

EUT:	Smart Connected Hub	Work Order:	ELEM0093
Customer:	Element Materials Technology	Job Site:	MN011
Attendees:	None	Customer Project:	None

TEST SPECIFICATIONS

Specification:	Method:
FCC 15.247:2020 FCC 2.1093:2020	FCC KDB 865664 D01 v01r04 FCC KDB 865664 D02 v01r02 FCC KDB 248227 D01 v02r02 FCC KDB 447498 D01 v06 IEEE Std 1528:2013

COMMENTS

All tests run with the reflective vest body-worn accessory. Per the manufacturer, this represents the worst-case scenario for EUT proximity to the human body.

DEVIATIONS FROM TEST STANDARD

None

RESULTS

Test Config.	Frequency Band	Transmit Frequency (MHz)	Transmit Channel	Data Rate (Mbps)	Transmit Mode	EUT Position	SAR Drift During Test (dB)	Measured 1g SAR Level (mW/g)	Measured 10g SAR Level (mW/g)	SAR Scaling Factor	Scaled 1g SAR Level (mW/g)	Scaled 10g SAR Level (mW/g)	Test#
Body	2.4GHz	2412	1	1	DSSS	Sim Card Side	0.48	0.02	0.01	1	0.02	0.01	WiFi 802.11b 1a
Body	2.4GHz	2412	1	1	DSSS	Front	-0.23	0.01	<0.01	1	0.01	< 0.01	WiFi 802.11b 1b
Body	2.4GHz	2412	1	1	DSSS	Back	-0.40	<0.01	<0.01	1	< 0.01	< 0.01	WiFi 802.11b 1c
Body	2.4GHz	2412	1	1	DSSS	Connector Side	0.29	<0.01	<0.01	1	< 0.01	< 0.01	WiFi 802.11b 1d

Tested By:	Marcelo Aguayo, Kyle McMullan	Room Temperature (°C):	22.7°C
Date:	2020-01-25	Liquid Temperature (°C):	21.3°C
Serial Number:	C4	Humidity (%RH):	24.6%
Configuration:	ELEM0093-5	Bar. Pressure (mb):	1015.4 mb
Comments:	None		

WiFi 802.11b 1a

DUT: Eleksen Smart Connected Hub; Type: M.28.R1.B1; Serial: SAR C4

Communication System: UID 0, IEEE 802.11b DSSS 1 Mbps (0); Communication System Band: 2400 MHz; Frequency: 2412 MHz;Communication System PAR: 1.872 dB; PMF: 1

Medium parameters used (interpolated): f = 2412 MHz; σ = 1.993 S/m; ϵ_r = 49.48; ρ = 1000 kg/m³ Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY Configuration:

- Probe: EX3DV4 SN3746; ConvF(7.33, 7.33, 7.33) @ 2412 MHz; Calibrated: 11/19/2019
- Sensor-Surface: 3mm (Mechanical Surface Detection), Sensor-Surface: 0mm (Fix Surface), z = 31.0, 106.0
- Electronics: DAE4 Sn909; Calibrated: 12/6/2019 •
- Phantom: ELI V6.0 (SAC); Type: QD OVA 003 AA; Serial: 2044 •
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470) •

Body/Body/Zoom Scan (11x13x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.619 V/m; Power Drift = 0.48 dB Peak SAR (extrapolated) = 0.0390 W/kg SAR(1 g) = 0.022 W/kg; SAR(10 g) = 0.012 W/kg (SAR corrected for target medium)

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.0273 W/kg

Body/Body/Area scan (51x51x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 0.0338 W/kg

Body/Body/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of Total (measured) = 2.609 V/m

Body/Body/Reference scan (41x51x1): Interpolated grid: dx=3.000 mm, dy=3.000 mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 0.0231 W/kg

Body/Body/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.0136 W/kg

Kryle Mathallon

Approved By

WiFi 802.11b 1a

SIMULTANEOUS TRANSMISSION TEST EXCLUSION

EQUIPMENT OPERATIONAL DETAILS

The 802.11bgn, Bluetooth or Bluetooth Low Energy, cellular and 13.56 MHz NFC radios are located a minimum distance of 15 mm from the user. The 802.11bgn and Bluetooth/Bluetooth Low Energy radios share an antenna, and are incapable of simultaneous transmission.

There are three different operational modes that support simultaneous transmission:

- (1) Cellular, Bluetooth, and 13.56 MHz NFC
- (2) Cellular, Bluetooth Low Energy, and 13.56 MHz NFC
- (3) Cellular, 802.11bgn, and 13.56 MHz NFC

The 13.56 MHz NFC radio is exempt from RF exposure evaluation.

ESTIMATED STANDALONE VALUES FOR SAR TEST EXCLUDED RADIOS

KDB 447498 D01 General RF Exposure Guidance v06, Section 4.3.2(b)

"When an antenna qualifies for the standalone SAR test exclusion of 4.3.1 and also transmits simultaneously with other antennas, the standalone SAR value must be estimated according to the following to determine the simultaneous transmission SAR test exclusion criteria:

1) [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] · $[\sqrt{f(GHz)}/x]$, for test separation distances \leq 50mm;

where x = 7.5 for 1-g SAR and x = 18.75 for 10-g SAR.

2) 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distance is > 50 mm.

This SAR estimation formula has been considered in conjunction with the SAR Test Exclusion Thresholds to result in substantially conservative SAR values of ≤ 0.4 W/kg. When SAR is estimated, the peak SAR location is assumed to be at the feed-point or geometric center of the antenna, whichever provides a smaller antenna separation distance, and this location must be clearly identified in test reports. The estimated SAR is used only to determine simultaneous transmission SAR test exclusion; it should not be reported as the standalone SAR. When SAR is estimated, it must be applied to determine the sum of 1-g SAR test exclusion. When SAR to peak location separation ratio test exclusion is applied, the highest reported SAR for simultaneous transmission can be an estimated standalone SAR if the estimated SAR is the highest among the simultaneously transmitting antennas (see also KDB Publication 690783 D01). For situations where the estimated SAR is overly conservative for certain conditions, the test lab may choose to perform standalone SAR measurements, then use the measured SAR to determine simultaneous transmission SAR test exclusion. Estimated SAR values at selected frequencies, distances, and power levels are illustrated in Appendix D.

In the table below, the estimated stand-alone SAR for both the Bluetooth and Bluetooth Low Energy radios (FCC ID: 2AC7Z-ESPWROOM32) has been calculated, and the values are below the head/torso limit of 1.6 W/kg. The standalone SAR test exclusion calculation for the Bluetooth and Bluetooth Low Energy radios is documented in Element report# ELEM0093.

Radio	Transmit Frequency (GHz)	Test Separation (mm)	Output Power (mW)	Duty Cycle	Estimated Standalone SAR (W/kg)
Bluetooth	2.44	15	4.4	1	0.061
Bluetooth Low Energy	2.44	15	4.0	1	0.056

SIMULTANEOUS TRANSMISSION TEST EXCLUSION

The information in the table above is from: From FCC ID: 2AC7Z-ESPWROOM32 Bay Area Compliance Laboratories Corp. Report No.'s RKS161017001-00A and RKS161017001-00B.

MEASURED STANDALONE VALUES

Radio	Highest Reported 1-g SAR (W/kg)	
Cellular	0.98	Any
802.11bgn	0.02	Any

SIMULTANEOUS TRANSMIT VALUES

Simultaneous transmission is evaluated according to KDB 447498 D01 4.3.2 and is initially evaluated as follows:

"Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneously transmitting antenna. When the sum of 1-g or 10-g SAR of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit, SAR test exclusion applies to that simultaneous transmission configuration... When the sum of SAR considered in this manner does not qualify for test exclusion, the individual test positions of each exposure condition should be considered separately for the sum of 1-g or 10-g SAR test exclusion"

If the sum of the 1g or 10g SAR of all simultaneously transmitting antennas exceeds the SAR limit, then the SAR to peak location separation ratio detailed in KDB 447498 D01 4.3.2 is used to evaluate compliance:

"The ratio is determined by $((SAR_1 + SAR_2)^{1.5})/R_i$, rounded to two decimal digits, and must be ≤ 0.04 for all antenna pairs in the configuration to qualify for 1-g SAR test exclusion. When 10-g SAR applies, the ratio must be ≤ 0.10 . SAR₁ and SAR₂ are the highest reported or estimated SAR values for each antenna in the pair, and R_i is the separation distance in mm between the peak SAR locations for the antenna pair."

There are three different operational modes that support simultaneous transmission:

- (1) Cellular, Bluetooth, and 13.56 MHz NFC
- (2) Cellular, Bluetooth Low Energy, and 13.56 MHz NFC
- (3) Cellular, 802.11bgn, and 13.56 MHz NFC

The 13.56 MHz NFC radio is exempt from RF exposure evaluation. The applicable estimated standalone SAR values and the measured standalone SAR values are added together and compared against the limit to determine compliance. For each of the 3 scenarios, this is done below:

Cellular + Bluetooth + NFC = 0.98 + 0.06 + 0 (exempt) = 1.04Cellular + Bluetooth Low Energy + NFC = 0.98 + 0.06 + 0 (exempt) = 1.04Cellular + 802.11bgn + NFC = 0.98 + 0.02 + 0 (exempt) = 1.00

Where all values given have the units W/kg averaged over 1g.

The limit for all of these cases is the head/torso general population exposure limit of 1.60 W/kg. All cases comply with this limit.

SYSTEM AND TEST SITE DESCRIPTION

SAR MEASUREMENT SYSTEM

Schmid & Partner Engineering AG, DASY52

Element selected the leader in SAR evaluation systems to provide the measurement tools for this evaluation. SPEAG's DASY52 is the fastest and most accurate scanner on the market. It is fully compatible with all world-wide standards for transmitters operating at the ear or within 20cm of the body. It provides full compatibility with IEC 62209-1, IEC 62209-2, IEEE 1528 as well as national adaptations such as FCC OET-65c and Korean Std. MIC #2000-93

The DASY52 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Staubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom, oval flat phantom, device holder, tissue simulating liquids, and validation dipole kits.

SYSTEM AND TEST SITE DESCRIPTION

TEST SITE

Element

The SAR measurement system is located in a semi-anechoic chamber. This provides an ambient free environment that also eliminates reflections.

The chamber is 12 ft wide by 16 ft long x 8 ft high. A dedicated HVAC unit provides +/- 1 degree C temperature control.

TEST EQUIPMENT

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Amplifier	Mini Circuits	ZHL-5W-2G-S+	TRZ	NCR ¹	0 mo
Amplifier	Mini Circuits	ZVE-3W-83+	TTA	NCR ¹	0 mo
Antenna - Dipole	SPEAG	D835V2	ADK	11/11/2019	12 mo
Antenna - Dipole	SPEAG	D1750v2	ADN	11/13/2019	12 mo
Antenna - Dipole	SPEAG	D1900v2	ADO	11/13/2019	12 mo
Antenna - Dipole	SPEAG	D2450V2	ADL	11/12/2019	12 mo
Antenna - Dipole	SPEAG	D750V3	ADQ	11/11/2019	12 mo
Antenna - Double Ridge	ETS Lindgren	3115	AJA	8/28/2019	24 mo
Cellular Base Station Simulator	Agilent	E5515C	BSV	NCR	0 mo
Cellular Base Station Simulator	Rohde & Schwarz	1201.0002K50	AFR	9/13/2019	12 mo
Device Holder	SPEAG	N/A	SAW	NCR	0 mo
Dielectric Assessment Kit	SPEAG	DAKS:200	IPR	4/25/2019	36 mo
Generator - Signal	Agilent	V2920A	TIH	NCR	0 mo
Meter - Power	Agilent	N1913A	SQR	10/8/2019	12 mo
Power Sensor	Agilent	E9300H	SQO	10/8/2019	12 mo
Power Supply	Kikusui	PWR401ML	TQL	NCR	0 mo
Probe - Dielectric	SPEAG	DAKS-3.5	IPRA	11/12/2019	36 mo
Probe - SAR	SPEAG	EX3DV4	SAG	11/19/2019	12 mo
SAR - Tissue Test Solution	SPEAG	MBBL600-6000V6		At start of te	esting
SAR Test System	Staeubli	DAYS5	SAK	NCR	0 mo
SAR Test System	SPEAG	QD OVA 001 BB	SAC	NCR	0 mo
	Omega Engineering,				
Thermometer	Inc.	HH311	DUI	2/15/2018	36 mo
DAE	SPEAG	SD 000 D04 BK	R219	12/06/2019	12 mo

Note 1: The output of the signal generator / amplifier is verified with the calibrated power meter listed above.

MEASUREMENT UNCERTAINTY

MEASUREMENT UNCERTAINTY BUDGETS PER IEEE 1528:2013

300-3000 MHz Range

Uncertainty Component	Tolerance (+/- %)	Probability Distribution	Divisor	c _i (1g)	c _i (10g)	u _i (1g) (+/-%)	u _i (10g) (+/-%)	v _i
Measurement System								
Probe calibration (k=1)	5.5	normal	1	1	1	5.5	5.5	∞
Axial isotropy	4.7	rectangular	1.732	0.707	0.707	1.9	1.9	8
Hemispherical isotropy	9.6	rectangular	1.732	0.707	0.707	3.9	3.9	~
Boundary effect	1.0	rectangular	1.732	1	1	0.6	0.6	8
Linearity	4.7	rectangular	1.732	1	1	2.7	2.7	8
System detection limits	1.0	rectangular	1.732	1	1	0.6	0.6	8
Readout electronics	0.3	normal	1	1	1	0.3	0.3	8
Response time	0.8	rectangular	1.732	1	1	0.5	0.5	8
Integration time	2.6	rectangular	1.732	1	1	1.5	1.5	8
RF ambient conditions - noise	1.7	rectangular	1.732	1	1	1.0	1.0	8
RF Ambient Reflections	0.0	rectangular	1.732	1	1	0.0	0.0	8
Probe positioner mechanical tolerance	0.4	rectangular	1.732	1	1	0.2	0.2	8
Probe positioner with respect to phantom shell	2.9	rectangular	1 732	1	1	17	17	8
Extrapolation, interpolation, and integration algorithms for max. SAR evaluation	1.0	rectangular	1.732	1	1	0.6	0.6	∞
Test Sample Related								
Device Positioning	2.9	normal	1	1	1	2.9	2.9	145
Device Holder	3.6	normal	1	1	1	3.6	3.6	5
Power Drift	5.0	rectangular	1.732	1	1	2.9	2.9	8
Phantom and tissue parameters								
Phantom Uncertainty - shell thickness tolerances	4.0	rectangular	1.732	1	1	2.3	2.3	8
Liquid conductivity - deviation from target values	5.0	rectangular	1.732	0.64	0.43	1.8	1.2	~
Liquid conductivity - measurement uncertainty	6.5	normal	1	0.64	0.43	4.2	2.8	×
Liquid permittivity - deviation from target values	5.0	rectangular	1.732	0.6	0.49	1.7	1.4	∞
Liquid permittivity - measurement uncertainty	3.2	normal	1	0.6	0.49	1.9	1.6	∞
Combined Standard Uncertainty			RSS			11.2	10.6	387
Expanded Measurement Uncertainty (95% Co	nfidence/		pormal (k=2)		22.5	21.2	

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

S C

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Element Client

Certificate No: D835V2-4d108 Nov19

Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: November 11, 2019 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power sensor NRP-Z91 SN: 104778 03-Apr-19 (No. 217-02892)02893) Apr-20 Power sensor NRP-Z91 SN: 103244 03-Apr-19 (No. 217-02892) Apr-20 Power sensor NRP-Z91 SN: 103245 03-Apr-19 (No. 217-02893) Apr-20 Power sensor NRP-Z91 SN: 5058 (20k) 04-Apr-19 (No. 217-02893) Apr-20 SN: 601 30-Apr-19 (No. 217-02893) Apr-20 Apr-20 SN: 601 30-Apr-19 (No. 217-02894) Apr-20 Apr-20 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A SN: US37292783 07-ocl-15 (in house check Cocl-18)	Object	D835V2 - SN:4d	108		
Calibration date: November 11, 2019 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.	Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	edure for SAR Validation Sources	s between 0.7-3 GHz	
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.	<td>Calibration date:</td> <td>November 11, 20</td> <td>019</td> <td></td>	Calibration date:	November 11, 20	019	
Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 03-Apr-19 (No. 217-02892/02893) Apr-20 Power sensor NRP-Z91 SN: 103244 03-Apr-19 (No. 217-02892) Apr-20 Power sensor NRP-Z91 SN: 103245 03-Apr-19 (No. 217-02893) Apr-20 Power sensor NRP-Z91 SN: 103245 03-Apr-19 (No. 217-02893) Apr-20 Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-19 (No. 217-02895) Apr-20 SN: 5047.2 / 06327 04-Apr-19 (No. 217-02895) Apr-20 SN: 5047.2 / 06327 04-Apr-19 (No. EX3-7349_May19) May-20 DAE4 SN: 601 30-Apr-19 (No. DAE4-601_Apr19) Apr-20 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A SN: GB39512475 30-Oct-14 (in house check Cot-18) In house check: Oct-2 Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-18) In house check: Oct-2 SN: 10972 15-Jun-15 (in house check Oct-18) In house check: Oct-2 SN: 100972 15-Jun-15 (in house check Oct-19) I	This calibration certificate docume The measurements and the uncert All calibrations have been conduct	nts the traceability to nat tainties with confidence p red in the closed laborate	tional standards, which realize the physical ur probability are given on the following pages ar pry facility: environment temperature $(22 \pm 3)^{\circ}$	hits of measurements (SI). Ind are part of the certificate. C and humidity < 70%.	
Power meter NRP Power sensor NRP-Z91SN: 104778 SN: 10324403-Apr-19 (No. 217-02892/02893)Apr-20 Apr-20Power sensor NRP-Z91 Power sensor NRP-Z91SN: 10324403-Apr-19 (No. 217-02892)Apr-20 Apr-20Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 OAE4SN: 5058 (20k)04-Apr-19 (No. 217-02893)Apr-20 Apr-20Reference Probe EX3DV4 OAE4SN: 5047.2 / 0632704-Apr-19 (No. 217-02895)Apr-20 Apr-20Reference Probe EX3DV4 OAE4SN: 60130-Apr-19 (No. EX3-7349_May19)May-20 Apr-20Recondary Standards Power sensor HP 8481A Power sensor HP 8481A SN: US37292783ID # Check Date (in house check Feb-19)In house check: Oct-2 In house check: Oct-18)Regenerator R&S SMT-06 Ietwork Analyzer Agilent E8358ASN: 1097215-Jun-15 (in house check Oct-18)In house check: Oct-2 In house check: Oct-2Name Ealibrated by:NameFunctionSignature Leif Klysner	Calibration Equipment used (M&TE Primary Standards	E critical for calibration)	Cal Date (Cortificate No.)		
Power sensor NRP-Z91SN: 10324403-Apr-19 (No. 217-02892)Apr-20Power sensor NRP-Z91SN: 10324503-Apr-19 (No. 217-02892)Apr-20Reference 20 dB AttenuatorSN: 5058 (20k)04-Apr-19 (No. 217-02893)Apr-20Sype-N mismatch combinationSN: 5058 (20k)04-Apr-19 (No. 217-02893)Apr-20Reference Probe EX3DV4SN: 5047.2 / 0632704-Apr-19 (No. 217-02895)Apr-20Seference Probe EX3DV4SN: 734929-May-19 (No. EX3-7349_May19)May-20SAE4SN: 60130-Apr-19 (No. DAE4-601_Apr19)Apr-20Secondary StandardsID #Check Date (in house)Scheduled CheckPower sensor HP 8481ASN: GB3951247530-Oct-14 (in house check Feb-19)In house check: Oct-2Power sensor HP 8481ASN: US3729278307-Oct-15 (in house check Oct-18)In house check: Oct-2Secondary Standards K analyzer Agilent E8358ASN: 10097215-Jun-15 (in house check Oct-18)In house check: Oct-2NameFunctionSignaturecalibrated by:Leif KlysnerLaboratory TechnicianSignature	Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02802/02802)	Scheduled Calibration	
Prower sensor NRP-Z91SN: 10324503-Apr-19 (No. 217-02893)Apr-20Seference 20 dB AttenuatorSN: 5058 (20k)04-Apr-19 (No. 217-02893)Apr-20Sype-N mismatch combinationSN: 5047.2 / 0632704-Apr-19 (No. 217-02895)Apr-20SN: 5047.2 / 0632704-Apr-19 (No. 217-02895)Apr-20SN: 601SN: 60130-Apr-19 (No. EX3-7349_May19)May-20AE4SN: 60130-Apr-19 (No. DAE4-601_Apr19)Apr-20econdary StandardsID #Check Date (in house)Scheduled Checkower sensor HP 8481ASN: GB3951247530-Oct-14 (in house check Feb-19)In house check: Oct-2ower sensor HP 8481ASN: MY4109231707-Oct-15 (in house check Oct-18)In house check: Oct-2SN: 10097215-Jun-15 (in house check Oct-18)In house check: Oct-2SN: 100972SN: US4108047731-Mar-14 (in house check Oct-19)In house check: Oct-2NameFunctionSignaturealibrated by:Leif KlysnerLaboratory TechnicianSignature	ower sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20	
Apr-20Apr-20Apr-20ype-N mismatch combination teference Probe EX3DV4 (AE4XE4SN: 5058 (20k)SN: 5047.2 / 06327O4-Apr-19 (No. 217-02894)SN: 5047.2 / 06327O4-Apr-19 (No. 217-02895)Apr-20SN: 7349SN: 601SN: 60272783SN: 601SN: 6039512475SN: 6039512475SN: 0537292783O7-Oct-15 (in house check Feb-19)In house check: Oct-2SN: 100972SN: 100973SN: 100974SN: 100974SN: 100975 </td <td>ower sensor NRP-Z91</td> <td>SN: 103245</td> <td>03-Apr-19 (No. 217-02032)</td> <td>Apr-20</td>	ower sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02032)	Apr-20	
ype-N mismatch combination eference Probe EX3DV4 AE4SN: 5047.2 / 06327 SN: 7349 SN: 7349 SN: 601Other Probe (tot. 217 02895) SN: 7349 SO-Apr-19 (No. 217-02895)Apr-20 May-20 Apr-20econdary Standards ower meter E4419B ower sensor HP 8481A power sensor HP 8481A SN: US37292783ID # Check Date (in house)Scheduled Check Socheduled CheckSN: US37292783 ower sensor HP 8481A SN: US37292783SN: 07-Oct-15 (in house check Feb-19) SN: US37292783In house check: Oct-2 In house check Oct-18)F generator R&S SMT-06 etwork Analyzer Agilent E8358ASN: US41080477 SN: US41080477SI-Jun-15 (in house check Oct-18) SN: US41080477In house check: Oct-2 SI-Mar-14 (in house check Oct-19)alibrated by:Name Leif KlysnerFunction Laboratory TechnicianSignature Signature	eference 20 dB Attonuctor	SNI: 5059 (2014)		An= 20	
ApproxApproxApproxApproxAE4SN: 734929-May-19 (No. EX3-7349_May19)May-20SN: 60130-Apr-19 (No. DAE4-601_Apr19)Apr-20econdary StandardsID #Check Date (in house)Scheduled Checkower meter E4419BSN: GB3951247530-Oct-14 (in house check Feb-19)In house check: Oct-2ower sensor HP 8481ASN: US3729278307-Oct-15 (in house check Oct-18)In house check: Oct-2pwer sensor HP 8481ASN: MY4109231707-Oct-15 (in house check Oct-18)In house check: Oct-2SN: 10097215-Jun-15 (in house check Oct-18)In house check: Oct-2SN: US4108047731-Mar-14 (in house check Oct-19)In house check: Oct-2NameFunctionSignaturealibrated by:Leif KlysnerLaboratory TechnicianSignature	Alteruator	SIN. 3030 (ZUK)	04-Apr-19 (No. 217-02894)	Apr-20	
DAE4 SN: 601 30-Apr-19 (No. DAE4-601_Apr19) May-20 iecondary Standards ID # Check Date (in house) Scheduled Check iower meter E4419B SN: GB39512475 30-Oct-14 (in house check Feb-19) In house check: Oct-2 iower sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-18) In house check: Oct-2 iower sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-18) In house check: Oct-2 F generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-18) In house check: Oct-2 SN: US41080477 31-Mar-14 (in house check Oct-19) In house check: Oct-2 Name Function Signature alibrated by: Leif Klysner Laboratory Technoician Signature	ype-N mismatch combination	SN: 5047.2 / 06327	04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895)	Apr-20 Apr-20 Apr-20	
Lecondary StandardsID #Check Date (in house)Scheduled Checkower meter E4419BSN: GB3951247530-Oct-14 (in house check Feb-19)In house check: Oct-2ower sensor HP 8481ASN: US3729278307-Oct-15 (in house check Oct-18)In house check: Oct-2ower sensor HP 8481ASN: MY4109231707-Oct-15 (in house check Oct-18)In house check: Oct-2F generator R&S SMT-06SN: 10097215-Jun-15 (in house check Oct-18)In house check: Oct-2etwork Analyzer Agilent E8358ASN: US4108047731-Mar-14 (in house check Oct-19)In house check: Oct-2NameFunctionSignaturealibrated by:Leif KlysnerLaboratory TechnicianSignature	ype-N mismatch combination eference Probe EX3DV4	SN: 5047.2 / 06327 SN: 7349	04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 29-May-19 (No. EX3-7349, May19)	Apr-20 Apr-20 Apr-20 May-20	
ower meter E4419B SN: GB39512475 30-Oct-14 (in house check Feb-19) In house check: Oct-2 ower sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-18) In house check: Oct-2 ower sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-18) In house check: Oct-2 F generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-18) In house check: Oct-2 etwork Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-19) In house check: Oct-2 Name Function Signature alibrated by: Leif Klysner Laboratory Technician Signature	ype-N mismatch combination Reference Probe EX3DV4 AE4	SN: 5058 (20K) SN: 5047.2 / 06327 SN: 7349 SN: 601	04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 29-May-19 (No. EX3-7349_May19) 30-Apr-19 (No. DAE4-601_Apr19)	Apr-20 Apr-20 Apr-20 May-20 Apr-20	
ower sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-18) In house check: Oct-2 ower sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-18) In house check: Oct-2 F generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-18) In house check: Oct-2 etwork Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-19) In house check: Oct-2 Name Function Signature alibrated by: Leif Klysner Laboratory Technician Signature	ype-N mismatch combination reference Probe EX3DV4 AE4 econdary Standards	SN: 5058 (20K) SN: 5047.2 / 06327 SN: 7349 SN: 601	04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 29-May-19 (No. EX3-7349_May19) 30-Apr-19 (No. DAE4-601_Apr19) Check Date (in house)	Apr-20 Apr-20 Apr-20 May-20 Apr-20 Scheduled Check	
ower sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-18) In house check: Oct-2 F generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-18) In house check: Oct-2 etwork Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-19) In house check: Oct-2 Name Function Signature alibrated by: Leif Klysner Laboratory Technician Signature	ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter E4419B	SN: 5038 (20K) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475	04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 29-May-19 (No. EX3-7349_May19) 30-Apr-19 (No. DAE4-601_Apr19) Check Date (in house) 30-Oct-14 (in house check Feb-19)	Apr-20 Apr-20 Apr-20 May-20 Apr-20 Scheduled Check	
F generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-18) In house check: Oct-2 etwork Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-19) In house check: Oct-2 Name Function Signature alibrated by: Leif Klysner Laboratory Technician Signature	ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter E4419B ower sensor HP 8481A	SN: 5038 (20K) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783	04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 29-May-19 (No. EX3-7349_May19) 30-Apr-19 (No. DAE4-601_Apr19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18)	Apr-20 Apr-20 Apr-20 May-20 Apr-20 Scheduled Check In house check: Oct-20 In house check: Oct-20	
etwork Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-19) In house check: Oct-2 Name Function Signature alibrated by: Leif Klysner Laboratory Technician	ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter E4419B ower sensor HP 8481A ower sensor HP 8481A	SN: 5038 (20K) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317	04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 29-May-19 (No. EX3-7349_May19) 30-Apr-19 (No. DAE4-601_Apr19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18)	Apr-20 Apr-20 Apr-20 May-20 Apr-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20	
Name Function Signature alibrated by: Leif Klysner Laboratory Technician Output	ype-N mismatch combination Reference Probe EX3DV4 AE4 econdary Standards ower meter E4419B ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06	SN: 5038 (20K) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972	04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 29-May-19 (No. EX3-7349_May19) 30-Apr-19 (No. DAE4-601_Apr19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18)	Apr-20 Apr-20 Apr-20 May-20 Apr-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20	
alibrated by: Leif Klysner Laboratory Technician	Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A Powe	SN: 5038 (20K) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477	04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 29-May-19 (No. EX3-7349_May19) 30-Apr-19 (No. DAE4-601_Apr19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19)	Apr-20 Apr-20 Apr-20 May-20 Apr-20 Scheduled Check In house check: Oct-20 In house check: Oct-20	
	Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: 5038 (20K) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name	04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 29-May-19 (No. EX3-7349_May19) 30-Apr-19 (No. DAE4-601_Apr19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19)	Apr-20 Apr-20 Apr-20 May-20 Apr-20 Scheduled Check In house check: Oct-20 In house check: Oct-20	

Approved by:

Technical Manager

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Katja Pokovic

Issued: November 12, 2019

Report No. ELEM0093 Certificate No: D835V2-4d108 Nov10

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage C
 - Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- · Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna . connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

-

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.3
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.0 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.44 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.70 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.59 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.33 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

...

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.1 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.47 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.73 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm^3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.62 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.40 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.2 Ω - 3.7 jΩ	
Return Loss	- 28.3 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.7 Ω - 6.3 jΩ	
Return Loss	- 22.7 dB	

General Antenna Parameters and Design

	Electrical Delay (one direction)	1.392 ns
--	----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Date: 11.11.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d108

Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.91$ S/m; $\epsilon_r = 42$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(9.89, 9.89, 9.89) @ 835 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 63.93 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.66 W/kg **SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.59 W/kg** Smallest distance from peaks to all points 3 dB below = 16.5 mm Ratio of SAR at M2 to SAR at M1 = 66.9% Maximum value of SAR (measured) = 3.23 W/kg

0 dB = 3.23 W/kg = 5.09 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 11.11.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d108

Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.99$ S/m; $\epsilon_r = 55.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.16, 10.16, 10.16) @ 835 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 58.80 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.68 W/kg **SAR(1 g) = 2.47 W/kg; SAR(10 g) = 1.62 W/kg** Smallest distance from peaks to all points 3 dB below = 15 mm Ratio of SAR at M2 to SAR at M1 = 67.3% Maximum value of SAR (measured) = 3.29 W/kg

0 dB = 3.29 W/kg = 5.17 dBW/kg

Impedance Measurement Plot for Body TSL

ADL

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Element Client

Certificate No: D2450V2-855_Nov19

S

C

S

CALIDITATION CENTING	CALIBR	ATION	CERTIFI	CATE
----------------------	--------	-------	---------	------

bject	02450V2 - SN:85	5	
calibration procedure(s) (QA CAL-05.v11 Calibration Proce	dure for SAR Validation Sources	between 0.7-3 GHz
Calibration date:	November 12, 20	19	
This calibration certificate document The measurements and the uncertai All calibrations have been conducted	s the traceability to nati- inties with confidence pr d in the closed laborator	onal standards, which realize the physical unit robability are given on the following pages and ry facility: environment temperature $(22 \pm 3)^{\circ}$ C	ts of measurements (SI). d are part of the certificate. c and humidity < 70%.
Calibration Equipment used (M&TE	critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NBP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NBP-791	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-19 (No. 217-02894)	Apr-20
vpe-N mismatch combination	SN: 5047.2 / 06327	04-Apr-19 (No. 217-02895)	Apr-20
Reference Probe EX3DV4	SN: 7349	29-May-19 (No. EX3-7349_May19)	May-20
DAE4	SN: 601	30-Apr-19 (No. DAE4-601_Apr19)	Apr-20
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	de la
	Katia Pokovic	Technical Manager	antac
Approved by:	Raija i okovic		reas
Approved by:	Naja i okovic		Issued: November 12, 2019

MR

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

C Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.3
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.2 ± 6 %	1.84 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.5 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.8 ± 6 %	2.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.02 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.8 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.2 Ω + 5.6 jΩ	
Return Loss	- 24.7 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.0 Ω + 6.7 jΩ	
Return Loss	- 23.3 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.157 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
	SFLAG

DASY5 Validation Report for Head TSL

Date: 12.11.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:855

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.84$ S/m; $\epsilon_r = 38.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.9, 7.9, 7.9) @ 2450 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 117.0 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 26.3 W/kg **SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.18 W/kg** Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 50.6% Maximum value of SAR (measured) = 21.8 W/kg

0 dB = 21.8 W/kg = 13.38 dBW/kg

Impedance Measurement Plot for Head TSL

. -

DASY5 Validation Report for Body TSL

Date: 12.11.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:855

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 2.01 S/m; ϵ_r = 50.8; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.94, 7.94, 7.94) @ 2450 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 109.3 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 25.7 W/kg **SAR(1 g) = 13 W/kg; SAR(10 g) = 6.02 W/kg** Smallest distance from peaks to all points 3 dB below = 8.9 mm Ratio of SAR at M2 to SAR at M1 = 51.1% Maximum value of SAR (measured) = 21.1 W/kg

0 dB = 21.1 W/kg = 13.24 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

D1750V2 - SN:1040

Element Client

Object

Calibration date:

QA CAL-05.v11 Calibration procedure(s) Calibration Procedure for SAR Validation Sources between 0.7-3 GHz November 13, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-19 (No. 217-02894)	Apr-20
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-19 (No. 217-02895)	Apr-20
Reference Probe EX3DV4	SN: 7349	29-May-19 (No. EX3-7349_May19)	May-20
DAE4	SN: 601	30-Apr-19 (No. DAE4-601_Apr19)	Apr-20
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Set Ilan
Approved by:	Katja Pokovic	Technical Manager	delles
This calibration certificate shall not	be reproduced except ir	n full without written approval of the laboratory	Issued: November 15, 2019

Report No. ELEM0093

Accreditation No.: SCS 0108

98/132

Certificate No: D1750V2-1040_Nov19

CALIBRATION CERTIFICATE

Swiss Calibration Service

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage C

Servizio svizzero di taratura

S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end • of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole . positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna . connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.3
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.3 ± 6 %	1.34 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.14 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	37.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.83 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.5 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

. -

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.6 ± 6 %	1.46 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.32 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	37.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.96 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.0 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.4 Ω + 0.4 jΩ	
Return Loss	- 45.0 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.3 Ω + 0.0 jΩ	
Return Loss	- 28.4 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.218 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Date: 13.11.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1040

Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; σ = 1.34 S/m; ϵ_r = 40.3; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.67, 8.67, 8.67) @ 1750 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 108.0 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 16.9 W/kg **SAR(1 g) = 9.14 W/kg; SAR(10 g) = 4.83 W/kg** Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 54.6% Maximum value of SAR (measured) = 14.1 W/kg

0 dB = 14.1 W/kg = 11.50 dBW/kg

Impedance Measurement Plot for Head TSL

103/132

DASY5 Validation Report for Body TSL

Date: 13.11.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1040

Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.46$ S/m; $\epsilon_r = 53.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.45, 8.45, 8.45) @ 1750 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 103.1 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 16.6 W/kg SAR(1 g) = 9.32 W/kg; SAR(10 g) = 4.96 W/kg Smallest distance from peaks to all points 3 dB below = 9.5 mm Ratio of SAR at M2 to SAR at M1 = 57% Maximum value of SAR (measured) = 14.2 W/kg

0 dB = 14.2 W/kg = 11.52 dBW/kg

Impedance Measurement Plot for Body TSL

105/132