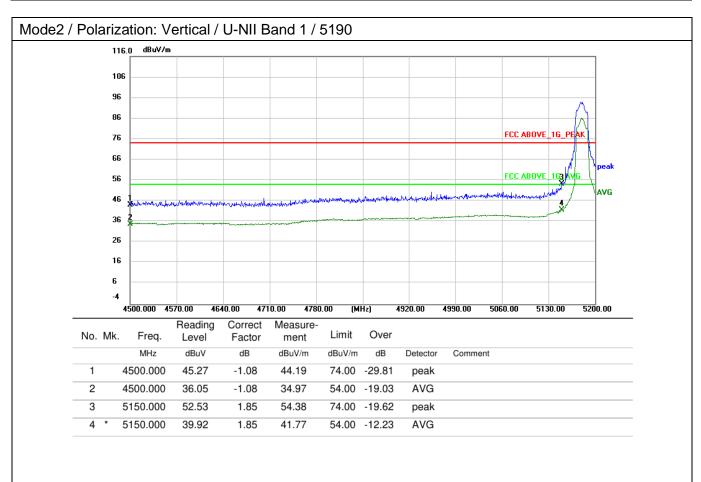

6.6.3 Test Data:







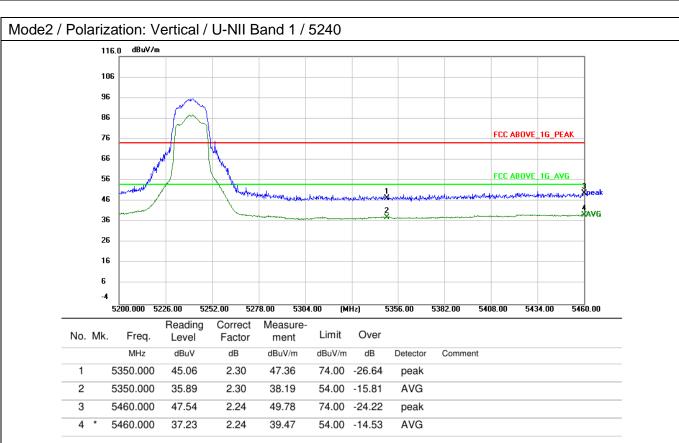




4

5460.000

37.40


2.24

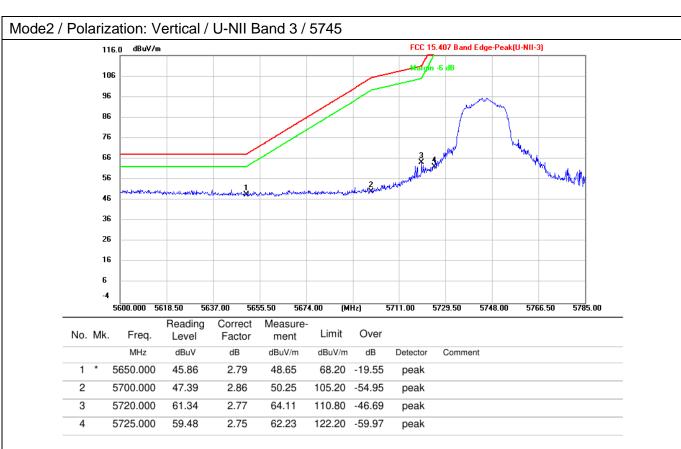
39.64

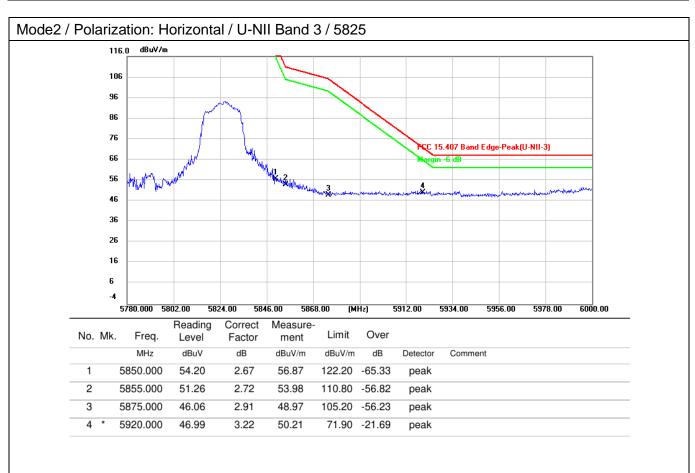
Report No.: MTi240820012-06E4 Mode2 / Polarization: Horizontal / U-NII Band 1 / 5240 116.0 106 96 86 FCC ABOVE_1G_PEAK 76 66 FCC ABOVE 1G_AVG 56 46 36 26 16 6 5460.00 5200.000 5226.00 5252.00 5278.00 5304.00 (MHz) 5356.00 5382.00 5408.00 5434.00 Reading Correct Measure-Over Limit No. Mk. Freq. Factor Level ment MHz dBuV dB dBuV/m dBuV/m dB Comment Detector 5350.000 45.54 2.30 47.84 74.00 -26.16 peak 2 5350.000 36.26 2.30 38.56 54.00 -15.44 AVG 3 5460.000 46.99 2.24 49.23 74.00 -24.77 peak

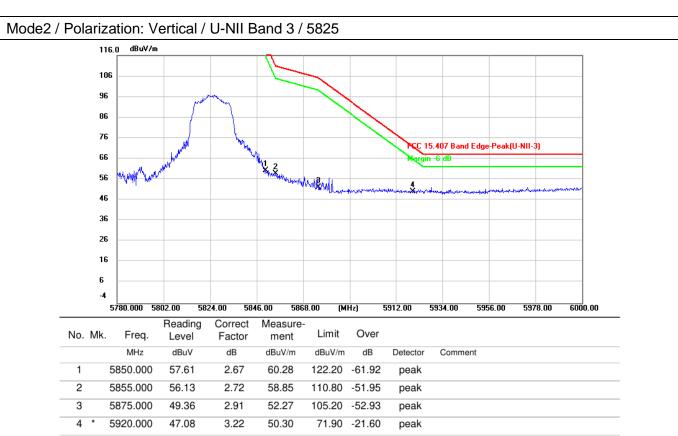
54.00 -14.36

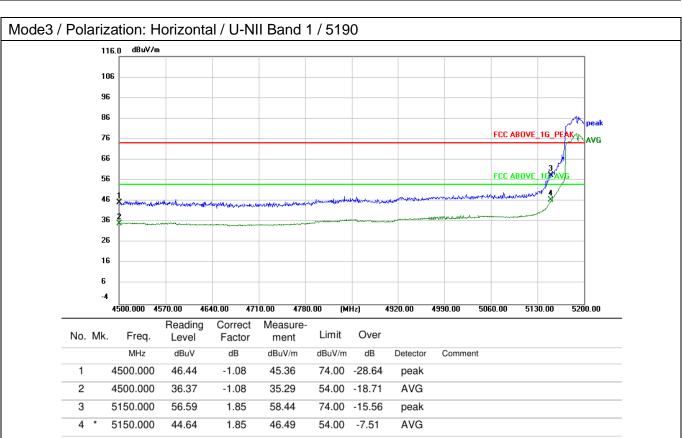
AVG

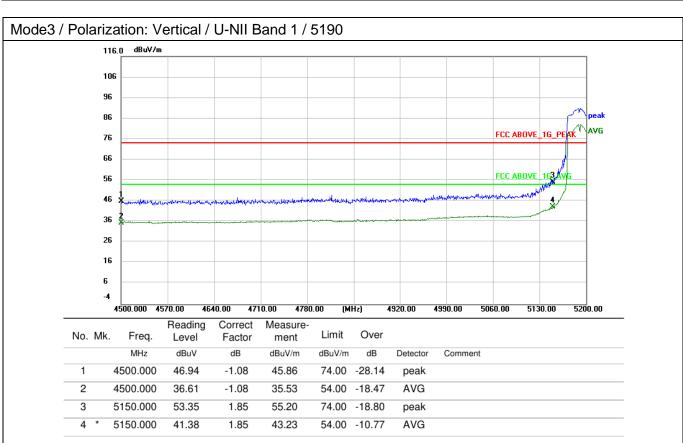
5725.000

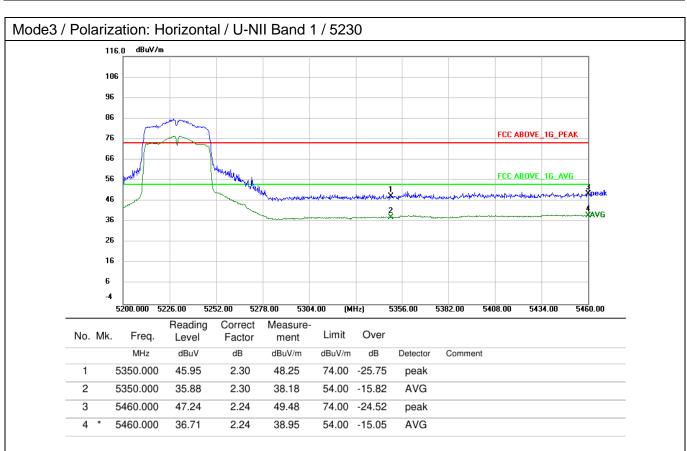

53.01

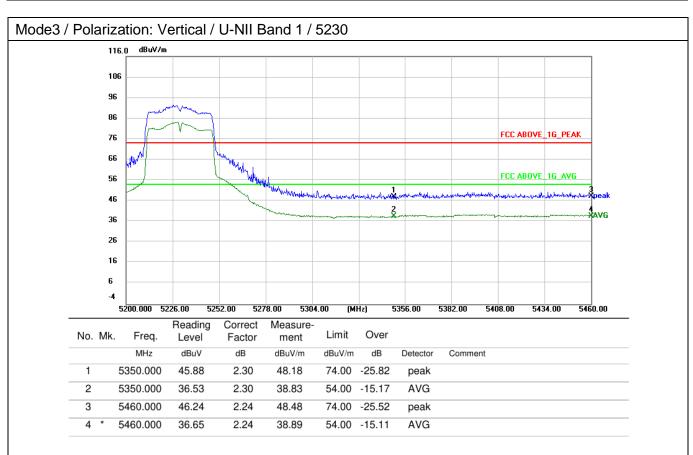

2.75


55.76

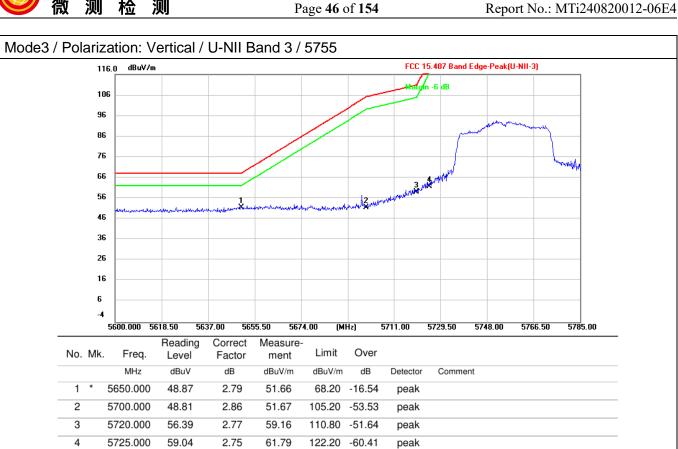



122.20 -66.44





5725.000


55.46

2.75

58.21

122.20 -63.99

4

5875.000

5920.000

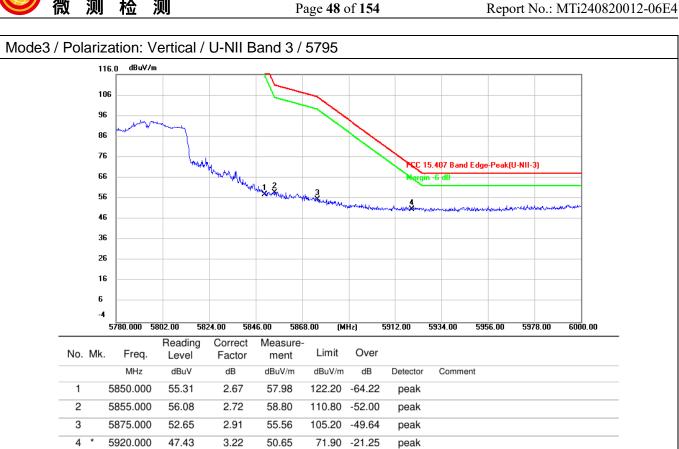
49.54

47.54

2.91

3.22

52.45

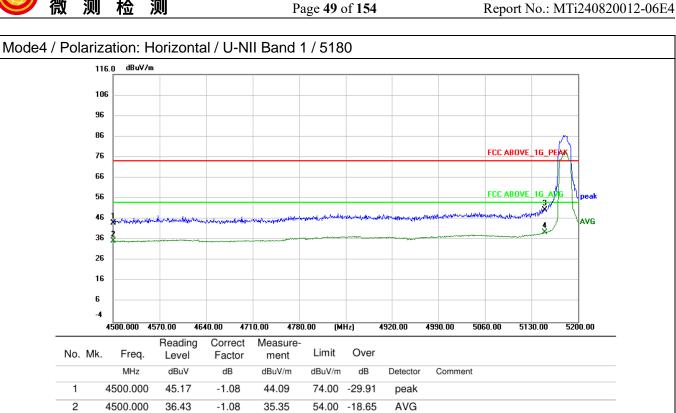

50.76

Report No.: MTi240820012-06E4 Mode3 / Polarization: Horizontal / U-NII Band 3 / 5795 116.0 106 96 86 76 CC 15.407 Band Edge-Peak(U-NII-3) work which was a second with the second with t 66 gin -6 dB 56 46 36 26 16 6 6000.00 5780.000 5802.00 5824.00 5846.00 5868.00 (MHz) 5912.00 5934.00 5956.00 5978.00 Reading Correct Measure-Over Limit No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m dBuV/m dB Comment Detector 5850.000 52.26 2.67 54.93 122.20 -67.27 peak 2 5855.000 50.90 2.72 53.62 110.80 -57.18 peak

105.20 -52.75

71.90 -21.14

peak


4

5150.000

5150.000

48.61

37.79

74.00 -23.54

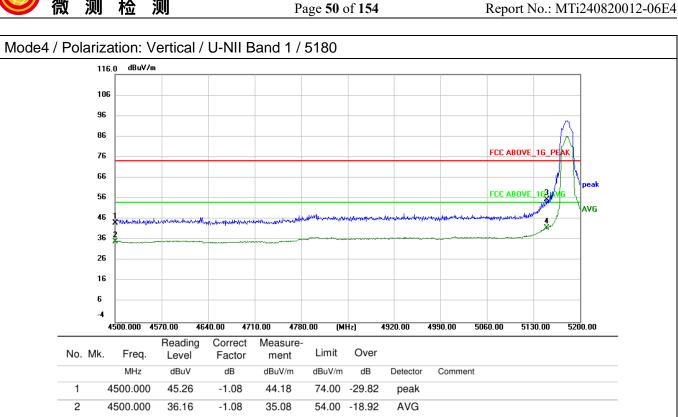
54.00 -14.36

peak

AVG

1.85

1.85


50.46

39.64

4

5150.000

5150.000

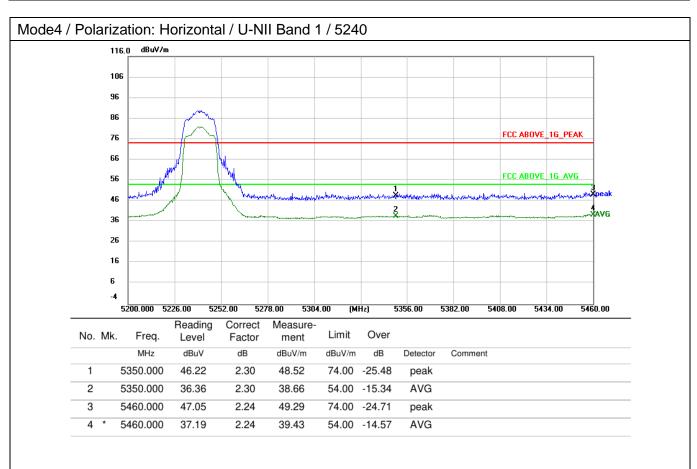
74.00 -18.59

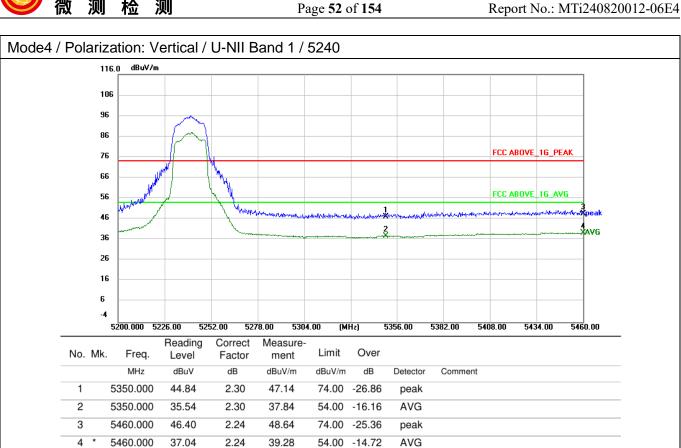
54.00 -12.19

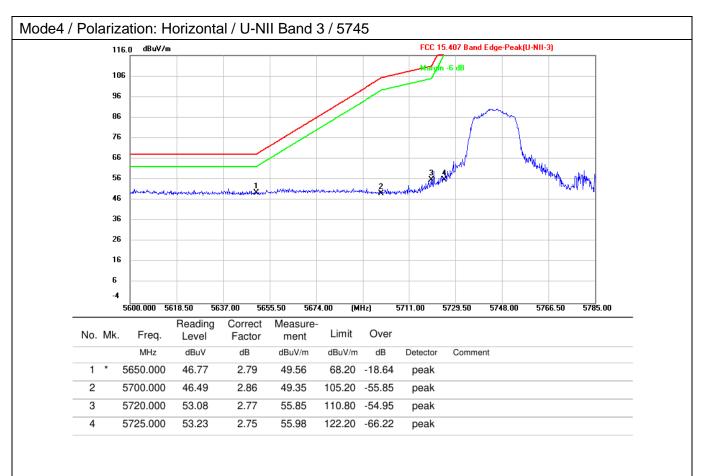
peak

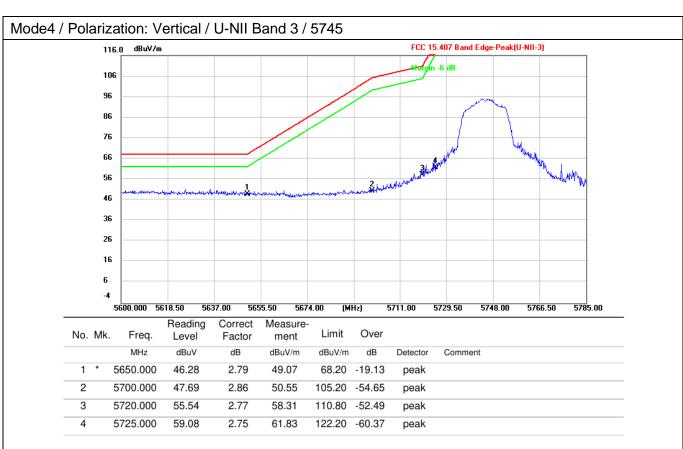
AVG

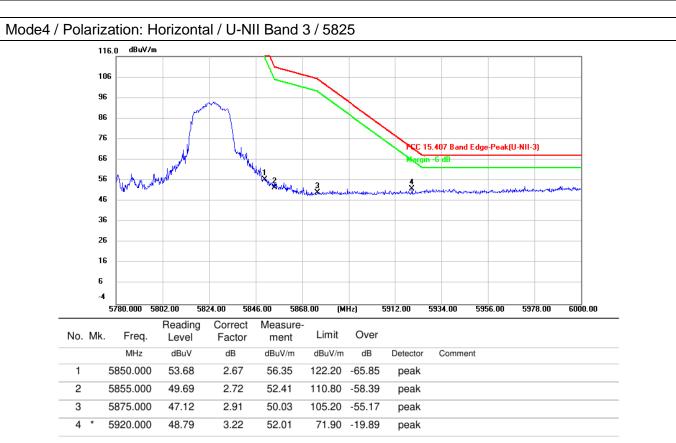
1.85

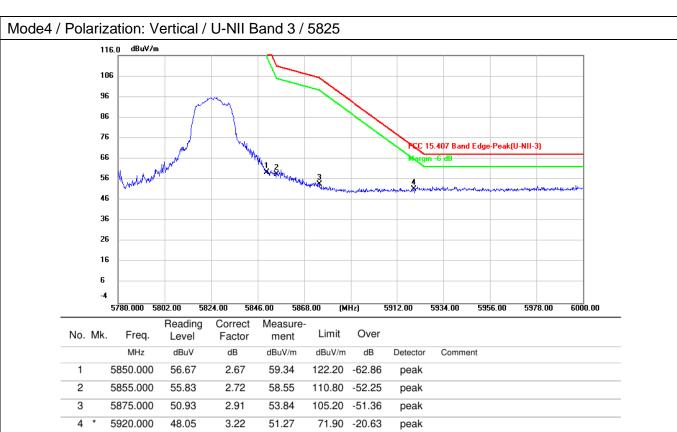

1.85


55.41


41.81


53.56


39.96



4

5150.000

5150.000

Report No.: MTi240820012-06E4 Mode5 / Polarization: Horizontal / U-NII Band 1 / 5190 116.0 106 96 86 FCC ABOVE_1G_PEAK 76 66 56 46 36 26 16 6 5200.00 4500.000 4570.00 4640.00 4710.00 4780.00 (MHz) 4920.00 4990.00 5060.00 5130.00 Reading Correct Measure-Over Limit No. Mk. Freq. Factor Level ment MHz dBuV dB dBuV/m dBuV/m dB Detector Comment 4500.000 45.66 -1.08 44.58 74.00 -29.42 peak 2 4500.000 36.42 -1.08 35.34 54.00 -18.66 AVG

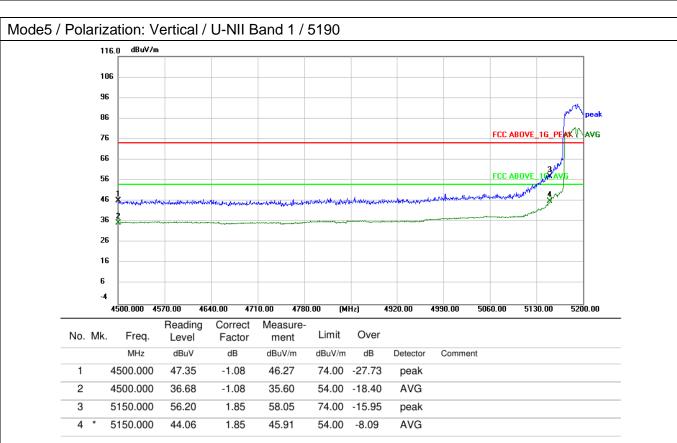
74.00 -21.26

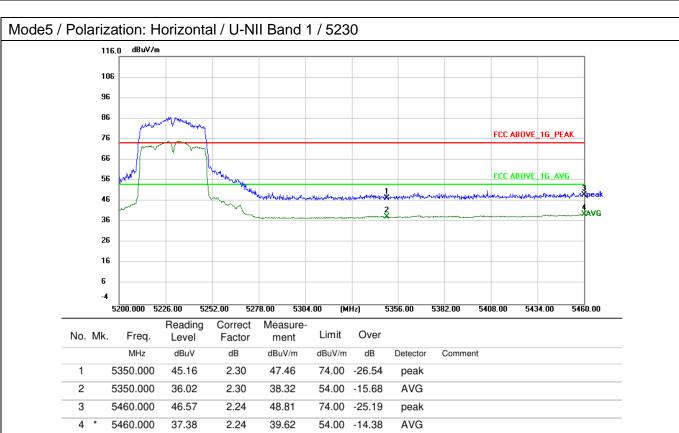
54.00 -12.38

peak

AVG

1.85


1.85


52.74

41.62

50.89

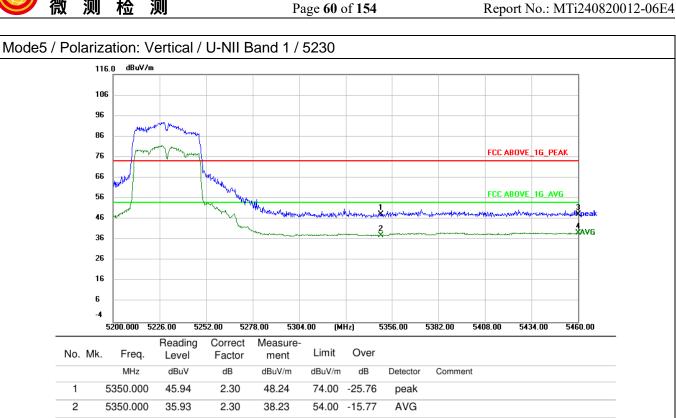
39.77

4

5460.000

5460.000

46.09

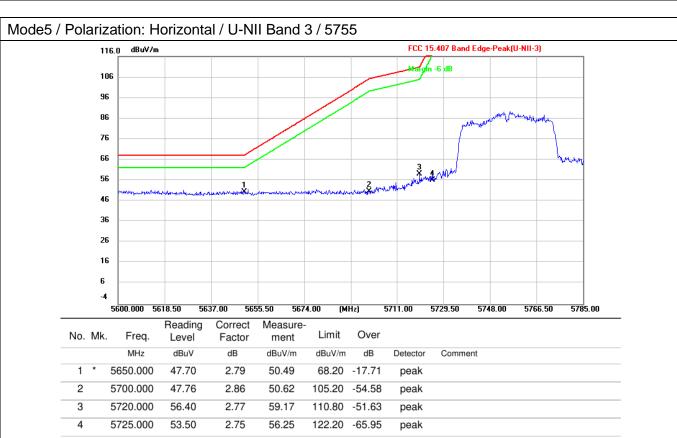

37.01

2.24

2.24

48.33

39.25



74.00 -25.67

54.00 -14.75

peak

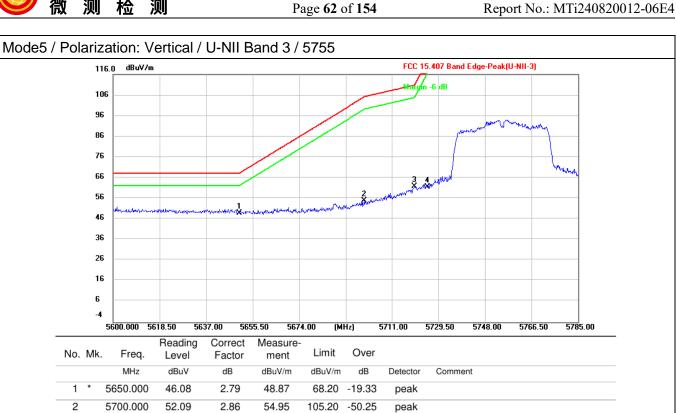
AVG

4

5720.000

5725.000

58.97


58.79

2.77

2.75

61.74

61.54

110.80 -49.06

122.20 -60.66

peak

4

5875.000

5920.000

45.98

46.16

2.91

3.22

48.89

49.38

Report No.: MTi240820012-06E4 Mode5 / Polarization: Horizontal / U-NII Band 3 / 5795 116.0 dBuV/m 106 96 86 76 CC 15.407 Band Edge-Peak(U-NII-3) 66 gin -6 dB And March of the Sample of the 56 46 36 26 16 6 6000.00 5780.000 5802.00 5824.00 5846.00 5868.00 (MHz) 5912.00 5934.00 5956.00 5978.00 Reading Correct Measure-Over Limit No. Mk. Freq. Factor Level ment MHz dBuV dB dBuV/m dBuV/m dB Comment Detector 5850.000 49.81 2.67 52.48 122.20 -69.72 peak 2 5855.000 49.56 2.72 52.28 110.80 -58.52 peak

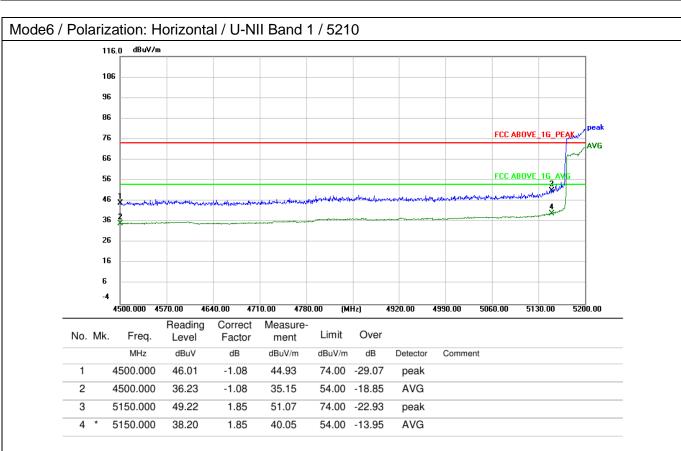
105.20 -56.31

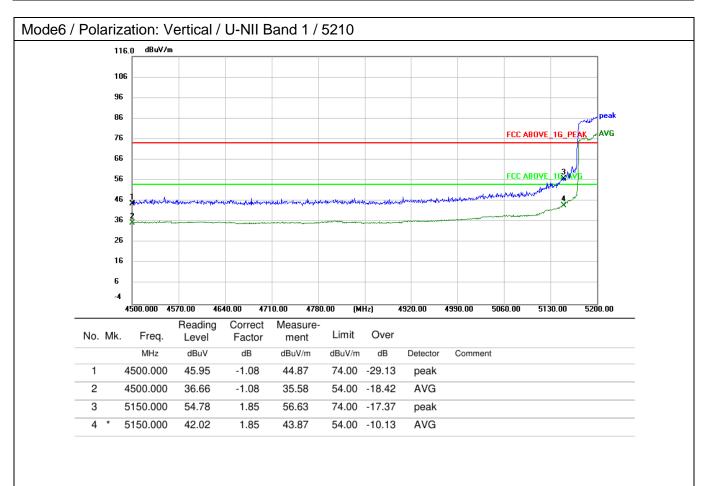
71.90 -22.52

peak

5920.000

46.30


3.22


49.52

Report No.: MTi240820012-06E4 Mode5 / Polarization: Vertical / U-NII Band 3 / 5795 dBuV/m 116.0 106 96 86 76 CC 15.407 Band Edge-Peak(U-NII-3) 66 ain -6 dB 56 46 36 26 16 6 6000.00 5780.000 5802.00 5824.00 5846.00 5868.00 (MHz) 5912.00 5934.00 5956.00 5978.00 Reading Correct Measure-Over Limit No. Mk. Freq. Factor Level ment MHz dBuV dB dBuV/m dBuV/m dB Comment Detector 5850.000 53.00 2.67 55.67 122.20 -66.53 peak 2 5855.000 52.45 2.72 55.17 110.80 -55.63 peak 3 5875.000 49.84 2.91 52.75 105.20 -52.45

71.90 -22.38

peak

4

5460.000

5460.000

46.70

36.85

2.24

2.24

48.94

39.09

Report No.: MTi240820012-06E4 Mode6 / Polarization: Horizontal / U-NII Band 1 / 5210 116.0 106 96 86 FCC ABOVE_1G_PEAK 76 66 FCC ABOVE 1G_AVG 56 46 36 26 16 6 5460.00 5200.000 5226.00 5252.00 5278.00 5304.00 (MHz) 5356.00 5382.00 5408.00 5434.00 Reading Correct Measure-Over Limit No. Mk. Freq. Factor Level ment MHz dBuV dB dBuV/m dBuV/m dB Comment Detector 5350.000 45.81 2.30 48.11 74.00 -25.89 peak 2 5350.000 36.05 2.30 38.35 54.00 -15.65 AVG

74.00 -25.06

54.00 -14.91

peak

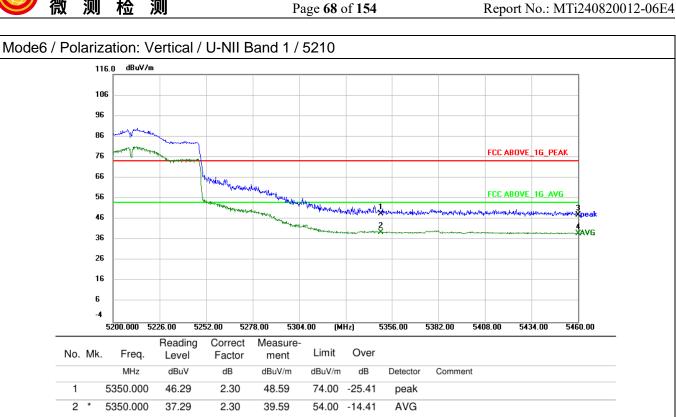
AVG

4

5460.000

5460.000

45.81

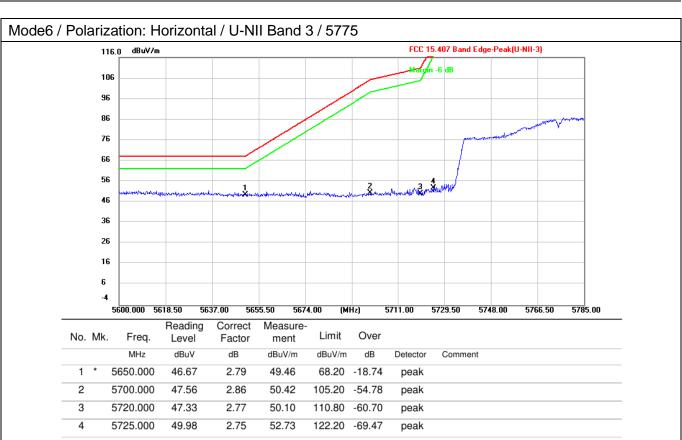

36.78

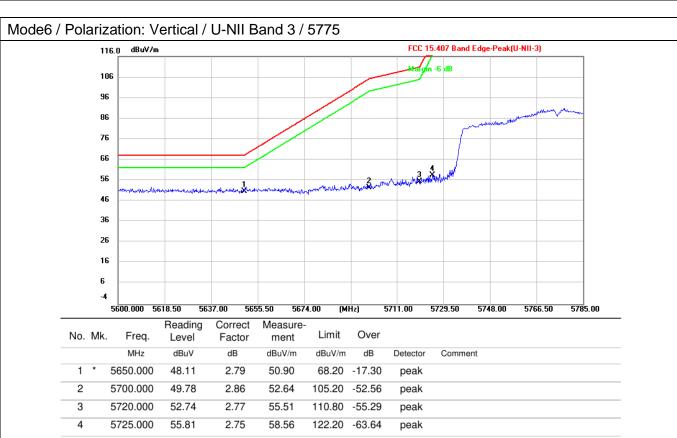
2.24

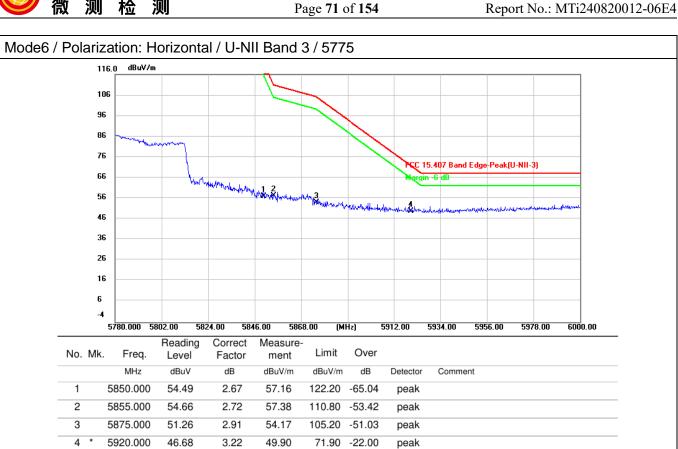
2.24

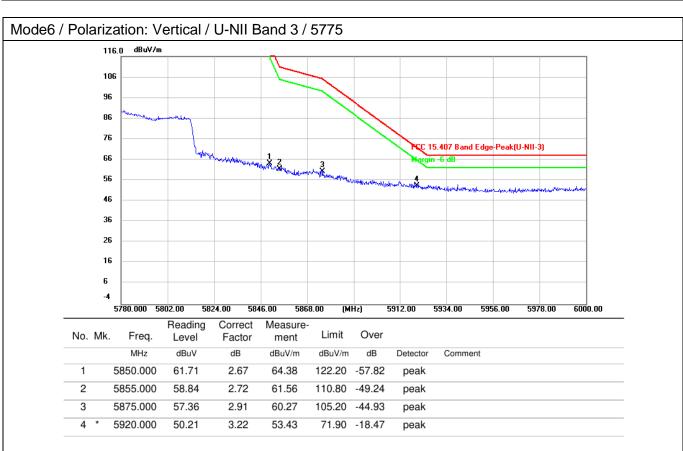
48.05

39.02




74.00 -25.95


54.00 -14.98


peak

AVG

6.7 Undesirable emission limits (below 1GHz)

	ission limits (below 1GH	<u> </u>						
Test Requirement:	47 CFR Part 15.407(b)	(9)						
Test Limit:	Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209.							
	Except as provided els	ewhere in this subpart, the e	emissions from an					
		ill not exceed the field streng						
	following table:		an levele epecimen in the					
	Frequency (MHz)	Field strength	Measuremen					
		(microvolts/meter)	t distance (meters)					
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
	88-216	150 **	3					
	216-960	200 **	3					
	Above 960	500	3					
	** Except as provided i	n paragraph (g), fundamenta	al emissions from					
	intentional radiators op frequency bands 54-72 However, operation wit	perating under this section shall be set of section shall be section shall be section shall be set of section shall be section shall be set of section shall be set of section shall be section shall be set of section	nall not be located in the MHz or 470-806 MHz.					
	In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.							
Test Method:	ANSI C63.10-2013, section 12.7.4, 12.7.5							
Procedure:	Below 1GHz:							
	meters above the ground was rotated 360 degree b. The EUT was set 3 cantenna, which was made of the and vertical polarization of the antenna was frequency of below 301 the rotatable table was maximum reading. e. The test-receiver system and was the emission level of the specified, then testing would be reported. Othe would be re-tested one then reported in a data g. Test the EUT in the lichannel. h. The radiation measure.	of the EUT in peak mode wa could be stopped and the pe erwise the emissions that di by one using quasi-peak m sheet. lowest channel, the middle c urements are performed in X	oic chamber. The table of the highest radiation. interference-receiving ble-height antenna tower. our meters above the distrength. Both horizontal make the measurement. Inged to its worst case and er to 4 meters (for the test of the heights 1 meter) and 60 degrees to find the distribution and Specified as 10dB lower than the limit eak values of the EUT of not have 10dB margin ethod as specified and hannel, the Highest of t					
	case.	d found the X axis positionin						

Remark:

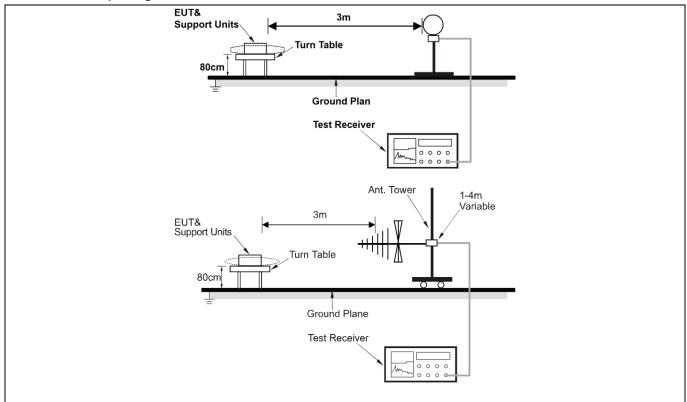
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No.: MTi240820012-06E4

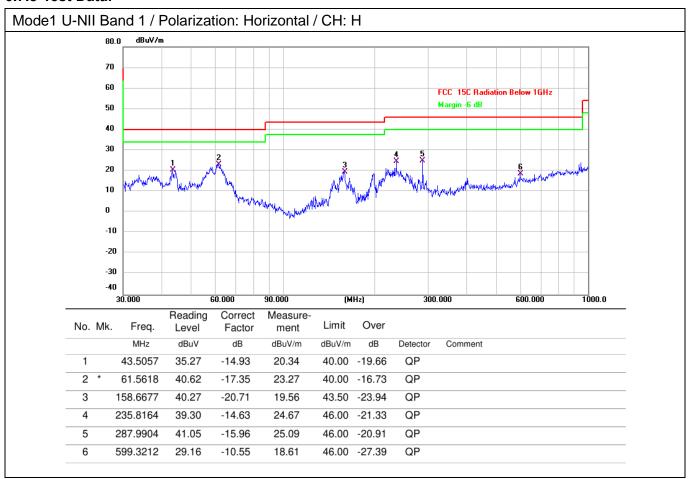
3. The disturbance below 1GHz was very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

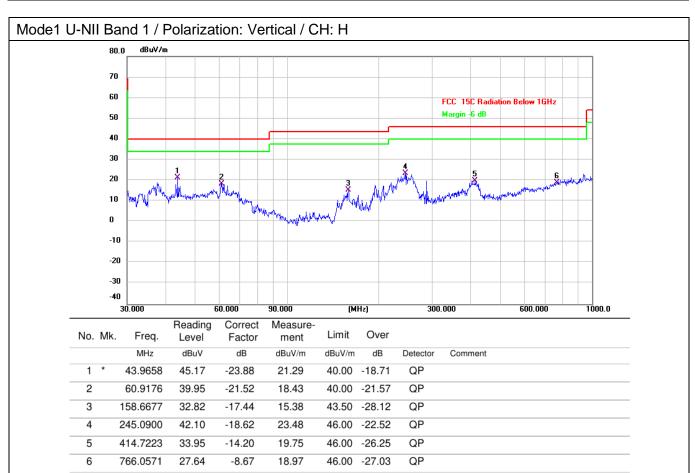
Above 1GHz:

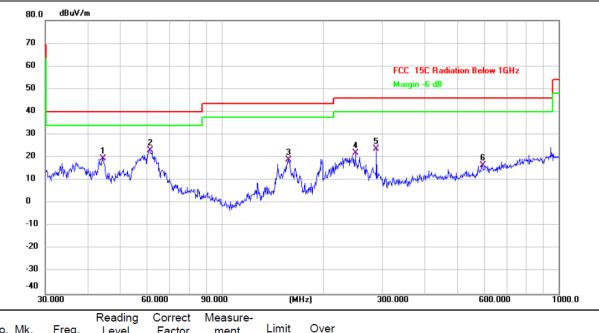
- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.


6.7.1 E.U.T. Operation:

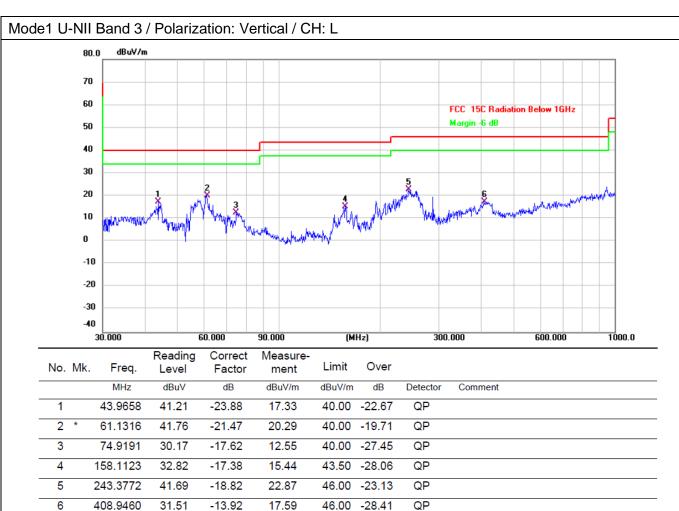
Operating Environment:


Temperature: 26 °C	Humidity: 54 % Atmospheric Pressure: 101.5 kPa					
Pre test mode:	Mode1, Mode2, Mode3, Mode4, Mode5, Mode6					
Final test mode:	All of the listed pre-test mode were tested, only the data of the worst mode (Mode1) is recorded in the report					


6.7.2 Test Setup Diagram:



6.7.3 Test Data:



Report No.: MTi240820012-06E4 Mode1 U-NII Band 3 / Polarization: Horizontal / CH: L

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		44.2752	34.63	-14.95	19.68	40.00	-20.32	QP	
2	*	61.1316	40.63	-17.34	23.29	40.00	-16.71	QP	
3		158.1123	39.47	-20.66	18.81	43.50	-24.69	QP	
4		249.4250	37.40	-15.31	22.09	46.00	-23.91	QP	
5		287.9904	39.58	-15.96	23.62	46.00	-22.38	QP	
6		593.0497	27.27	-10.68	16.59	46.00	-29.41	QP	

6.8 Undesirable emission limits (above 1GHz)

	······································
Test Requirement:	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)
Test Limit:	For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475-	608-614	5.35-5.46
	16.69525		
2.1735-2.1905	16.80425-	960-1240	7.25-7.75
	16.80475		
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-	9.3-9.5
		1646.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-	13.25-13.4
		1722.2	
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-	2483.5-2500	17.7-21.4
	156.52525		
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-	240-285	3345.8-3358	36.43-36.5
12.52025			
12.57675-	322-335.4	3600-4400	(2)
12.57725			
13.36-13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.

Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

² Above 38.6

Frequency (MHz)	Field strength	Measuremen
	(microvolts/meter)	t distance
		(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100 **	3
88-216	150 **	3
216-960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.

In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

Test Method:

ANSI C63.10-2013, section 12.7.4, 12.7.6, 12.7.7

Procedure:

Above 1GHz:

- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength

limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

6.8.1 E.U.T. Operation:

Operating Environment:								
Temperature:	26 °C		Humidity:	54 %	Atmospheric Pressure:	101.5 kPa		
Pre test mode:	Mode	Mode1, Mode2, Mode3, Mode4, Mode5, Mode6						
Final test mode			re-test mode w ded in the repo	ere tested, only the data ort	of the worst mode			

6.8.2 Test Data:

			Reading Correct Measure D. Mk. Freq. Level Factor ment		Limit Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		10360.000	42.82	10.75	53.57	74.00	-20.43	peak
2		10360.000	32.51	10.75	43.26	54.00	-10.74	AVG
3		15540.000	45.13	13.16	58.29	74.00	-15.71	peak
4	*	15540.000	35.41	13.16	48.57	54.00	-5.43	AVG

Mode1 /	Polarization:	Vertical	/ U-NII	Band 1	/ 5180
IVIOUCI	i olalization.	v Ci ticai i		Dana	, 0100

No.	Mk	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		10360.000	41.65	10.75	52.40	74.00	-21.60	peak
2		10360.000	31.82	10.75	42.57	54.00	-11.43	AVG
3		15540.000	46.10	13.16	59.26	74.00	-14.74	peak
4	*	15540.000	36.52	13.16	49.68	54.00	-4.32	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	1	0400.000	43.92	10.85	54.77	74.00	-19.23	peak
2	1	0400.000	33.84	10.85	44.69	54.00	-9.31	AVG
3	1	5600.000	45.07	12.71	57.78	74.00	-16.22	peak
4	* 1	5600.000	35.03	12.71	47.74	54.00	-6.26	AVG

Mode1 / Polarization: Vertical /	U-NII Band	1 / 5200
	Reading	Correct

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		10400.000	42.08	10.85	52.93	74.00	-21.07	peak
2		10400.000	35.73	10.85	46.58	54.00	-7.42	AVG
3		15600.000	45.13	12.71	57.84	74.00	-16.16	peak
4	*	15600.000	34.98	12.71	47.69	54.00	-6.31	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	1	0480.000	41.33	10.65	51.98	74.00	-22.02	peak
2	1	0480.000	30.71	10.65	41.36	54.00	-12.64	AVG
3	1	5720.000	44.76	12.68	57.44	74.00	-16.56	peak
4	* 1	5720.000	35.01	12.68	47.69	54.00	-6.31	AVG

Mode1	/ Polarization:	Vertical	/ LI_NIII	Rand 1	/ 52/10
i wode i .	/ Polanzalion.	verticai	/ U-INII	Danu i	/ 3Z4U

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	_
1	10	480.000	42.23	10.65	52.88	74.00	-21.12	peak	_
2	10	480.000	31.71	10.65	42.36	54.00	-11.64	AVG	_
3	15	720.000	44.79	12.68	57.47	74.00	-16.53	peak	_
4	* 15	720.000	34.91	12.68	47.59	54.00	-6.41	AVG	_

Mode1 / Polarization: Horizontal / U-NII Band 3 / 5745 Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m dBuV/m dΒ Detector 11490.000 42.37 12.51 54.88 -13.321 68.20 peak 2 11490.000 32.17 12.51 44.68 -9.32AVG 54.00 3 17235.000 44.96 14.54 -8.70 59.50 68.20 peak 4 17235.000 35.14 14.54 49.68 54.00 -4.32AVG

ı	Model	/ Polarization:	\/ortical	/ LL NIII	Pand 2	/ 57/5
ı	ivioue i /	Polanzalion.	venicai	/ U-INII	Danu 3	0140

No. N	Иk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
1	11490.000	42.60	12.51	55.11	68.20	-13.09	peak	
2	11490.000	32.85	12.51	45.36	54.00	-8.64	AVG	
3	17235.000	44.90	14.54	59.44	68.20	-8.76	peak	
4 *	17235.000	35.14	14.54	49.68	54.00	-4.32	AVG	,

No.	Mł	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		11570.000	42.71	12.37	55.08	68.20	-13.12	peak
2		11570.000	32.89	12.37	45.26	54.00	-8.74	AVG
3		17355.000	44.99	14.60	59.59	68.20	-8.61	peak
4	*	17355.000	35.08	14.60	49.68	54.00	-4.32	AVG

	/ D ' ('		/ U-NII Band 3	/ ==0=
1 1/10/201	/ Uniorizotion	HARIZANIAI	/	/ h / Uh
1 IVICICI C I	/ FUMILIZATION		/ U-IVII DAIIU .3	/:)/(0:)

N	٥.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1	1	1570.000	43.56	12.37	55.93	68.20	-12.27	peak
	2	1	1570.000	33.11	12.37	45.48	54.00	-8.52	AVG
	3	1	7355.000	45.15	14.60	59.75	68.20	-8.45	peak
	4	* 1	7355.000	34.94	14.60	49.54	54.00	-4.46	AVG

Model / Del	oria	otioni	Harizanta	N / I I NII Do	nd 2 / E021	 F			
Mode1 / Pol	o. I		Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1	11	650.000	44.22	12.19	56.41	68.20	-11.79	peak
	2	11	650.000	34.06	12.19	46.25	54.00	-7.75	AVG
	3	17	475.000	45.68	14.88	60.56	68.20	-7.64	peak
	4	* 17	475.000	35.60	14.88	50.48	54.00	-3.52	AVG

Mode1 /	Polarization:	Horizontal A	/ LI-NII	Band 3	/ 5825
IVIOUE I /	r ulanzaliun.	i iuiizuiilai /	OTIVIT	Danu 3	0020

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
1	11	650.000	42.87	12.19	55.06	68.20	-13.14	peak	
2	11	650.000	33.13	12.19	45.32	54.00	-8.68	AVG	
3	17	475.000	45.46	14.88	60.34	68.20	-7.86	peak	
4	* 17	475.000	35.81	14.88	50.69	54.00	-3.31	AVG	

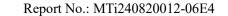
Photographs of the test setup

Refer to Appendix - Test Setup Photos

Photographs of the EUT

Refer to Appendix - EUT Photos

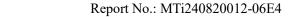
Appendix

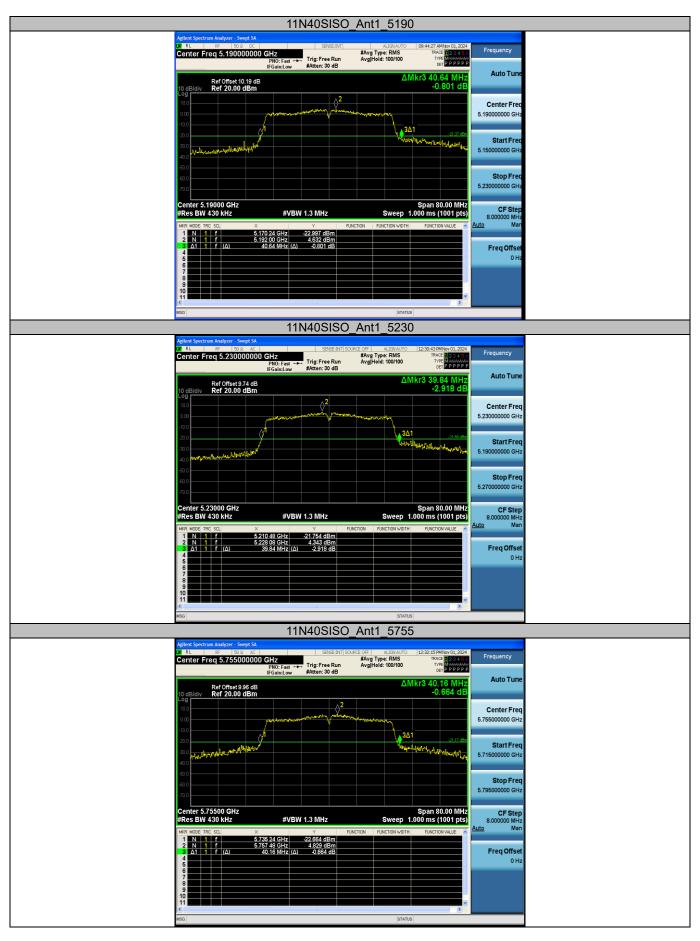


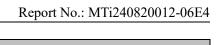
Appendix A1: Emission bandwidth (26dB bandwidth)

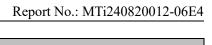
Test Result

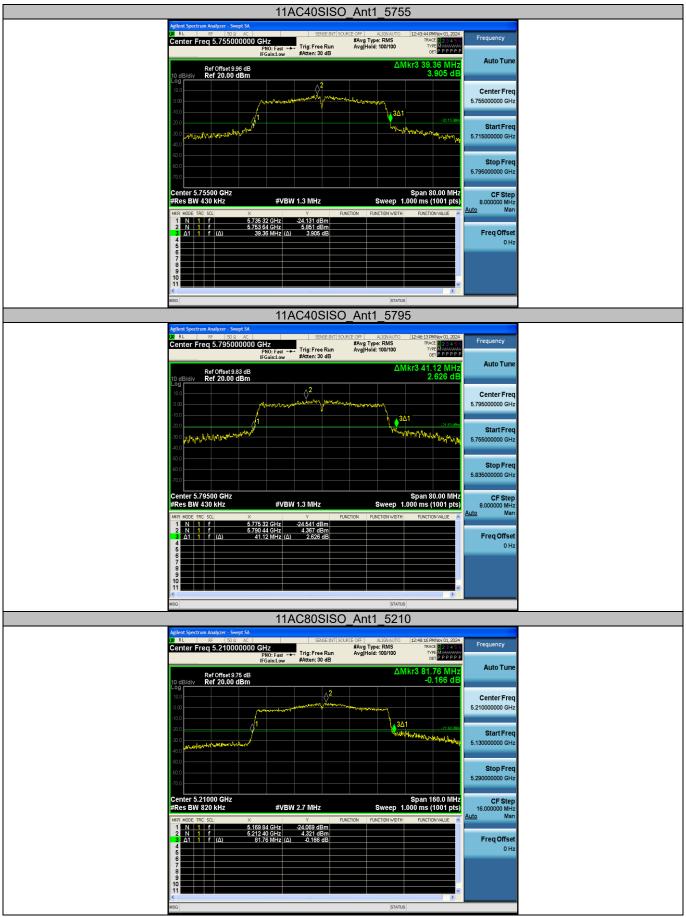
Test Mode	Antenna	Frequency	26db EBW	
	Antenna	[MHz]	[MHz]	
11A	Ant1	5180	20.920	
		5200	20.840	
		5240	20.840	
		5745	20.960	
		5785	20.960	
		5825	21.000	
11N20SISO	Ant1	5180	21.240	
		5200	21.360	
		5240	21.320	
		5745	21.120	
		5785	21.080	
		5825	21.360	
	Ant1	5190	40.640	
11N40SISO		5230	39.840	
111403130		5755	40.160	
		5795	42.960	
	Ant1	5180	21.360	
		5200	21.440	
11AC20SISO		5240	21.240	
11AC205150		5745	21.200	
		5785	21.360	
		5825	21.120	
11AC40SISO	Ant1	5190	39.760	
		5230	39.680	
		5755	39.360	
		5795	41.120	
11AC80SISO	Ant1	5210	81.760	
HACOUSISC		5775	80.960	













6.9 Appendix A2: Occupied channel bandwidth

6.9.1 Test Result

TestMode	Antenna	Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
11A	Ant1	5180	17.472	5171.2599	5188.7319		
		5200	18.707	5190.8913	5209.5983		
		5240	18.757	5230.6634	5249.4204		
		5745	19.405	5735.2084	5754.6134		
		5785	18.897	5775.3583	5794.2553		
		5825	18.859	5815.5454	5834.4044		
11N20SISO	Ant1	5180	18.991	5170.6493	5189.6403		
		5200	18.950	5190.7555	5209.7055		
		5240	18.550	5230.7842	5249.3342		
		5745	18.373	5735.7865	5754.1595		
		5785	18.352	5775.7239	5794.0759		
		5825	18.251	5815.8252	5834.0762		
11N40SISO	Ant1	5190	36.927	5171.8175	5208.7445		
		5230	36.635	5211.8213	5248.4563		
		5755	36.778	5736.7848	5773.5628		
		5795	36.779	5776.7490	5813.5280		
11AC20SISO	Ant1	5180	18.442	5170.8354	5189.2774		
		5200	18.420	5190.8786	5209.2986		
		5240	18.471	5230.8152	5249.2862		
		5745	18.407	5735.7759	5754.1829		
		5785	18.338	5775.7872	5794.1252		
		5825	18.318	5815.8437	5834.1617		
11AC40SISO	Ant1	5190	36.928	5171.6703	5208.5983		
		5230	36.801	5211.6305	5248.4315		
		5755	36.965	5736.5848	5773.5498		
		5795	36.964	5776.5629	5813.5269		
11AC80SISO	Ant1	5210	75.942	5172.4257	5248.3677		
		5775	75.880	5737.4268	5813.3068		

6.9.2 Test Graphs

