

TEST Report

Applicant:	YEAHER INC.
Address of Applicant:	51 Steel Dr, Unit A, New Castle, Delaware, 19720
Manufacturer :	Nimo Direct Inc.
Address of Manufacturer :	51 Steel Dr, Unit A, New Castle, Delaware, 19720
Equipment Under Test (El	JT)
Product Name:	Portable Computer
Model No.:	N153S
Series model:	N153B, N153G
Trade Mark:	N/A
FCC ID:	2BEMH-N153S
Applicable standards: Date of sample receipt:	FCC CFR Title 47 Part 15 Subpart C Section 15.247 Oct. 18, 2024
Date of Test:	Oct. 18, 2024 ~ Oct. 26, 2024
Date of report issued:	Oct. 26, 2024
Test Result :	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	Oct. 26, 2024	Original

Tested/ Prepared By

Heber He Date:

Oct. 26, 2024

Project Engineer

Check By:

Bruce Zhu Date:

Oct. 26, 2024

Reviewer

Oct. 26, 2024

Approved By :

2. Contents

1. VERSION	2
2. CONTENTS	3
3. TEST SUMMARY	4
4. GENERAL INFORMATION	5
 4.1. GENERAL DESCRIPTION OF EUT	7 7 7 7 7 7 7 7
6. TEST RESULTS AND MEASUREMENT DATA	9
 6.1. CONDUCTED EMISSIONS 6.2. CONDUCTED OUTPUT POWER 6.3. CHANNEL BANDWIDTH. 6.4. POWER SPECTRAL DENSITY 6.5. BAND EDGES 6.5.1 Conducted Emission Method 6.5.2 Radiated Emission Method 6.6. SPURIOUS EMISSION 6.6.1 Conducted Emission Method 6.2 Radiated Emission Method 6.3.2 Radiated Emission Method 6.4.1 Conducted Emission Method 6.5.2 Radiated Emission Method 6.5.3 Radiated Emission Method 6.5.4 Radiated Emission Method 6.5.5 Radiated Emission Method 6.5.5 Radiated Emission Method 6.5.5 Radiated Emission Method 6.5.5 Radiated Emission Method 	12 13 15 17 17 19 21 21 23 30
7. TEST SETUP PHOTO	-
8. EUT CONSTRUCTIONAL DETAILS	31

3. Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes		
Radiated Emission	30~1000MHz	4.37 dB	(1)		
Radiated Emission	1~18GHz	5.40 dB	(1)		
Radiated Emission	18-40GHz	5.45 dB	(1)		
Conducted Disturbance 0.15~30MHz 2.68 dB					
Note (1): The measurement unc	ertainty is for coverage factor of k	=2 and a level of confidence of §	95%.		

4. General Information

4.1. General Description of EUT

Product Name:	Portable Computer	
Model No.:	N153S	
Series model:	N153B, N153G	
Test sample(s) ID:	HTT202410082-1(Engineer sample) HTT202410082-2(Normal sample)	
Operation frequency	2402~2480 MHz	
Number of Channels	40	
Modulation Type	GFSK	
Channel separation	2MHz	
Antenna Type:	FPC Antenna	
Antenna Gain:	4.27 dBi	
Power Supply:	DC 11.4V From Battery and DC 20.0V From External Circuit	
Adapter Information:	Model: A879-200500C-US1 Input: 100-240V~50/60Hz,2.5A Output: PD 5V3A/9V3A/12V3A/15V3A/20V5A PPS 3.3-21V5A 100W Max	

Channel	Frequency(MHz)	Channel	Frequency(MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been accredited on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-23595200

Fax: 0755-23595201

4.8. Additional Instructions

Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

5. Test Instruments list

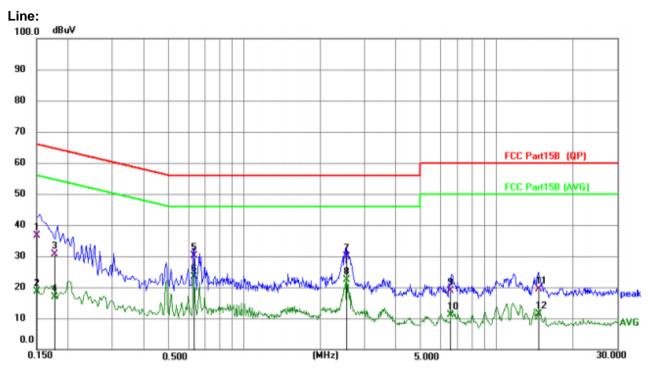
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2024	Aug. 09 2027
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2024	Aug. 09 2027
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	Apr. 26 2024	Apr. 25 2025
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	Apr. 26 2024	Apr. 25 2025
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	Apr. 26 2024	Apr. 25 2025
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	Apr. 26 2024	Apr. 25 2025
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	Apr. 26 2024	Apr. 25 2025
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	Apr. 26 2024	Apr. 25 2025
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	May. 21 2024	May. 20 2025
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	May. 20 2024	May. 19 2025
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	Apr. 26 2024	Apr. 25 2025
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	Apr. 26 2024	Apr. 25 2025
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	Apr. 26 2024	Apr. 25 2025
14	high-frequency Amplifier	HP	8449B	HTT-E014	Apr. 26 2024	Apr. 25 2025
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	Apr. 26 2024	Apr. 25 2025
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	Apr. 26 2024	Apr. 25 2025
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May. 23 2024	May. 22 2025
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May. 23 2024	May. 22 2025
19	Cable Line		Z302S-NJ-BNCJ-1.5M		Apr. 26 2024	Apr. 25 2025
20	Attenuator	Robinson	6810.17A	HTT-E007	Apr. 26 2024	Apr. 25 2025
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	Apr. 26 2024	Apr. 25 2025
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	Aug. 10 2024	Aug. 09 2027
23	DC power supply	Agilent	E3632A	HTT-E023	Apr. 26 2024	Apr. 25 2025
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	Apr. 26 2024	Apr. 25 2025
25	Analog signal generator	Agilent	N5181A	HTT-E025	Apr. 26 2024	Apr. 25 2025
26	Vector signal generator	Agilent	N5182A	HTT-E026	Apr. 26 2024	Apr. 25 2025
27	Power sensor	Keysight	U2021XA	HTT-E027	Apr. 26 2024	Apr. 25 2025
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	Apr. 28 2024	Apr. 27 2025
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A

Tel: 0755-23595200 Fax: 0755-23595201

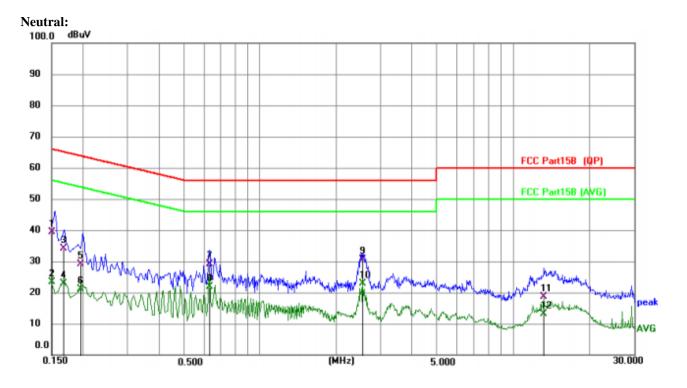
1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

6. Test results and Measurement Data

6.1. Conducted Emissions


Test Requirement:	FCC Part15 C Section 15.207	,					
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	150KHz to 30MHz						
Class / Severity:	Class B	Class B					
Receiver setup:	RBW=9KHz, VBW=30KHz, S	weep time=auto					
Limit:		Lim	nit (dBuV)				
	Frequency range (MHz)	Quasi-peak	Averag	e			
	0.15-0.5	66 to 56*	56 to 4	6*			
	0.5-5	56	46				
	5-30	60	50				
Test setup:	* Decreases with the logarithm						
Test procedure:	Reference Plane Image: Lish docs Aux docs Aux docs Equipment E.U.T Emark: E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators are connected to the main power through line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through						
	LISN that provides a 50ohr termination. (Please refer to photographs).Both sides of A.C. line are	o the block diagram	of the test setup				
Test Instruments:	interference. In order to fine positions of equipment and according to ANSI C63.10: Refer to section 6.0 for details	l all of the interface 2013 on conducted	cables must be c				
Test Instruments: Test mode:	positions of equipment and according to ANSI C63.10:	l all of the interface 2013 on conducted	cables must be c				
	positions of equipment and according to ANSI C63.10: Refer to section 6.0 for details Refer to section 5.2 for details	l all of the interface 2013 on conducted	cables must be c l measurement.				
Test mode:	positions of equipment and according to ANSI C63.10: Refer to section 6.0 for details Refer to section 5.2 for details	l all of the interface 2013 on conducted	cables must be c l measurement.	hanged			

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.


Report No.: HTT202410082F03

Measurement data:

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1	0.1513	26.40	10.16	36.56	65.93	-29.37	QP
2	0.1513	8.53	10.16	18.69	55.93	-37.24	AVG
3	0.1768	20.52	10.19	30.71	64.63	-33.92	QP
4	0.1768	6.81	10.19	17.00	54.63	-37.63	AVG
5	0.6316	19.82	10.32	30.14	56.00	-25.86	QP
6 *	0.6316	13.07	10.32	23.39	46.00	-22.61	AVG
7	2.5500	19.39	10.46	29.85	56.00	-26.15	QP
8	2.5500	11.87	10.46	22.33	46.00	-23.67	AVG
9	6.6209	8.27	10.62	18.89	60.00	-41.11	QP
10	6.6209	0.45	10.62	11.07	50.00	-38.93	AVG
11	14.6525	8.23	11.04	19.27	60.00	-40.73	QP
12	14.6525	0.32	11.04	11.36	50.00	-38.64	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz		dB	dBuV	dBuV	dB	Detector
1		0.1500	29.22	10.16	39.38	66.00	-26.62	QP
2		0.1500	13.10	10.16	23.26	56.00	-32.74	AVG
3		0.1672	23.98	10.18	34.16	65.10	-30.94	QP
4		0.1672	12.79	10.18	22.97	55.10	-32.13	AVG
5		0.1960	18.87	10.21	29.08	63.78	-34.70	QP
6		0.1960	10.90	10.21	21.11	53.78	-32.67	AVG
7		0.6332	18.81	10.35	29.16	56.00	-26.84	QP
8		0.6332	11.58	10.35	21.93	46.00	-24.07	AVG
9		2.5511	20.08	10.43	30.51	56.00	-25.49	QP
10	*	2.5511	12.37	10.43	22.80	46.00	-23.20	AVG
11		13.2374	7.46	11.06	18.52	60.00	-41.48	QP
12		13.2374	2.05	11.06	13.11	50.00	-36.89	AVG

Notes:

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level =Receiver Read level + LISN Factor + Cable Los

 Shenzhen HTT Technology Co.,Ltd.
 Tel: 0755-23595200 Fax: 0755-23595201

 1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road,Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

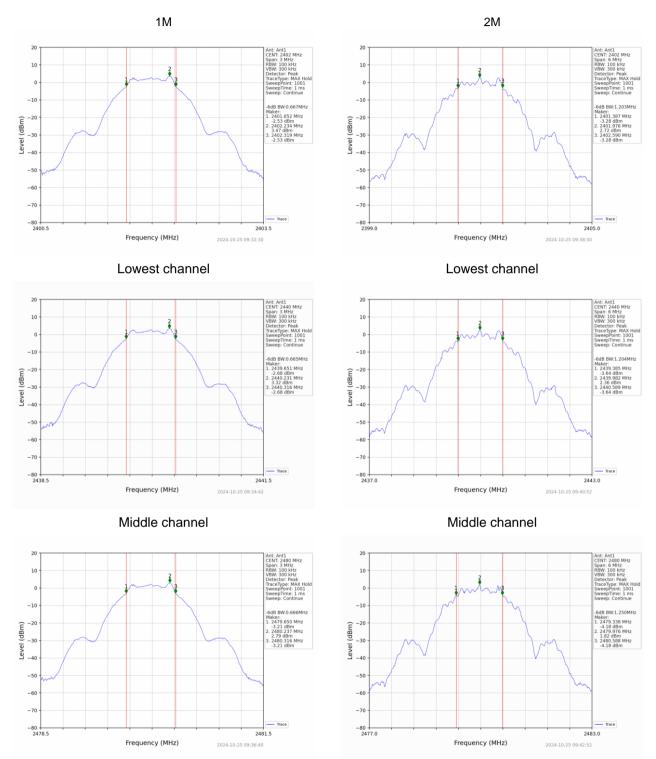
Test Requirement: Test Method:	FCC Part15 C Section 15.247 (b)(3) ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02							
Limit:	30dBm							
Test setup:	Power Meter Image: Constraint of the second seco							
Test Instruments:	Refer to see	ction 6.0 for d	letails					
Test mode:	Refer to see	ction 5.2 for d	letails					
Test results:	Pass							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		

6.2. Conducted Output Power

Measurement Data

Mode	TX	Frequency	Maximum Peak Conduc	Peak Conducted Output Power (dBm)				
wode	Туре	(MHz)	ANT1	Limit	Verdict			
		2402	3.81	<=30	Pass			
1M	SISO	2440	3.45	<=30	Pass			
		2480	2.89	<=30	Pass			
		2402	3.71	<=30	Pass			
2M	SISO	2440	3.38	<=30	Pass			
		2480	3.11	<=30	Pass			

6.3. Channel Bandwidth


Test Requirement:	FCC Part15 C Section 15.247 (a)(2)							
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02							
Limit:	>500KHz							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 6.0 for details							
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar							

Measurement Data

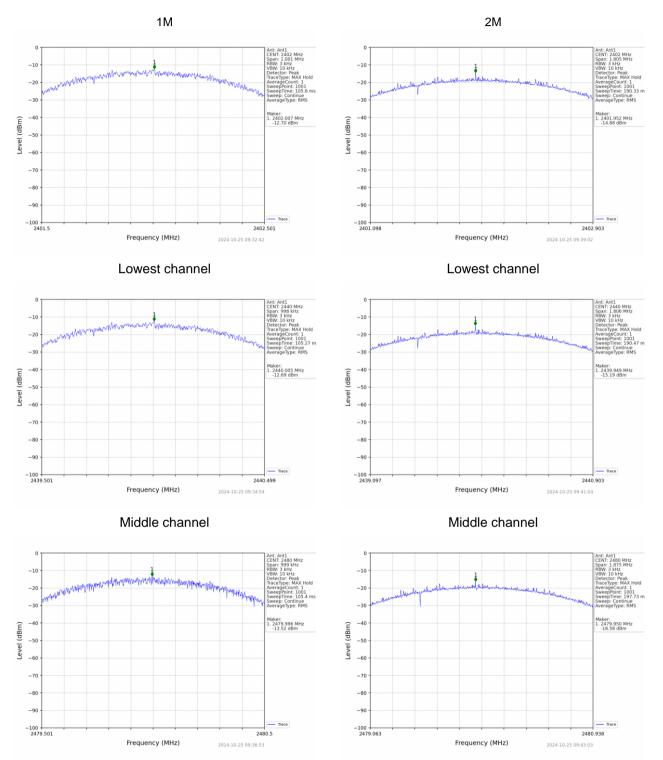
Mode	TX	Frequency	ANT	6dB Bandv	Verdict		
Туре		(MHz)	ANT	Result	Limit	verdici	
		2402	1	0.667	>=0.5	Pass	
1M	SISO	2440	1	0.665	>=0.5	Pass	
		2480	1	0.666	>=0.5	Pass	
		2402	1	1.203	>=0.5	Pass	
2M	SISO	2440	1	1.204	>=0.5	Pass	
		2480	1	1.250	>=0.5	Pass	

Test plot as follows:

Highest channel

Highest channel

Test Requirement:	FCC Part15 C Section 15.247 (e)								
Test Method:	ANSI C63.1	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02							
Limit:	8dBm/3kHz	8dBm/3kHz							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane								
Test Instruments:	Refer to see	ction 6.0 for d	letails						
Test mode:	Refer to see	Refer to section 5.2 for details							
Test results:	Pass	Pass							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			


6.4. Power Spectral Density

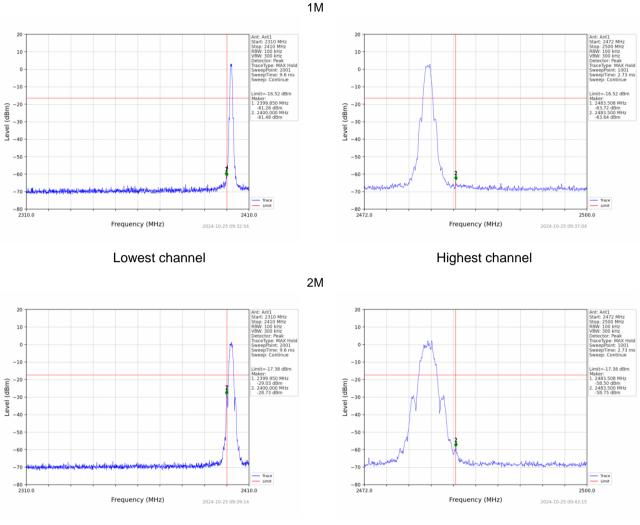
Measurement Data

Mode	TX	Frequency	Maximum PS	Verdict	
wode	Туре	(MHz)	ANT1	Limit	verdict
		2402	-12.70	<=8	Pass
1M	SISO	2440	-12.69	<=8	Pass
		2480	-13.52	<=8	Pass
		2402	-14.88	<=8	Pass
2M	SISO	2440	-15.19	<=8	Pass
		2480	-16.58	<=8	Pass

Test plot as follows:

Highest channel

Highest channel


6.5. Band edges

6.5.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)								
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02								
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.								
Test setup:	radiated measurement. Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane								
Test Instruments:	Refer to section 6.0 for details								
Test mode:	Refer to section 5.2 for details								
Test results:	Pass								
Test environment:	Temp.:25 °CHumid.:52%Press.:1012mbar								

Test plot as follows:

Lowest channel

Highest channel

Test Requirement:	FCC Part15 C Section 15.209 and 15.205								
Test Method:	ANSI C63.10:2013								
Test Frequency Range:		strict bands	woro to	acted (only th		et hand'e <i>('</i>	2310MHz to	
	2500MHz) d	lata was sho	wed.	esteu, t	only u		st band s (2		
Test site:	Measureme	nt Distance:	3m						
Receiver setup:	Frequenc	Frequency Detector RBW VBW Va							
	Above 1GHz Peak 1MHz 3MHz							Peak	
	Above 1GHZ RMS 1MHz 3MHz Average								
Limit:	Frequency Limit (dBuV/m @3m) Value								
	Abo	Above 1GHz 54.00 Average 74.00 Peak							
Test setup:		Tum Tablev <im 4m="" _="">v <im 4m="" _="">v <im< td=""></im<></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im></im>							
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. The radiation measurements are performed in X, Y, Z axis positioning. 								
Test Instruments:		tion 6.0 for d							
Test mode:	Refer to sec	tion 5.2 for d	letails						
Test results:	Pass								
Test environment:	Temp.:	25 °C	Humio	d.:	52%		Press.:	1012mbar	

6.5.2 Radiated Emission Method

Shenzhen HTT Technology Co.,Ltd.

Tel: 0755-23595200 Fax: 0755-23595201

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Measurement Data

Remark: GFSK(1M), GFSK(2M) all have been tested, only worse case GFSK(1M) is reported.

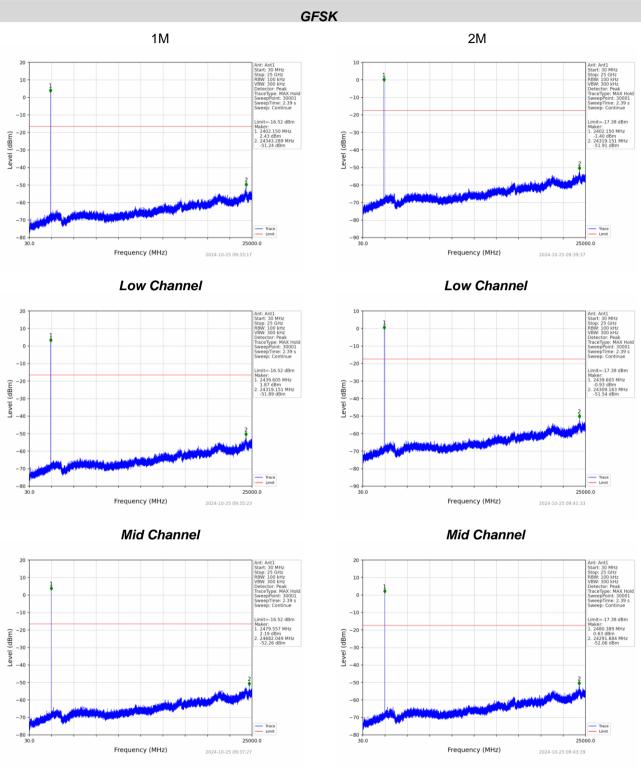
Operation Mode: GFSK (1M)

Freque	ncy(MHz)	:	24	02	Pola	arity:	н		NL
Frequency (MHz)	Emis Le ^v (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.29	PK	74	14.71	60.68	27.2	4.31	32.9	-1.39
2390.00	45.04	AV	54	8.96	46.43	27.2	4.31	32.9	-1.39
Freque	ncy(MHz)	:	24	02	Pola	arity:		VERTICAL	
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.45	PK	74	14.55	60.84	27.2	4.31	32.9	-1.39
2390.00	46.04	AV	54	7.96	47.43	27.2	4.31	32.9	-1.39
Freque	ncy(MHz)	:	2480		P olarity:		HORIZONTAL		
Frequency (MHz)	Emis Le ^s (dBu	vel	Limit Margin (dBuV/m) (dB)		Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	55.90	PK	74	18.10	56.83	27.4	4.47	32.8	-0.93
2483.50	44.54	AV	54	9.46	45.47	27.4	4.47	32.8	-0.93
Freque	ncy(MHz)	:	24	80	Pola	arity:		VERTICAL	
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	54.28	PK	74	19.72	55.21	27.4	4.47	32.8	-0.93
2483.50	43.69	AV	54	10.31	44.62	27.4	4.47	32.8	-0.93

6.6. Spurious Emission

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)								
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02								
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.								
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane								
Test Instruments:	Refer to section 6.0 for details								
Test mode:	Refer to section 5.2 for details								
Test results:	Pass								
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar								


Test plot as follows:

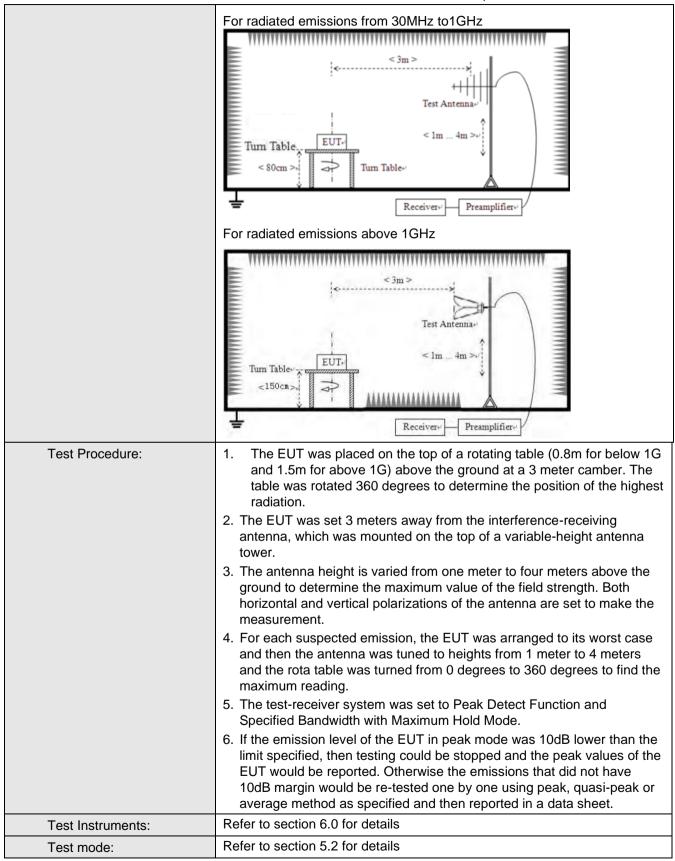
reference

Shenzhen HTT Technology Co.,Ltd.Tel: 0755-23595200Fax: 0755-235952011F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road,Nanchang Community, Xixiang Street, Bao'an District,
Shenzhen, Guangdong, China

High Channel

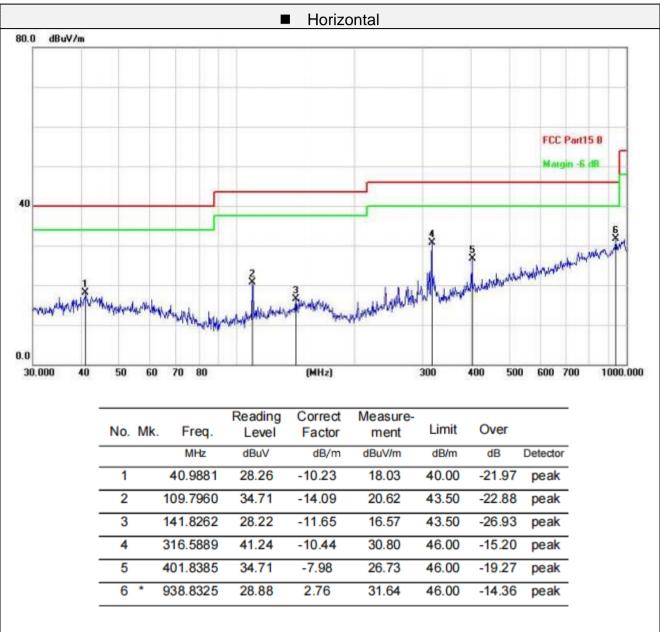
Tel: 0755-23595200 Fax: 0755-23595201

High Channel


Shenzhen HTT Technology Co.,Ltd. 1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

	6.6.2 Radiated Emission Method								
Test Requirement:	FCC Part15 C Section 15.209								
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	9kHz to 25GHz								
Test site:	Measurement Distance: 3m								
Receiver setup:	Frequency	٢	Detector	RB\	W VB		,	Value	
	9KHz-150KHz	Qı	uasi-peak	200H	Ηz	600Hz	z G	luasi-peak	
	150KHz-30MHz	Qı	uasi-peak	9K⊦	lz	30KH2	z G	≀uasi-peak	
	30MHz-1GHz	Qı	lasi-peak	120K	Hz	300KH	lz G	luasi-peak	
	Above 1GHz		Peak	1MF	łz	3MHz	2	Peak	
	Above ronz		Peak	1MF	łz	10Hz		Average	
Limit:	Frequency		Limit (u∖	//m)	۷	alue		isurement istance	
	0.009MHz-0.490M	Hz	2400/F(k	(Hz)		QP		300m	
	0.490MHz-1.705M	Hz	24000/F(KHz)	QP		30m		
	1.705MHz-30MH	z	30		QP		30m		
	30MHz-88MHz		100		QP		3m		
	88MHz-216MHz	_	150		QP				
	216MHz-960MH	Z	200		QP				
	960MHz-1GHz		500	500		QP		om	
	Above 1GHz		500		Average				
			5000) Peak					
Test setup:	For radiated emissions from 9kHz to 30MHz								
	Tum Table		zı Tum Table+	lm Rece	iver-		LA MARANA ANA ANA ANA ANA ANA ANA ANA ANA AN		

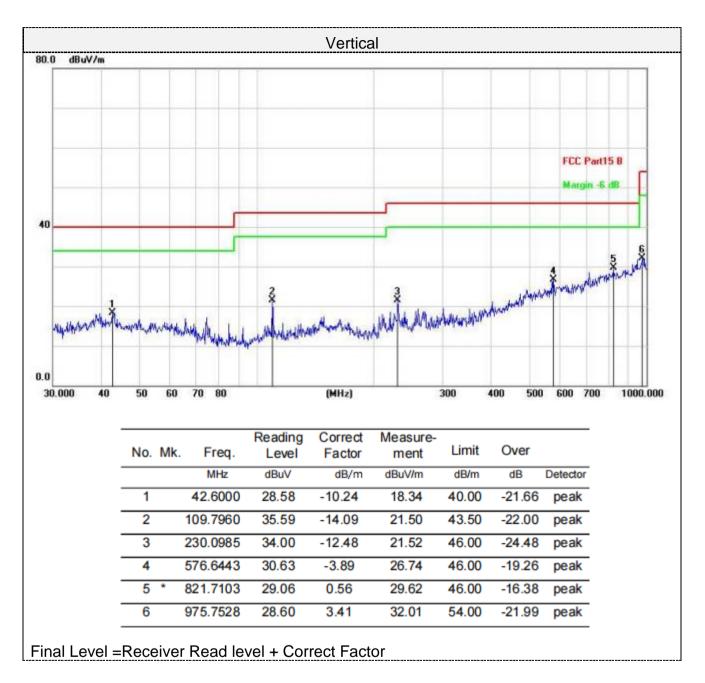
6.6.2 Radiated Emission Method


				Report	0	100021 00	
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	
Test voltage:	AC 120V, 60Hz						
Test results:	Pass						

Measurement data:

Remarks:

- 1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.
- 2. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.
- 3. Based on all tested data, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and with the worst case as BLE 1M 2402MHz as below:



Below 1GHz

Shenzhen HTT Technology Co.,Ltd.Tel: 0755-23595200Fax: 0755-235952011F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road,Nanchang Community, Xixiang Street, Bao'an District,
Shenzhen, Guangdong, China

Above 1-25GHz

Frequency(MHz):			2402		Polarity:		HORIZONTAL			
Frequency	Emission		Limit Margir	Margin	Raw	Antenna	Cable	Pre-	Correction	
(MHz)	Lev	vel			U U	Value	Factor	Factor	amplifier	Factor
	(dBuV/m)		(dBuV/m)	(dB)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)	
4804.00	59.64	PK	74	14.36	53.94	31	6.5	31.8	5.7	
4804.00	42.80	AV	54	11.20	37.10	31	6.5	31.8	5.7	
7206.00	54.49	PK	74	19.51	41.84	36	8.15	31.5	12.65	
7206.00	43.18	AV	54	10.82	30.53	36	8.15	31.5	12.65	

Frequency(MHz):			2402		Polarity:		VERTICAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	58.67	PK	74	15.33	52.97	31	6.5	31.8	5.7
4804.00	43.65	AV	54	10.35	37.95	31	6.5	31.8	5.7
7206.00	52.10	PK	74	21.90	39.45	36	8.15	31.5	12.65
7206.00	43.27	AV	54	10.73	30.62	36	8.15	31.5	12.65

Frequency(MHz):			2440		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	60.02	PK	74	13.98	53.86	31.2	6.61	31.65	6.16
4880.00	44.83	AV	54	9.17	38.67	31.2	6.61	31.65	6.16
7320.00	53.01	PK	74	20.99	40.06	36.2	8.23	31.48	12.95
7320.00	44.22	AV	54	9.78	31.27	36.2	8.23	31.48	12.95

Frequency(MHz):			2440		Polarity:		VERTICAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	61.94	PK	74	12.06	55.78	31.2	6.61	31.65	6.16
4880.00	42.54	AV	54	11.46	36.38	31.2	6.61	31.65	6.16
7320.00	54.20	PK	74	19.80	41.25	36.2	8.23	31.48	12.95
7320.00	44.49	AV	54	9.51	31.54	36.2	8.23	31.48	12.95

Frequency(MHz):			2480		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	62.00	, PK	74	12.00	55.34	31.4	6.76	31.5	6.66
4960.00	41.49	AV	54	12.51	34.83	31.4	6.76	31.5	6.66
7440.00	53.02	PK	74	20.98	39.72	36.4	8.35	31.45	13.3
7440.00	45.04	AV	54	8.96	31.74	36.4	8.35	31.45	13.3

Frequency(MHz):			2480		Polarity:		VERTICAL		
Frequency	Emission		Limit	Limit Margin		Antenna	Cable	Pre-	Correction
(MHz)	Le	Level	(dBuV/m)	Ŭ	Value	Factor	Factor	amplifier	Factor
	(dBuV/m)		(ubuv/m)	(dB)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
4960.00	62.54	PK	74	11.46	55.88	31.4	6.76	31.5	6.66
4960.00	43.15	AV	54	10.85	36.49	31.4	6.76	31.5	6.66
7440.00	54.85	PK	74	19.15	41.55	36.4	8.35	31.45	13.3
7440.00	44.07	AV	54	9.93	30.77	36.4	8.35	31.45	13.3

Remark:

(1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

(2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

Shenzhen HTT Technology Co.,Ltd.Tel: 0755-23595200Fax: 0755-235952011F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road,Nanchang Community, Xixiang Street, Bao'an District,
Shenzhen, Guangdong, ChinaShenzhen, Guangdong, China

6.7. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The maximum gain of antenna was 4.27 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen HTT Technology Co., Ltd. does not assume any responsibility.

7. Test Setup Photo

Reference to the **appendix I** for details.

8. EUT Constructional Details

Reference to the **appendix II** for details.

-----End------