

ERNATIO

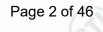
Page 1 of 46

Product	: Equipo de Audio y Video para Vehiculo	
Trade mark	: HYUNDAI/KIA	
Model/Type reference	: MTX_MO400L_BDMFL,	
	MTX_MO400L_SCPE,	
	MTX_MO400L_SU2I, MTX_MO400L_SP2I,	
	MTX_MO400L_SK3, MTX_MO400L_MQ4A	
Serial Number	: N/A	
Report Number	: EED32N80102802	
FCC ID	: BP9-MO400LBDMFL	
Date of Issue	: May 19, 2021	
Test Standards	: 47 CFR Part 15 Subpart C	
Test result	: PASS	

MOTREX Co., LTD. Seoyoung Bldg. 25, Hwangsaeul-ro 258beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea

Prepared for:

Prepared by:


Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Complied	py Be Tor ch.	Reviewed by:	Aaron Ma	(S)
Approved	by: Si David Wan	य Date:	Aaron Ma May 19, 2021	
Re	David Wang		S	
			Check No.::	5652090321

CI eport No. : EED32N80102802 Re Contents

1

1 CONTENTS		1		Page 2
2 VERSION				
3 TEST SUMMARY				4
4 GENERAL INFORMATION				5
 4.1 CLIENT INFORMATION 4.2 GENERAL DESCRIPTION OF EUT 4.3 TEST CONFIGURATION 4.4 TEST ENVIRONMENT 4.5 DESCRIPTION OF SUPPORT UNITS 			2	5
5 TEST RESULTS AND MEASUREMEN				
 5.1 ANTENNA REQUIREMENT 5.2 MAXIMUM CONDUCTED OUTPUT POV 5.3 20DB EMISSION BANDWIDTH 5.4 CARRIER FREQUENCY SEPARATION 5.5 NUMBER OF HOPPING CHANNEL 5.6 TIME OF OCCUPANCY 5.7 BAND EDGE MEASUREMENTS 5.8 CONDUCTED SPURIOUS EMISSIONS 5.9 PSEUDORANDOM FREQUENCY HOPP 5.10 RADIATED SPURIOUS EMISSION & F 	NER ING SEQUENCE RESTRICTED BANDS			
6 APPENDIX A				
7 PHOTOGRAPHS OF TEST SETUP 8 PHOTOGRAPHS OF EUT CONSTRUC				

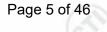
2 Version

6

	Version No.		Date			Descriptio	on	
	00	Ma	ay 19, 2021			Original		
				Ś		U		\bigcirc
L					(3)			

3 Test Summary

		S		
Test Item	Test Requirement	Result		
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	PASS		
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	N/A ¹⁾		
Maximum Conducted Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	PASS		
20dB Emission Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS		
Carrier Frequency Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS		
Number of Hopping Channels	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS		
Time of Occupancy	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS		
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)	PASS		
Band Edge Measurements	47 CFR Part 15, Subpart C Section 15.247(d)	PASS		
Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	PASS		
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS		
Restricted bands around fundamental frequency	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS		
) a ma a miles				


Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified. N/A¹⁾ The Product is powered DC supply.

Model No.: MTX_MO400L_BDMFL, MTX_MO400L_SCPE, MTX_MO400L_SU2I, MTX_MO400L_SP2I, MTX_MO400L_SK3, MTX_MO400L_MQ4A.

Only the model MTX_MO400L_BDMFL was tested, MTX_MO400L_SCPE, MTX_MO400L_SU2I, MTX_MO400L_SP2I, MTX_MO400L_SK3 and MTX_MO400L_MQ4A compared with MTX_MO400L_BDMFL, all parts of the product, Their electrical circuit design, layout, components used and internal wiring are identical, except only the packaging material, the frontpanel and model name are different.

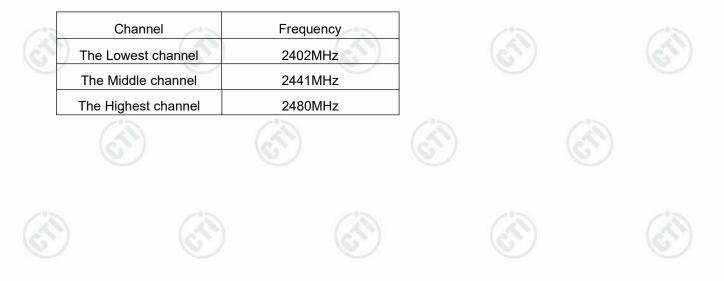
4 General Information

4.1 Client Information

Applicant:	MOTREX Co., LTD.
Address of Applicant:	Seoyoung Bldg. 25, Hwangsaeul-ro 258beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
Manufacturer:	Skypine Electronics (ShenZhen)Co.,Ltd
Address of Manufacturer:	A1, A5 Building, No.6, Xinxing Industrial Park, Xinhe Village, Fuyong Town, Bao'an District, Shenzhen City, Guangdong Province, China
Factory:	Skypine Electronics (ShenZhen)Co.,Ltd
Address of Factory:	A1, A5 Building, No.6, Xinxing Industrial Park, Xinhe Village, Fuyong Town, Bao'an District, Shenzhen City, Guangdong Province, China

4.2 General Description of EUT

Product Name:	Equipo de Audio y Video para Vehiculo
Model No.:	MTX_MO400L_BDMFL, MTX_MO400L_SCPE, MTX_MO400L_SU2I, MTX_MO400L_SP2I, MTX_MO400L_SK3, MTX_MO400L_MQ4A
Test model.:	MTX_MO400L_BDMFL
Trade mark:	HYUNDAI/KIA
Product Type:	☐ Mobile ☐ Portable ⊠ Fix Location
Bluetooth Version:	V5.0
Operation Frequency:	2402MHz~2480MHz
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Modulation Type:	GFSK, π/4DQPSK, 8DPSK
Number of Channel:	79
Hopping Channel Type:	Adaptive Frequency Hopping systems
Antenna Type:	PCB antenna
Antenna Gain:	0dBi
Power Supply:	DC12V
Test Voltage:	DC12V
Sample Received Date:	Apr, 08. 2021
Sample tested Date:	Apr, 08. 2021 to Apr, 30. 2021



Page 6 of 46

Operation F	requency each	of channel		11		11	
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		e

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

4.3 Test Configuration

EUT Test Software Setti	-	, -						
Software:		RTLBTAPP.exe (manufacturer declare)Class2 (Power level is built-in set parameters and cannot be changed and						
EUT Power Grade:	selected)					-0-		
Use test software to set th transmitting of the EUT.	e lowest frequency	, the middle f	requency and	the highest f	requency kee	p		
Mode		Channel		F	requency(MH	z)		
		CH0			2402			
DH1/DH3/DH5		CH39			2441			
6	6	CH78	6		2480			
		CH0			2402			
2DH1/2DH3/2DH5		CH39			2441			
	2)	CH78			2480	(3)		
	/	СН0			2402			
2DH1/2DH3/2DH5		CH39			2441			
13		CH78		2480				

4.4 Test Environment

Operating Environme	nt:				
Radiated Spurious En	nissions:				
Temperature:	22~25.0 °C	V		U	
Humidity:	50~55 % RH				
Atmospheric Pressure:	1010mbar		18-		-0-
Conducted Emissions	S:				
Temperature:	22~25.0 °C		C		C
Humidity:	50~55 % RH				
Atmospheric Pressure:	1010mbar				
RF Conducted:					
Temperature:	22~25.0 °C	6)		S	
Humidity:	50~55 % RH				
Atmospheric Pressure:	1010mbar				
	100		at 10 million		Section 2

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

	sociated ment name	Manufacture	model	S/N serial number	Supplied by	Certification
AE	Notebook	DELL	DELL 3490	D245DX2	DELL	CE&FCC

4.6 Test Location

All tests were performed at: Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted.

FCC Designation No.: CN1164

No. ltem **Measurement Uncertainty** 7.9 x 10⁻⁸ 1 **Radio Frequency** 0.46dB (30MHz-1GHz) 2 RF power, conducted 0.55dB (1GHz-18GHz) 3.3dB (9kHz-30MHz) 4.3dB (30MHz-1GHz) 3 Radiated Spurious emission test 4.5dB (1GHz-18GHz) 3.4dB (18GHz-40GHz) 3.5dB (9kHz to 150kHz) Conduction emission 4 3.1dB (150kHz to 30MHz) 5 Temperature test 0.64°C 3.8% 6 Humidity test 7 DC power voltages 0.026%

4.7 Measurement Uncertainty (95% confidence levels, k=2)

CTReport No. : EED32N80102802

4.8 Equipment List

		RF test s	ystem		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-28-2020	12-27-2021
Signal Generator	Keysight	N5182B	MY53051549	12-28-2020	12-27-2021
Signal Generator	Keysight	E8257D	MY53401106	12-28-2020	12-27-2021
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-29-2020	06-28-2021
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002			
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	(F)	(- (2)
DC Power	Keysight	E3642A	MY56376072	12-28-2020	12-27-2021
Power unit	R&S	OSP120	101374	12-28-2020	12-27-2021
RF control unit	JS Tonscend	JS0806-2	158060006	12-28-2020	12-27-2021
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3			0

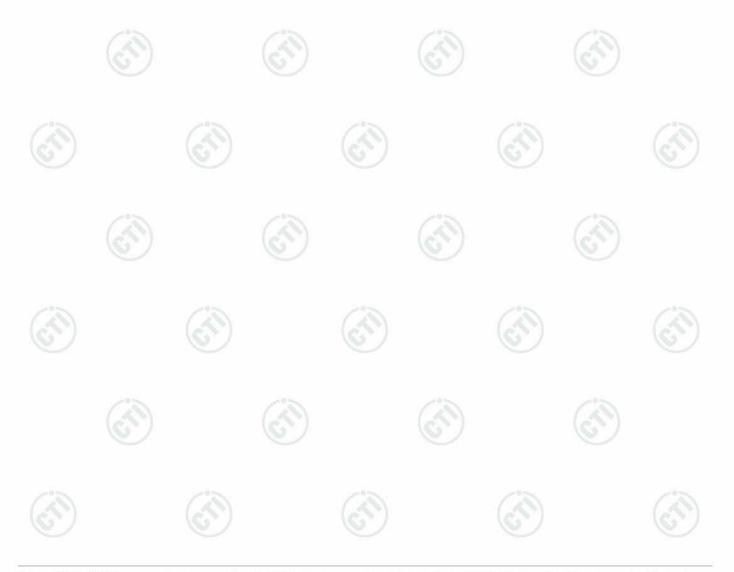
		3M Semi/full-aneo	hoic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	трк	SAC-3		05-24-2019	05-23-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2020	05-15-2021
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-16-2018 04-15-2021	04-15-2021 04-14-2024
Receiver	R&S	ESCI7	100938-003	10-16-2020	10-15-2021
Multi device Controller	maturo	NCD/070/10711 112			
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-29-2020	06-28-2021
Communication test set	Agilent	E5515C	GB47050534	03-01-2019	02-28-2022
Cable line	Fulai(7M)	SF106	5219/6A	\	0 /
Cable line	Fulai(6M)	SF106	5220/6A		<u> </u>
Cable line	Fulai(3M)	SF106	5216/6A		
Cable line	Fulai(3M)	SF106	5217/6A		
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001			- 6

_		3M full-anechoi	Serial	Cal. date	Cal. Due date
Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	(S)
Receiver	Keysight	N9038A	MY57290136	03-04-2021	03-03-2022
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-04-2021	03-03-2022
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-04-2021	03-03-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018 04-24-2021	04-24-2021 04-23-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-16-2018 04-15-2021	04-15-2021 04-14-2024
Communication Antenna	Schwarzbeck	CLSA 0110L	1014	(- 6
Horn Antenna	ETS- LINDGREN	3117	57407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-20-2020	05-19-2021
Communication test set	R&S	CMW500	102898	12-31-2020	12-30-2021
Preamplifier	EMCI	EMC001330	980563	04-16-2020 04-15-2021	04-15-2021 04-14-2022
Preamplifier	JS Tonscend	980380	EMC051845 SE	12-31-2020	12-30-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-17-2020 04-16-2021	04-16-2021 04-15-2022
Fully Anechoic Chamber	ТДК	FAC-3	(A)	01-09-2021	01-08-2024
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018 04-09-2021	04-09-2021 04-08-2024
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		- (e
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001		
Cable line	Times	EMC104-NMNM- 1000	SN160710	/	- 62
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001	\	9-
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		- 6
Cable line	Times	HF160-KMKM- 3.00M	393493-0001	(C)	(6

5 Test results and Measurement Data

5.1 Antenna Requirement

Report No. : EED32N80102802


Standard requirement:	47 CFR Part 15C Section 15.203 /247(c)
15.203 requirement:	
An intentional radiator shall	be designed to ensure that no antenna other than that furnished by the
responsible party shall be ι	used with the device. The use of a permanently attached antenna or of an
antenna that uses a unique	coupling to the intentional radiator, the manufacturer may design the unit
so that a broken antenna ca	an be replaced by the user, but the use of a standard antenna jack or

electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:	Please see Internal photos	(2)
The antenna is PCB antenna	a. The best case gain of the antenna is 0dBi.	N. C.

Page 12 of 46

5.2 Maximum Conducted Output Power

	Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)
	Test Method:	ANSI C63.10:2013
	Test Setup:	Control Computer Dootey Power Supph Temperature CABNET Table
		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.
	Limit:	21dBm
	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
Ś	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
	Test Results:	Refer to Appendix A

Page 14 of 46

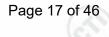
5.3 20dB Emission Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Control Computer Power Suppy TemPERATURE CABRET Table
Test Procedure:	 Remark: Offset=Cable loss+ attenuation factor. 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW ≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. 4. Measure and record the results in the test report.
Limit:	NA
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSI modulation type, 2-DH5 of data type is the worst case of π /4DQPSI modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
Test Results:	Refer to Appendix A
	Test Method: Test Setup: Test Setup: Test Procedure: Limit: Exploratory Test Mode: Final Test Mode:

Page 15 of 46

5.4 Carrier Frequency Separation

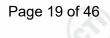
Image: Provide the set of the set			
Test Setup: Image: Construction of the setup of th		Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Image: Construction of the second s		Test Method:	ANSI C63.10:2013
Test Procedure: 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Enable the EUT hopping function. 4. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. 5. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report. Limit: Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater. Exploratory Test Mode: Hopping transmitting with all kind of modulation and all kind of data type Final Test Mode: Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.		Test Setup:	Control Congular Congular Power Supply Power Supply Control Power Power Power Supply Control Power Power Power Power Potential Congular Power Potential Congular Power Potential Congular Power Potential Congular Power Potential Congular Power Power Potential Congular Power Potential Congular Power Potential Congular Power Potential Congular Potential Congular Power Potential Congular Potential Congular Potential Congular Potential Congular Potential Congular Potential Congular Potential Congular Potential Congular Potential Congular Potential Congular Potential Congular Potential Congular Potential Congular Potential Congular Potential Congular Congular Potential Congular Congula
cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Enable the EUT hopping function. 4. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. 5. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report. Limit: Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater. Exploratory Test Mode: Hopping transmitting with all kind of modulation and all kind of data type Final Test Mode: Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.			Remark: Offset=Cable loss+ attenuation factor.
have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.Exploratory Test Mode:Hopping transmitting with all kind of modulation and all kind of data typeFinal Test Mode:Through Pre-scan, find the DH5 of data type is the worst case of GFSk modulation type, 2-DH5 of data type is the worst case of m/4DQPSk modulation type.		Test Procedure:	 cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Enable the EUT hopping function. 4. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. 5. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.
Final Test Mode: Through Pre-scan, find the DH5 of data type is the worst case of GFSk modulation type, 2-DH5 of data type is the worst case of π/4DQPSk modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.		Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is
modulation type, 2-DH5 of data type is the worst case of π/4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.		Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type
Test Results: Refer to Appendix A		Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
	6	Test Results:	Refer to Appendix A
		No.	


5.5 Number of Hopping Channel

Test Requireme	ent: 47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Control Computer Power Supply TemPERATURE CABINET Table RF test System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Enable the EUT hopping function. 4. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing
	or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep= auto; Detector function = peak; Trace = max hold.
	5. The number of hopping frequency used is defined as the number of total channel.
0	6. Record the measurement data in report.
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.
Test Mode:	Hopping transmitting with all kind of modulation
Test Results:	Refer to Appendix A


5.6 Time of Occupancy

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Control Computer Computer Suppr Buger Temperature casinet Table RF test System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace =
	max hold.5. Measure and record the results in the test report.
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.
Test Results:	Refer to Appendix A


5.7 Band edge Measurements

	Test Requirement:	47 CFR Part 15C Section 15.247 (d)
	Test Method:	ANSI C63.10:2013
00	Test Setup:	Centrel Computer Power Supply Temperature CABNET Table RF test System Instrument
		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report.
	Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
S	Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type
	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
	Test Results:	Refer to Appendix A

5.8 Conducted Spurious Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10:2013
Test Setup:	RF test System Power System Instrument RF test System Instrument RF test
Test Procedure:	1. The RF output of EUT was connected to the spectrum analyzer by RF
Test Flocedule.	cable and attenuator. The path loss was compensated to the results for each
	measurement.
	2. Set to the maximum power setting and enable the EUT transmi continuously.
	3. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. Al harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW.
	4. Measure and record the results in the test report.5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
Test Results:	Refer to Appendix A

	Test Requirement:	47 CFR Part 1	5C Section 15.247 (a)	(1), (h) requirement:	
	The system shall hop to rate from a Pseudorando on the average by each hopping channel bandwi synchronization with the	channel frequencies om ordered list of hop transmitter. The syst idths of their correspo	that are selected at th oping frequencies. Eac em receivers shall hav	he system hopping ch frequency must be ve input bandwidths th	at match th
	Frequency hopping spre channels during each tra receiver, must be design transmitter be presented employing short transmi and must distribute its tr	ansmission. However ned to comply with al d with a continuous d ssion bursts must co	, the system, consistir I of the regulations in t ata (or information) str mply with the definition	ng of both the transmit his section should the eam. In addition, a sy n of a frequency hopp	ter and the stem ing system
	this section.				
	The incorporation of interestion of interesting the system to recognize independently chooses. The coordination of freq avoiding the simultaneous not permitted.	other users within th and adapts its hopse uency hopping syste	e spectrum band so th ts to avoid hopping on ms in any other mann	nat it individually and a occupied channels is er for the express purp	permitted.
_	Compliance for section	n 15 247(a)(1)			
	stage. The sequence be with nine ones. • Number of shift registe • Length of pseudo-rand • Longest sequence of z	r stages: 9 om sequence: 2 ⁹ -1 =	= 511 bits		
		•D-D-D-D	+ 		
	Linoar Foodba	ek Shift Dogistor fo	r Generation of the I	DDBS soquiopoo	1
	An example of Pseudora			•	
	20 62 46 77		8 73	16.75 1	
			}		
	Each frequency used eq According to Bluetooth bandwidths that match frequencies in synchroni	Core Specification, the hopping chann ization with the transi	Bluetooth receivers a el bandwidths of any		
	According to Bluetooth bandwidths that match frequencies in synchroni Compliance for section	Core Specification, the hopping chann ization with the transi n 15.247(g)	Bluetooth receivers a el bandwidths of any nitted signals.	y Bluetooth transmitte	ers and s
	According to Bluetooth bandwidths that match frequencies in synchroni Compliance for section According to Bluetooth pseudorandom hopping Bluetooth system is als	Core Specification, the hopping chann ization with the transmining 15.247(g) Core Specification, frequency with a co o transmitted under	Bluetooth receivers a el bandwidths of any nitted signals. the Bluetooth syste ntinuous data and the	y Bluetooth transmitte em transmits the pace e short burst transmiss	ers and sl ket with t sion from t
	According to Bluetooth bandwidths that match frequencies in synchroni Compliance for section According to Bluetooth pseudorandom hopping	Core Specification, the hopping chann ization with the transmining 15.247(g) Core Specification, frequency with a co o transmitted under em.	Bluetooth receivers a el bandwidths of any nitted signals. the Bluetooth syste ntinuous data and the	y Bluetooth transmitte em transmits the pace e short burst transmiss	ers and s ket with t sion from t

Page 21 of 46

avoid hopping on the occupied channels.

1

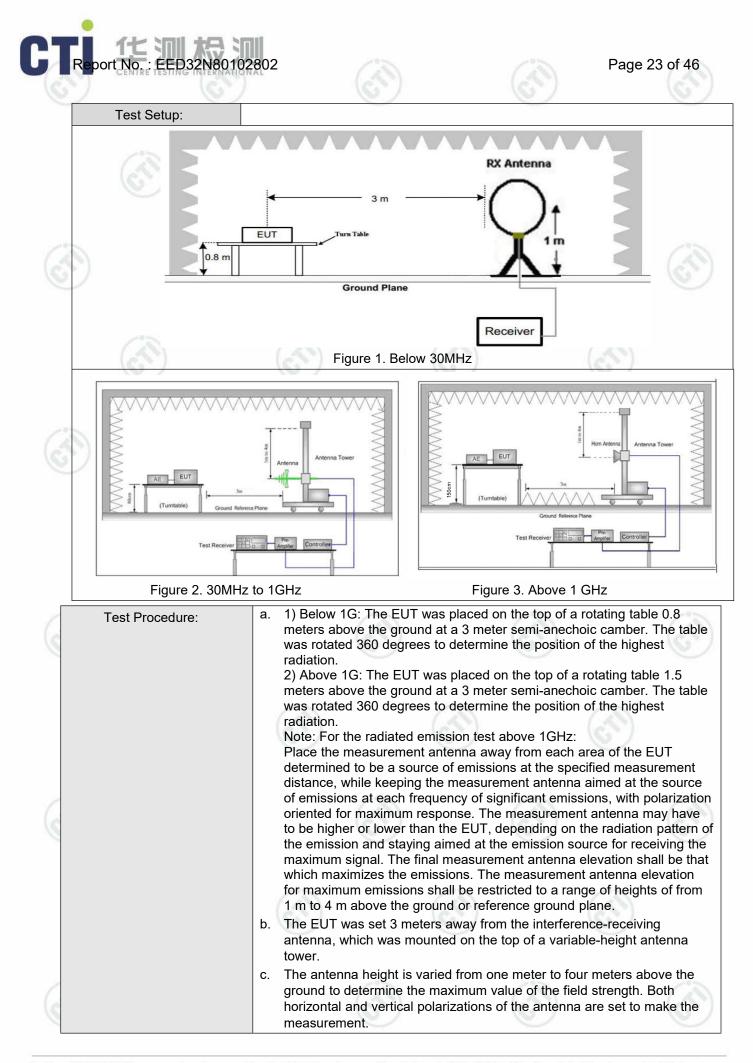

C

11

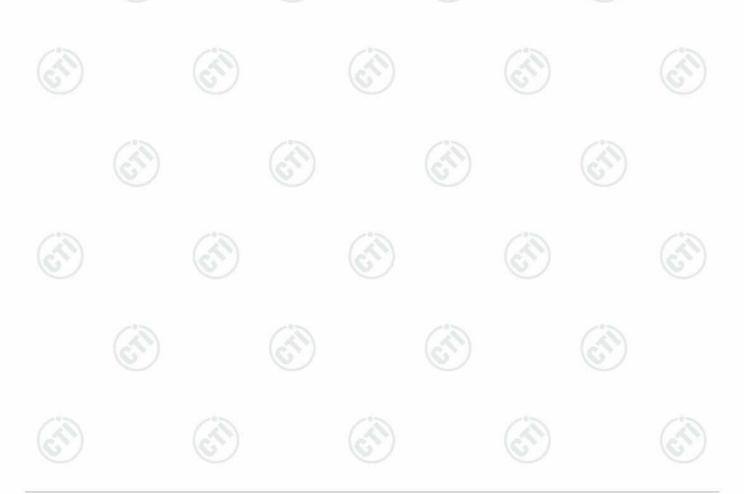
ះការ

Report No. : EED32N80102802

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

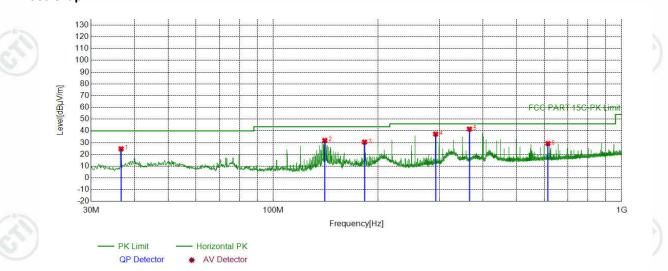


5.10 Radiated Spurious Emission & Restricted bands


	Test Requirement:	47 CFR Part 15C Section	on 15.209 and 15	.205	(1)	
	Test Method:	ANSI C63.10: 2013	(C)		(O)	/
	Test Site:	Measurement Distance	: 3m (Semi-Anech	noic Cham	ber)	
	Receiver Setup:	Frequency	Detector	RBW	VBW	Remark
1		0.009MHz-0.090MH	z Peak	10kHz	: 30kHz	Peak
S		0.009MHz-0.090MH;	z Average	10kHz	: 30kHz	Average
		0.090MHz-0.110MH	z Quasi-peak	10kHz	: 30kHz	Quasi-peak
		0.110MHz-0.490MH	z Peak	10kHz	: 30kHz	Peak
		0.110MHz-0.490MH	z Average	10kHz	: 30kHz	Average
		0.490MHz -30MHz	Quasi-peak	10kHz	: 30kHz	Quasi-peak
		30MHz-1GHz	Peak	100 kH	z 300kHz	Peak
			Peak	1MHz	3MHz	Peak
~		Above 1GHz	Peak	1MHz	10kHz	Average
Í	Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
		0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
		0.490MHz-1.705MHz	24000/F(kHz)	-	- 25	30
		1.705MHz-30MHz	30	-	- (1)	30
		30MHz-88MHz	100	40.0	Quasi-peak	3
		88MHz-216MHz	150	43.5	Quasi-peak	3
- 61		216MHz-960MHz	200	46.0	Quasi-peak	3
4		960MHz-1GHz	500	54.0	Quasi-peak	3
2		Above 1GHz	500	54.0	Average	3
		Note: 15.35(b), Unless emissions is 20dB applicable to the e peak emission lev	above the maxir equipment under	num permi test. This p	tted average	emission limit

	port No. : EED32N80102	802 Page 24 of 46
		 d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified
		Bandwidth with Maximum Hold Mode.
6		f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
		 g. Test the EUT in the lowest channel (2402MHz),the middle channel (2441MHz),the Highest channel (2480MHz)
		 The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
		i. Repeat above procedures until all frequencies measured was complete.
	Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type
6	Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case.
		Pretest the EUT at Transmitting mode, For below 1GHz part, through pre- scan, the worst case is the lowest channel.
		Only the worst case is recorded in the report.
	Test Results:	Pass

.



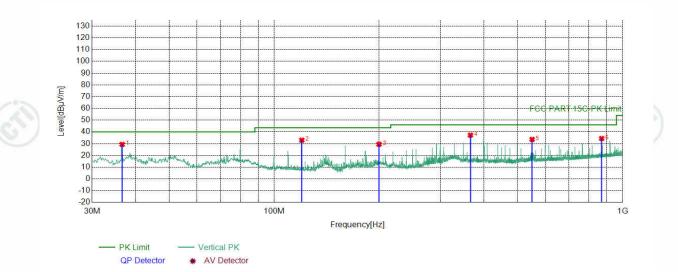
Page 25 of 46

Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of DH5 for GFSK was recorded in the report.

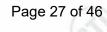
Suspected List													
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
	1	36.5967	-19.10	43.85	24.75	40.00	15.25	PASS	Horizontal	PK			
1	2	140.688	-22.00	53.90	31.90	43.50	11.60	PASS	Horizontal	PK			
2	3	182.887	-19.51	49.98	30.47	43.50	13.03	PASS	Horizontal	PK			
0	4	292.605	-15.65	52.96	37.31	46.00	8.69	PASS	Horizontal	PK			
	5	365.750	-13.65	55.25	41.60	46.00	4.40	PASS	Horizontal	PK			
	6	614.580	-8.48	37.70	29.22	46.00	16.78	PASS	Horizontal	PK			

Ì



Page 26 of 46

Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	36.5967	-19.10	48.49	29.39	40.00	10.61	PASS	Vertical	PK
2	120.025	-20.08	53.08	33.00	43.50	10.50	PASS	Vertical	PK
3	199.961	-17.84	47.37	29.53	43.50	13.97	PASS	Vertical	PK
4	365.750	-13.65	50.94	37.29	46.00	8.71	PASS	Vertical	PK
5	549.972	-9.82	43.45	33.63	46.00	12.37	PASS	Vertical	PK
6	870.589	-5.22	39.61	34.39	46.00	11.61	PASS	Vertical	PK
100	• •	120	•			6	2		12



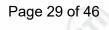
Radiated Spurious Emission above 1GHz:

	Mode	:	G	FSK Transmit	ting		Channel:		2402 MHz	<u>.</u>
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1237.0237	0.90	49.81	50.71	74.00	23.29	PASS	н	PK
	2	1650.4650	2.62	48.96	51.58	74.00	22.42	PASS	Н	PK
S	3	4950.1300	-16.01	65.25	49.24	74.00	24.76	PASS	н	PK
-	4	7700.3134	-11.04	55.30	44.26	74.00	29.74	PASS	Н	PK
	5	11132.5422	-6.27	53.52	47.25	74.00	26.75	PASS	Н	PK
	6	14362.7575	0.60	50.41	51.01	74.00	22.99	PASS	Н	PK
	7	1330.2330	1.16	45.29	46.45	74.00	27.55	PASS	V	PK
	8	1649.8650	2.61	44.09	46.70	74.00	27.30	PASS	V	PK
	9	4400.0933	-17.05	61.67	44.62	74.00	29.38	PASS	V	PK
	10	5999.1999	-12.97	59.61	46.64	74.00	27.36	PASS	V	PK
13	11	10300.4867	-6.46	53.74	47.28	74.00	26.72	PASS	V	PK
ć.	12	14394.7597	1.13	49.74	50.87	74.00	23.13	PASS	V	PK

	Mode	:		GFSK Transmit	ting	_	Channel:	_	2441MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
12	1	1100.2100	0.85	46.05	46.90	74.00	27.10	PASS	н	PK
2	2	1640.6641	2.55	43.92	46.47	74.00	27.53	PASS	н	PK
~	3	3850.0567	-19.17	68.36	49.19	74.00	24.81	PASS	Н	PK
	4	4950.1300	-16.01	65.30	49.29	74.00	24.71	PASS	Н	PK
	5	8166.3444	-10.84	54.36	43.52	74.00	30.48	PASS	Н	PK
	6	12544.6363	-4.51	53.60	49.09	74.00	24.91	PASS	н	PK
	7	1237.2237	0.90	48.73	49.63	74.00	24.37	PASS	V	PK
	8	1649.2649	2.61	45.18	47.79	74.00	26.21	PASS	V	PK
	9	4400.0933	-17.05	62.33	45.28	74.00	28.72	PASS	V	PK
<u>,</u>	10	5991.1994	-13.02	60.07	47.05	74.00	26.95	PASS	V	PK
4	11	11944.5963	-5.57	54.09	48.52	74.00	25.48	PASS	V	PK
2	12	15125.8084	0.61	50.63	51.24	74.00	22.76	PASS	V	PK

Mode	:		GFSK Transmi	tting		Channel:		2480MHz		
NO	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1241.0241	0.91	51.52	52.43	74.00	21.57	PASS	Н	PK	
2	1650.0650	2.62	45.58	48.20	74.00	25.80	PASS	н	PK	
3	3850.0567	-19.17	68.19	49.02	74.00	24.98	PASS	Н	PK	
4	4950.1300	-16.01	64.22	48.21	74.00	25.79	PASS	Н	PK	
5	7389.2926	-11.53	55.01	43.48	74.00	30.52	PASS	Н	PK	
6	11888.5926	-5.86	54.24	48.38	74.00	25.62	PASS	Н	PK	
7	1235.2235	0.89	45.24	46.13	74.00	27.87	PASS	V	PK	
8	1653.4653	2.64	43.08	45.72	74.00	28.28	PASS	V	PK	
9	3852.0568	-19.17	64.97	45.80	74.00	28.20	PASS	V	PK	
10	5988.1992	-13.04	60.22	47.18	74.00	26.82	PASS	V	PK	
11	9734.4490	-7.60	53.64	46.04	74.00	27.96	PASS	V	PK	
12	14491.7661	-0.09	50.66	50.57	74.00	23.43	PASS	V	PK	
		(V)	1		1					

	Mode	:		π/4DQPSK Tra	ansmitting		Channel:		2402 MHz	
	NO	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1238.2238	0.90	50.33	51.23	74.00	22.77	PASS	Н	PK
-8	2	1651.4651	2.62	46.75	49.37	74.00	24.63	PASS	н	PK
	3	3849.0566	-19.17	66.05	46.88	74.00	27.12	PASS	Н	PK
4	4	5500.1667	-14.51	58.93	44.42	74.00	29.58	PASS	Н	PK
	5	9349.4233	-7.97	52.88	44.91	74.00	29.09	PASS	н	PK
	6	12533.6356	-4.59	54.87	50.28	74.00	23.72	PASS	Н	PK
	7	1328.0328	1.15	45.61	46.76	74.00	27.24	PASS	V	PK
	8	3327.0218	-19.91	61.37	41.46	74.00	32.54	PASS	V	PK
	9	4950.1300	-16.01	63.15	47.14	74.00	26.86	PASS	V	PK
	10	9253.4169	-7.92	53.08	45.16	74.00	28.84	PASS	V	PK
	11	14403.7603	1.17	48.83	50.00	74.00	24.00	PASS	V	PK
1	12	14491.7601	-0.09	50.66	50.56	74.00	23.44	PASS	V	PK
6	1		0	/	6	1	0	1		S.



Mode	e:		π/4DQPSK Tra	nsmitting		Channel:		2441 MHz		
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1100.0100	0.85	46.09	46.94	74.00	27.06	PASS	Н	PK	
2	2062.3062	4.76	45.33	50.09	74.00	23.91	PASS	н	PK	
3	3850.0567	-19.17	71.55	52.38	74.00	21.62	PASS	н	PK	
4	4950.1300	-16.01	63.77	47.76	74.00	26.24	PASS	Н	PK	
5	7389.2926	-11.53	55.01	43.48	74.00	30.52	PASS	н	PK	
6	12557.6372	-4.42	53.17	48.75	74.00	25.25	PASS	Н	PK	
7	1357.0357	1.25	47.02	48.27	74.00	25.73	PASS	V	PK	
8	3850.0567	-19.17	69.94	50.77	74.00	23.23	PASS	V	PK	
9	5991.1994	-13.02	60.36	47.34	74.00	26.66	PASS	V	PK	
10	9159.4106	-8.21	53.76	45.55	74.00	28.45	PASS	V	PK	
11	12467.6312	-4.78	53.47	48.69	74.00	25.31	PASS	V	PK	
12	15490.8327	0.29	50.59	50.88	74.00	23.12	PASS	V	PK	
57		6		(6)		6)		6)	

	Mode	:		π/4DQPSK Tra	ansmitting		Channel:		2480 MHz	
	NO	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1233.8234	0.89	46.25	47.14	74.00	26.86	PASS	Н	PK
r û	2	1787.6788	3.24	47.05	50.29	74.00	23.71	PASS	н	PK
1	3	3851.0567	-19.17	67.04	47.87	74.00	26.13	PASS	Н	PK
2	4	4950.1300	-16.01	64.07	48.06	74.00	25.94	PASS	Н	PK
	5	7542.3028	-11.14	55.14	44.00	74.00	30.00	PASS	Н	PK
	6	12492.6328	-4.82	53.50	48.68	74.00	25.32	PASS	Н	PK
	7	1331.0331	1.16	45.05	46.21	74.00	27.79	PASS	V	PK
	8	1787.6788	3.24	46.64	49.88	74.00	24.12	PASS	V	PK
	9	3850.0567	-19.17	66.77	47.60	74.00	26.40	PASS	V	PK
	10	5990.1993	-13.02	60.62	47.60	74.00	26.40	PASS	V	PK
	11	9193.4129	-7.93	53.66	45.73	74.00	28.27	PASS	V	PK
	12	14332.7555	0.10	49.17	49.27	74.00	24.73	PASS	V	PK
3	1		0)	G.	1	6	1		SI

Mode	:		8DPSK Transm	itting		Channel:		2402 MHz		
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1237.8238	0.90	51.51	52.41	74.00	21.59	PASS	н	PK	
2	1650.4650	2.62	45.36	47.98	74.00	26.02	PASS	Н	PK	
3	3849.0566	-19.17	60.91	41.74	74.00	32.26	PASS	н	PK	
4	4950.1300	-16.01	63.94	47.93	74.00	26.07	PASS	Н	PK	
5	7519.3013	-11.12	54.94	43.82	74.00	30.18	PASS	Н	PK	
6	12397.6265	-4.71	53.17	48.46	74.00	25.54	PASS	н	PK	
7	1646.6647	2.59	45.70	48.29	74.00	25.71	PASS	V	PK	
8	3849.0566	-19.17	66.76	47.59	74.00	26.41	PASS	V	PK	
9	4950.1300	-16.01	62.05	46.04	74.00	27.96	PASS	V	PK	
10	7003.2669	-11.81	54.83	43.02	74.00	30.98	PASS	V	PK	
11	9192.4128	-7.94	53.13	45.19	74.00	28.81	PASS	V	PK	
12	13116.6744	-3.58	52.03	48.45	74.00	25.55	PASS	V	PK	
9	6		2	6		6	67			

	Mode	:		8DPSK Transr	nitting		Channel:		2441 MHz	
	NO	Freq. [MHz]	Facto [dB]	[dBu]/]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1099.8100	0.85	45.90	46.75	74.00	27.25	PASS	Н	PK
12	2	1786.0786	3.23	45.81	49.04	74.00	24.96	PASS	Н	PK
3	3	3851.0567	-19.17	7 68.98	49.81	74.00	24.19	PASS	Н	PK
~	4	4950.1300	-16.01	1 64.65	48.64	74.00	25.36	PASS	Н	PK
	5	9396.4264	-7.99	53.24	45.25	74.00	28.75	PASS	Н	PK
	6	14389.7593	1.05	48.70	49.75	74.00	24.25	PASS	Н	PK
	7	1330.4330	1.16	46.28	47.44	74.00	26.56	PASS	V	PK
	8	1650.2650	2.62	50.09	52.71	74.00	21.29	PASS	V	PK
	9	4400.0933	-17.05	5 62.76	45.71	74.00	28.29	PASS	V	PK
	10	4950.1300	-16.01	1 62.10	46.09	74.00	27.91	PASS	V	PK
	11	7605.3070	-11.21	1 55.32	44.11	74.00	29.89	PASS	V	PK
4	12	10774.5183	-6.29	54.29	48.00	74.00	26.00	PASS	V	PK
0	1	•	0	/		1		/		

2

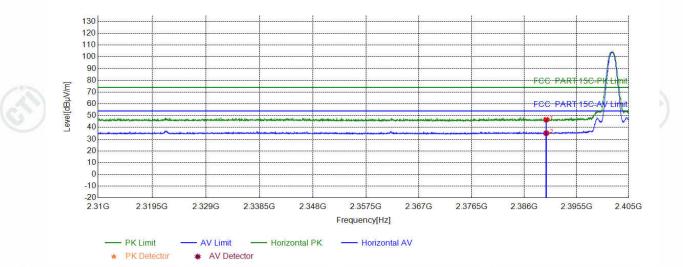
Mode	:		8DPSK Transm	itting		Channel:		2480 MHz	2
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1100.2100	0.85	46.53	47.38	74.00	26.62	PASS	н	PK
2	1653.2653	2.64	44.46	47.10	74.00	26.90	PASS	Н	PK
3	3850.0567	-19.17	68.59	49.42	74.00	24.58	PASS	н	PK
4	4950.1300	-16.01	63.99	47.98	74.00	26.02	PASS	н	PK
5	9722.4482	-7.64	53.67	46.03	74.00	27.97	PASS	Н	PK
6	12575.6384	-4.29	52.75	48.46	74.00	25.54	PASS	Н	PK
7	1237.8238	0.90	51.38	52.28	74.00	21.72	PASS	V	PK
8	1650.4650	2.62	49.54	52.16	74.00	21.84	PASS	V	PK
9	3851.0567	-19.17	71.76	52.59	74.00	21.41	PASS	V	PK
10	5991.1994	-13.02	61.26	48.24	74.00	25.76	PASS	V	PK
11	9771.4514	-7.47	52.58	45.11	74.00	28.89	PASS	V	PK
12	14538.7693	0.09	50.11	50.20	74.00	23.80	PASS	V	PK
· /		100	1	6	1	(G*)	1		GT

Remark:

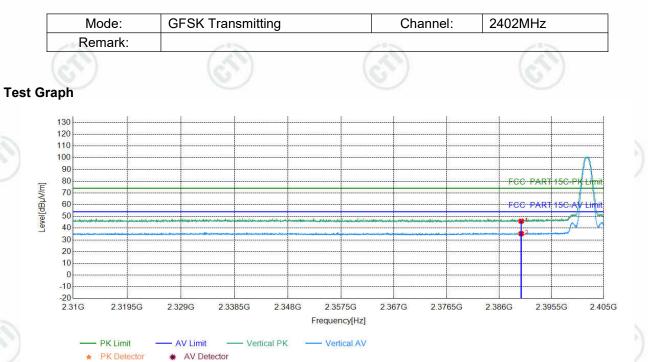
1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Factor

Factor=Antenna Factor + Cable Factor - Preamplifier Factor

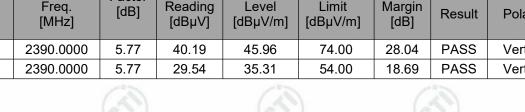

2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

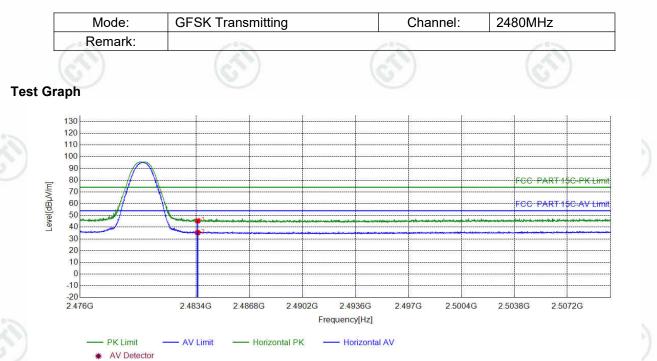
Test plot as follows:


		100		13
Mode:	GFSK Transmitting	Channel:	2402MHz	(5)
Remark:		e.)	6

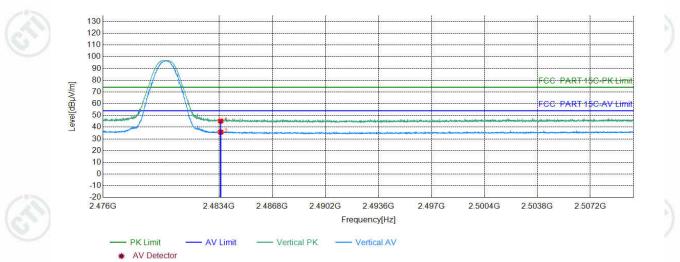
Suspe	cted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	40.79	46.56	74.00	27.44	PASS	Horizontal	PK
2	2390.0000	5.77	29.34	35.11	54.00	18.89	PASS	Horizontal	AV
						/ · · · · · · · · · · · · · · · · · · ·			

Suspe	cted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	40.19	45.96	74.00	28.04	PASS	Vertical	PK
2	2390.0000	5.77	29.54	35.31	54.00	18.69	PASS	Vertical	AV



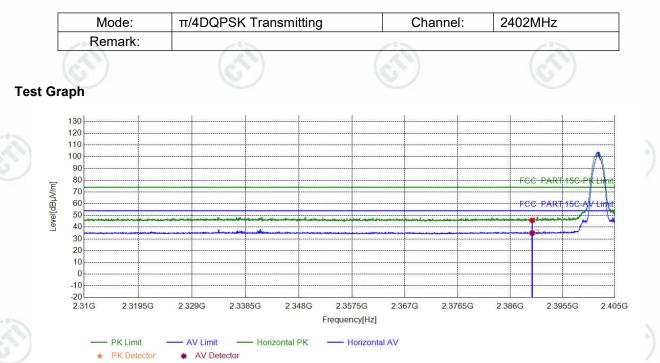

Page 33 of 46

Page 34 of 46


Suspec	ted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	38.89	45.46	74.00	28.54	PASS	Horizontal	PK
2	2483.5000	6.57	28.79	35.36	54.00	18.64	PASS	Horizontal	AV

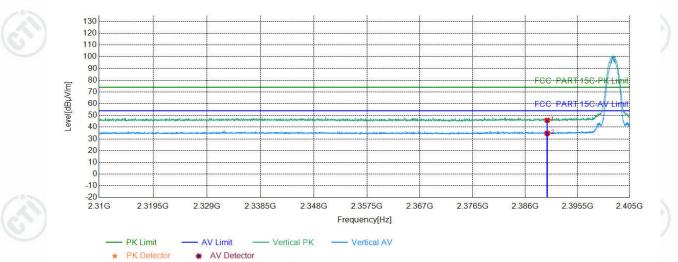
Mode:	GFSK Transmitting	Channel:	2480MHz
Remark:		(28)	$(\mathcal{E}^{(n)})$
1.1			

								cted List	Suspe
Remark	Polarity	Result	Margin [dB]	Limit [dBµV/m]	Level [dBµV/m]	Reading [dBµV]	Factor [dB]	Freq. [MHz]	NO
PK	Vertical	PASS	28.78	74.00	45.22	38.65	6.57	2483.5000	1
AV	Vertical	PASS	18.23	54.00	35.77	29.20	6.57	2483.5000	2
_	Vertical	PASS	18.23	54.00	35.77	29.20	6.57	2483.5000	2

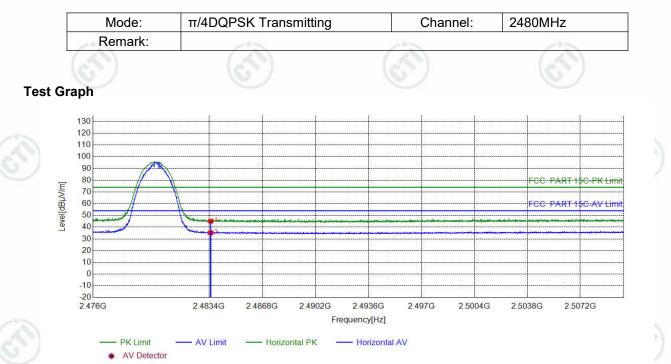


NOFreq. [MHz]Factor [dB]Reading [dBµV]Level [dBµV/m]Limit [dBµV/m]Margin [dB]ResultPolarityRemark12390.00005.7740.1345.9074.0028.10PASSHorizontalPK22390.00005.7729.2335.0054.0019.00PASSHorizontalAV	Suspe	cted List					_		_	
	NO							Result	Polarity	Remark
2 2390.0000 5.77 29.23 35.00 54.00 19.00 PASS Horizontal AV	1	2390.0000	5.77	40.13	45.90	74.00	28.10	PASS	Horizontal	PK
	2	2390.0000	5.77	29.23	35.00	54.00	19.00	PASS	Horizontal	AV

Page 36 of 46



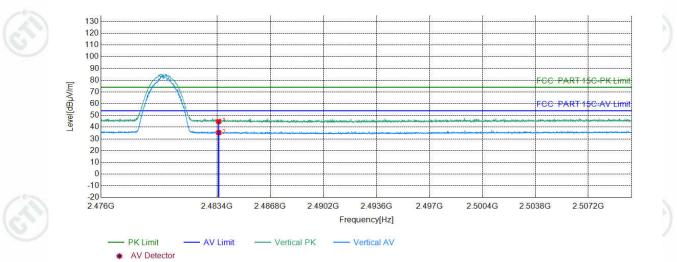
Mode:	π/4DQPSK Transmitting	Channel:	2402MHz
Remark:	(25)	(2)	$(\mathcal{E}^{(n)})$
1.1			



NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	40.09	45.86	74.00	28.14	PASS	Vertical	PK
2	2390.0000	5.77	28.90	34.67	54.00	19.33	PASS	Vertical	AV

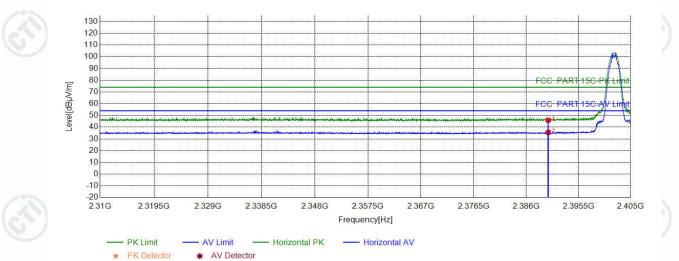
Suspe	cted List				_	_			
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	38.57	45.14	74.00	28.86	PASS	Horizontal	PK
2	2483.5000	6.57	28.64	35.21	54.00	18.79	PASS	Horizontal	AV

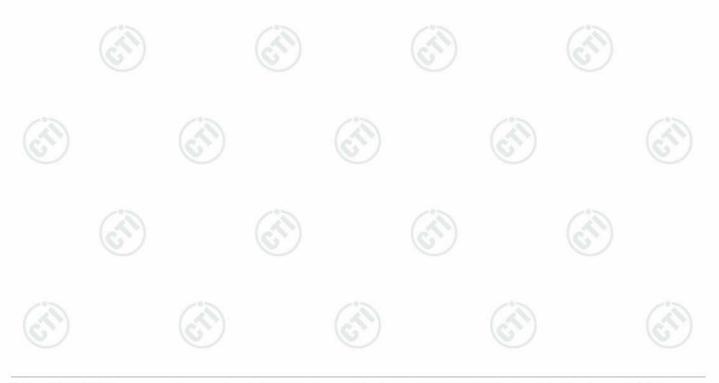
Page 38 of 46



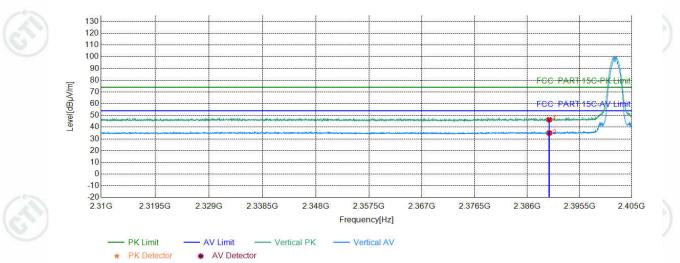
Mode:	π/4DQPSK Transmitting	Channel:	2480MHz
Remark:	(25)	(2)	(\mathcal{L}^{n})
1.1			

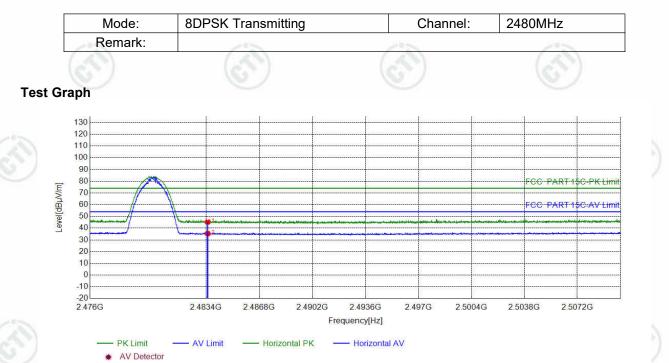
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	38.31	44.88	74.00	29.12	PASS	Vertical	PK
2	2483.5000	6.57	28.81	35.38	54.00	18.62	PASS	Vertical	AV





Mode:	8DPSK Transmitting	Channel:	2402MHz
Remark:	(25)	(23)	(25)
1			

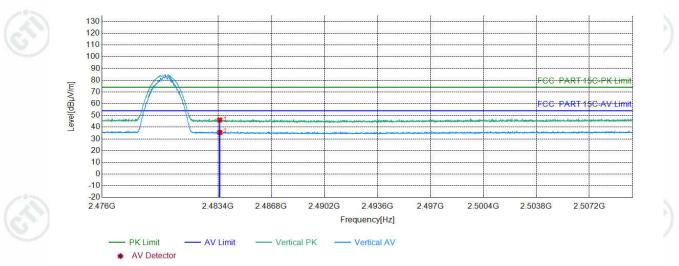

•			10 March 10		1.00			and the second se	
Suspec	ted List								
	Freq.	Factor	Reading	Level	Limit	Margin	Desult	Delevity	Dement
NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Polarity	Remark
1	2390.0000	5.77	40.17	45.94	74.00	28.06	PASS	Horizontal	PK
2	2390.0000	5.77	29.79	35.56	54.00	18.44	PASS	Horizontal	AV
9		S.			/	1	57		67


Mode:	8DPSK Transmitting	Channel:	2402MHz
Remark:	(25)	(23)	(25)
1.1			

NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	40.63	46.40	74.00	27.60	PASS	Vertical	PK
2	2390.0000	5.77	29.25	35.02	54.00	18.98	PASS	Vertical	AV

Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2483.5000	6.57	38.68	45.25	74.00	28.75	PASS	Horizontal	PK	
2	2483.5000	6.57	28.82	35.39	54.00	18.61	PASS	Horizontal	AV	

Page 42 of 46

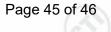


Mode:	8DPSK Transmitting	Channel:	2480MHz
Remark:	(25)	(25)	(25)
2.1			

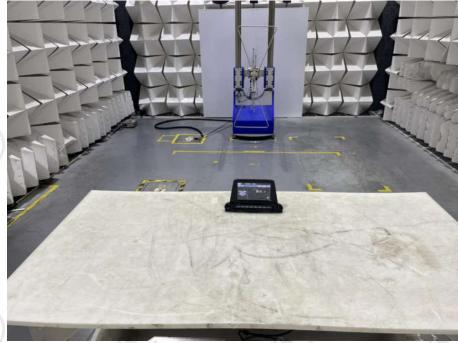
Suspe	cted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	39.58	46.15	74.00	27.85	PASS	Vertical	PK
2	2483.5000	6.57	28.91	35.48	54.00	18.52	PASS	Vertical	AV
21		2		6)	C.			(6))

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:


Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

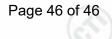


7 PHOTOGRAPHS OF TEST SETUP

Test model No.: MTX_MO400L_BDMFL

Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)





8 PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No. EED32N80102801 for EUT external and internal photos.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

