

Test Report No.: REP020916 FCC Certification

Nemko Korea Co., Ltd.

165-51, Yurim-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, 17042, Republic of Korea TEL : + 82 31 330 1700 FAX : + 82 31 322 2332

FCC PART 18 Class II Permissive Change

<u>Applicant :</u> SAMSUNG ELECTRONICS Co., Ltd. 129, Samsung-ro, Yeongtong-gu Suwon-si, Gyeonggi-do, 443-742, Korea Attn : Ms. Jiyea Hong

Dates of Issue : December 28, 2023 Test Report No. : REP020916 Test Site : Nemko Korea Co., Ltd. EMC site, Korea

FCC ID

Trade Mark

Contact Person

A3LOTR21M4C

SAMSUNG

SAMSUNG ELECTRONICS Co., Ltd. 129, Samsung-ro, Yeongtong-gu Suwon-si, Gyeonggi-do, 443-742, Korea Ms. Jiyea Hong Telephone No. : + 82 31 8062 9326

Applied Standard : Classification : EUT Type : FCC Part 18 & Part 2 Part 18 Consumer ISM equipment Microwave oven

The device bearing the Trade Mark and FCC ID specified above has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in MP-5:1986.

I attest to the accuracy of data and all measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

December 28, 2023

Tested By : Seunghyuk Yoo Engineer December 28, 2023

Reviewed By : Taegyun Kim Technical Manager

NKQF-27-23 (Rev. 0)

SAMSUNG ELECTRONICS Co., Ltd. FCC ID: A3LOTR21M4C Page 1 of 74

ACCREDITATION AND LISTING Input Power Measurement......7 Output Power Measurement7 Frequency Measurements7 Radiated Emissions 9 Radiation Hazard10 Input Power Measurement......10 Frequency measurements11 Conducted Emissions 13

SCOPE

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission under FCC part 18.

Responsible Party : Contact Person :	SAMSUNG ELECTRONICS Co., Ltd. Ms. Jiyea Hong Tel No.: + 82 31 8062 9326
Manufacturer :	SAMSUNG ELECTRONICS Co., Ltd. 129, Samsung-ro, Yeongtong-gu Suwon-si, Gyeonggi-do, 443-742, Korea

- FCC ID: A3LOTR21M4C
- Model: ME21DG6700SRAA
- Variant Model: ME21DB670012AA, ME21DG6700MTAA
 - Trade Mark: **SAMSUNG**
 - EUT Type: Microwave oven
- Applied Standard: FCC Part 18 & Part 2
- Test Procedure(s): MP-5:1986
- Dates of Test: December 11, 2023 to December 14, 2023
- Place of Tests: Nemko Korea Co., Ltd. EMC Site
- Test Report No.: REP020916

The measurement procedure described in MP5:1986 for Methods of Measurement of radiated, powerline conducted radio noise, frequency and power output was used in determining emissions emanating from **Samsung Electronics Co., Ltd.** FCC ID : **A3LOTR21M4C, Microwave oven.**

These measurement tests were conducted at **Nemko Korea Co., Ltd. EMC Laboratory**. The site address is 155, Osan-ro, Mohyeon-eup, Cheoin-gu, Yongin-si, Gyeonggi-do 16885 Republic of Korea and 165-51, Yurim-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, 17042, Republic of Korea.

The area of Nemko Korea Corporation Ltd. EMC Test Site is located in a mountain area at 80 kilometers (48 miles) southeast and Incheon International Airport (Incheon Airport), 30 kilometers (18 miles) south-southeast from central Seoul.

The Nemko Korea Co., Ltd. has been accredited as a Conformity Assessment Body (CAB).

Nemko Korea Co., Ltd. 155, Osan-ro, Mohyeon-eup, Cheoin-gu, Yongin-si, Gyeonggi-do 16885, Republic of Korea, 165-51, Yurim-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, 17042, Republic of Korea. Tel) + 82 31 330 1700 Fax) + 82 31 322 2332

Fig. 1. The map above shows the Seoul in Korea vicinity area. The map also shows Nemko Korea Corporation Ltd. EMC Lab and Incheon Airport.

ACCREDITATION AND LISTING

	Accreditation number			
F©	FC CAB Accreditation for DOC			
ROLAS REVIEW ROLES	KOLAS Accredited Lab. (Korea Laboratory Accreditation Scheme)	Registration No. KT155		
Industry Canada	Canada IC Registered site	Site No. 2040E		
VEI	VCCI registration site(RE/CE/Telecom CE)	Member No. 2118		
	EMC CBTL	TL124		
1 N	KCC(RRL)Designated Lab.	Registration No. KR0026		

EUT Information

Intended use	Household
Type of appliance	Over The Range
Model	ME21DG6700SRAA
Rated voltage & frequency	AC 120 V, 60 Hz Single Phase
Rated power output	1 000 W
Rated power consumption(MW)	1 700 W
Magnetron	OM-75P, manufactured by Samsung

Component List

Item	Model	Manufacturer	Serial Number
MAGNETRON	OM-75P	Samsung	N/A
H.V TRANS	SHV-U1870C	DPC	N/A
H.V CAPACITOR	CH85-210091	Bicai	N/A
FAN MOTOR	SMF-U2070B	Samsung	N/A
INTERLOCK SWITCH	SZM-V16	Starion	N/A
Control OTR_PF1_23		Samsung	N/A

Description of the Changes according to FCC part 2.1043

Report No.	Difference
REP020916	1) PBA : OTR_PF1_23 2) Noise Filter
	3) Exterior design

Radiation Hazard

A 700 ml water load was placed in the center of the oven.
The power setting was set to maximum power.
While the oven was operating, the Microwave Survey Meter probe was moved slowly around the door seams to check for leakage.

Input Power Measurement

A 700 mℓ water load was placed in the center of the oven and the oven set to maximum power. A 700 mℓ water load was chosen for its compatibility. Input power and current were measured using a Power Analyzer. Manufacturers to determine their input ratings commonly use this procedure.

Output Power Measurement

The Caloric Method was used to determine maximum output power. The initial temperature of a 1 000 $\,\mathrm{m}\ell\,$ water load was measured. The water load was placed in the center of the oven. The oven was operated at maximum output power for 47 seconds. Then the temperature of the water re-measured.

Frequency Measurements

Following the above test, after operating the oven long enough to assure that stable operating temperature were obtained, the operating frequency was monitored as the input voltage was varied between 80 percent to 125 percent of the nominal rating. And the load quantity was reduced by evaporation to approximately 20 % of the original quantity with nominal rating.

Conducted Emissions

The Line conducted emission test facility is located inside a 4 x 7 x 2.5 m shielded enclosure.

It is manufactured by EM engineering. The shielding effectiveness of the shielded room is in accordance with MIL-STD-285 or NSA 65-6.

A 1 m x 1.5 m wooden table 0.8 m height is placed 0.4 m away from the vertical wall and 0.5 m away from the side of wall of the shielded room Rohde & Schwarz (ESH2-Z5) of the 50 ohm / 50 uH Line Impedance Stabilization Network(LISN) are bonded to the shielded room.

The EUT is powered from the Rohde & Schwarz (ESH2-Z5).

Power to the LISN s are filtered by high-current high insertion loss power line filters.

The purpose of filter is to attenuate ambient signal interference and this filter is also bonded to shielded enclosure. All electrical cables are shielded by tinned copper zipper tubing with inner diameter of 1/2".

If d.c. power device, power will be derived from the source power supply it normally will be powered from and this supply lines will be connected to the LISNs,

All interconnecting cables more than 1 m were shortened by non-inductive bundling (serpentine fashion) to a 1 m length.

Sufficient time for EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer to determine the frequency producing the maximum EME from the EUT. The spectrum was scanned from 150 klz to 30 Mz with 15 s sweep time.

The frequency producing the maximum level was re-examined using the EMI test receiver. (Rohde & Schwarz ESCI).

The detector functions were set to quasi-peak mode & CISPR average mode.

The bandwidth of receiver was set to 9 kt. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each EME emission.

Each emission was maximized by; switching power lines; varying the mode of operation or resolution; clock or data exchange speed; scrolling H pattern to the EUT and of support equipment, and powering the monitor from the floor mounted outlet box and computer aux a.c. outlet, if applicable; whichever determined the worst case emission.

Each EME reported was calibrated using the R&S signal generator.

Fig. 2. LISN Schematic Diagram

Radiated Emissions

Measurement were made indoors at 10 m & 3 m using antenna, signal conditioning unit and EMI test receiver to determine the frequency producing the maximum EME.

Appropriate precaution was taken to ensure that all EME from the EUT were maximized and investigated. The Technology configuration, clock speed, mode of operation or video resolution, turntable azimuth with respect to the antenna was note for each frequency found.

The spectrum was scanned from 0.15 Mz to 30 Mz using Loop Antenna

(ROHDE & SCHWARZ/HFH2-Z2) and from 30 Mb to 1 000 Mb using TRILOG Broadband Test Antenna (Schwarzbeck, VULB 9163). 1 GHz to 6 GHz and 6 GHz to 18 GHz, Double Ridged Broadband Horn Antennas (Schwarzbeck, BBHA9120D) was used.

The test equipment was placed on a Styrofoam table.

Final Measurements were made indoors at 3 m using Loop Antenna

(ROHDE & SCHWARZ/HFH2-Z2) for measurement from 0.15 to 30 Mb with RBW 9 kb and made indoor at 10 m using TRILOG Broadband Test Antenna (Schwarzbeck, VULB 9163) for measurement from 30 Mb to 1 000 Mb with RBW 120 kb and made indoors at 3 m using Double Ridged Broadband Horn Antenna (Schwarzbeck, BBHA9120D).

The detector function were set to quasi peak mode and the bandwidth of the receiver were set to 9 kHz, 120 kHz and peak mode 1 MHz depending on the frequency or type of signal.

The Double Ridged Broadband Horn antenna was tuned to the frequency found during preliminary radiated measurements.

The EUT support equipment and interconnecting cables were re-configured to the setup producing the maximum emission for the frequency and were placed on top of a 0.8 m high non- metallic 1.0 X 1.5 meter table.

The EUT, support equipment and interconnecting cables were re-arranged and manipulated to maximize each EME emission.

The EUT is rotated about its vertical axis on the turntable, and the polarization and height of the receiving antenna are varied to obtain the highest field strength on the particular frequency under observation.

Each EME reported was calibrated using the R/S signal generator.

Fig. 3. Dimensions of 10 semi anechoic chamber

Radiation Hazard

Probe Location	Maximum Leakage [mW/Cm2]	Limit [mW/Cm2]
Α	0.10	1.00
В	0.10	1.00
С	0.10	1.00
D	0.10	1.00
E	0.10	1.00
F	0.10	1.00
G	0.10	1.00
Н	0.10	1.00

Input Power Measurement

Operation mode	P rated (W)	P (W)	dP (%)	Required dP (%)
Power Input	1 700	1 650	2.95	+ 15 %

Output Power Measurement

Quantity of	Mass of the	Ambient Initial Final		Heating	Power	
Water	container	temperature	temperature	temperature	time	output
[ml]	[9]	[°C]	[°C]	[°C]	[s]	[W]
1 000	420	22.5	10.0	19.8	42	963

Formula :

$$P = \frac{4.187 \times m_w \times (T_1 - T_0) + 0.55 \times m_c \times (T_1 - T_A)}{t}$$

NOTE :

P is the microwave power output (W)

*m*_w is the mass of the water (g)

- *m*_c is the mass of the container (g)
- T_A is the ambient temperature (°C)
- T_0 is the initial temperature of the water (°C)
- T_1 is the final temperature of the water (°C)
- *t* is the heating time (s), excluding the magnetron filament heating-up time.

m

Tested by : Seunghyuk Yoo

NKQF-27-23 (Rev. 0)

Frequency measurements

Frequency vs Line Voltage Variation Test

rr			
Line Voltage Variation (a.c. V)	*Pole	Frequency [Mb]	Allowed Tolerance for the ISM Band
	н	Lower: 2 451.07	
	н	Upper : 2 462.22	
96 (80 %)	V	Lower: 2 451.23	
	V	Upper : 2 461.66	
	н	Lower : 2 447.52	
	н	Upper : 2 461.52	
108 (90 %)	V	Lower: 2 451.67	
	V	Upper : 2 463.50	
	н	Lower : 2 451.73	
	н	Upper : 2 462.70	Lower: 2 400 Mb
120 (100 %)	V	Lower: 2 443.63	Upper : 2 500 Mbz
	V	Upper : 2 461.72	
	н	Lower : 2 451.85	
	н	Upper : 2 463.58	
132 (110 %)	V	Lower: 2 451.70	
	V	Upper : 2 462.81	
	н	Lower : 2 451.95	
	н	Upper : 2 461.93	
150 (125 %)	V	Lower : 2 453.22	
	V	Upper : 2 463.00	

[Room Temperature : 22.1 ± 1.0 °C]

NOTE :

1. *Pol. H = Horizontal V = Vertical

2. Initial load : 1 000 ml of water in the beaker.

3. Line voltage varied from 80 % to 125 %.

4. ISM Frequency : 2 450 Mb, Tolerance : ± 50 Mb

RESULT : Pass

C

Tested by : Seunghyuk Yoo

Frequency vs Load Variation Test

[Room	Temperature	:	22.1	± 1.0	°C]
		-			-

Volume of water (سا)	*)Pole	Frequency	Allowed Tolerance for
	н	Lower: 2 440 19	
	н	Upper: 2 464.04	
200	V	Lower : 2 449.62	•
	V	Upper : 2 461.40	
	Н	Lower : 2 440.11	
400	Н	Upper : 2 464.48	
400	V	Lower : 2 446.97	
	V	Upper : 2 461.37	
	Н	Lower : 2 445.12	
600	Н	Upper : 2 461.51	Lower : 2 400 Mb
000	V	Lower : 2 449.71	Upper : 2 500 Mb
	V	Upper : 2 465.63	
	Н	Lower : 2 452.17	
900	Н	Upper : 2 462.62	
000	V	Lower : 2 452.97	
	V	Upper : 2 463.86	
1 000	Н	Lower: 2 451.73	
	Н	Upper : 2 462.70	
	V	Lower : 2 443.63	
	V	Upper : 2 461.72	

NOTE :

1. *Pol. H = Horizontal, V = Vertical

2. The water load was varied between 200 $\,{\rm m}\ell\,$ to 1 000 $\,{\rm m}\ell.$

3. Frequency was measured by using nominal voltage (a.c. 120 V).

4. ISM Frequency : 2 450 Mz, Tolerance : ± 50 Mz

RESULT : Pass

Tested by : Seunghyuk Yoo

Conducted Emissions

FCC ID : A3LOTR21M4C

[Room Temperature : 22.3 ± 1.0 °C]

EMI Auto Test(13)

2/2

Einal Beault 1

Nèmko

Final Re	-inal Result 1								
Frequency (MHz)	QuasiPeak (dBuV)	Meas. Time	Bandwidth (kHz)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)	Comment
,,	((ms)				·/	·/	·	
0.191044	51.2	15000.0	9.000	GND	N	10.5	12.7	63.9	
0.265669	47.6	15000.0	9.000	GND	L1	10.5	13.5	61.0	
0.530588	43.3	15000.0	9.000	GND	N	10.5	12.7	56.0	
0.538050	44.1	15000.0	9.000	GND	N	10.5	11.9	56.0	
0.788044	41.9	15000.0	9.000	GND	L1	10.5	14.1	56.0	
0.855206	47.4	15000.0	9.000	GND	N	10.5	8.6	56.0	
1.243256	34.9	15000.0	9.000	GND	N	10.6	21.1	56.0	
1.317881	35.6	15000.0	9.000	GND	N	10.6	20.4	56.0	
2.246962	43.9	15000.0	9.000	GND	N	10.6	12.1	56.0	
2.302931	41.9	15000.0	9.000	GND	L1	10.6	14.1	56.0	
2.534269	37.6	15000.0	9.000	GND	L1	10.6	18.4	56.0	

Final Result 2

Frequency	CAverage	Meas.	Bandwidth	PE	Line	Corr.	Margin	Limit	Comment
(MHz)	(dBµV)	Time	(kHz)			(dB)	(dB)	(dBµV)	
		(ms)							
0.191044	39.2	15000.0	9.000	GND	N	10.5	14.6	53.8	
0.265669	34.1	15000.0	9.000	GND	N	10.5	16.9	51.0	
0.530588	30.8	15000.0	9.000	GND	N	10.5	15.2	46.0	
0.538050	32.1	15000.0	9.000	GND	N	10.5	13.9	46.0	
0.788044	23.5	15000.0	9.000	GND	N	10.5	22.5	46.0	
0.855206	22.0	15000.0	9.000	GND	L1	10.5	24.0	46.0	
1.243256	22.2	15000.0	9.000	GND	L1	10.6	23.8	46.0	
1.317881	21.7	15000.0	9.000	GND	N	10.6	24.3	46.0	
2.246962	22.5	15000.0	9.000	GND	N	10.6	23.5	46.0	
2.302931	22.7	15000.0	9.000	GND	N	10.6	23.3	46.0	
2.534269	19.0	15000.0	9.000	GND	N	10.6	27.0	46.0	

12/11/2023

10:40:32 PM

NOTES:

- 1. Measurements using quasi-peak mode & average mode.
- 2. If no frequencies are specified in the tables, no measurement for quasi-peak or average was necessary.
- 3. Line : L = Line , N = Neutral
- 4. The limit for consumer device is on the FCC Part section 18.307(b).

Tested by : Seunghyuk Yoo

NKQF-27-23 (Rev. 0)

Radiated Emissions (150 kt to 30 Mt)

FCC ID : A3LOTR21M4C

[Room Temperature : 21.2 ± 1.0 °C]

Frequency	QuasiPeak CAverage		rage	Limit Margin		Meas. Time	Bandwidth	Height	Pol
(MHz)	(dBuA/m)	(dBu/	4/m)	(dBuA/m)	(dB)	(ms)	(kHz)	(cm)	u
0.171949	-18.05		24 62	59.31	02.02	15000.0	9.000	100.0	H V
0.171545	-22.69	-	64.0Z	59.31	82.00	15000.0	9,000	100.0	й Н
0.329978	-22.00		28.71	59.31	88.02	15000.0	9,000	100.0	v
3.819794			32.66	59.31	91.97	15000.0	9.000	100.0	V
3.819794	-26.57		-	59.31	85.88	15000.0	9.000	100.0	Н
4.539706			32.66	59.31	91.97	15000.0	9.000	100.0	V
4.539706	-26.68			59.31	85.99	15000.0	9.000	100.0	H
4.772360			32.74	59.31	92.05	15000.0	9.000	100.0	V
4.(12360	-26.60			59.31	85.91	15000.0	9.000	100.0	V U
6.093662	-20.32		22 98	59.31	92.29	15000.0	9,000	100.0	V
(continuation of the	he "Final_Re	sult" tab	le fro	m column 1	4)				
(MHz)	(deg)	(dB/m)	001	men					
0.171949	323.0	-82.3							
0.171949	167.0	-82.3							
0.329978	-15.0	-82.2							
0.329978	167.0	-82.2							
3.819/94	251.0	-81.(
4.539706	167.0	-81.7							
4.539706	356.0	-81.7							
4.772360	167.0	-81.7							
4.772360	167.0	-81.7							
6.093662	319.0	-81.8							

<Radiated Measurements at 3 meters >

NOTES:

- 1. *Pol. H = Horizontal V = Vertical
- 2. **AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.
- 3. Distance Correction factor : 40 * log (300 / 3) = 80 dBuV/m
- 4. The limit at 300 meters is 20 * log (25 * SQRT (RF Power / 500))
- 5. All other emissions were measured while a 700 $\, {\it m}\ell\,$ load was placed in the center of the oven.
- 6. The limit for consumer device is on the FCC Part section 18.305.

Tested by : Seunghyuk Yoo

NKQF-27-23 (Rev. 0)

Radiated Emissions (30 Mb to 1 Gb)

FCC ID : A3LOTR21M4C

2/2

Test

Final_Result QuasiPeak (dBuV/m) Frequency (MHz) CAverage Limit (dBuV/m) (dBuV/m) Margin Meas. Time Bandwidth Height Pol (dB) (ms) (kHz) (cm) 38.406667 18.26 60.31 42.05 15000.0 120.000 170.0 V 10.55 38.406667 60.31 49.76 15000.0 120.000 200.0 V 19.42 67.183333 60.31 40.89 15000.0 120.000 100.0 V 67.183333 11.91 60.31 48.40 15000.0 120.000 100.0 V 75.158889 18.70 60.31 41.61 15000.0 120.000 370.0 V 7.80 75.158889 52.51 15000.0 60.31 120.000 400.0 V ----218.557222 218.557222 238.011111 12.33 60.31 47.98 15000.0 120.000 400.0 H 34.65 34.59 25.66 ----60.31 15000.0 120.000 300.0 H 25.72 60.31 15000.0 130.0 V 120.000 42.53 52.94 17.78 238.011111 100.0 V 60.31 15000.0 120.000 557.895556 7.37 60.31 15000.0 120.000 100.0 H 557.895556 14.02 60.31 15000.0 46.29 120.000 130.0 H 41.46 49.26 120.000 373.0 V 120.000 400.0 V 985.072778 18.85 60.31 15000.0 11.05 985.072778 60.31 15000.0 (continuation of the "Final_Result" table from column 14 ...) Frequency (MHz) Azimuth Corr. Comment (deg) 258.0 (dB/m) 38.406667 -33.1 38.406667 208.0 -33.1 37.0 -33.9 67.183333 67.183333 32.0 -33.9 75.158889 332.0 -37.1 75.158889 218.557222 218.557222 238.011111 329.0 -37.1 153.0 31.6 280.0 -31.6 -8.0 -30.3 238.011111 -20.0 -30.3 -22.7 557.895556 -20.0 557.895556 985.072778 -20.0 347.0 -22.7 -16.1 316.0 -16.1 985.072778 12/12/2023 10:10:16 PM

<Radiated Measurements at 10 meters>

NKQF-27-23 (Rev. 0)

SAMSUNG ELECTRONICS Co., Ltd. FCC ID: A3LOTR21M4C Page 20 of 74

NOTES:

- 1. *Pol. H = Horizontal V = Vertical
- 2. **AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.
- 3. Distance Correction factor : 20 * log (300/10) \Rightarrow 29.5 dB μ /m
- 4. The limit at 300 meters is 20 * log (25 * SQRT (RF Power/500))
- 5. All other emissions were measured while a 700 ml load was placed in the center of the oven.
- 6. The limit for consumer device is on the FCC Part section 18.305.

Tested by : Seunghyuk Yoo

NKQF-27-23 (Rev. 0)

Radiated Emissions (Above 1 础)

FCC ID : A3LOTR21M4C

[Room Temperature : 20.2 ± 1.0 °C]

Frequency	Pol*	Antenna Heights	Turntable Angles	Reading Level	Total Loss**	Result	Result at 3 m		Results at 300 m	Limits at 300 m
(MHz)	(H/V)	(cm)	(°)	(dBµV)	(dB)	(dBµV/m)	(µV/m)		(<i>µ</i> V/m)	(µV/m)
2309	н	100	45	42.56	-2.1	40.46	105.44	0.0059	0.62	70.81
4806	v	200	45	30.89	8.1	38.99	89.02	0.0100	0.89	70.81
4918	v	100	0	46.89	8.1	54.99	561.69	0.0100	5.62	70.81
7208	н	200	90	28.60	10	38.6	85.11	0.0100	0.85	70.81
7378	v	100	0	41.43	10.1	51.53	377.14	0.0100	3.77	70.81
8674	н	300	0	25.51	11.9	37.41	74.22	0.0100	0.74	70.81
8942	н	300	270	25.89	11.8	37.69	76.65	0.0100	0.77	70.81
9851	v	100	0	39.07	14.6	53.67	482.50	0.0100	4.83	70.81
12313	v	100	0	31.15	15.2	46.35	207.73	0.0100	2.08	70.81
14772	н	200	90	33.24	17	50.24	325.09	0.0100	3.25	70.81
17234	v	100	45	42.38	17.3	59.68	963.83	0.0100	9.64	70.81

<Radiated Measurements at 3 meters>

NOTES:

- 1. * Pol. H =Horizontal V=Vertical
- 2. ** Total Loss = Antenna Factor + Cables Loss + Amplifier + HPF (High Pass Filter)
- 3. Field Strength (at 300 m) $(uV/m) = K * 10^{[Fieldstrength at 3 m (dBuV/m)/20]}$
- 4. Where K is given by :

<u>Frequency</u>	K
1830 MHz	.0046
2745 MHz	.0070
3660 MHz	.0090
4575 MHz and above	.0100

For frequencies between those given in the table, the value of K is determined by linear interpolation.

- 5. The limit at 300 meters is 25 * SQRT (RF Power/500)
- 6. Load for measurement of radiation on second and third harmonic : Two loads, one of 700 *ml* and the other of 300 *ml*, of water were used. Each load was tested both with the beaker located in the center of the oven and with it in the corner.
- 7. The test was performed at peak detector mode with average.
- 8. The limit for consumer device is on the FCC Part section 18.305.

Tested by : Seunghyuk Yoo

Horizontal (96 V, 1 000 ml)

Vertical (96 V, 1 000 ml)

Horizontal (108 V, 1 000 ml)

Vertical (108 V, 1 000 ml)

Horizontal (120 V, 1 000 ml)

Vertical (120 V, 1 000 ml)

Horizontal (132 V, 1 000 ml)

Vertical (132 V, 1 000 mℓ)

Horizontal (150 V, 1 000 ml)

Vertical (150 V, 1 000 mℓ)

• Frequency vs Load Variation Test

Horizontal (120 V, 200 ml)

• Frequency vs Load Variation Test

Vertical (120 V, 200 ml)

• Frequency vs Load Variation Test

Horizontal (120 V, 400 ml)

Vertical (120 V, 400 ml)

Horizontal (120 V, 600 ml)

Vertical (120 V, 600 ml)

Horizontal (120 V, 800 ml)

Vertical (120 V, 800 ml)

Horizontal (120 V, 1 000 ml)

Vertical (120 V, 1 000 ml)

2 304.42 MHz

4 809.06 MHz

4 917.21 MHz

7 211.88 MHz

7 381.79 MHz

8 678.88 MHz

8 937.18 MHz

9 849.07 MHz

12 312.57 MHz

14 774.64 MHz

17 232.63 MHz

ACCURACY OF MEASUREMENT

The Measurement Uncertainties stated were calculated in accordance with the requirements of measurement uncertainty contained in CISPR 16-4-2 with the confidence level of 95 %

1. Conducted Uncertainty Calculation

		Uncer	tainty of Xi	Coverage factor k	u(Xi) (dB)	Ci	Ci u(Xi) (dB)
Source of Uncertainty	Xi	Value (dB)	Probability Distribution				
Receiver reading	Ri	± 0.74	normal 1	1.00	0.74	1	0.74
AMN Voltage division factor	LAMN	± 0.16	normal 2	2.00	0.08	1	0.08
Sine wave voltage	dVSW	± 0.18	normal 2	2.00	0.09	1	0.09
Pulse amplitude response	dVPA	± 0.70	normal 2	2.00	0.35	1	0.35
Pulse repetition rate response	dVPR	± 0.70	normal 2	2.00	0.35	1	0.35
Noise floor proximity	dVNF	± 0.00	rectangular	$\sqrt{3}$	0.00	1	0.00
AMN VDF frequency interpolation	dVFI	± 0.10	rectangular	$\sqrt{3}$	0.06	1	0.06
AMN Impedance	dZ	+ 2.60 - 2.70	Triangular	$\sqrt{6}$	1.10	1	1.10
Mismatch : AMN-Receiver	М	± 0.07	U-Shaped	$\sqrt{2}$	0.05	1	0.05
Combined Standard Uncertainty	Normal			u _c = 1.42 dB			
Expended Uncertainty U	Normal (k = 2) U = 2.84 dB (CL is approx. 9			ox. 95 %)			

2. Radiation Uncertainty Calculation (Below 1 (#))

		Uncertainty of Xi		Coverage			
Source of Uncertainty	Xi	Value (dB)	Probability Distribution	factor k	u(Xi) (dB)	Ci	Ci _u (Xi) (dB)
Receiver reading	Ri	± 0.08	normal 1	1.00	0.08	1	0.08
Sine wave voltage	dVsw	± 0.18	normal 2	2.00	0.09	1	0.09
Pulse amplitude response	dV _{pa}	± 0.58	normal 2	2.00	0.29	1	0.29
Pulse repetition rate response	dVpr	± 0.35	normal 2	2.00	0.18	1	0.18
Noise floor proximity	dVnf	± 0.50	normal 2	2.00	0.29	1	0.29
Antenna Factor Calibration	AF	± 1.30	normal 2	2.00	0.65	1	0.65
Antenna Directivity	AD	± 0.50	rectangular	$\sqrt{3}$	0.29	1	0.29
Antenna Factor Height Dependence	Ан	± 1.00	rectangular	$\sqrt{3}$	0.58	1	0.58
Antenna Phase Centre Variation	Ар	± 0.06	rectangular	$\sqrt{3}$	0.03	1	0.03
Antenna Factor Frequency Interpolation	Ai	± 0.30	rectangular	$\sqrt{3}$	0.17	1	0.17
Site Imperfections	s i ± 4.00 triangular		triangular	$\sqrt{6}$	1.63	1	1.63
Measurement Distance Variation	D v ± 0.10		rectangular	$\sqrt{3}$	0.06	1	0.06
Antenna Balance	Dbal	± 0.90	rectangular	$\sqrt{3}$	0.52	1	0.52
Cross Polarisation	DCross	± 0.90	rectangular	$\sqrt{3}$	0.52	1	0.52
Mismatch	М	+ 0.89 - 1.00	U-Shaped	$\sqrt{2}$	0.70	1	0.70
Combined Standard Uncertainty	Normal			u _c = 2.19 dB			
Expended Uncertainty U	Normal (k = 2) U = 4.38 dB (CL is approx. 95 %				ox. 95 %)		

3. Radiation Uncertainty Calculation (Above 1 @)

		Uncertainty of Xi		Coverage			0
Source of Uncertainty	Xi	Value (dB)	Probability Distribution	factor	u(Xi) (dB)	Ci	u(Xi) (dB)
Receiver Reading	Ri	± 0.11	normal 1	1	0.11	1	0.11
Preamplifier gain	Gp	± 0.23	normal 2	2	0.12	1	0.12
Receiver Sine Wave	dVsw	± 0.27	normal 2	2	0.14	1	0.14
Instability of preamp gain	dGpw	± 1.2	rectangular	$\sqrt{3}$	0.70	1	0.70
Noise Floor Proximity	dVnf	± 0.70	rectangular	$\sqrt{3}$	0.40	1	0.40
Antenna Factor Calibration	AF	± 1.60	normal 2	2	0.80	1	0.80
Directivity difference	AD	± 3.00	rectangular	√3	0.87	1	0.87
Phase Centre location	Ap	± 0.30	rectangular	$\sqrt{3}$	0.17	1	0.17
Antenna Factor Frequency Interpolation	Ai	± 0.30	rectangular	$\sqrt{3}$	0.17	1	0.17
Site Imperfections	Si	± 3.00	triangular	$\sqrt{6}$	1.22	1	1.22
Effect of setup table material	dАnт	± 1.50	rectangular	$\sqrt{3}$	0.87	1	0.87
Separation distance	dD	± 0.30	rectangular	$\sqrt{3}$	0.17	1	0.17
Cross Polarization	DCross	± 0.90	rectangular	$\sqrt{3}$	0.52	1	0.52
Mismatch (antenna-Preamplifier)	М	+ 0.89 - 1.00	U-Shaped	$\sqrt{2}$	0.70	1	0.70
Mismatch (preamplifier-receiver)	М	+ 1.32 - 1.56	U-Shaped	$\sqrt{2}$	1.10	1	1.10
Combined Standard Uncertainty	Normal			u _c = 2.53 dB			
Expended Uncertainty U	Normal (k = 2)			U = 5.06 dB (CL is approx. 95 %)			

LIST OF TEST EQUIPMENT

No.	Instrument	Manufacturer	Model	Serial No.	Calibration Due Date	Calibration Interval
1	EMI TEST RECEIVER	Rohde & Schwarz	ESCI	101041	2024.03.29	1 year
2	Software	Rohde & Schwarz	EMC32	Version 8.53.0	-	-
3	ARTIFICIAL MAINS NETWORK	Rohde & Schwarz	ESH2-Z5	100273	2024.10.11	1 year
4	Microwave survey meter	ETS Lindgren	HI-1801	0003549	2024.01.10	1 year
5	EMI TEST RECEIVER	Rohde & Schwarz	ESW44	103221	2024.01.19	1 year
	Software	Rohde & Schwarz	EMC32	Version 11.50	-	-
6	TRILOG Broadband Test Antenna	SCHWARZBECK	VULB 9163	01432	2025.06.16	2 years
7	ATTENUATOR	FAIRVIEW	SA3N5W-06	N/A	2024.03.30	1 year
8	AMPLIFIER	Sonoma Instrument	315	420127	2024.07.03	1 year
9	Open Switch and Control Unit	Rohde & Schwarz	OSP230	101830	-	
10	TILT ANTENNA MAST	innco systems GmbH	MA4640/800 -XP-EP	N/A	-	-
11	Turntable	innco systems GmbH	DT3000-3t	N/A	-	-
12	CONTROLLER	innco systems GmbH	CO3000	CO3000/1373/52 220621/P	-	-
13	LOOP ANTENNA	Rohde & Schwarz	HFH2-Z2	100279	2024.03.21	1 year
14	EMI TEST RECEIVER	Rohde & Schwarz	ESW44	103091	2024.03.29	1 year
15	CONTROLLER	innco systems GmbH	CO3000	CO3000/937/383 30516/L	-	-
16	TILT ANTENNA MAST	innco systems GmbH	MA4640-XP- EP	N/A	-	-
17	Turntable	innco systems GmbH	DT2000-2t	N/A	-	-
18	SWITCH AND POWER DETECTOR UNIT	Rohde & Schwarz	OSP120	101766	-	-
19	WiFi Filter Bank	Rohde & Schwarz	U082	N/A	-	-
20	Double Ridged Broadband Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-474	2024.07.10	1 year
21	Band Reject	Wainwright Instruments GmbH	WRCJV8- 2350-2400- 2500-2550- 40SS	2	-	-
22	Signal Conditioning Unit	Rohde & Schwarz	SCU 18	10065	2024.03.29	1 year
23	Software	Rohde & Schwarz	EMC32	Version 10.10.01	-	-
25	Multimeter	FLUKE Corporation	FLUKE-101	58980136WS	2024.01.09	1 year
26	CLAMP ON HITESTER	ніокі	3280-10	141200765	2024.03.29	1 year

Labeling Requirements

The sample label shown shall be *permanently affixed* at a conspicuous location on the device and be readily visible to the user at the time of purchase.

SAMSUNG HOUSEHOLD A 42000 PELABUH	AICROWAVE OVEN	MODEL ME21DG6700SR	
MANUFACTURED SERIAL No. SEPTEMBER-2013 0D2J7WZWC00001Z		120 Vac 60Hz 1.0 kW MICROWAVE	
MADE IN MALAYSIA SEMA	FCCID: A3LOTR21M4C		E70049
		THIS PRODUCT COMPLIES WITH I	DHHS RULES 21 CFR SUBCHAPTER J.

NKQF-27-23 (Rev. 0)

The **Conducted Test Picture** and **Radiated Test Picture** and show the worst-case configuration and cable placement.

Radiation hazard Test Picture

SAMSUNG ELECTRONICS Co., Ltd. FCC ID: A3LOTR21M4C Page 60 of 74

Conducted Test Picture (Front)

SAMSUNG ELECTRONICS Co., Ltd. FCC ID: A3LOTR21M4C Page 61 of 74

Radiated Test Picture : 0.15 Mz ~ 30 Mz (Front)

Radiated Test Picture : 0.15 Mb ~ 30 Mb (Rear)

SAMSUNG ELECTRONICS Co., Ltd. FCC ID: A3LOTR21M4C

Radiated Test Picture : 30 Mb ~ 1 Gb (Front)

■ Radiated Test Picture : 30 Mb ~ 1 Gb (Rear)

SAMSUNG ELECTRONICS Co., Ltd. FCC ID: A3LOTR21M4C

APPENDIX C – EUT PHOTOGRAPHS

Front View of EUT 1

Front View of EUT 2

SAMSUNG ELECTRONICS Co., Ltd. FCC ID: A3LOTR21M4C

Rear View of EUT

Left View of EUT

NKQF-27-23 (Rev. 0) SAMSUNG ELECTRONICS Co., Ltd. FCC ID: A3LOTR21M4C

Right View of EUT

Inside View of EUT 1

Inside View of EUT 2

SAMSUNG ELECTRONICS Co., Ltd. FCC ID: A3LOTR21M4C

Front View of MAGNETRON

Rear View of MAGNETRON

NKQF-27-23 (Rev. 0)

SAMSUNG ELECTRONICS Co., Ltd. FCC ID: A3LOTR21M4C

Front View of H.V TRANS

Rear View of H.V TRANS

NKQF-27-23 (Rev. 0) SAMSUNG ELECTRONICS Co., Ltd. Page 70 of 74 FCC ID: A3LOTR21M4C

Front View of H.V CAPACITOR

Rear View of H.V CAPACITOR

SAMSUNG ELECTRONICS Co., Ltd. FCC ID: A3LOTR21M4C

Front View of FAN MOTOR

Rear View of FAN MOTOR

SAMSUNG ELECTRONICS Co., Ltd. FCC ID: A3LOTR21M4C

Front View of INTERLOCK SWITCH

Rear View of INTERLOCK SWITCH

NKQF-27-23 (Rev. 0)

SAMSUNG ELECTRONICS Co., Ltd. FCC ID: A3LOTR21M4C

Front View of Control

Rear View of Control

NKQF-27-23 (Rev. 0)

SAMSUNG ELECTRONICS Co., Ltd. FCC ID: A3LOTR21M4C