

TEST REPORT

FCC BT LE Test for LCWB-008

Class II Permissive Change

APPLICANT

LG Electronics Inc.

REPORT NO.

HCT-RF-2501-FC080

DATE OF ISSUE

January 24, 2025

Tested bySang Hoon Lee

Technical Manager Jong Seok Lee MA

ar

Accredited by KOLAS, Republic of KOREA

HCT CO., LTD. Brigini Huh BongJai Huh / CEO

HCT CO.,LTD.

TEST REPORT

REPORT NO. HCT-RF-2501-FC080

DATE OF ISSUE January 24, 2025

Applicant	LG Electronics Inc. 170, Seongsan Pachong-ro, Seongsan-gu, Changwon-si, Gyeongsangnam-do 51533, Republic of Korea
Product Name Model Name	RF Module LCWB-008
FCC ID	BEJ-LCWB008
Date of Test	January 03, 2025~ January 24, 2025
FCC Classification	Digital Transmission System(DTS)
Test Standard Used	FCC Rule Part(s): Part 15.247
Location of Test	■ Permanent Testing Lab □ On Site Testing Lab (Address: 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggido, Republic of Korea)
Brand	LG

F-TP22-03 (Rev. 06) Page 2 of 33

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description
0	January 24, 2025	Initial Release

Notice

Content	

Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules under normal use and maintenance.

The results shown in this test report only apply to the sample(s), as received, provided by the applicant, unless otherwise stated.

The test results have only been applied with the test methods required by the standard(s).

The laboratory is not accredited for the test results marked *.

Information provided by the applicant is marked **.

Test results provided by external providers are marked ***.

When confirmation of authenticity of this test report is required, please contact www.hct.co.kr

This test report provides test result(s) under the scope accredited by the Korea Laboratory Accreditation Scheme (KOLAS), which signed the ILAC-MRA.

(KOLAS (KS Q ISO/IEC 17025) Accreditation No. KT197)

This test report provides test result(s) under the lab's valid Scope of Accreditation by A2LA (American Association for Laboratory Accreditation), signatory of the ILAC-MRA.

(A2LA (ISO/IEC 17025) Certificate No. 4114.01)

F-TP22-03 (Rev. 06) Page 3 of 33

CONTENTS

1. EUT DESCRIPTION	5
2. TEST METHODOLOGY	6
EUT CONFIGURATION	6
EUT EXERCISE	6
GENERAL TEST PROCEDURES	6
DESCRIPTION OF TEST MODES	7
3. INSTRUMENT CALIBRATION	7
4. FACILITIES AND ACCREDITATIONS	7
FACILITIES	7
EQUIPMENT	7
5. ANTENNA REQUIREMENTS	8
6. MEASUREMENT UNCERTAINTY	8
7. DESCRIPTION OF TESTS	9
8. SUMMARY TEST OF RESULTS	23
9. TEST RESULT	24
9.1 RADIATED SPURIOUS EMISSIONS	24
9.2 RADIATED RESTRICTED BAND EDGES	28
10. LIST OF TEST EQUIPMENT	31
11. ANNEX A_ TEST SETUP PHOTO	33

F-TP22-03 (Rev. 06) Page 4 of 33

1. EUT DESCRIPTION

Model	LCWB-008	LCWB-008			
Additional Model	-	-			
EUT Type	RF Module				
Power Supply	DC 3.3 V / 5.0 V				
Frequency Range	2 402 MHz – 2 4	180 MHz			
May DE Output Dawar	Peak	1M Bit/s : 4.954 dBm (3.13 mW)			
Max. RF Output Power	Average	1M Bit/s: 4.80 dBm (3.02 mW)			
Modulation Type	GFSK				
Bluetooth Version	5.2				
Number of Channels	40 Channels				
Antenna Specification	Antenna type: PCB Pattern Antenna Peak Gain : 1.70 dBi				
EUT Serial number		Conducted: D07602C83426 Radiated: 7893C3A9F482			

F-TP22-03 (Rev. 06) Page 5 of 33

2. TEST METHODOLOGY

FCC KDB 558074 D01 15.247 Meas Guidance v05r02 dated April 02, 2019 entitled "guidance for compliance measurements on digital transmission system, frequency hopping spread spectrum system, and hybrid system devices and the measurement procedure described in ANSI C63.10(Version: 2013) 'the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices'.

EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2013) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1 GHz. Above 1 GHz with 1.5 m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 6.6.5 of ANSI C63.10. (Version: 2013)

F-TP22-03 (Rev. 06) Page 6 of 33

DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

3. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment's, which is traceable to recognized national standards.

Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version: 2017).

4. FACILITIES AND ACCREDITATIONS

FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA.

The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2014) and CISPR Publication 22.

Detailed description of test facility was submitted to the Commission and accepted dated March 11, 2024 (Registration Number: KR0032).

EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

F-TP22-03 (Rev. 06) Page 7 of 33

5. ANTENNA REQUIREMENTS

According to FCC 47 CFR § 15.203

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- (1) The antennas of this E.U.T are permanently attached.
- (2) The E.U.T Complies with the requirement of § 15.203

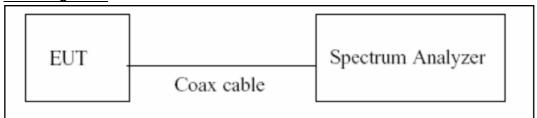
6. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (±kHz)
X dB, 99% Bandwidth	95 (Confidence level about 95 %, <i>k</i> =2)
Frequency stability	28 (Confidence level about 95 %, <i>k</i> =2)
Parameter	Expanded Uncertainty (±dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	1.98 (Confidence level about 95 %, <i>k</i> =2)
Conducted Output Power(Power Meter)	0.54 (Confidence level about 95 %, k=2)
Conducted Output Power(Signal Analyzer)	0.68 (Confidence level about 95 %, k=2)
Power Spectral Density	1.03 (Confidence level about 95 %, k=2)
Band Edge (Out of Band Emissions)	0.70 (Confidence level about 95 %, k=2)
Radiated Disturbance (9 kHz ~ 30 MHz)	4.36 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (30 MHz ~ 1 GHz)	5.70 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (1 GHz ~ 18 GHz)	5.52 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (18 GHz ~ 40 GHz)	5.66 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (Above 40 GHz)	5.58 (Confidence level about 95 %, <i>k</i> =2)


F-TP22-03 (Rev. 06) Page 8 of 33

7. DESCRIPTION OF TESTS

7.1. Duty Cycle

Test Configuration

Test Procedure

The transmitter output is connected to the Spectrum Analyzer.

We tested according to the zero-span measurement method, 6.b) in KDB 558074 v05r02.

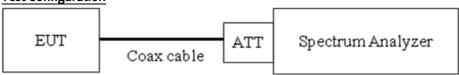
The largest available value of RBW is 8 MHz and VBW is 50 MHz.

The zero-span method of measuring duty cycle shall not be used if T \leq 6.25 microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

- 1. RBW = 8 MHz (the largest available value)
- 2. VBW = $8 \text{ MHz} (\geq \text{RBW})$
- 3. SPAN = 0 Hz
- 4. Detector = Peak
- 5. Number of points in sweep > 100
- 6. Trace mode = Clear write
- 7. Measure Ttotal and Ton
- 8. Calculate Duty Cycle = Ton/ Ttotal and Duty Cycle Factor = 10log(1/Duty Cycle)

F-TP22-03 (Rev. 06) Page 9 of 33



7.2. 6 dB Bandwidth

Limit

The minimum permissible 6 dB bandwidth is 500 kHz.

Test Configuration

Test Procedure

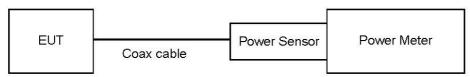
The transmitter output is connected to the Spectrum Analyzer.

The Spectrum Analyzer is set to (Procedure 8.2 in KDB 558074 v05r02, Procedure 11.8.1 in ANSI 63.10-2013)

- 1) RBW = 100 kHz
- 2) VBW \geq 3 x RBW
- 3) Detector = Peak
- 4) Trace mode = Max hold
- 5) Sweep = auto couple
- 6) Allow the trace to stabilize
- 7) We tested 6 dB bandwidth using the automatic bandwidth measurement capability of a spectrum analyzer. X dB is set 6 dB.

Note: We tested OBW using the automatic bandwidth measurement capability of a spectrum analyzer.

F-TP22-03 (Rev. 06) Page 10 of 33



7.3. Output Power

Limit

The maximum permissible conducted output power is 1 Watt.

Test Configuration

Test Procedure

The transmitter output is connected to the Power Meter.

- Peak Power (Procedure 11.9.1.3 in ANSI 63.10-2013)
- : Measure the peak power of the transmitter.
- Average Power (Procedure 8.3.2.3 in KDB 558074 v05r02, Procedure 11.9.2.3 in ANSI 63.10-2013)
 - 1) Measure the duty cycle.
 - 2) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
 - 3) Add $10 \log (1/x)$, where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times.

Sample Calculation

- Conducted Output Power(Peak) = Measured Value + ATT loss + Cable loss
- Conducted Output Power(Average) = Measured Value + ATT loss + Cable loss + Duty Cycle Factor

F-TP22-03 (Rev. 06) Page 11 of 33

7.4. Power Spectral Density

Limit

The transmitter power density average over 1-second interval shall not be greater than 8 dBm in any 3 kHz BW.

EUT Coax cable ATT Spectrum Analyzer

Test Procedure

The transmitter output is connected to the Spectrum Analyzer.

We tested according to Procedure 8.4 in KDB 558074 v05r02, Procedure 11.10 in ANSI 63.10-2013.

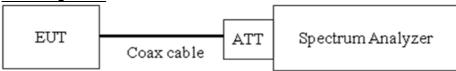
The spectrum analyzer is set to:

- 1) Set analyzer center frequency to DTS channel center frequency.
- 2) Set span to at least 1.5 times the DTS bandwidth.
- 3) RBW = 3 kHz \leq RBW \leq 100 kHz.
- 4) VBW \geq 3 x RBW.
- 5) Sweep = auto couple.
- 6) Detector = Peak.
- 7) Trace mode = max hold.
- 8) Allow trace to fully stabilize.
- 9) Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Sample Calculation

Power Spectral Density = Measured Value + ATT loss + Cable loss

F-TP22-03 (Rev. 06) Page 12 of 33


7.5. Conducted Band Edge(Out of Band Emissions) & Conducted Spurious Emissions

Limit

The maximum conducted (Peak) output power was used to demonstrate compliance, then the peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz.

[Conducted > 20 dBc]

Test Configuration

Test Procedure

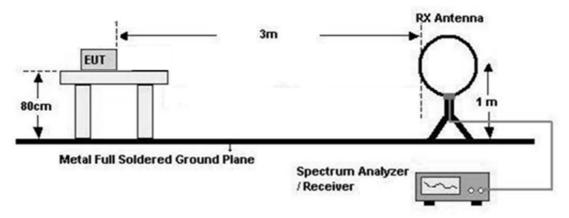
The transmitter output is connected to the spectrum analyzer.

(Procedure 11.11 in ANSI 63.10-2013)

- 1) RBW = 100 kHz
- 2) VBW \geq 3 x RBW
- 3) Set span to encompass the spectrum to be examined
- 4) Detector = Peak
- 5) Trace Mode = max hold
- 6) Sweep time = auto couple
- 7) Allow trace to fully stabilize.
- 8) Use peak marker function to determine the maximum amplitude level.

Measurements are made over the 30 MHz to 25 GHz range with the transmitter set to the lowest, middle, and highest channels.

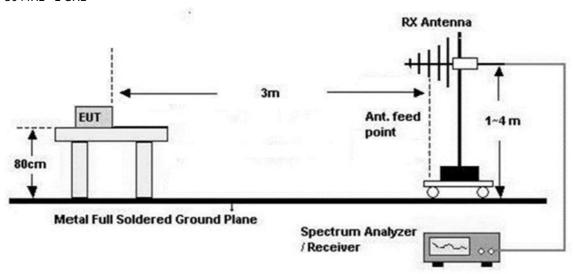
F-TP22-03 (Rev. 06) Page 13 of 33

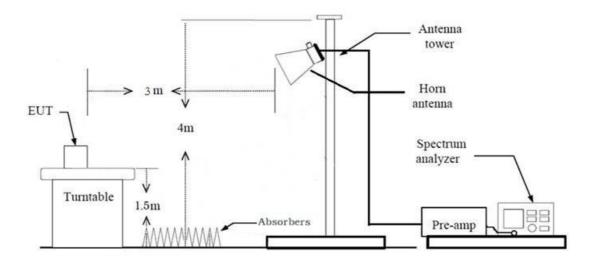

7.6. Radiated Test

Limit

Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (m)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Test Configuration


Below 30 MHz


F-TP22-03 (Rev. 06) Page 14 of 33

30 MHz - 1 GHz

Above 1 GHz

F-TP22-03 (Rev. 06) Page 15 of 33

Test Procedure of Radiated spurious emissions(Below 30 MHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The loop antenna was placed at a location 3 m from the EUT
- 3. The EUT is placed on a turntable, which is 0.8 m above ground plane.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization and Parallel to the ground plane in detecting antenna.
- 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 6. Distance Correction Factor(0.009 MHz 0.490 MHz) = $40\log(3 \text{ m}/300 \text{ m}) = -80 \text{ dB}$ Measurement Distance : 3 m
- 7. Distance Correction Factor(0.490 MHz 30 MHz) = 40log(3 m/30 m) = -40 dB Measurement Distance : 3 m
- 8. Spectrum Setting
 - Frequency Range = 9 kHz ~ 30 MHz
 - Detector = Peak
 - Trace = Max hold
 - -RBW = 9 kHz
 - $-VBW \ge 3 \times RBW$
- 9. Total = Measured Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)
- 10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

KDB 414788 OFS and Chamber Correlation Justification

Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

OFS and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

F-TP22-03 (Rev. 06) Page 16 of 33

Test Procedure of Radiated spurious emissions(Below 1 GHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The EUT is placed on a turntable, which is 0.8 m above ground plane.
- 3. The Hybrid antenna was placed at a location 3 m from the EUT, which is varied from 1m to 4 m to find out the highest emissions.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 6. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range: 30 MHz 1 GHz
 - Detector = Peak
 - Trace = Max hold
 - RBW = 100 kHz
 - $-VBW \ge 3 \times RBW$
 - (2) Measurement Type(Quasi-peak):
 - Measured Frequency Range: 30 MHz 1 GHz
 - Detector = Quasi-Peak
 - RBW = 120 kHz

In general, (1) is used mainly

- 7. Total = Measured Value + Antenna Factor(A.F) + Cable Loss(C.L)
- 8. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

F-TP22-03 (Rev. 06) Page 17 of 33

Test Procedure of Radiated spurious emissions (Above 1 GHz)

- 1. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level
- 4. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. The unit was tested with its standard battery.
- 8. Spectrum Setting (Method 8.6 in KDB 558074 v05r02, Procedure 11.12 in ANSI 63.10-2013)
 - (1) Measurement Type(Peak):
 - Measured Frequency Range: 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Max hold
 - RBW = 1 MHz
 - $-VBW \ge 3 \times RBW$
 - (2) Measurement Type(Average):
 - Duty cycle < 98 %, duty cycle variations are less than ± 2 %
 - Measured Frequency Range: 1 GHz 25 GHz
 - Detector = RMS
 - Averaging type = power (*i.e.*, RMS)
 - RBW = 1 MHz
 - $-VBW \ge 3 x RBW$
 - Sweep time = auto.
 - Trace mode = average (at least 100 traces).
 - Correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle.
- Duty Cycle Factor (dB): Please refer to the please refer to section 9.1
- 9. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 10. Distance extrapolation factor = 20log (test distance / specific distance) (dB)
- 11. Total (Measurement Type: Peak)
 - = Peak Measured Value + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(A.G)
 - + Distance Factor(D.F)

F-TP22-03 (Rev. 06) Page 18 of 33

Total (Measurement Type: Average)

- = Average Measured Value + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(A.G)
 - + Distance Factor(D.F)

#Note: Used Average measurement method according to KDB 558074 Section11 Q3

Test Procedure of Radiated Restricted Band Edge

- 1. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 4. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. The unit was tested with its standard battery.
- 8. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range: 2310 MHz ~ 2390 MHz/ 2483.5 MHz ~ 2500 MHz
 - Detector = Peak
 - Trace = Max hold
 - RBW = 1 MHz
 - $-VBW \ge 3 \times RBW$
 - (2) Measurement Type(Average):
 - Duty cycle < 98 %, duty cycle variations are less than ± 2 %
 - Measured Frequency Range: 2310 MHz ~ 2390 MHz/ 2483.5 MHz ~ 2500 MHz
 - Detector = RMS
 - Averaging type = power (i.e., RMS)
 - RBW = 1 MHz
 - $-VBW \ge 3 \times RBW$
 - Sweep time = auto.
 - Trace mode = average (at least 100 traces).
 - Correction factor shall be added to the measurement results prior to comparing to the
 emission limit in order to compute the emission level that would have been measured had
 the test been performed at 100 percent duty cycle.
 - Duty Cycle Factor (dB): Please refer to the please refer to section 9.1.
- 9. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered

F-TP22-03 (Rev. 06) Page 19 of 33

that's already beyond the background noise floor.

- 10. Distance extrapolation factor = 20log (test distance / specific distance) (dB)
- 11. Total(Measurement Type: Peak)
 - = Peak Measured Value + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(A.G) + Attenuator(ATT)
 - + Distance Factor(D.F)

Total(Measurement Type: Average)

- = Average Measured Value + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(A.G) + Attenuator(ATT)
- + Distance Factor(D.F)

#Note: Used Average measurement method according to KDB 558074 Section11 Q3

F-TP22-03 (Rev. 06) Page 20 of 33

7.7. AC Power line Conducted Emissions

Limit

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a $50 \, \mu H/50$ ohms line impedance stabilization network (LISN).

Fraguency Pango (MHz)	Limits (dBμV)			
Frequency Range (MHz)	Quasi-peak	Average		
0.15 to 0.50	66 to 56 ^(a)	56 to 46 ^(a)		
0.50 to 5	56	46		
5 to 30	60	50		

⁽a) Decreases with the logarithm of the frequency.

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Annex A for the actual connections between EUT and support equipment.

Test Procedure

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors: Quasi Peak and Average Detector.

Sample Calculation

Quasi-peak(Final Result) = Measured Value + Correction Factor

F-TP22-03 (Rev. 06) Page 21 of 33

7.8. Worst case configuration and mode

Radiated Test

- 1. All modes of operation were investigated and the worst case configuration results are reported.
 - Mode: Stand alone(DC 3.3V), Stand alone(DC 5V),
 - Worst case: Stand alone(DC 3.3V)
- 2. EUT Axis:
 - Radiated Spurious Emissions: Y
 - Radiated Restricted Band Edge: X
- 3. All packet length of operation were investigated and the test results are worst case in lowest packet length.

(Worst case: 1M 37 Byte Only)

- 4. All position of loop antenna were investigated and the test result is a no critical peak found at all positions.
 - Position: Horizontal, Vertical, Parallel to the ground plane

Conducted test

- 1. All modes of operation were investigated and the worst case configuration results are reported.
 - Mode: Stand alone(DC 3.3V), Stand alone(DC 5V),
 - Worst case: Stand alone(DC 3.3V)
- 2. The EUT was configured with packet length of highest power.

(Worst case: 1M 37 Byte Only)

F-TP22-03 (Rev. 06) Page 22 of 33

8. SUMMARY TEST OF RESULTS

Test Description	FCC Part Section(s)	Test Limit	Test Condition	Test Result	Status
6 dB Bandwidth	§ 15.247(a)(2)	> 500 kHz		PASS	NT Note3
Conducted Maximum Output Power	§ 15.247(b)(3)	< 1 Watt		PASS	NT Note3
Power Spectral Density	§ 15.247(e)	< 8 dBm / 3 kHz Band	Conducted	PASS	NT Note3
Band Edge (Out of Band Emissions)	§ 15.247(d)	Conducted > 20 dBc		PASS	NT Note3
AC Power line Conducted Emissions	§ 15.207	cf. Section 7.7		PASS	NT Note3
Radiated Spurious Emissions	§ 15.247(d), 15.205, 15.209	cf. Section 7.6		PASS	C ^{Note4}
Radiated Restricted Band Edge	§ 15.247(d), 15.205, 15.209	cf. Section 7.6	Radiated	PASS	CNote4

Note

1. The device only employ battery power for operation 2. C = Comply, NT = Not Tested, NA = Not Applicable, NC = Not Comply 3. C2PC model is electrically identical to the Original model.

The Product Equality Declaration includes detailed information about the changes between the devices.

4. The data from that application has been verified through appropriate spot checks to demonstrate

compliance for this device as shown in the test result of section 9.

5. Output power was verified to be within the expected tune up tolerances prior to performing the spot checks for radiated spurious emissions and band edge to confirm that the proposed changes to the digital circuitry had not adversely affected the previously reported values in the original filing.

F-TP22-03 (Rev. 06) Page 23 of 33

9. TEST RESULT

9.1 RADIATED SPURIOUS EMISSIONS

Frequency Range: 9 kHz - 30 MHz

Frequency	Measured Value	A.F+C.L+D.F	POL	Total	Limit	Margin	
[MHz]	[dB _µ V]	[dB/m]	[H/V]	[dB _µ V/m]	[dB _µ V/m]	[dB]	

No Critical peaks found

Note:

- 1. The Measured of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.
- 2. Distance extrapolation factor = 40log (specific distance / test distance) (dB)
- 3. Limit line = specific Limits ($dB\mu V$) + Distance extrapolation factor

Frequency Range: Below 1 GHz

Frequency	Measured Value	A.F+C.L	POL	Total	Limit	Margin
[MHz]	[dB _µ V]	[dB/m]	[H/V]	[dB _µ V/m]	[dB _µ V/m]	[dB]

No Critical peaks found

Note:

1. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Quasi peak detector mode.

F-TP22-03 (Rev. 06) Page 24 of 33

Frequency Range : Above 1 GHz Mode : 1 M Bit/s (37 Bytes)

Operation Mode: CH Low

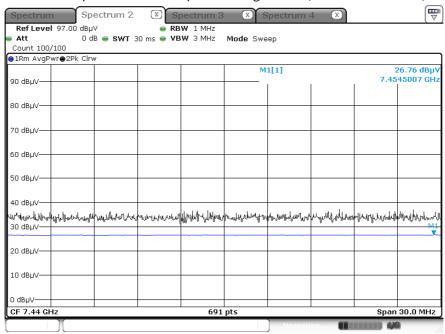
Frequency	Measured Value	A.F+C.L- A.G+D.F	Pol.	Total	Limit	Margin	Measurement	
[MHz]	[dB _µ V]	[dB/m]	[H/V]	[dB _µ V/m]	[dB _µ V/m]	[dB]	Type	
4804	41.43	4.82	V	46.25	73.98	27.73	PK	
4804	29.25	4.82	V	34.07	53.98	19.91	AV	
7206	38.94	12.62	V	51.56	73.98	22.42	PK	
7206	26.02	12.62	V	38.64	53.98	15.34	AV	
4804	42.00	4.82	Н	46.82	73.98	27.16	PK	
4804	29.37	4.82	Н	34.19	53.98	19.79	AV	
7206	38.88	12.62	Н	51.50	73.98	22.48	PK	
7206	26.00	12.62	Н	38.62	53.98	15.36	AV	

Operation Mode: CH Mid

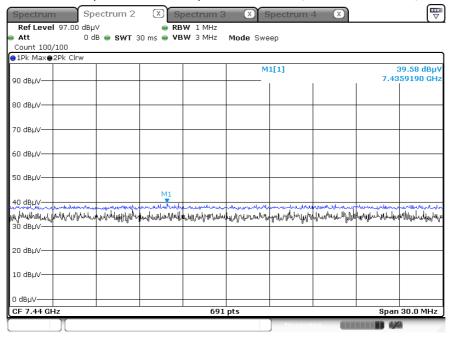
Frequency	Measured Value	A.F+C.L- A.G+D.F	Pol.	Total	Limit	Margin	Measurement Type	
[MHz]	[dB _µ V]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]		
4880	41.76	5.29	V	47.05	73.98	26.93	PK	
4880	29.07	5.29	V	34.36	53.98	19.62	AV	
7320	38.77	12.70	V	51.47	73.98	22.51	PK	
7320	26.41	12.70	V	39.11	53.98	14.87	AV	
4880	41.82	5.29	Н	47.11	73.98	26.87	PK	
4880	29.13	5.29	Н	34.42	53.98	19.56	AV	
7320	38.75	12.70	Н	51.45	73.98	22.53	PK	
7320	26.38	12.70	Н	39.08	53.98	14.90	AV	

F-TP22-03 (Rev. 06) Page 25 of 33

Operation Mode: CH High


Frequency	Measured Value	A.F+C.L- A.G+D.F	Pol.	Total	Limit	Margin	Measurement Type	
[MHz]	[dB _µ V]	[dB/m]	[H/V]	[dB _µ V/m]	[dB _µ V/m]	[dB]		
4960	42.42	5.79	V	48.21	73.98	25.77	PK	
4960	29.54	5.79	V	35.33	53.98	18.65	AV	
7440	39.58	12.54	V	52.12	73.98	21.86	PK	
7440	26.76	12.54	V	39.30	53.98	14.68	AV	
4960	42.55	5.79	Н	48.34	73.98	25.64	PK	
4960	29.62	5.79	Н	35.41	53.98	18.57	AV	
7440	39.31	12.54	Н	51.85	73.98	22.13	PK	
7440	26.69	12.54	Н	39.23	53.98	14.75	AV	

F-TP22-03 (Rev. 06) Page 26 of 33



■ 1M Bit/s 37 Bytes Test Plots (Worst case: Y-V)

Radiated Spurious Emissions plot - Average Result (Ch.39 3rd Harmonic)

Radiated Spurious Emissions plot - Peak Result (Ch.39 3rd Harmonic)

Note:

Plots of worst case are only reported.

F-TP22-03 (Rev. 06) Page 27 of 33

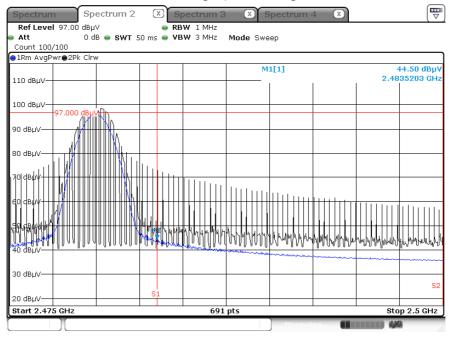
9.2 RADIATED RESTRICTED BAND EDGES

Note: integration method Used (ANSI C63.10 Section11.13.3)

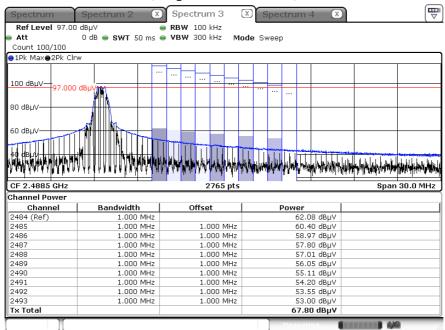
Mode: 1 M Bit/s (37 Bytes)

Operating Frequency 2402 MHz, 2480 MHz

Channel No. 0 CH, 39 CH

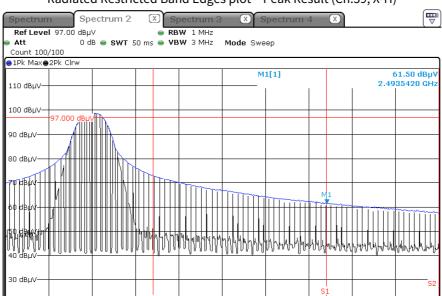

Frequency	Measured Value	A.F+C.L+Att- A.G+D.F	Ant. Pol.	Total	Limit	Margin	Measurement Type
[MHz]	[dB _µ V]	[dB/m]	[H/V]	[dB _µ V/m]	[dB _µ V/m]	[dB]	туре
2390.0	63.82	2.47	Н	66.29	73.98	7.69	PK
2390.0	38.61	2.47	Н	41.08	53.98	12.90	AV
# 2483.5	62.08	3.45	Н	65.53	73.98	8.45	PK
2493.5	61.50	3.45	Н	64.95	73.98	9.03	PK
2483.5	44.50	3.45	Н	47.95	53.98	6.03	AV

F-TP22-03 (Rev. 06) Page 28 of 33


■ Mode: 1 M Bit/s (37 Bytes) Test Plots

Radiated Restricted Band Edges plot - Average Result (Ch.39, X-H)

Radiated Restricted Band Edges plot - Peak Result (Ch.39, X-H)


(Integration method Used)

F-TP22-03 (Rev. 06) Page 29 of 33

Stop 2.5 GHz

691 pts

Radiated Restricted Band Edges plot – Peak Result (Ch.39, X-H)

Note:

Plots of worst case are only reported.

Start 2.475 GHz

20 dBµV-

F-TP22-03 (Rev. 06) Page 30 of 33

10. LIST OF TEST EQUIPMENT

Conducted Test

Equipment	Model	Manufacturer	Serial No.	Due to Calibration	Calibration Interval
LISN	ENV216	Rohde & Schwarz	102245	07/17/2025	Annual
EMI Test Receiver	ESR	Rohde & Schwarz	101910	07/02/2025	Annual
Temperature Chamber	SU-642	ESPEC	0093008124	02/19/2025	Annual
Signal Analyzer	N9030A	Agilent	MY49432108	02/20/2025	Annual
Power Measurement Set	OSP 120	Rohde & Schwarz	100935	08/01/2025	Annual
Power Meter	N1911A	Agilent	MY45100523	02/28/2025	Annual
Power Sensor	N1921A	Agilent	MY57820067	02/22/2025	Annual
Directional Coupler	87300B	Agilent	3116A03621	10/21/2025	Annual
Power Splitter	11667B	Hewlett Packard	10545	02/06/2025	Annual
DC Power Supply	E3632A	Agilent	KR75303243	04/19/2025	Annual
Attenuator(10 dB)(DC-26.5 GHz)	8493C	НР	07560	06/05/2025	Annual
Attenuator(10 dB)(DC-26.5 GHz)	8493C	НР	08285	05/28/2025	Annual
Attenuator(20 dB)	18N-20dB	Rohde & Schwarz	8	02/20/2025	Annual
Software	EMC32	Rohde & Schwarz	N/A	N/A	N/A
FCC WLAN&BT&BLE Conducted Test Software v3.0	N/A	HCT CO., LTD.	N/A	N/A	N/A
Bluetooth Tester	СВТ	Rohde & Schwarz	100752	12/27/2025	Annual

Note:

- 1. Equipment listed above that calibrated during the testing period was set for test after the calibration.
- 2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

F-TP22-03 (Rev. 06) Page 31 of 33

Radiated Test

Equipment	Model	Manufacturer	Serial No.	Due to Calibration	Calibration Interval	
Controller	CO3000	Innco system	CO3000-4p	N/A	N/A	
Antenna Position Tower	MA4640/800-XP-EP	Innco system	S1AM	07/30/2025	Annual	
Turn Table	DS2000-S-1t	Innco system	DS2000/572/54610422/P	N/A	N/A	
Amp & Filter Bank Switch Controller	FBSM-01B	T&M system	TM19050002	N/A	N/A	
Loop Antenna	FMZB 1513	Schwarzbeck	1513-175	01/06/2027	Biennial	
Hybrid Antenna	VULB 9168	Schwarzbeck	9168-0895	08/28/2026	Biennial	
Horn Antenna	BBHA 9120D	Schwarzbeck	9120D-1300	01/03/2026	Biennial	
Horn Antenna	BBHA 9120D	Schwarzbeck	9120D-2296	05/16/2026	Biennial	
Horn Antenna(15 GHz ~ 40 GHz)	BBHA9170	Schwarzbeck	BBHA9170342	09/20/2026	Biennial	
Spectrum Analyzer	FSV(10 Hz ~ 40 GHz)	Rohde & Schwarz	101055	05/09/2025	Annual	
Band Reject Filter	WRCJV2400/2483.5- 2370/2520-60/12SS	Wainwright Instruments	2	12/26/2025	Annual	
Band Reject Filter	WRCJV12-4900-5100-5900- 6100-50SS	Wainwright Instruments	5	06/04/2025	Annual	
Band Reject Filter	WRCJV12-4900-5100-5900- 6100-50SS	Wainwright Instruments	6	06/04/2025	Annual	
High Pass Filter(7 GHz ~ 18 GHz)	WHKX10-7150-8000-18000- 50SS	Wainwright Instruments	1	02/28/2025	Annual	
Power Amplifier	CBL18265035	CERNEX	22966	11/07/2025	Annual	
Power Amplifier	CBL26405040	CERNEX	25956	02/26/2025	Annual	
Bluetooth Tester	TC-3000C	TESCOM	3000C000175	03/19/2025	Annual	
RF Switching System	FMSR-05B (HPF(3~18GHz) + LNA1(1~18GHz))	T&M system	S1L1	12/23/2025	Annual	
RF Switching System	FMSR -05B (ATT(10dB) + LNA1(1~18GHz))	T&M system	S1L2	12/23/2025	Annual	
RF Switching System	FMSR -05B (ATT(3dB) + LNA1(1~18GHz))	T&M system	S1L3	12/23/2025	Annual	
RF Switching System	FMSR -05B (LNA1(1~18GHz))	T&M system	S1L4	12/23/2025	Annual	
RF Switching System	FMSR -05B (HPF(7~18GHz) + LNA2(6~18GHz))	T&M system	S1L5	12/23/2025	Annual	
RF Switching System	FMSR -05B (Thru(30MHz ~ 18GHz))	T&M system	S1L6	12/23/2025	Annual	

Note:

- 1. Equipment listed above that calibrated during the testing period was set for test after the calibration.
- 2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.
- 3. Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5(Version: 2017).

F-TP22-03 (Rev. 06) Page 32 of 33

11. ANNEX A_ TEST SETUP PHOTO

Please refer to test setup photo file no. as follows;

No.	Description			
1	HCT-RF-2501-FC080-P			

F-TP22-03 (Rev. 06) Page 33 of 33