

FCC TEST REPORT FCC ID:2BFDF-ML903

Report Number...... ZHT-240311029E-1

Date of Test...... Mar. 11, 2024 to Apr. 08, 2024

Date of issue...... Apr. 08, 2024

Test Result PASS

Testing Laboratory.....:: Guangdong Zhonghan Testing Technology Co., Ltd.

Address : Room 104, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Applicant's name Qingdao Thunderobot Technology Co.,Ltd.

...... No. 1, Haier Road, Laoshan District, Qingdao Address

Manufacturer's name Qingdao Thunderobot Technology Co.,Ltd.

Address: No. 1, Haier Road, Laoshan District, Qingdao

Test specification:

Standard..... FCC Part 15 Subpart C Section 15.249

Test procedure.....: ANSI C63.10:2013

Non-standard test method N/A

This device described above has been tested by ZHT, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of ZHT, this document may be altered or revised by ZHT, personal only, and shall be noted in the revision of the document.

Product name.....:: Thunderobot three-mode gaming mouse

Trademark THUNDEROBOT

Model/Type reference...... ML903, ML901 Black, ML901 White, ML903 SE Black,

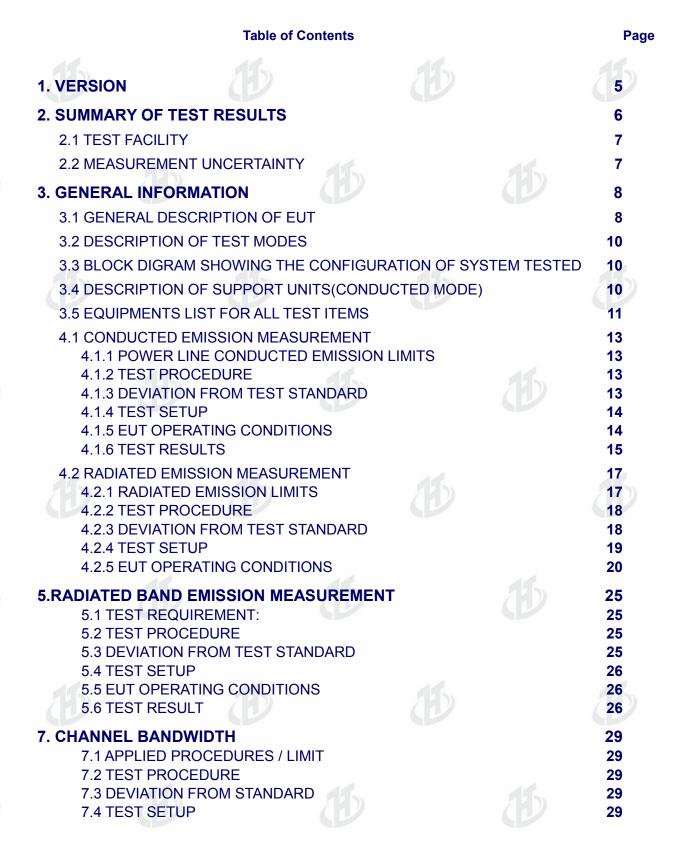
ML903 SE White, ML903 Black, ML903 White, ML903 4K Black,

ML903 4K White

The models are identical in circuit, only different on the model names, size and shape. So the test data of ML903 can represent

the remaining models.

Ratings.....: DC 3.7V by battery or DC 5V by USB


Project No.: ZHT-240311029E-1 Page 2 of 33

Testing Laboratory: Guar	ngdong Zhonghan Testing Technology Co., Ltd.
Com	m 104, Building 1, Yibaolai Industrial Park, Qiaotou munity, Fuhai Street, Bao'an District, Shenzhen, ngdong, China
Tested by (name + signature) <u>Kevir</u>	ryang Levin Tomey
Reviewer (name + signature): Bare	twu Bart. Wu
Approved (name + signature)Levi	Lee Zeila
1 5 1 5	
	11) 11)

Page 3 of 33

Project No.: ZHT-240311029E-1 Page 4 of 33

		Table of	Contents		Page	
7.6 T 8.ANTENN 9. TEST S	EUT OPERATION OP	S MENT OS			29 30 32 33 33	

Project No.: ZHT-240311029E-1 Page 5 of 33

1. VERSION

Report No.	Version	Description	Approved
ZHT-240311029E-1	Rev.01	Initial issue of report	Apr. 08, 2024
			3.01
130	(H)	(1)	11)

Project No.: ZHT-240311029E-1 Page 6 of 33

Test procedures according to the technical standards:

FCC Part15 (15.249) , Subpart C					
Standard Section	Test Item	Judgment	Remark		
FCC part 15.207	AC Power Line Conducted Emission	PASS			
FCC part 15.215	Channel Bandwidth& 99% OCB	PASS			
FCC part 15.249	Band Edge	PASS			
FCC part 15.205/15.209	Spurious Emission	PASS			
FCC part 15.249 (a)	Field Strength of Fundamental	PASS	15		

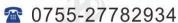
NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

Page 7 of 33

Guangdong Zhonghan Testing Technology Co., Ltd.

Add.: Room 104, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District


Shenzhen, Guangdong, China

FCC Registration Number: 255941 Designation Number: CN0325 IC Registered No.: 29832 CAB identifier: CN0143

2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y \pm U \cdot where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2 \cdot providing a level of confidence of approximately 95 % $^{\circ}$

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF power conducted	±0.16dB
3	Spurious emissions conducted	±0.21dB
4	All emissions radiated(9k-30MHz)	±4.68dB
5	All emissions radiated(<1G)	±4.68dB
6	All emissions radiated(>1G)	±4.89dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	Occupied Bandwidth	+4.96dB

Project No.: ZHT-240311029E-1 Page 8 of 33

3.1 GENERAL DESCRIPTION OF EUT

Product Name:	Thunderobot three-mode gaming mouse	Thunderobot three-mode gaming mouse				
Test Model No.:	ML903		11)			
Hardware Version:	V1.0					
Software Version:	V1.0					
Sample(s) Status:	Engineer sample	15)				
Operation Frequency:	2401MHz~2480MHz					
Channel Numbers:	80					
Channel Separation:	1MHz		11			
Modulation Type:	GFSK					
Antenna Type:	Chip antenna					
Antenna gain:	2.78dBi					
Power supply:	DC 3.7V by battery or DC 5V by USB	15)				

Page 9 of 33

CH No.	Frequency (MHz)	CH No.	Frequency (MHz)	CH No.	Frequency (MHz)	CH No.	Frequency (MHz)
0	2401	20	2421	40	2441	60	2461
12	2402	21	2422	41	2442	61	2462
2	2403	22	2423	42	2443	62	2463
3	2404	23	2424	43	2444	63	2464
4	2405	24	2425	44	2445	64	2465
5	2406	25	2426	45	2446	65	2466
6	2407	26	2427	46	2447	66	2467
7	2408	27	2428	47	2448	67	2468
8	2409	28	2429	48	2449	68	2469
9	2410	29	2430	49	2450	69	2470
10	2411	30	2431	50	2451	70	2471
11	2412	31	2432	51	2452	71	2472
12	2413	32	2433	52	2453	72	2473
13	2414	33	2434	53	2454	73	2474
14	2415	34	2435	54	2455	74	2475
15	2416	35	2436	55	2456	75	2476
16	2417	36	2437	56	2457	76	2477
17	2418	37	2438	57	2458	77	2478
18	2419	38	2439	58	2459	78	2479
19	2420	39	2440	59	2460	79	2480

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2401MHz
The middle channel	2440MHz
The Highest channel	2480MHz

Project No.: ZHT-240311029E-1 Page 10 of 33

3.2 DESCRIPTION OF TEST MODES

Keep the EUT in continuously transmitting mode Transmitting mode

Remark: EUT use new battery during the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Emission

Conducted Spurious

3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	-1 Adapter N/A		HW-059200CHQ N/A		AE
	1	15	15		15

Item	Shielded Type	Ferrite Core	Length	Note
		a .	J.	. Si

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2)For detachable type I/O cable should be specified the length in cm in Length a column.

Project No.: ZHT-240311029E-1 Page 11 of 33

3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

Ite m	Equipment	Manufacturer	Model	Last Cal.	Next Cal.
1	Receiver	R&S	ESCI	May 12, 2023	May 11, 2024
2	Loop antenna	EMCI	LAP600	May 12, 2023	May 11, 2024
3	Amplifier	Schwarzbeck	BBV 9743 B	May 12, 2023	May 11, 2024
4	Amplifier	Schwarzbeck	BBV 9718 B	May 12, 2023	May 11, 2024
5	Bilog Antenna	Schwarzbeck	VULB9162	May 17, 2023	May 16, 2024
6	Horn Antenna	Schwarzbeck	BBHA9120D	May 17, 2023	May 16, 2024
7	Horn Antenna	A.H.SYSTEM S	SAS574	May 12, 2023	May 11, 2024
8	Amplifier	AEROFLEX	100KHz-40GHz	May 12, 2023	May 11, 2024
9	Spectrum Analyzer	R&S	FSV40	May 12, 2023	May 11, 2024
11	966 Anechoic Chamber	EMToni	9m6m6m	Nov. 25, 2021	Nov. 24, 2024
12	Spectrum Analyzer	KEYSIGHT	N9020A	May 12, 2023	May 11, 2024
13	WIDBAND RADIO COMMUNICATION TESTER	R&S	CMW500	May 12, 2023	May 11, 2024
14	Single Generator	Agilent	N5182A	May 12, 2023	May 11, 2024
15	Power Sensor	MWRFtest	MW100-RFCB	May 12, 2023	May 11, 2024
16	Audio analyzer	R&S	UPL	May 12, 2023	May 11, 2024
17	Single Generator	R&S	SMB100A	May 12, 2023	May 11, 2024
18	Power Amplifier Shielding Room	EMToni	2m3m3m	Nov. 25, 2021	Nov. 24, 2024

Project No.: ZHT-240311029E-1 Page 12 of 33

Conduction Test equipment

Equipment	Manufacturer	Model	Last Cal.	Next Cal.
Receiver	R&S	ESCI	May 12, 2023	May 11, 2024
LISN	R&S	ENV216	May 12, 2023	May 11, 2024
ISN CAT 6	Schwarzbeck	NTFM 8158	May 12, 2023	May 11, 2024
ISN CAT 5	Schwarzbeck	CAT5 8158	May 12, 2023	May 11, 2024
Capacitive Voltage Probe	Schwarzbeck	CVP 9222 C	May 12, 2023	May 11, 2024
Current Transformer Clamp	Schwarzbeck	SW 9605	May 12, 2023	May 11, 2024
CE Shielding	EMToni	9m4m3m	Nov. 25, 2021	Nov. 24, 2024

Page 13 of 33

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.207
Test Method:	ANSI C63.10:2013
Test Frequency Range:	150KHz to 30MHz
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto

4.1.1 POWER LINE CONDUCTED EMISSION Limits

		7 10 10 10 10 10 10 10 10 10 10 10 10 10	
EDEOLIENCY (MHz)	Limit (dBuV)		Standard
FREQUENCY (MHz)	QP	AVG	Standard
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:

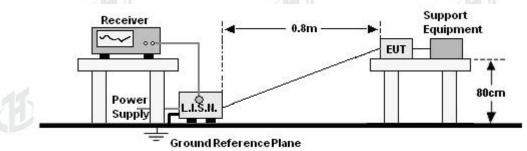
(1) *Decreases with the logarithm of the frequency.

4.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD

No deviation


admin@zht-lab.cn

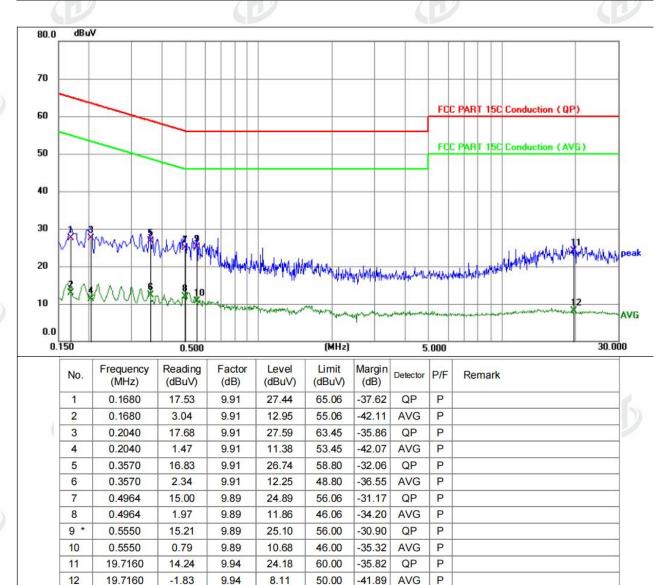
Project No.: ZHT-240311029E-1 Page 14 of 33

4.1.4 TEST SETUP



4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.



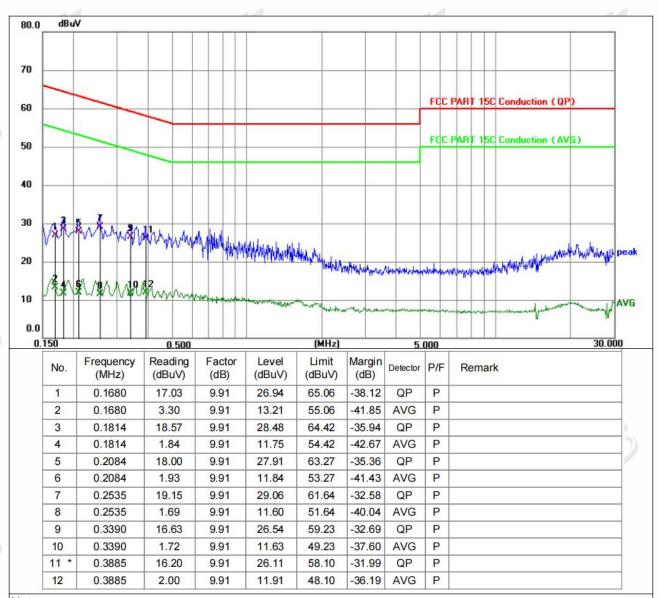
Project No.: ZHT-240311029E-1 Page 15 of 33

4.1.6 TEST RESULTS

Temperature:	25.1℃	Relative Humidity:	50%
Pressure:	101kPa	Phase :	L
Test Voltage:	AC 120V/60Hz		15

Notes:

- 1.An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission
- 3.Mesurement Level = Reading level + Correct Factor
- 4. The test data shows only the worst case GFSK-1M Low Channel: 2401 MHz.



Project No.: ZHT-240311029E-1 Page 16 of 33

Temperature:	25.1℃	Relative Humidity :	50%
Pressure:	101kPa	Phase :	N
Test Voltage:	AC 120V/60Hz		

Notes:

- 1.An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3.Mesurement Level = Reading level + Correct Factor
- 4. The test data shows only the worst case GFSK-1M Low Channel: 2401 MHz.

admin@zht-lab.cn

Page 17 of 33

4.2 RADIATED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.209								
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	9kHz to 25GHz	9kHz to 25GHz							
Test site:	Measurement Dista	nce: 3m			(1)				
Receiver setup:	Frequency	RBW	VBW	Value					
	9KHz-150KHz	Quasi-peak	200Hz	600Hz	Quasi-peak				
	150KHz-30MHz	Quasi-peak	9KHz	30KHz	Quasi-peak				
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak				
	Abovo 1GHz	Peak	1MHz	3MHz	Peak				
	Above 1G112	Above 1GHz Peak 1MH		10Hz	Average				

4.2.1 RADIATED EMISSION LIMITS

Frequencies	Field Strength	Measurement Distance		
(MHz)	(micorvolts/meter)	(meters)		
0.009~0.490	2400/F(KHz)	300		
0.490~1.705	24000/F(KHz)	30		
1.705~30.0	30	30		
30~88	100	3		
88~216	150	3		
216~960	200	3		
Above 960	500	3		

LIMITS OF RADIATED EMISSION MEASUREMENT

7 100 7	/ 1/1	7 10 1/1	
	Limit (dBuV/m) (at 3M)		
FREQUENCY (MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

According 15.249, the field strength of emissions from intentional radiators operated within 2400MHz-2483.5 MHz shall not exceed 94dBµV/m (50mV/m).

FCC PART 15.249(a)Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

2 0755-27782934

□ admin@zht-lab.cn

Project No.: ZHT-240311029E-1 Page 18 of 33

Fundamental Frequency	Field Strength of Fundamental	Field Strength of Harmonics		
	(millivolts/meter)	(microvolts/meter)		
900-928MHz	50 (94dBuV/m @3m)	500 (54dBuV/m @3m)		
2400-2483.5MHz	50 (94dBuV/m @3m)	500 (54dBuV/m @3m)		
5725-5875MHz	50 (94dBuV/m @3m)	500 (54dBuV/m @3m)		
24.0-24.25GHz	250 (108dBuV/m @3m)	2500 (68dBuV/m @3m)		

4.2.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 25GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-chamber test. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8m; above 1GHz, the height was 1.5m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item -EUT Test Photos.
- g. For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.

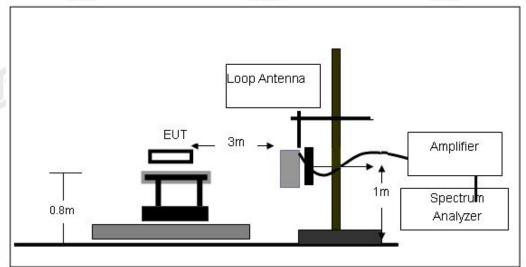
The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

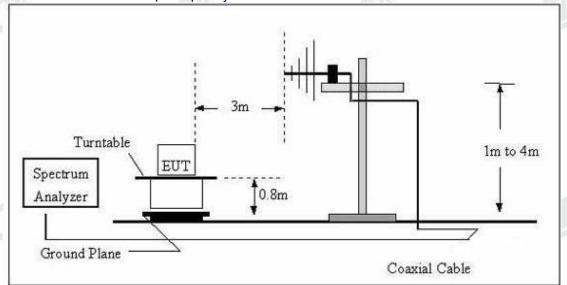
Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

4.2.3 DEVIATION FROM TEST STANDARD

No deviation

□ admin@zht-lab.cn

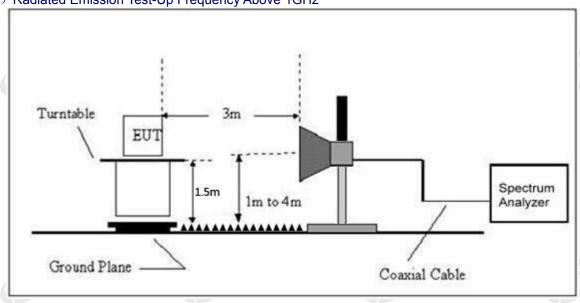




4.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz



4.2.5 EUT OPERATING CONDITIONS

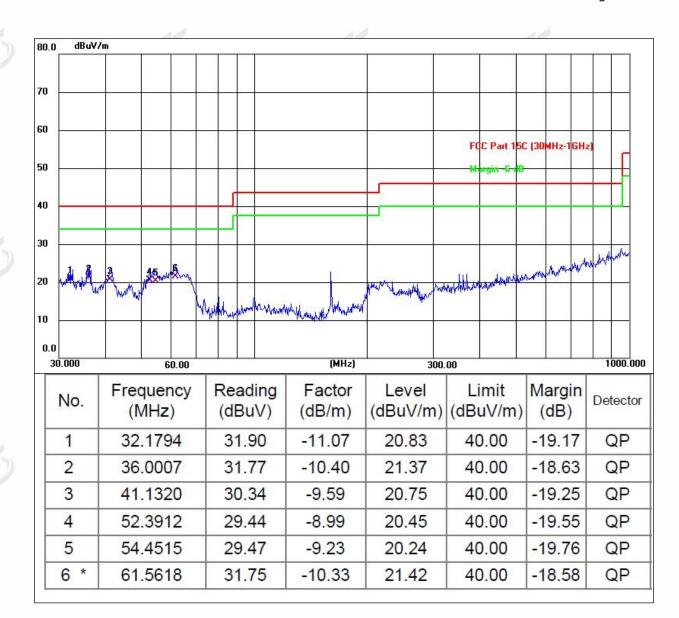
The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

4.2.6 TEST RESULTS (Between 9KHz - 30 MHz)

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.

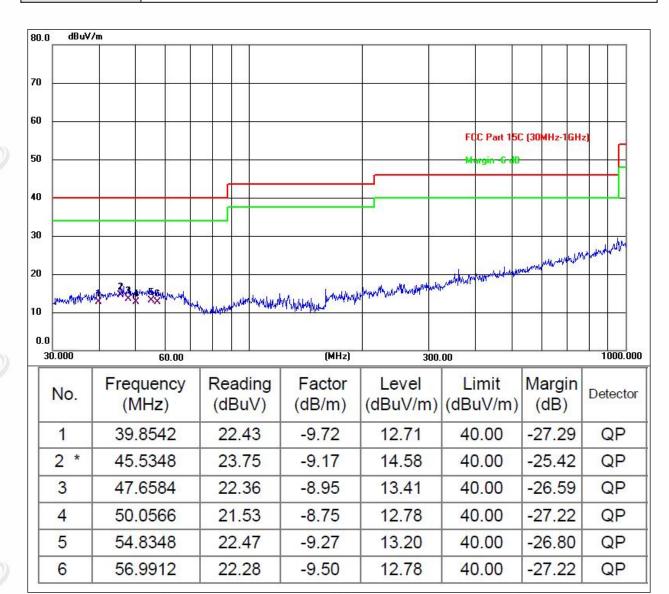
Between 30MHz - 1GHz

Temperature:	25.6℃	Relative Humidity:	47%
Pressure:	101 kPa	Polarization:	Horizontal
Test Voltage:	AC 120V/60Hz		



http://www.zht-lab.cn

Project No.: ZHT-240311029E-1 Page 21 of 33



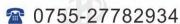
Page 22 of 33

Temperature: **25.6℃** Relative Humidity: 47% Pressure: Polarization: 101kPa Vertical Test Voltage: AC 120V/60Hz

Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.



B

Project No.: ZHT-240311029E-1 Page 23 of 33

Funda	mental	Test
-------	--------	------

Mod	Polar	Frequenc y	Meter Reading	Pre-am plifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
е	(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
	V	2401	79.63	30.55	5.77	24.66	91.29	114	-22.71	Pk
	V	2401	66.32	30.55	5.77	24.66	77.98	94	-16.02	AV
	V	2440	70.52	30.33	6.32	24.55	82.62	114	-31.38	Pk
	V	2440	62.35	30.33	6.32	24.55	74.45	94	-19.55	AV
	V	2480	71.09	30.55	5.77	24.66	82.75	114	-31.25	Pk
GFS	V	2480	60.28	30.55	5.77	24.66	71.94	94	-22.06	AV
K-1M	Η	2401	76.96	30.55	5.77	24.66	88.62	114	-25.38	Pk
and the	Н	2401	69.21	30.55	5.77	24.66	80.87	94	-13.13	AV
250	Η	2440	76.48	30.33	6.32	24.55	88.58	114	-25.42	Pk
	Ι	2440	62.21	30.33	6.32	24.55	74.31	94	-19.69	AV
	Н	2480	75.36	30.55	5.77	24.66	87.02	114	-26.98	Pk
	Н	2480	61.05	30.55	5.77	24.66	72.71	94	-21.29	AV

1GHz~25GHz

							0.0	- 4	
Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
				Low Cha	nnel:2401M	Hz			
V	4802	56.84	30.55	5.77	24.66	56.72	74	-17.28	Pk
V	4802	42.88	30.55	5.77	24.66	42.76	54	-11.24	AV
V	7203	58.84	30.33	6.32	24.55	59.38	74	-14.62	Pk
V	7203	41.06	30.33	6.32	24.55	41.6	54	-12.4	AV
Н	4802	59.79	30.55	5.77	24.66	59.67	74	-14.33	Pk
Н	4802	42.63	30.55	5.77	24.66	42.51	54	-11.49	AV
)) H	7203	56.03	30.33	6.32	24.55	56.57	74	-17.43	Pk
Н	7203	42.36	30.33	6.32	24.55	42.9	54	-11.1	AV
			N	liddle Ch	annel:2440l	MHz			
V	4880	56.43	30.55	5.77	24.66	56.31	74	-17.69	Pk
V	4880	41.33	30.55	5.77	24.66	41.21	54	-12.79	AV
V	7320	58.64	30.33	6.32	24.55	59.18	74	-14.82	Pk
V	7320	43.66	30.33	6.32	24.55	44.2	54	-9.8	AV
Н	4880	59.07	30.55	5.77	24.66	58.95	74	-15.05	AV
Н	4880	41.2	30.55	5.77	24.66	41.08	54	-12.92	Pk
Н	7320	56.88	30.33	6.32	24.55	57.42	74	-16.58	AV
	•	•	j	High Cha	nnel:2480N	1Hz			
V	4960	55.04	30.55	5.77	24.66	54.92	74	-19.08	Pk
) V	4960	41.91	30.55	5.77	24.66	41.79	54	-12.21	AV
V	7440	57.99	30.33	6.32	24.55	58.53	74	-15.47	Pk
V	7440	44.37	30.33	6.32	24.55	44.91	54	-9.09	AV
Н	4960	56.55	30.55	5.77	24.66	56.43	74	-17.57	Pk
Н	4960	42.92	30.55	5.77	24.66	42.8	54	-11.2	AV
Н	7440	55.39	30.33	6.32	24.55	55.93	74	-18.07	Pk
Н	7440	44.03	30.33	6.32	24.55	44.57	54	-9.43	AV

Remark:

- 1. Emission Level = Meter Reading + Antenna Factor + Cable Loss Pre-amplifier, Margin= Emission Level - Limit
- 2. If peak below the average limit, the average emission was no test.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

□ admin@zht-lab.cn

Page 25 of 33

5.RADIATED BAND EMISSION MEASUREMENT

5.1 TEST REQUIREMENT:

Test Requirement:	FCC Part15 C Section 15.209 and 15.205				
Test Method:	ANSI C63.10: 2013				
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.				
Test site:	Measurement Distance: 3m				
Receiver setup:	Frequency	Detector	RBW	VBW	Value
	Above	Peak	1MHz	3MHz	Peak
	1GHz	Average	1MHz	3MHz	Average

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	Limit (dBuV/	m) (at 3M)
FREQUENCY (MHz)	PEAK	AVERAGE
Above 1000	74	54

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

5.2 TEST PROCEDURE

Above 1GHz test procedure as below:

- a. 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the Highest channel

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

5.3 DEVIATION FROM TEST STANDARD

No deviation

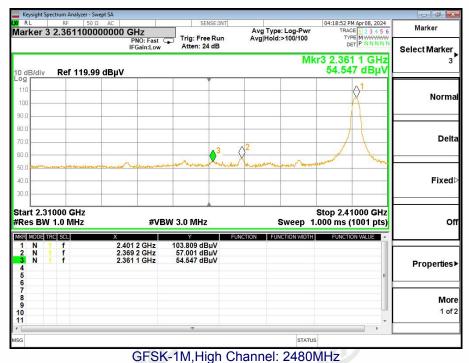
Project No.: ZHT-240311029E-1 Page 26 of 33

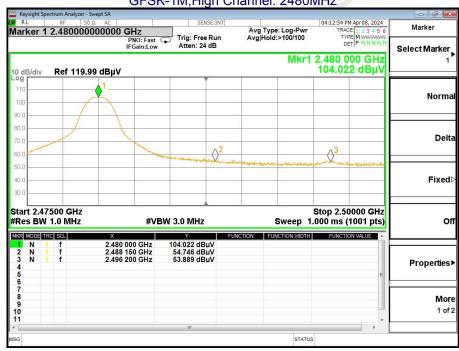
5.4 TEST SETUP

Radiated Emission Test-Up Frequency Above 1GHz Turntable EUT Spectrum 1.5m 1m to 4m Analyzer Ground Plane Coaxial Cable

5.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.


5.6 TEST RESULT


GFSK-1M,Low Channel:2401MHz RF 50 Ω AC |
1 2.401200000000 GHz
PNO: Fast |
IFGain:Low Avg Type: Log-Pwi Avg|Hold:>100/100 Select Marker Mkr1 2.401 2 GHz 103.808 dBµV Ref 119.99 dBµV Norma Delta Fixed Stop 2.41000 GHz Start 2.31000 GHz #Res BW 1.0 MHz **#VBW** 3.0 MHz Sweep 1.000 ms (1001 pts) Off 103.808 dBµV 56.423 dBµV 57.878 dBµV Properties! More 1 of 2 STATUS

Page 27 of 33

D

D

Project No.: ZHT-240311029E-1 Page 28 of 33

7. CHANNEL BANDWIDTH

Test Requirement:	FCC Part15 C Section 15.249		
Test Method:	ANSI C63.10:2013	11.	17

7.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.249) , Subpart C					
Section Test Item		Frequency Range (MHz)	Result		
15.249(a)(2)	Bandwidth	2400-2483.5	PASS		

7.2 TEST PROCEDURE

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

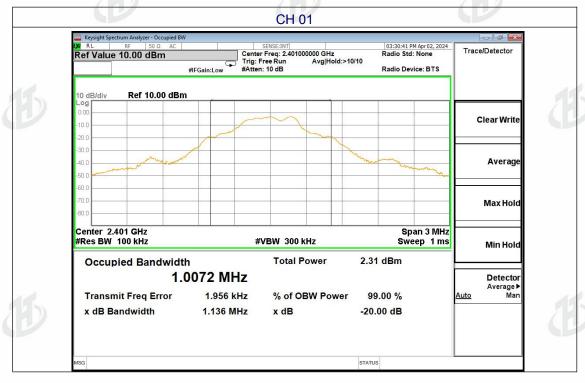
7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

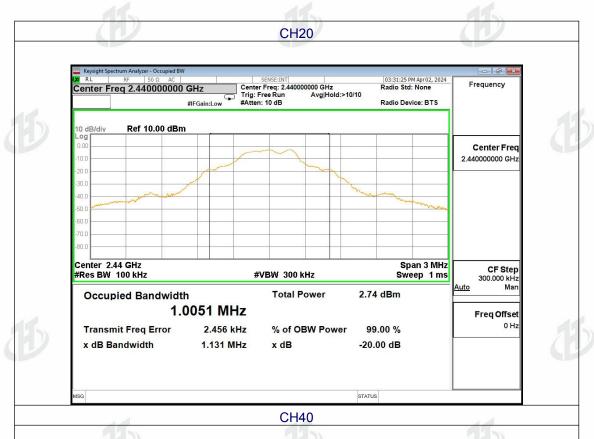


7.6 TEST RESULTS

Temperature :	25.6℃	Relative Humidity:	51%
Test Mode :	GFSK	Test Voltage :	DC 3.7V

Mode	Test channel	Channel Bandwidth (MHz)	Result
	Lowest	1.136	
GFSK-1M	Middle	1.131	Pass
	Highest	1.129	

GFSK-1M



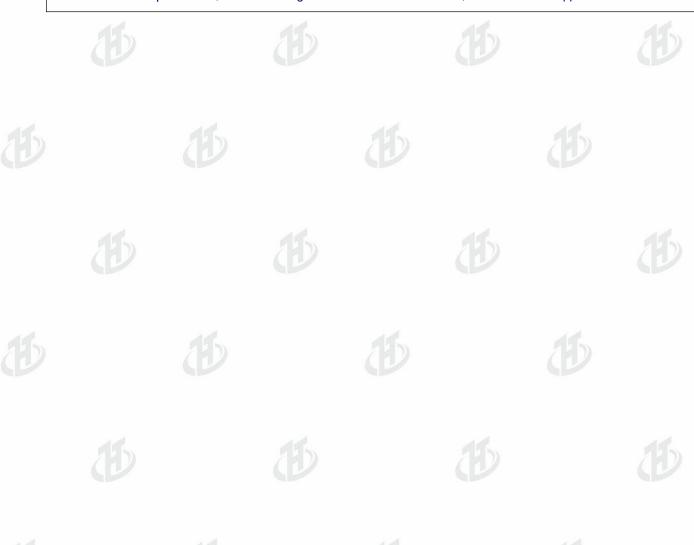


Project No.: ZHT-240311029E-1 Page 31 of 33

Project No.: ZHT-240311029E-1 Page 32 of 33

Standard requirement:	FCC Part15 C Section 15.203 /249(b)(4)
-----------------------	--

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.249(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is Chip antenna, the best case gain of the antennas is 2.78dBi, reference to the appendix II for details

Project No.: ZHT-240311029E-1 Page 33 of 33

Reference to the appendix I for details.

10. EUT CONSTRUCTIONAL DETAILS

Reference to the appendix II for details.

