FCC 47 CFR PART 15 SUBPART C

TEST REPORT

For

Notebook

Model: LM7WV; LM7WV series; LM7WM; LM7WM series

Trade Name: FIC; LEO; EVEREX

Prepared for

First International Computer Inc.

NO.300, Yang Guang St., Nei Hu, Taipei, Taiwan, 114

Prepared by

COMPLIANCE CERTIFICATION SERVICES (KUNSHAN) INC.

10#Weiye Rd, Innovation Park Eco. & Tec. Development Zone Kunshan city JiangSu, (215300) CHINA

TEL: 86-512-57355888 FAX: 86-512-57370818

Lab. Code: 200581-0

TABLE OF CONTENTS

1. T	EST RESULT CERTIFICATION	3
2. E	UT DESCRIPTION	4
3. T	EST METHODOLOGY	5
3.1	EUT CONFIGURATION	
3.2	EUT EXERCISE	
3.3	GENERAL TEST PROCEDURES	
3.4	FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS	
3.5	DESCRIPTION OF TEST MODES	6
4. IN	NSTRUMENT CALIBRATION	7
5. F	ACILITIES AND ACCREDITATIONS	8
5.1	FACILITIES8	
5.2	EQUIPMENT	8
5.3	LABORATORY ACCREDITATIONS AND LISTING	8
5.4	TABLE OF ACCREDITATIONS AND LISTINGS	9
6. Sl	ETUP OF EQUIPMENT UNDER TEST	10
6.1	SETUP CONFIGURATION OF EUT	10
7. F	CC PART 15.247 REQUIREMENTS	11
7.1	6DB BANDWIDTH	11
7.2	PEAK POWER	16
7.3	BAND EDGES MEASUREMENT	
7.4	PEAK POWER SPECTRAL DENSITY	
7.5	sPURIOUS EMISSIONS	
7.6	POWERLINE CONDUCTED EMISSIONS	58

1. TEST RESULT CERTIFICATION

Applicant:

First International Computer Inc.

No.300 YangGuang st., NeiHu, Taipei, 114

Equipment Under Test:

Notebook

Trade Name:

FIC;LEO;EVEREX

Model:

LM7WV; LM7WV series; LM7WM; LM7WM series

Date of Test:

From May 21, 2006 to May 30, 2006

APPLICABLE	STANDARDS
STANDARD	TEST RESULT
FCC Part 15 Subpart C	No non-compliance noted

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4 and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 15.207, 15.209, 15.247.

The test results of this report relate only to the tested sample EUT identified in this report.

Approved by:

Tony Houng

General Manager of Kunshan Laboratory Compliance Certification Services Inc. Reviewed by:

Miro Chueh

Section Manager of Kunshan Laboratory Compliance Certification Services Inc.

2. EUT DESCRIPTION

Name of the Control o			
Product	Notebook		
Trade Name	FIC;LEO;EVEREX		
Model Number	LM7WV; LM7WV series; LM7WM; LM7WM series		
Model Discrepancy	All the above models are identical except the model designation for different market.		
Wireless LAN module Model Number	WN2302A-F4		
Wireless LAN module Brand name	LITEON		
Power Supply	Trade Name: LI SHIN Model Number: 0335C1965 Input: AC 100-240V, 1.7A, 50-60Hz DC 19V, 3.42A Trade Name: Delta Model Number: SADP-65KB C Input: AC 100-240V, 1.5A, 50-60Hz DC 19V, 3.42A		
Frequency Range	802.11b mode: 2412 ~ 2462 MHz 802.11g mode: 2412 ~ 2462 MHz		
Transmit Power	802.11b mode: 17. 22dBm 802.11g mode: 15. 75Bm		
Modulation Technique	802.11b: DSSS (CCK; DQPSK; DBPSK) 802.11g: OFDM		
Transmit Data Rate	802.11b: 11Mbps(CCK) with fall back rates of 5.5, 2, and 1Mbps 802.11g: 54Mbps with fall back rates of 48/36/24/18/12/9/6 Mbps (OFDM)		
Number of Channels	11 Channels		
Antenna Specification	PIFA Antenna Gain: 2. 80 dBi (Max)		

Note: This submittal(s) (test report) is intended for FCC ID: <u>EUNLM7WVL</u> filing to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003 and FCC CFR 47 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057, 15.207, 15.209 and 15.247.

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4-2003 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 13.1.4.1 of ANSI C63.4-2003.

3.4 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	(²)
13.36 - 13.41	322 - 335.4		

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

3.5 DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition.

Software used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

IEEE802.11b: Channel 1(2412MHz), Channel 6(2437MHz) and Channel 11(2462MHz) with preliminary test 11, 5.5, 2, and 1, After the preliminary scan, the following test mode 11Mbps highest data rate (the worst case) are chosen for the final testing.

IEEE802.11g: Channel 1(2412MHz), Channel 6(2437MHz) and Channel 11(2462MHz) with preliminary test 54/48/36/24/18/12/9/6, After the preliminary scan , the following test mode 6Mbps data rate (the worst case) are chosen for the final testing.

² Above 38.6

4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at CCS China Kunshan Lab at 10#, Weiye Rd, Innovation Park Eco. & Tec. Development Zone Kunshan city JiangSu, (215300)CHINA.

The measurement facilities are constructed in conformance with the requirements of CISPR 16-1, ANSI C63.4 and other equivalent standards.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3 LABORATORY ACCREDITATIONS AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code: 200581-0 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government. In addition, the test facilities are listed with Federal Communications Commission.

5.4 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	NVLAP	EN 55022, EN 61000-3-2, EN 61000-3-3, EN550024, EN 61000-4-2, EN 61000-4-3, EN61000-4-4, EN 61000-4-5, EN 61000-4-6, IEC 61000-4-8, EN 61000-4-11 ANSI C63.4, CISPR16-1, IEC61000-3-2, IEC61000-3-3, IEC 61000-4-2, IEC 61000-4-3, IEC 61000-4-4, IEC 61000-4-5, IEC 61000-4-6, IEC 61000-4-8, IEC 61000-4-11	Lab. Code: 200581-0
USA	FCC	3/10 meter Sites to perform FCC Part 15/18 measurements	FC 93105, 90471
Japan	VCCI	3/10 meter Sites and conducted test sites to perform radiated/conducted measurements	VCCI R-1600 C-1707
Norway	NEMKO	EN61000-6-1/2/3/4, EN 50082-1/2, IEC 61000-6-1/2/3/4, EN 50091-2, EN 55011, EN 55022, EN 55024, EN 61000-3-2/3, EN 61000-11, IEC 61000-4-2/3/4/5/6/8/11, CISPR16-1/2/3/4	N ELA 105

^{*} No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government.

6. SETUP OF EQUIPMENT UNDER TEST

6.1 SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

SUPPORT EQUIPMENT

No	Equipment	Model	Serial No.	FCC ID	Trade Name	Data Cable	Power Cord
1	Keyboard	KB-7953	0154096	DoC	IBM	Un-Shielded, 2.0m	N/A
2	Mouse	M-BJ58	HCA42101722	DoC	Logitech	Shielded, 1.8m	N/A

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

7. FCC PART 15.247 REQUIREMENTS

7.1 6DB BANDWIDTH

LIMIT


For the direct sequence systems, the minimum 6dB bandwidth shall be at least 500kHz.

MEASUREMENT EQUIPMENT USED

Name of Equipment Manufacturer		Model	Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	E4446A	MY44020154	11/16/2006	

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

TEST PROCEDURE

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW = 100kHz, VBW = RBW, Span = 20MHz, Sweep =
- 4. Mark the peak frequency and –6dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

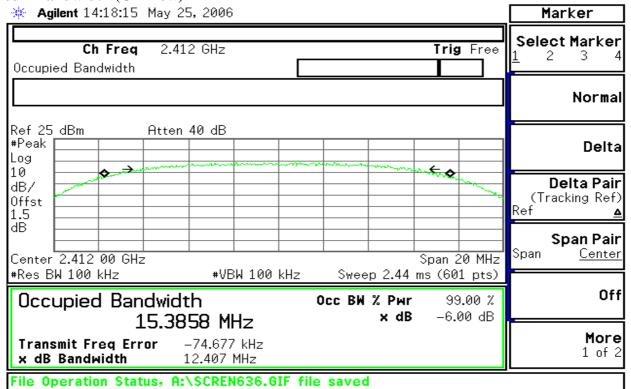
TEST RESULTS

No non-compliance noted

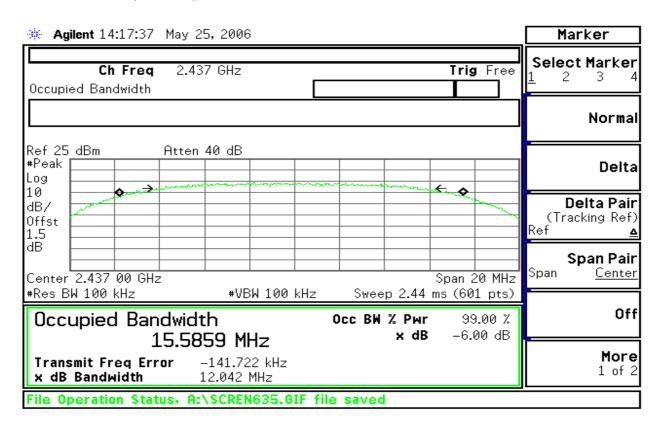
Test Data

Test mode: IEEE 802.11b

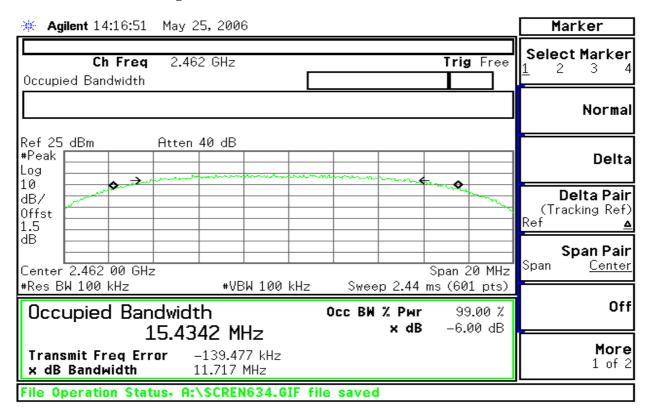
Channel	Frequency (MHz)	Bandwidth (kHz)	Limit (kHz)	Margin (kHz)
Low	2412	12407		PASS
Mid	2437	12042	>500	PASS
High	2462	11717		PASS


Test mode: IEEE 802.11g

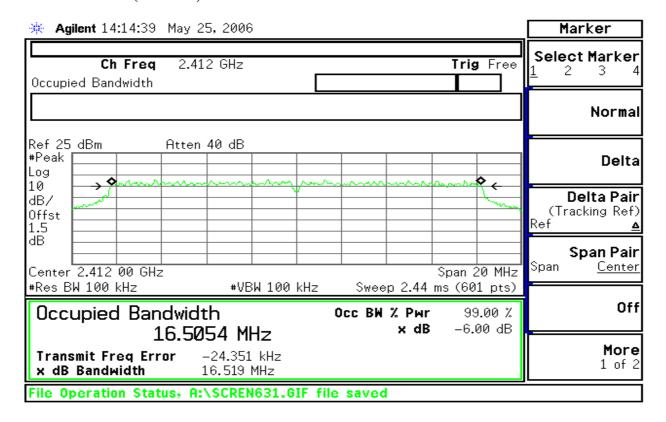
Channel	Frequency (MHz)	Bandwidth (kHz)	Limit (kHz)	Margin (kHz)
Low	2412	16519		PASS
Mid	2437	16441	>500	PASS
High	2462	16346		PASS


Test Plot

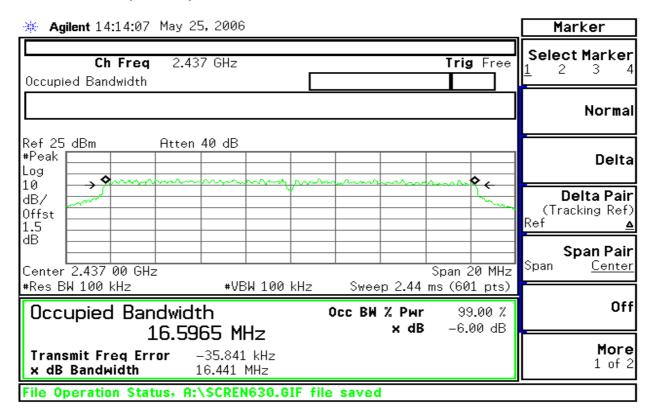
802.11b mode


6dB Bandwidth (CH Low)

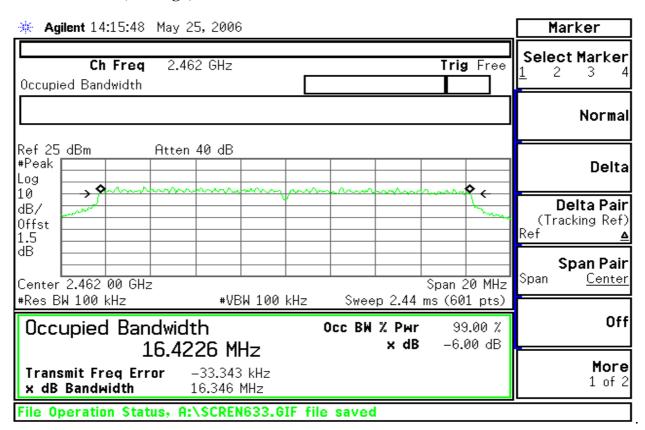
6dB Bandwidth (CH Mid)



6dB Bandwidth (CH High)



802.11g mode


6dB Bandwidth (CH Low)

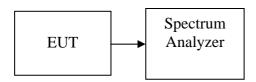
6dB Bandwidth (CH Mid)

6dB Bandwidth (CH High)

7.2 PEAK POWER

LIMIT

The maximum peak output power of the intentional radiator shall not exceed the following:


- 1. For systems using digital modulation in the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz: 1 watt.
- 2. Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY44020154	11/16/2006

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

TEST PROCEDURE

The transmitter output is connected to the Spectrum analyzer. The Spectrum analyzer is set to the peak power detection.

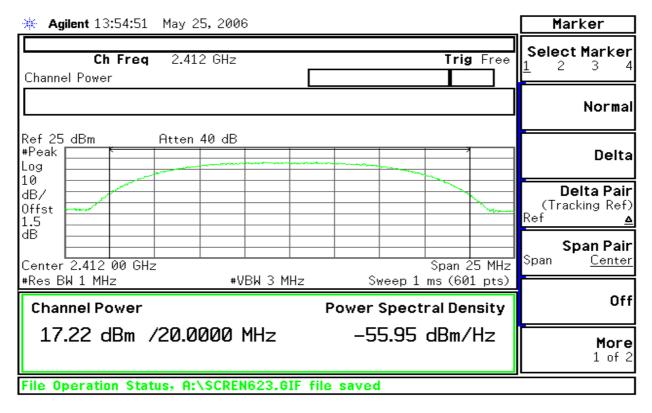
TEST RESULTS

No non-compliance noted

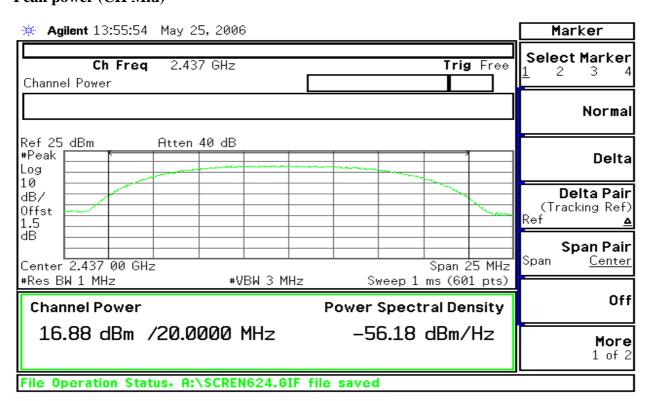
Test Data

Test mode: IEEE 802.11b

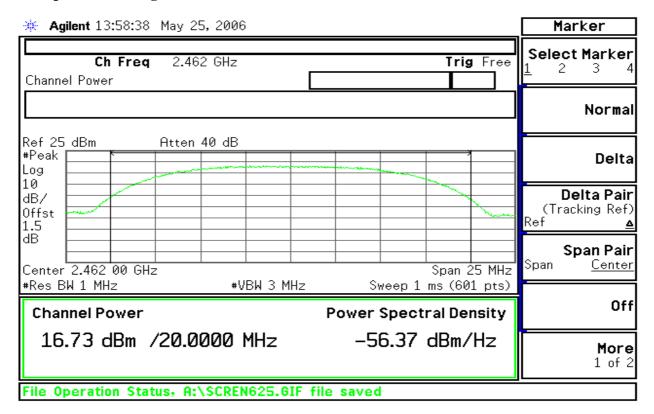
Channel	Frequency (MHz)	Output Power (dBm)	Factor (dB)	Output Power (dBm)	Output Power (W)	Limit (W)	Result
Low	2412	15.72	1.50	17.22	0.05272		PASS
Mid	2437	15.38	1.50	16.88	0.04875	1	PASS
High	2462	15.23	1.50	16.73	0.04710		PASS


Test mode: IEEE 802.11g

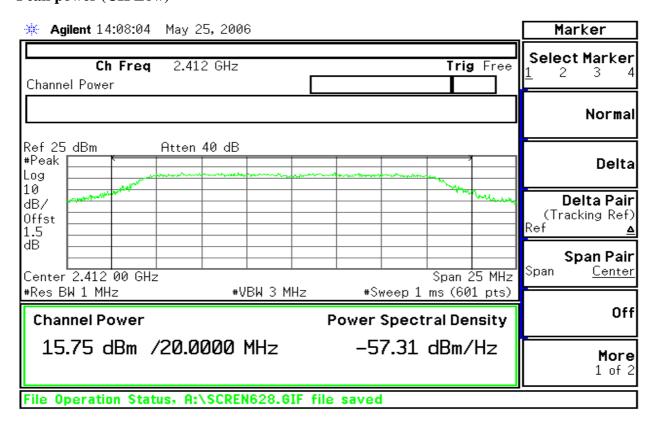
Channel	Frequency (MHz)	Output Power (dBm)	Factor (dB)	Output Power (dBm)	Output Power (W)	Limit (W)	Result
Low	2412	14.25	1.50	15.75	0.03758		PASS
Mid	2437	14.18	1.50	15.68	0.03698	1	PASS
High	2462	13.86	1.50	15.36	0.03436		PASS


Test Plot

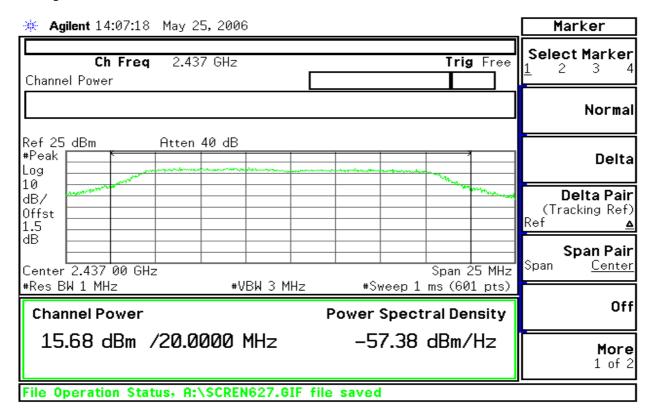
802.11b mode


Peak power (CH Low)

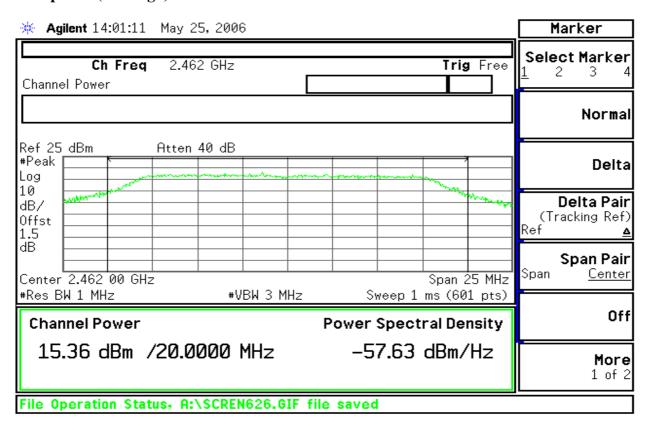
Peak power (CH Mid)



Peak power (CH High)



802.11g mode

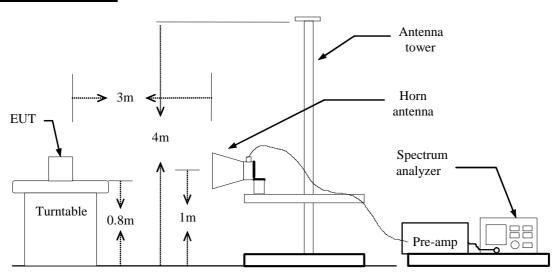

Peak power (CH Low)

Peak power (CH Mid)

Peak power (CH High)

7.3 BAND EDGES MEASUREMENT

LIMIT


According to §15.247(c), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).

MEASUREMENT EQUIPMENT USED

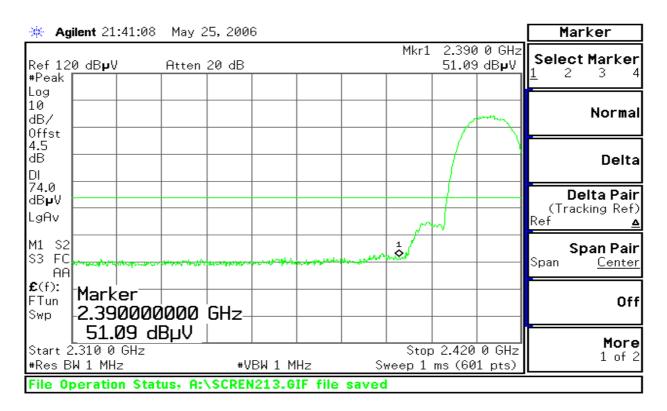
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY44020154	11/16/2006
Pre-Amplfier	Miteq	NSP4000-NF	870731	01/21/2007
Horn Antenna	Austriah	BBHA9120D	D267	09/20/2006
Turn Table	СТ	CT123	4162	N.C.R
Antenna Tower	СТ	CTERG23	3253	N.C.R
Controller	СТ	CT100	95635	N.C.R
Coax Switch	Anitsu	MP 598	M 80094	N/A
Site NSA	CCS Lab.	N/A	N/A	12/11/2006

Remark: Each piece of equipment is scheduled for calibration once a year.

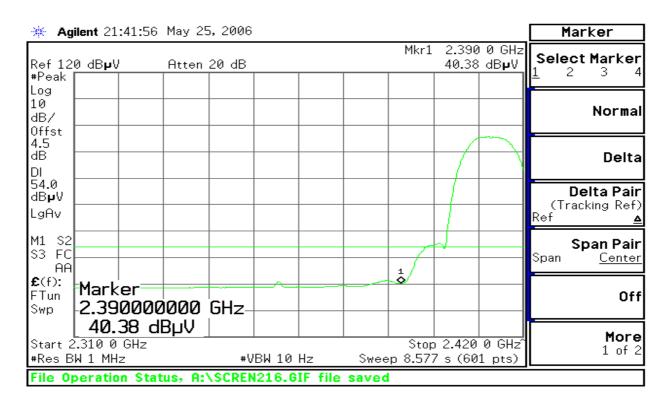
Test Configuration

TEST PROCEDURE

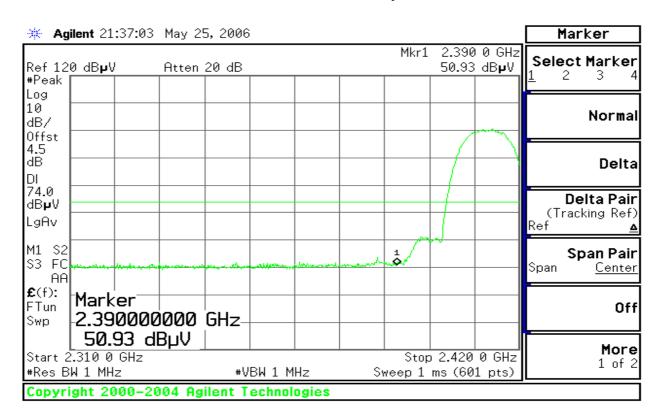
- 1. The EUT is placed on a turntable, which is 0.8m above the ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.


- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
 - (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO
 - (b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO
- 5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

TEST RESULTS

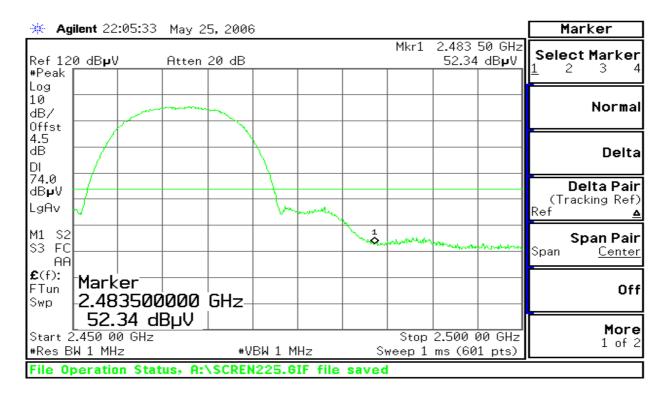

Refer to attach spectrum analyzer data chart.

Band Edges (802.11b / CH Low)

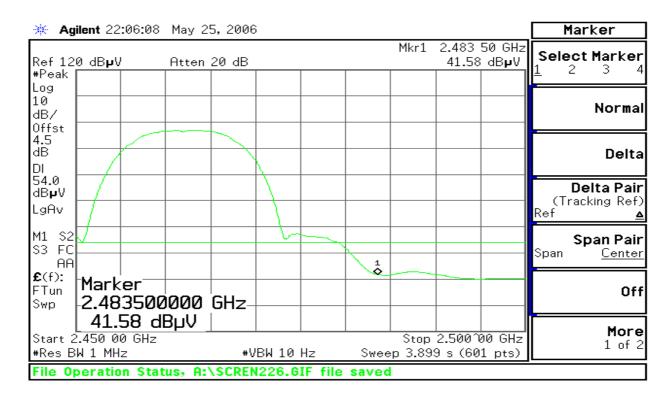

Detector mode: Peak Polarity: Vertical

Detector mode: Average Polarity: Vertical

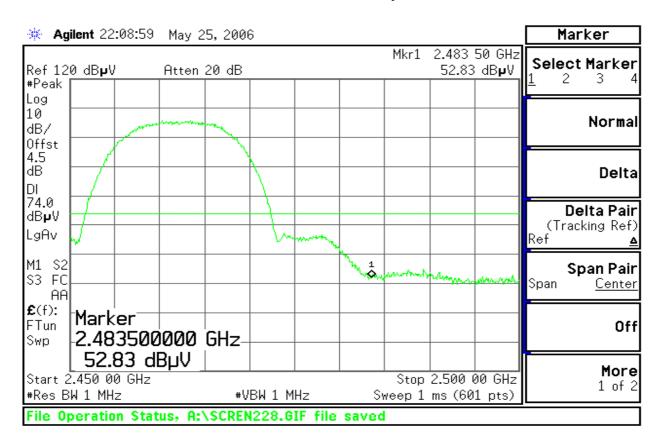
Detector mode: Peak Polarity: Horizontal

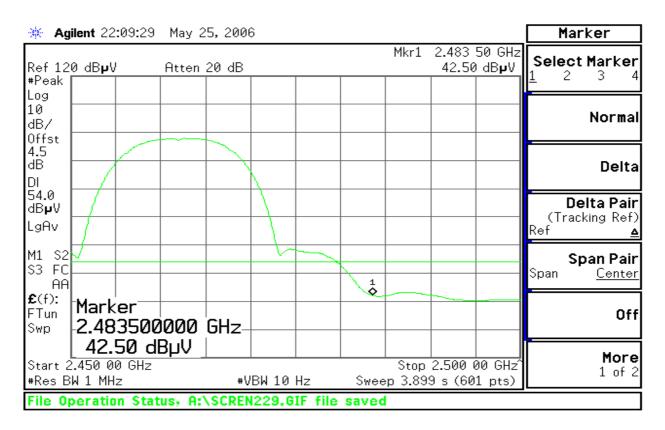


Detector mode: Average Polarity: Horizontal

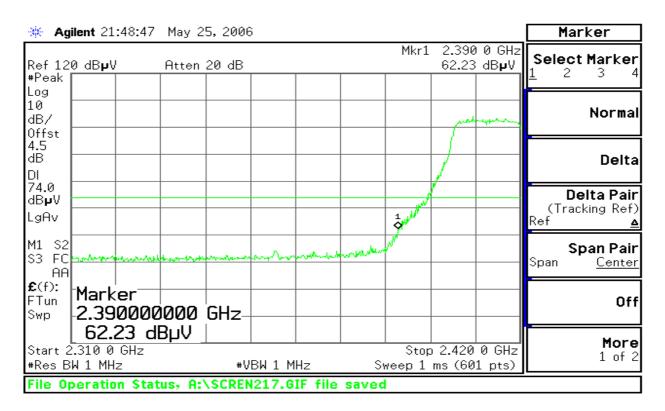


Band Edges (802.11b / CH High)

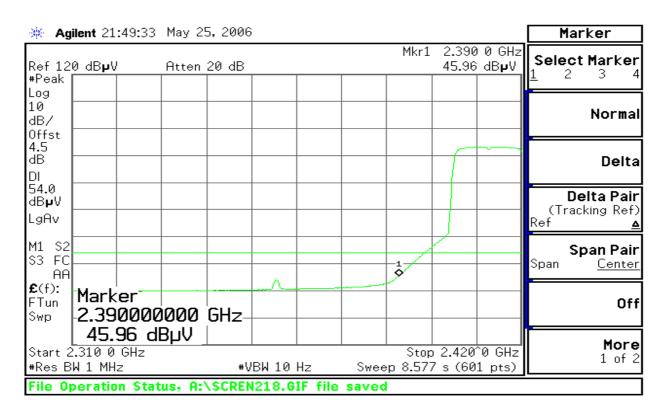

Detector mode: Peak Polarity: Vertical


Detector mode: Average Polarity: Vertical

Detector mode: Peak Polarity: Horizontal

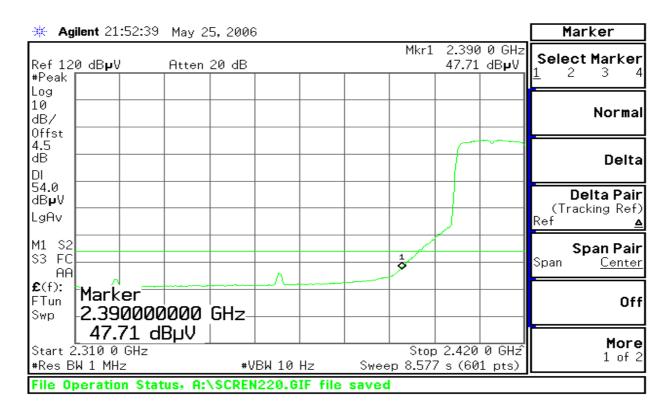


Detector mode: Average Polarity: Horizontal

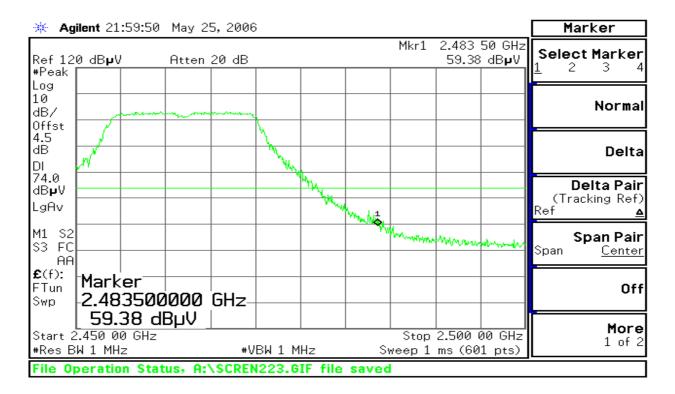


Band Edges (802.11g / CH Low)

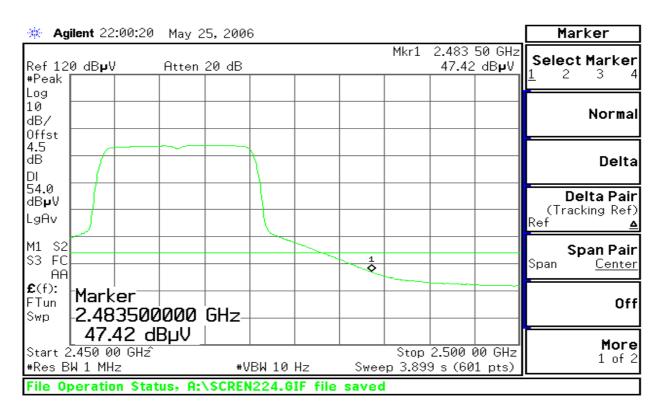
Detector mode: Peak Polarity: Vertical


Detector mode: Average Polarity: Vertical

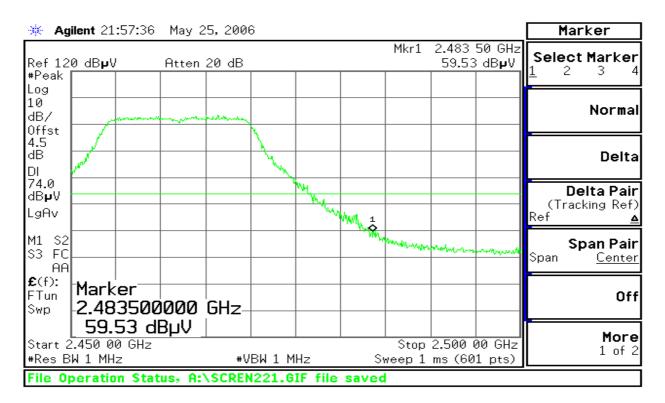
Detector mode: Peak Polarity: Horizontal

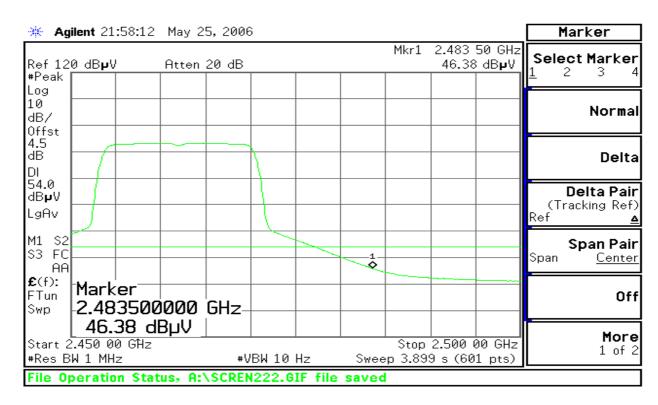


Detector mode: Average Polarity: Horizontal



Band Edges (802.11g / CH High)


Detector mode: Peak Polarity: Vertical

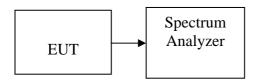

Detector mode: Average Polarity: Vertical

Detector mode: Peak Polarity: Horizontal

Detector mode: Average Polarity: Horizontal

7.4 PEAK POWER SPECTRAL DENSITY

LIMIT


- 1. For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.
- 2. The direct sequence operating of the hybrid system, with the frequency hopping operation turned off, shall comply with the power density requirements of paragraph (d) of this section.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY44020154	11/16/2006

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

TEST PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.

 Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set the spectrum analyzer as RBW = 3kHz, VBW = 10kHz, Span = 300kHz, Sweep=100s
- 3. Record the max. reading.
- 4. Repeat the above procedure until the measurements for all frequencies are completed.

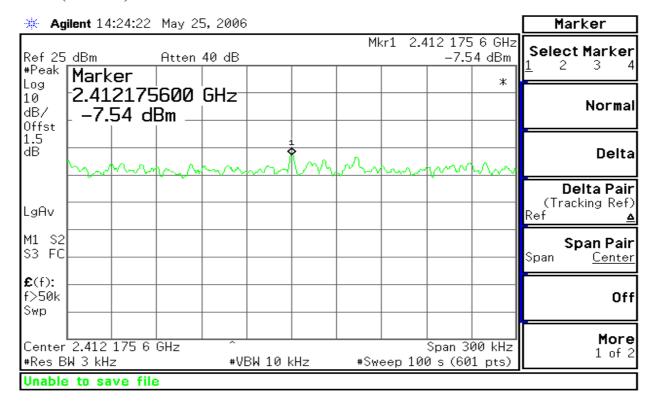
TEST RESULTS

No non-compliance noted

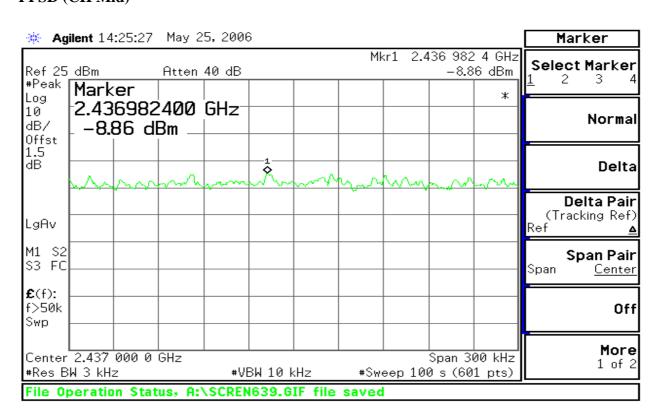
Test Data

Test mode: IEEE 802.11b

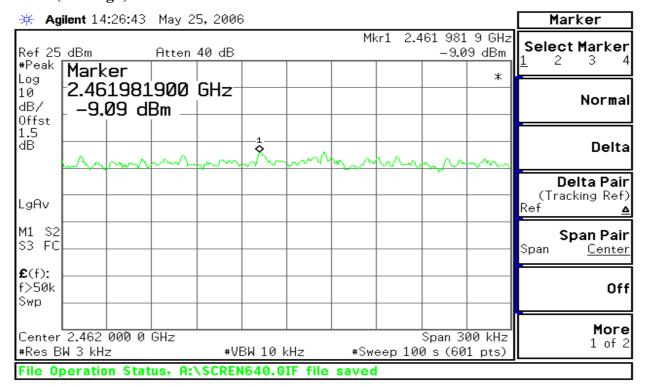
Channel	Frequency	Reading (dBm)	Factor (dB)	PPSD (dBm)	Limit (dBm)	Result
Low	2412	-9.01	1.50	-7.51		PASS
Mid	2437	-10.36	1.50	-8.86	8.00	PASS
High	2462	-10.59	1.50	-9.09		PASS


Test mode: IEEE 802.11g

Channel	Frequency	Reading (dBm)	Factor (dB)	PPSD (dBm)	Limit (dBm)	Result
Low	2412	-16.31	1.50	-14.81		PASS
Mid	2437	-16.48	1.50	-14.98	8.00	PASS
High	2462	-16.64	1.50	-15.14		PASS

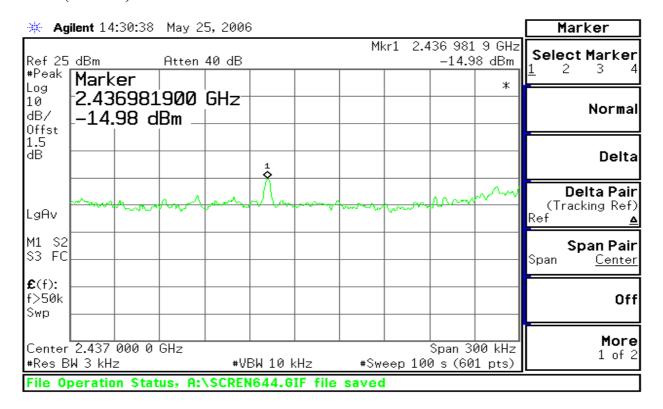

Test Plot

802.11b mode

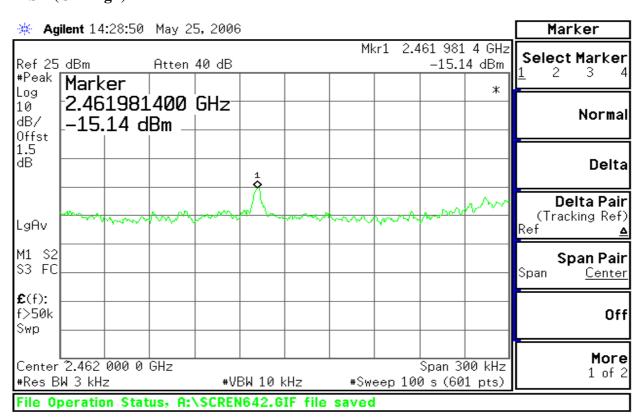

PPSD (CH Low)

PPSD (CH Mid)

PPSD (CH High)



802.11g mode


PPSD (CH Low)

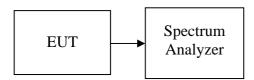
PPSD (CH Mid)

PPSD (CH High)

7.5 SPURIOUS EMISSIONS

7.5.1 Conducted Measurement

LIMIT


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY44020154	11/16/2006

Remark: Each piece of equipment is scheduled for calibration once a year.

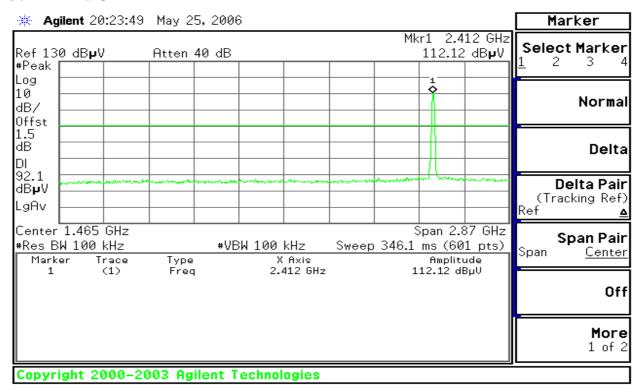
Test Configuration

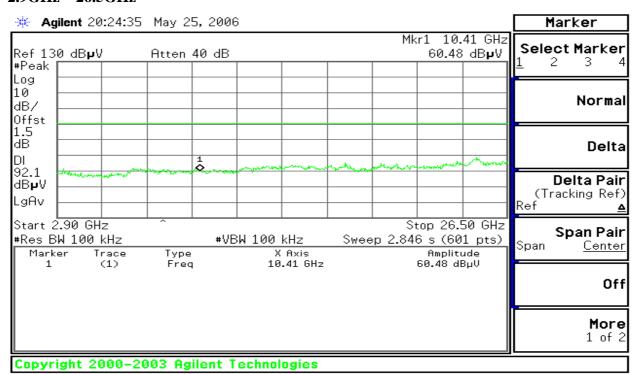
TEST PROCEDURE

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 KHz. The video bandwidth is set to 100 KHz.

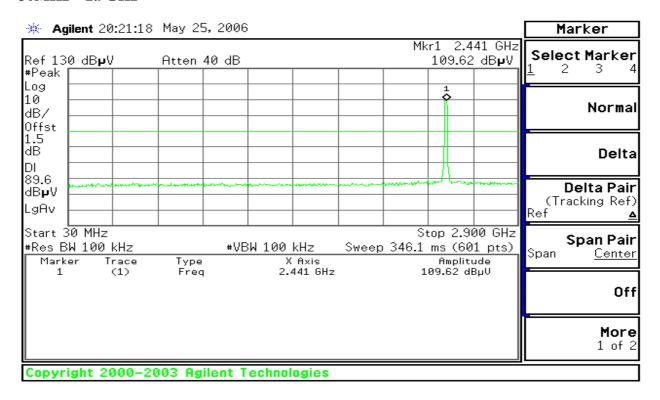
Measurements are made over the 30MHz to 26GHzrange with the transmitter set to the lowest, middle, and highest channels.

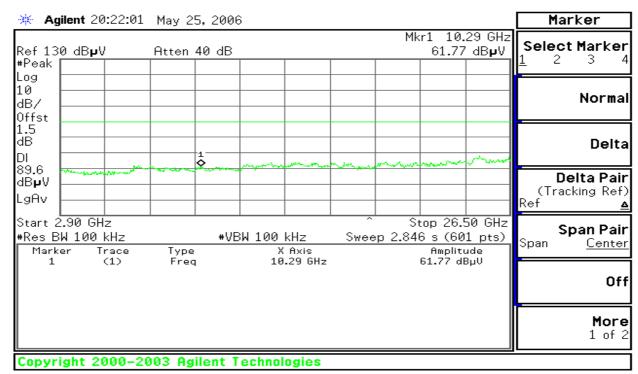

TEST RESULTS


No non-compliance noted

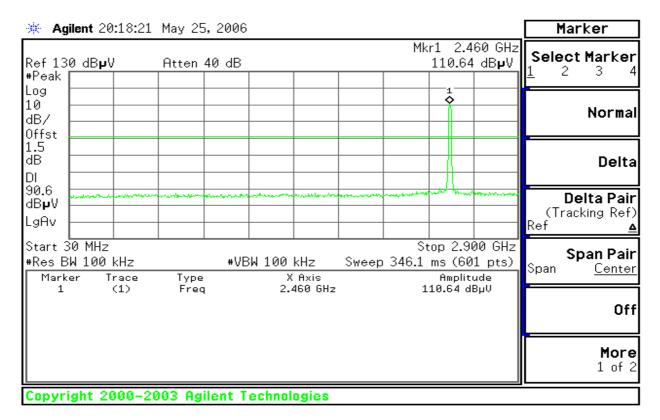
Test Plot

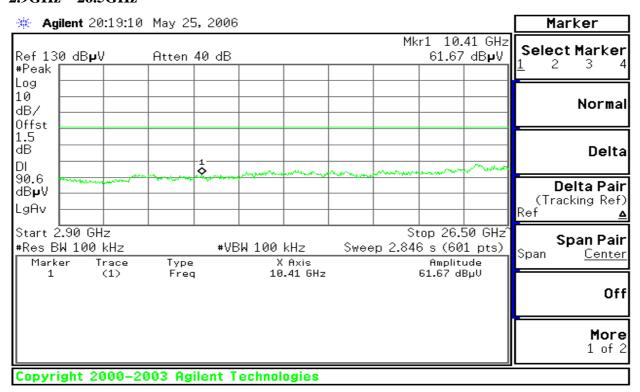
IEEE 802.11b / CH Low


30MHz ~ 2.9GHz

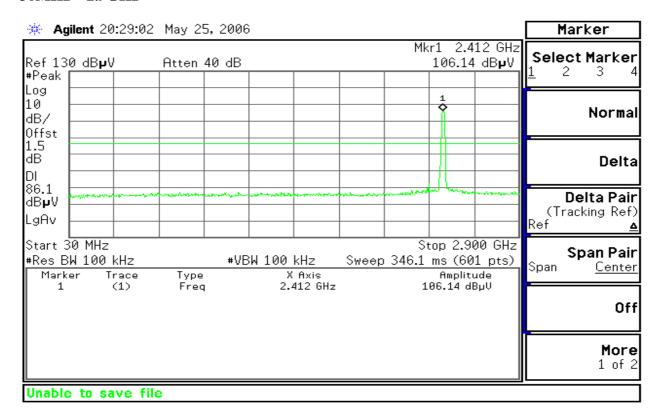


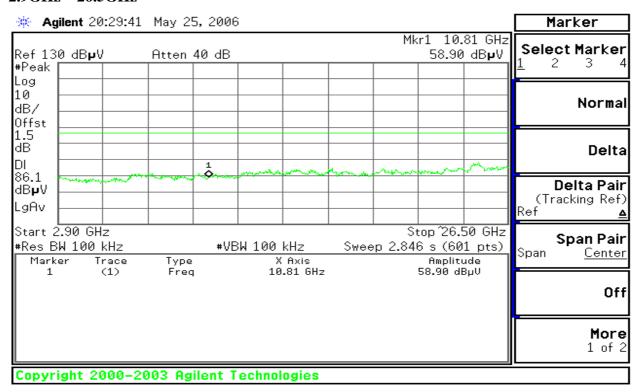
IEEE 802.11b / CH Mid


30MHz ~ 2.9GHz

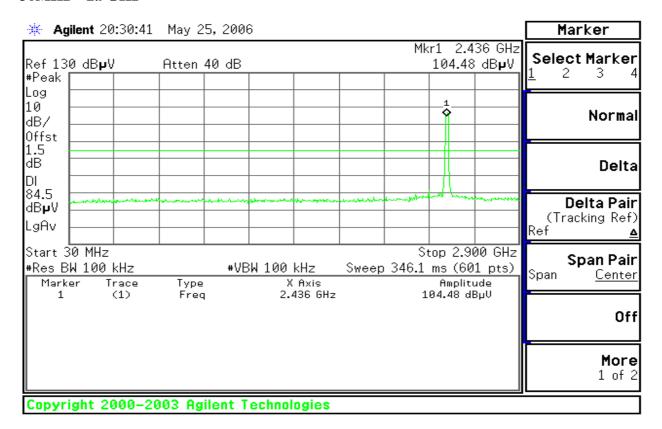


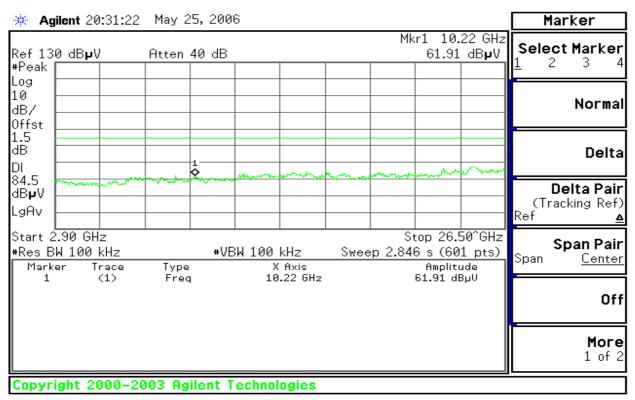
IEEE 802.11b / CH High


30MHz ~ 2.9GHz

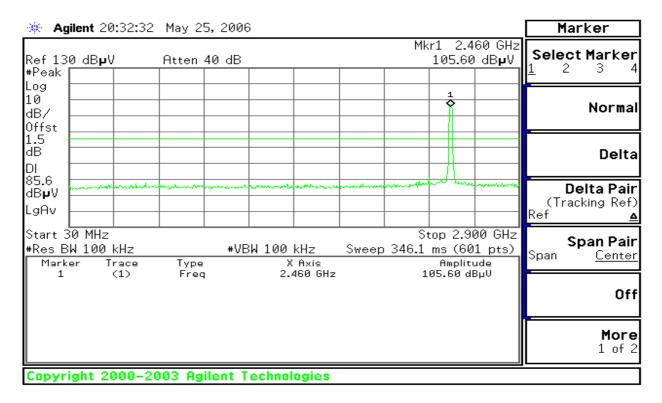


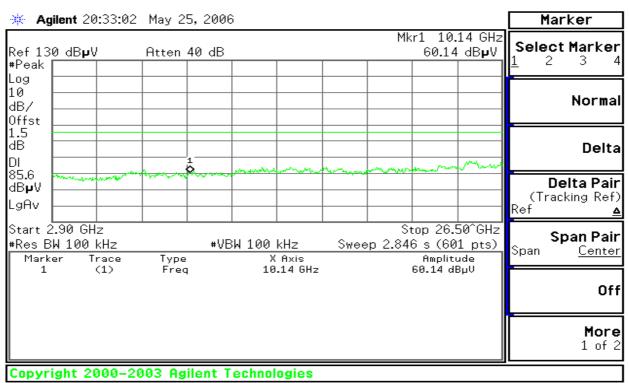
IEEE 802.11g / CH Low


30MHz ~ 2.9GHz



IEEE 802.11g / CH Mid


30MHz ~ 2.9GHz



IEEE 802.11g / CH High

30MHz ~ 2.9GHz

7.5.2 Radiated Emissions

LIMIT

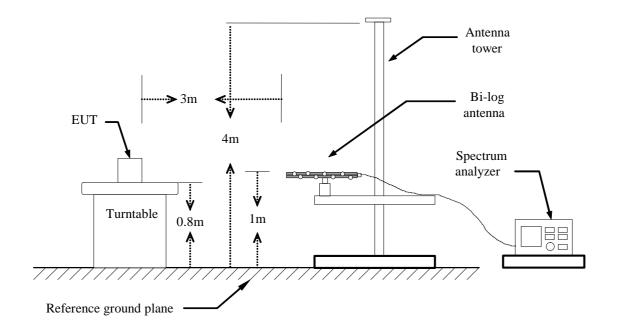
1. Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (mV/m)	Measurement Distance (m)
30-88	100*	3
88-216	150*	3
216-960	200*	3
Above 960	500	3

Note: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

2. In the above emission table, the tighter limit applies at the band edges.

Frequency (Hz)	Field Strength (µV/m at 3-meter)	Field Strength (dBµV/m at 3-meter)		
30-88	100	40		
88-216	150	43.5		
216-960	200	46		
Above 960	500	54		


MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY44020154	11/16/2006
ESPI3 EMI RECEIVER	R&S	ESPI3	101026	01/21/2007
Pre-Amplfier	MINI	ZFL-1000VH2	d041703	01/21/2007
Pre-Amplfier	Miteq	NSP4000-NF	870731	01/21/2007
Bilog Antenna	Sunol Sciences	JB1	A110204-2	11/13/2006
Horn Antenna	Austriah	BBHA9120D	D267	09/20/2006
Turn Table	CT	CT123	4162	N.C.R
Antenna Tower	CT	CTERG23	3253	N.C.R
Controller	CT	CT100	95635	N.C.R
Coax Switch	Anitsu	MP 598	M 80094	N/A
Site NSA	CCS Lab.	N/A	N/A	12/11/2006

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

Below 1 GHz

Above 1 GHz

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

TEST RESULTS

Below 1 GHz

Operation Mode: TX / IEEE 802.11b / CH Low **Test Date:** May 28, 2006

Temperature: 20°C **Tested by:** 1in

Humidity: 70 % RH **Polarity:** Ver. / Hor.

Freq. (MHz)	Ant.Pol. H/V	Detector Mode (PK/QP)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit 3m (dBuV/m)	Safe Margin (dB)
75.36	V	Peak	32.05	-5.70	26.35	40.00	-13.65
147.05	V	Peak	32.16	-1.50	30.66	43.50	-12.84
323.85	V	Peak	33.12	-2.29	30.83	46.00	-15.17
431.86	V	Peak	33.02	3.35	36.37	46.00	-9.63
539.88	V	Peak	34.25	3.16	37.41	46.00	-8.59
758.03	V	Peak	28.69	8.85	37.54	46.00	-8.46
84.25	Н	Peak	29.32	-7.06	22.26	40.00	-17.74
182.58	Н	Peak	30.25	-4.90	25.35	43.50	-18.15
216.67	Н	Peak	33.69	-5.09	28.60	46.00	-17.40
431.86	Н	Peak	31.37	-2.17	29.20	46.00	-16.80
539.88	Н	Peak	34.14	2.16	36.30	46.00	-9.70
751.70	Н	Peak	30.38	2.70	33.08	46.00	-12.92

- 1. Measuring frequencies from 30 MHz to the 1GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.

Operation Mode: TX / IEEE 802.11b / CH Mid **Test Date:** May 28, 2006

Temperature: 20°C **Tested by:** 1in

Humidity: 70 % RH **Polarity:** Ver. / Hor.

Freq. (MHz)	Ant.Pol. H/V	Detector Mode (PK/QP)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit 3m (dBuV/m)	Safe Margin (dB)
90.12	V	Peak	35.69	-6.59	29.10	40.00	-10.90
150.66	V	Peak	31.02	-1.32	29.70	43.50	-13.80
216.67	V	Peak	36.18	-3.09	33.09	46.00	-12.91
431.86	V	Peak	30.18	3.35	33.53	46.00	-12.47
539.88	V	Peak	32.86	3.16	36.02	46.00	-9.98
700.37	V	Peak	31.02	6.28	37.30	46.00	-8.70
78.31	Н	Peak	31.02	-6.57	24.45	40.00	-15.55
180.42	Н	Peak	32.67	-5.13	27.54	43.50	-15.96
323.85	Н	Peak	39.68	-7.29	32.39	46.00	-13.61
431.86	Н	Peak	34.15	-2.17	31.98	46.00	-14.02
539.88	Н	Peak	35.17	2.16	37.33	46.00	-8.67
757.31	Н	Peak	29.65	2.82	32.47	46.00	-13.53

- 1. Measuring frequencies from 30 MHz to the 1GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.

Operation Mode: TX / IEEE 802.11b / CH High **Test Date:** May 28, 2006

Temperature: 20°C **Tested by:** 1in

Humidity: 70 % RH **Polarity:** Ver. / Hor.

Freq. (MHz)	Ant.Pol. H/V	Detector Mode (PK/QP)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit 3m (dBuV/m)	Safe Margin (dB)
78.69	V	Peak	31.68	-5.83	25.85	40.00	-14.15
167.43	V	Peak	33.11	-2.31	30.80	43.50	-12.70
323.85	V	Peak	32.96	-2.29	30.67	46.00	-15.33
431.86	V	Peak	26.63	3.35	29.98	46.00	-16.02
539.88	V	Peak	34.64	3.16	37.80	46.00	-8.20
702.61	V	Peak	31.69	6.35	38.04	46.00	-7.96
79.78	Н	Peak	32.19	-6.86	25.33	40.00	-14.67
177.72	Н	Peak	33.32	-5.07	28.25	43.50	-15.25
252.93	Н	Peak	32.04	-8.80	23.24	46.00	-22.76
431.86	Н	Peak	31.81	-2.17	29.64	46.00	-16.36
539.88	Н	Peak	35.73	2.16	37.89	46.00	-8.11
757.31	Н	Peak	33.35	2.82	36.17	46.00	-9.83

- 1. Measuring frequencies from 30 MHz to the 1GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.

Operation Mode: TX / IEEE 802.11g / CH Low **Test Date:** May 28, 2006

Temperature: 20°C **Tested by:** 1in

Humidity: 70 % RH **Polarity:** Ver. / Hor.

Freq. (MHz)	Ant.Pol. H/V	Detector Mode (PK/QP)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit 3m (dBuV/m)	Safe Margin (dB)
59.05	V	Peak	33.05	-6.25	26.80	40.00	-13.20
157.69	V	Peak	30.67	-1.27	29.40	43.50	-14.10
180.42	V	Peak	28.36	-1.13	27.23	46.00	-18.77
431.86	V	Peak	27.31	3.35	30.66	46.00	-15.34
539.98	V	Peak	31.27	3.16	34.43	46.00	-11.57
700.12	V	Peak	29.14	6.20	35.34	46.00	-10.66
55.02	Н	Peak	29.02	-5.39	23.63	40.00	-16.37
175.55	Н	Peak	32.25	-4.96	27.29	43.50	-16.21
216.67	Н	Peak	31.59	-5.09	26.50	46.00	-19.50
431.86	Н	Peak	32.08	-2.17	29.91	46.00	-16.09
539.88	Н	Peak	32.38	2.16	34.54	46.00	-11.46
757.31	Н	Peak	31.85	2.82	34.67	46.00	-11.33

- 1. Measuring frequencies from 30 MHz to the 1GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.

Operation Mode: TX / IEEE 802.11g / CH Mid **Test Date:** May 28, 2006

Temperature: 20°C **Tested by:** 1in

Humidity: 70 % RH **Polarity:** Ver. / Hor.

Freq.	Ant.Pol.	Detector	Reading	Factor	Actual FS	Limit 3m	Safe Margin
(MHz)	H/V	Mode (PK/QP)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
79.02	V	Peak	33.95	-5.69	28.26	40.00	-11.74
164.19	V	Peak	32.06	-1.85	30.21	43.50	-13.29
431.86	V	Peak	28.06	3.35	31.41	46.00	-14.59
539.88	V	Peak	31.64	3.16	34.80	46.00	-11.20
649.29	V	Peak	28.62	7.35	35.97	46.00	-10.03
77.06	Н	Peak	34.62	-6.12	28.50	40.00	-11.50
176.09	Н	Peak	36.08	-4.98	31.10	43.50	-12.40
323.85	Н	Peak	35.16	-7.29	27.87	46.00	-18.13
431.86	Н	Peak	30.86	-2.17	28.69	46.00	-17.31
540.15	Н	Peak	32.05	2.19	34.24	46.00	-11.76

- 1. Measuring frequencies from 30 MHz to the 1GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.

Operation Mode: TX / IEEE 802.11g / CH High **Test Date:** May 28, 2006

Temperature: 20°C **Tested by:** 1in

Humidity: 70 % RH **Polarity:** Ver. / Hor.

Freq. (MHz)	Ant.Pol. H/V	Detector Mode (PK/QP)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit 3m (dBuV/m)	Safe Margin (dB)
73.05	V	Peak	35.01	-5.53	29.48	40.00	-10.52
119.82	V	Peak	35.07	-2.27	32.80	43.50	-10.70
323.85	V	Peak	30.25	-2.29	27.96	46.00	-18.04
431.86	V	Peak	26.18	3.35	29.53	46.00	-16.47
649.29	V	Peak	25.64	7.35	32.99	46.00	-13.01
863.92	V	Peak	23.06	8.72	31.78	46.00	-14.22
155.20	Н	Peak	23.74	-3.20	20.54	43.50	-22.96
216.67	Н	Peak	27.81	-5.09	22.72	43.50	-20.78
431.61	Н	Peak	31.20	-2.17	29.03	46.00	-16.97
539.88	Н	Peak	34.09	2.16	36.25	46.00	-9.75
649.29	Н	Peak	26.58	5.74	32.32	46.00	-13.68
867.62	Н	Peak	25.06	6.10	31.16	46.00	-14.84

- 1. Measuring frequencies from 30 MHz to the 1GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.

Above 1 GHz

Operation Mode: TX / IEEE 802.11b / CH Low **Test Date:** May 28, 2006

Temperature: 23°C **Tested by:** 1in

Humidity: 56 % RH **Polarity:** Ver. / Hor.

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actu	Actual Fs		AV Limit	Margin (dB)	Domanly
		(dBuV)	(dBuV)	(dB)	Peak (dBuV/m)	AV (dBuV/m)	(aBuv/m	(dBuV/m)		Remark
3893.37	V	37.05		8.12	45.17		74	54	-8.83	Peak
4824.27	V	36.52		9.65	46.17		74	54	-7.83	Peak
7314.36	V	33.98		15.33	49.31		74	54	-4.69	Peak
3725.37	Н	35.05		7.83	42.88		74	54	-11.12	Peak
4875.00	Н	35.82		10.51	46.33		74	54	-7.67	Peak
7342.36	Н	33.02		15.91	48.93		74	54	-5.07	Peak

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
 - b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms.

Operation Mode: TX / IEEE 802.11b / CH Mid **Test Date:** May 28, 2006

Temperature: 20°C **Tested by:** 1in

Humidity: 70 % RH **Polarity:** Ver. / Hor.

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actu	al Fs	Peak Limit	AV Limit	Margin (dB)	
(WIIIZ)	11/ ¥	(dBuV)	(dBuV)	(dB)	Peak	AV	(arn a / m	(dBuV/m)		Remark
					(dBuV/m)	(dBuV/m)				
3859.33	V	35.97		8.02	43.99		74	54	-10.01	Peak
4881.35	V	33.58		10.56	44.14		74	54	-9.86	Peak
7345.32	V	33.28		15.96	49.24		74	54	-4.76	Peak
3725.37	Н	36.52		7.85	44.37		74	54	-9.63	Peak
4875.42	Н	31.35		10.51	41.86		74	54	-12.14	Peak
7341.37	Н	30.39		15.93	46.32		74	54	-7.68	Peak

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
 - b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms.

Operation Mode: TX / IEEE 802.11b / CH High **Test Date:** May 28, 2006

Temperature: 20°C **Tested by:** 1in

Humidity: 70 % RH **Polarity:** Ver. / Hor.

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actu	al Fs	Peak Limit	AV Limit	Margin (dB)	
, ,		(dBuV)	(dBuV)	(dB)	Peak	AV	(aRn A/w	(dBuV/m)		Remark
					(dBuV/m)	(dBuV/m)				
3250.25	V	36.29		6.25	42.54		74	54	-11.46	Peak
4943.37	V	31.26		11.02	42.28		74	54	-11.72	Peak
7358.33	V	31.39		16.02	47.41		74	54	-6.59	Peak
3458.33	Н	37.48		6.28	43.76		74	54	-10.24	Peak
4941.67	Н	36.08		10.89	46.97		74	54	-7.03	Peak
7358.33	Н	31.36		16.02	47.38		74	54	-6.62	Peak

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
 - b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms.

Operation Mode: TX / IEEE 802.11g / CH Low **Test Date:** May 28, 2006

Temperature: 20°C **Tested by:** 1in

Humidity: 70 % RH **Polarity:** Ver. / Hor.

Ant. Pol H/V	Peak Reading	AV Reading		Actual Fs		Peak Limit		Margin (dB)	
	(dBuV)	(dBuV)	(dB)	Peak (dBuV/m)	AV (dBuV/m)	(aRn A/w			Remark
V	33.83		8.17	42.00		74	54	-12.00	Peak
V	34.39		10.03	44.42		74	54	-9.58	Peak
V	31.06		14.58	45.64		74	54	-8.36	Peak
Н	36.44		8.14	44.58		74	54	-9.42	Peak
Н	35.82		10.02	45.84		74	54	-8.16	Peak
Н	33.05		14.65	47.70		74	54	-6.30	Peak
	H/V V V H H	H/V Reading (dBuV) V 33.83 V 34.39 V 31.06 H 36.44 H 35.82	H/V Reading (dBuV) V 33.83 V 34.39 V 31.06 H 36.44 H 35.82	H/V Reading (dBuV) Reading (dBuV) CF (dB) V 33.83 8.17 V 34.39 10.03 V 31.06 14.58 H 36.44 8.14 H 35.82 10.02	H/V Reading (dBuV) Reading (dBuV) CF (dB) Actual Reak (dBuV/m) V 33.83 8.17 42.00 V 34.39 10.03 44.42 V 31.06 14.58 45.64 H 36.44 8.14 44.58 H 35.82 10.02 45.84	H/V Reading (dBuV) Reading (dBuV) CF (dB) Peak (dBuV/m) (dBuV/m)	H/V Reading (dBuV) Reading (dBuV) CF (dB) Peak (dBuV/m) (dBuV/m) T4	H/V Reading (dBuV) Reading (dBuV) CF (dB) Peak (dBuV/m) (dBuV/m) (dBuV/m) Limit (dBuV/m) (dBuV/m) CF (dBuV/m)	H/V Reading (dBuV) Reading (dBuV) Reading (dBuV) Reading (dBuV) Reak (dBuV/m) Reak (dBuV/m) Reak (dBuV/m) Reading (dBuV/m) Reak (dBuV/m)

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
 - b. AV Setting 1GHz 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms.

Operation Mode: TX / IEEE 802.11g / CH Mid **Test Date:** May 28, 2006

Temperature: 20°C **Tested by:** 1in

Humidity: 70 % RH **Polarity:** Ver. / Hor.

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actu	al Fs	Peak Limit		Margin (dB)	
(IVIIIZ)	11/ 4	(dBuV)	(dBuV)	(dB)	Peak	AV	(arn n\m	(dBuV/m)		Remark
					(dBuV/m)	(dBuV/m)				
3782.37	V	35.05		8.19	43.24		74	54	-10.76	Peak
4875.66	V	34.36		10.51	44.87		74	54	-9.13	Peak
7333.37	V	30.63		15.88	46.51		74	54	-7.49	Peak
3775.67	Н	34.36		8.14	42.50		74	54	-11.50	Peak
4883.67	Н	32.06		10.56	42.62		74	54	-11.38	Peak
7325.37	Н	30.25		15.84	46.09		74	54	-7.91	Peak

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
 - b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms.

Operation Mode: TX / IEEE 802.11g / CH High **Test Date:** May 28, 2006

Temperature: 20°C **Tested by:** 1in

Humidity: 70 % RH **Polarity:** Ver. / Hor.

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actu	Actual Fs		AV Limit	Margin (dB)	
		(dBuV)	(dBuV)	(dB)	Peak	AV (dBuV/m)	(aran/m	(dBuV/m)		Remark
3722.68	V	35.19		7.69	42.88	(uDu v/m)	74	54	-11.12	Peak
4941.67	V	35.92		10.89	46.81		74	54	-7.19	Peak
7341.67	V	30.02		15.93	45.95		74	54	-8.05	Peak
3875.71	Н	36.61		8.08	44.69		74	54	-9.31	Peak
4941.67	Н	35.78		10.89	46.67		74	54	-7.33	Peak
7341.27	Н	29.99		15.89	45.88		74	54	-8.12	Peak

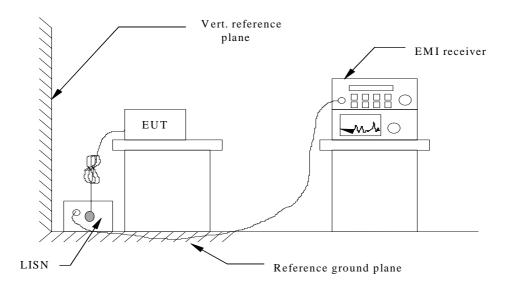
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
 - b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms.

7.6 POWERLINE CONDUCTED EMISSIONS

LIMIT

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range (MHz)	Limits (dBµV)					
Frequency Range (MIIIZ)	Quasi-peak	Average				
0.15 to 0.50	66 to 56	56 to 46				
0.50 to 5	56	46				
5 to 30	60	50				


Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

MEASUREMENT EQUIPMENT USED

Conducted Emission Test Site A (10m chamber)										
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due						
EMI Test Receiver	R&S	ESI26	100068	01/21/2007						
EMC Analyzer	Agilent	E7402A	US41160329	01/21/2007						
LISN	FCC	FCC-LISN-50-50-2-M	01067	07/29/2006						
LISN (EUT)	FCC	FCC-LISN-50-50-2-M	01068	07/29/2006						
TRANSIENT LIMITER	SCHAFFNER	CFL9206	1710	07/29/2006						
EMI Monitor control box	FCC	0-SVDC	N/A	N/A						

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

TEST PROCEDURE

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

TEST RESULTS

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

Test Data

Adapter:Li shin

Model: LM7WV Test Mode: Li shin

Temperature: 25°C **Humidity:** 62% RH

Tested by: lin Test Results: Pass

(The chart below shows the highest readings taken from the final data)

Freq.	PEAK.	Q.P.	AVG	Q.P.	AVG	Margin	Factor	
(MHz)	Raw	Raw	Raw	Limit	Limit	(dB)	(dB)	Remark
(IVIIIZ)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dBuV)			
0.195	47.49	37.30	39.17	64.71	54.71	-15.54	10.36	Line
0.260	44.66	33.75	35.20	62.86	52.86	-17.66	10.38	Line
0.515	38.07	18.23	31.85	56.00	46.00	-14.15	10.40	Line
0.645	36.15	27.36	22.16	56.00	46.00	-23.84	10.41	Line
0.770	34.98	31.66	31.69	56.00	46.00	-14.31	10.42	Line
21.905	40.25	25.03	24.60	60.00	50.00	-25.40	12.49	Line
0.200	53.13	36.06	16.30	64.57	54.57	-28.51	10.39	Neutral
0.250	46.36	30.21	26.23	63.14	53.14	-26.91	10.39	Neutral
0.320	39.81	28.56	28.18	61.14	51.14	-22.96	10.40	Neutral
0.520	34.08	26.36	23.00	56.00	46.00	-23.00	10.39	Neutral
0.645	34.03	32.39	27.33	56.00	46.00	-18.67	10.40	Neutral
21.890	41.10	24.88	25.40	60.00	50.00	-24.60	12.87	Neutral

Remark:

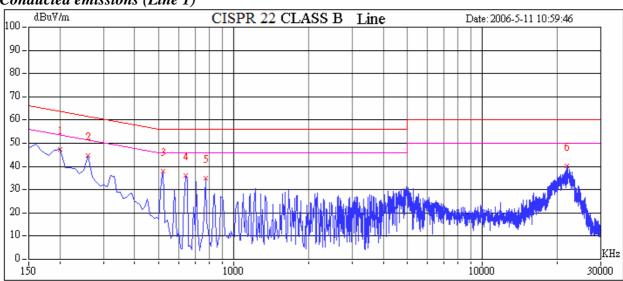
- 1. The measuring frequencies range between 0.15 MHz and 30 MHz.
- 2. The emissions measured in the frequency range between 0.15 MHz and 30MHz were made with an instrument using Quasi-peak detector and Average detector.
- 3. "---" denotes the emission level was or more than 2dB below the Average limit, and no re-check was made.
- 4. The IF bandwidth of SPA between 0.15MHz and 30MHz was 10KHz. The IF bandwidth of Test Receiver between 0.15MHz and 30MHz was 9kHz.

Note:

Freq. = Emission frequency in KHz

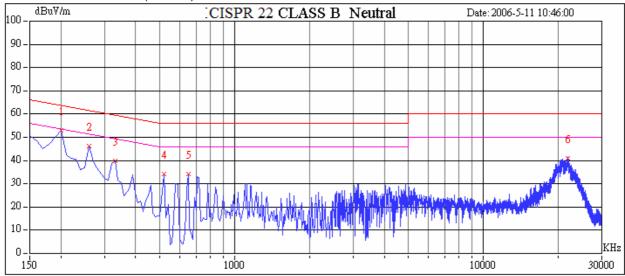
 $Factor(dB) = cable\ loss + Insertion\ loss\ of\ LISN+\ Insertion\ loss\ of\ TRANSIENT\ LIMITER\ (The\ TRANSIENT\ LIMITER\ included\ 10\ dB\ ATTENUATION)$

Amptd $dBuV = Uncorrected \ Analyzer/Receiver \ reading + cable \ loss + Insertion \ loss \ of \ LISN+Insertion \ loss \ of \ TRANSIENT \ LIMITER,$ if $it > 0.5 \ dB$


Limit dBuV = Limit stated in standard Margin dB = Reading in reference to limit

Calculation Formula

Margin(dB) = Amptd(dBuV) - Limit(dBuV)


Test Plot

Conducted emissions (Line 1)

Test Plot

Conducted emissions (Line 2)

Adapter:DELTA

Model: LM7WV Test Mode: DELTA

Temperature: 25° C **Humidity:** 62% RH

Tested by: lin Test Results: Pass

(The chart below shows the highest readings taken from the final data)

Freq.	PEAK.	Q.P.	AVG	Q.P.	AVG	Margin	Factor	
(MHz)	Raw	Raw	Raw	Limit	Limit	(dB)	(dB)	Remark
(WIIIZ)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dBuV)			
0.205	56.41	45.07	45.22	64.43	54.43	-9.21	10.36	Line
0.270	46.63	38.79	38.28	62.57	52.57	-14.29	10.39	Line
0.340	42.28	36.51	36.18	60.57	50.57	-14.39	10.40	Line
0.470	38.46	31.89	31.63	56.86	46.86	-15.23	10.40	Line
1.015	34.03	31.76	31.16	56.00	46.00	-14.84	10.43	Line
1.825	34.73	30.59	29.94	56.00	46.00	-16.06	10.50	Line
0.205	54.33	44.52	43.51	64.43	54.43	-10.92	10.39	Neutral
0.270	44.41	41.28	38.36	62.57	52.57	-14.21	10.40	Neutral
0.340	41.93	35.64	33.60	60.57	50.57	-16.97	10.40	Neutral
0.540	38.10	36.46	31.96	56.00	46.00	-14.04	10.39	Neutral
0.610	37.79	32.78	32.46	56.00	46.00	-13.54	10.40	Neutral
1.420	35.37	31.57	33.20	56.00	46.00	-12.80	10.45	Neutral

Remark:

- 1. The measuring frequencies range between 0.15 MHz and 30 MHz.
- 2. The emissions measured in the frequency range between 0.15 MHz and 30MHz were made with an instrument using Quasi-peak detector and Average detector.
- 3. "---" denotes the emission level was or more than 2dB below the Average limit, and no re-check was made.
- 4. The IF bandwidth of SPA between 0.15MHz and 30MHz was 10KHz. The IF bandwidth of Test Receiver between 0.15MHz and 30MHz was 9kHz.

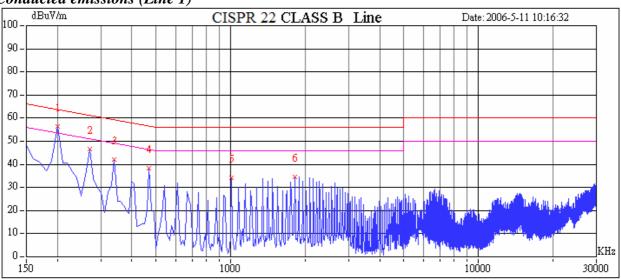
Note:

Freq. = Emission frequency in KHz

Factor (dB) = cable loss + Insertion loss of LISN+ Insertion loss of TRANSIENT LIMITER (The TRANSIENT LIMITER included 10 dB ATTENUATION)

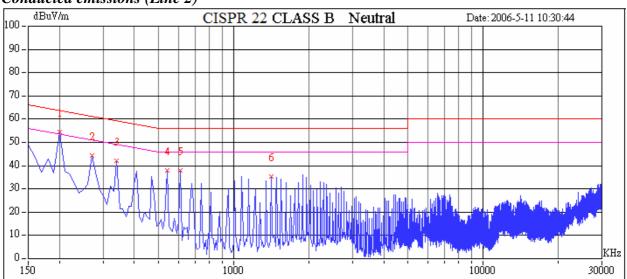
 $Amptd\ dBuV = Uncorrected\ Analyzer/Receiver\ reading\ +\ cable\ loss\ +\ Insertion\ loss\ of\ LISN+Insertion\ loss\ of\ TRANSIENT\ LIMITER,$

if it > 0.5 dB


Limit dBuV = Limit stated in standard Margin dB = Reading in reference to limit

Calculation Formula

Margin(dB) = Amptd(dBuV) - Limit(dBuV)


Test Plot

Conducted emissions (Line 1)

Test Plot

Conducted emissions (Line 2)

Common Mode Conducted Emission

Not applicable