

Test Report Prepared By: Electronics Test Centre 27 East Lake Hill Airdrie, Alberta Canada T2B 2B7 enquire@etc-mpbtech.com phone: (403) 912-0037 fax: (403) 912-0083

MPBT Report No.: m01e2708 Rev: 2

Date: 16 Jauary 2003

Report for Emissions Testing of the Waverider EUM3003 wireless modem In accordance with FCC Part 15, Subpart C (2000).

Test Personnel: David Raynes, James MacKay

Prepared for:

Waverider Communications Inc. 255 Consumers Road Suite 500 Toronto, Ontario Canada M2J 1R4

Client Acceptance Authorized Signatory

David Raynes, James MacKay Laboratory Supervisor Electronics Test Centre (Airdrie) Authorized Signatory

TABLE OF CONTENTS

- 1.0 INTRODUCTION
 - 1.1 SCOPE
 - 1.2 APPLICANT
 - 1.3 APPLICABILITY
 - 1.4 TEST SAMPLE DESCRIPTION
 - 1.5 GENERAL TEST CONDITIONS AND ASSUMPTIONS
 - 1.6 SCOPE OF TESTING
 - 1.6.1 VARIATIONS IN TEST METHODS
 - 1.6.2 EMISSIONS MEASUREMENTS
 - 1.6.3 TEST SAMPLE MODIFICATIONS
- 2.0 ABBREVIATIONS
- 3.0 MEASUREMENT UNCERTAINTY
- 4.0 TEST CONCLUSION
 - 4.1 CONDUCTED EMISSIONS ON AC LINES
 - 4.2 CONDUCTED EMISSIONS MEASURED AT ANTENNA PORT
 - 4.3 RADIATED EMISSIONS INCLUDING RESTRICTED BANDS OF OPERATION
- 5.0 TEST FACILITY
 - 5.1 LOCATION
 - 5.2 GROUNDING PLAN
 - 5.3 POWER
 - 5.4 EMISSIONS PROFILE
 - 5.5 TEST CONFIGURATION
 - 5.5.1 TABLETOP EQUIPMENT
 - 5.5.2 RACK MOUNT
- 6.0 TEST EQUIPMENT
 - 6.1 RADIATED EMISSIONS
 - 6.2 CONDUCTED EMISSIONS
 - 6.3 CALIBRATION

APPENDIX A: Test Sample Description: EUM3003

1.0 INTRODUCTION

1.1 **S**COPE

The purpose of this report is to present the findings and results of compliance testing performed in accordance with CFR Title 47 FCC Part 15, Subpart C, Intentional Radiators.

1.2 APPLICANT

This test report has been prepared for Waverider Communications Inc., located in Toronto, Ontario, Canada.

1.3 APPLICABILITY

All test procedures, limits, and results defined in this document apply to the Waverider Communications Inc. EUM3003 unit, referred to herein as the Equipment Under Test (EUT).

The results contained in this report relate only to the item tested.

This report does not imply product endorsement by A2LA, or the Canadian or US governments.

1.4 TEST SAMPLE DESCRIPTION

The test sample provided for testing was a EUM3003:

wireless modem
EUM3003
n/a
ethernet, power, RF to antenna
120 VAC 60 Hz to AC-DC power adaptor
Personal Computer

More detailed information is provided by Waverider Communications Inc. in Appendix A.

1.5 GENERAL TEST CONDITIONS AND ASSUMPTIONS

The EUT was set up and exercised using the configurations, modes of operation and arrangements defined in this report only. All inputs and outputs to and from other equipment associated with the EUT were adequately simulated.

Where relevant, the EUT was only tested using the monitoring methods and test criteria defined in this report.

Environmental conditions are recorded for each test.

1.6 SCOPE OF TESTING

Testing was performed in accordance with FCC Part 15 Subpart C (2000), and ANSI C63.4 (1992).

1.6.1 VARIATIONS IN TEST METHODS

There were no variations from the test procedures outlined above.

1.6.2 MARGINAL EMISSIONS MEASUREMENTS

As noted in Section 4, some emissions were measured to be within -6 dB of the specified limit:

1.6.3 TEST SAMPLE MODIFICATIONS

The EUT, EUM3003, underwent the following equipment modifications during test performance:

A Ferrico[™] p/n NF-65 clamp-on ferrite bead was installed on the LAN cable next to the connector.

2.0 ABBREVIATIONS

- AP -Average Peak
- CE -Conducted Emissions
- E -Field Electric Field
- H -Field Magnetic Field
- N/T -Not Tested
- N/A -Not Applicable
- PK -Peak
- QP -Quasi Peak
- RE -Radiated Emissions

3.0 MEASUREMENT UNCERTAINTY

For Radiated E-Field Emissions and Conducted Emissions, the uncertainties in the measurements were calculated using the methods outlined in the NAMAS document, NIS81: May 1984.

Frequency	= ± 1 kHz
Amplitude (RE)	= ± 4.01 dB
Amplitude (CE)	= ± 3.25 dB

4.0 TEST CONCLUSION

The EUT was subjected to the following tests. Compliance status is indicated as $\ensuremath{\text{PASS}}$ or $\ensuremath{\text{FAIL}}$.

The following table summarizes the test results in terms of the specification and class or level applied, the unique test sample identification, the EUT modification state, and configuration as applicable.

TEST	TEST TYPE	SPECIFICATION	TEST	MOD.	CONFIGURATION	RESULT
CASE			SAMPLE	STATE		
§4.1	Conducted	FCC Part 15.207	EUM3003	See §	Simulated	PASS
	Emissions	and 15.247		1.6.3	Installation	
§4.2	Radiated	FCC Part 15.209	EUM3003	See §	Simulated	PASS
	Emissions including	and 15.205		1.6.3	Installation	
	Restricted					
	Bands of					
	Operation					

STATEMENT OF COMPLIANCE

The client equipment referred to in this report was found to comply with the requirements as stated above.

4.1 CONDUCTED EMISSIONS ON AC POWER LINES

Test Lab: Elect	ronics Test Centr	e (Airdrie)	Product:		
Test Personnel	: James MacKay		EUM3003		
Test Date: 8 Ja	anuary 2003				
		Test Result, EL	JM3003: PASS		
Objectives/Crite The Conducted system or sub- limits for the sp Temperature =	eria emissions produ system shall not ecifications as st 19 °C Humidity :	iced by a exceed the ated. = 27%	Specifications: 250 µV (48 dBµ Emission level requirements	FCC Part 15.107 V) Is should meet t with a margin o	7 & 15.207 the if 6dB.
Line 1 Rx mode):		Line 2 Rx mode):	
Frequency [MHz]	RF Voltage [dBμV]	Delta [dB from limit]	Frequency [MHz]	RF Voltage [dBμV]	Delta [dB from limit]
0.50532	46.51	<mark>-1.49</mark>	0.50479	45.53	<mark>-2.47</mark>
0.50433	46.37	<mark>-1.63</mark>	0.50784	45.09	<mark>-2.91</mark>
0.46168	40.34	-7.66	0.46119	37.98	-10.02
There were no	o more emissions	s measured withi data and plots	n -10 dB of the s for more detail.	pecified limit. Re	efer to the test
Line 1 Tx mode	:		Line 2 Tx mode	:	
Frequency [MHz]	RF Voltage [dBμV]	Delta [dB from limit]	Frequency [MHz]	RF Voltage [dBμV]	Delta [dB from limit]
0.50761	44.62	<mark>-3.38</mark>	0.50352	44.91	<mark>-3.31</mark>
0.50472	33.75	<mark>-3.45</mark>	0.50632	44.73	<mark>-3.27</mark>
0.50254	44.02	<mark>-3.98</mark>	0.50347	44.69	<mark>-3.31</mark>
0.46103	38.06	-9.94	0.45976	39.40	-8.60
There were n	o more emissions	s measured withi data and plots	n -10 dB of the s for more detail.	pecified limit. Re	efer to the test

Conducted Emissions Data:

The emissions data is presented in tabular form, showing the uncorrected spectrum analyzer reading, the type of detector, the correction factors applied, the net result, the value(s) of up to 4 limits at the frequency measured, and the margin between the result and the limit(s).

For example:

	Test Me Frequency [MHz]	eter Gai Reading [dB(uV)]	n/Loss Factor [dB]	Transducer Factor [dB]	Level Limit:1 [dB(uVolts)]	2	3	4		
	L1 .3052	35.6 pk	10	1.1 Margin	46.7 66 [dB] -19.3 -3	79 32.3 -	===== 50 3.4	.1 -13.	===== 60.1 4	
∟1					This reading	was take	en on L	ine 1		
Test Fre	quency [MHz]	}		.3052	Test Frequence	cy f = 0.3	052 MI	Hz (30	5.2 kHz)	
Meter R	eading [dB (u	V)]		35.6 pk	The reading v	vith Peal	< detec	tor		
Gain/Lo	ss Factor [dB	5]		10	Net correction	n for prea	amp ga	in & c	able loss	
Transdu	icer Factor [d	B]		1.1	Correction for	r LISN Io	SS			
Level [dl	B (uVolts)]			46.7	Corrected val	ue for vo	oltage r	neasu	irement	
Limit: 1 Margin [dB]			66 -19.3	The value of L The measure	₋imit 1 at d voltag	0.3052 e is 19	2 MHz .3 dB t	pelow Limit 1	
Limit: 2 Margin [dB]			79 -32.3	The value of L The measure	₋imit 2 at d voltage	0.3052 e is 32.	2 MHz .3 dB t	oelow Limit 2	
Limit: 3 Margin [dB]			50.1 - 3.4	The value of L The measure	₋imit 3 at d voltage	0.3052 e is 3.4	2 MHz I dB be	elow Limit 3	
Limit: 4 Margin [dB]			60.4 -13.4	The value of L The measure	₋imit 4 at d voltage	0.3052 e is 13.	2 MHz .4 dB b	below Limit 4	

Meter Reading in dBuV + Gain/Loss Factor in dB + Transducer Factor in dB = Corrected Voltage

Notes: When a preamp is used, the resulting gain is compensated. Margin of less than 6 dB is indicated by highlighting.

Test Sample EUM3003):	FCC P	FCC Part 15, Subpart C (2000)								
Murandi	Communictio	ns Ltd.									
Receive	Mode										
Line 1 a	& 2										
Project	number m01e	2708									
Test	Meter	Gain/Loss	Transdu	lcer	Level	Limit:1	2				
Frequency	y Reading	Factor	Factor	[dB	(uVolts	5)]					
[MHz]	[dB(uV)]	[dB]	[dB]								
========				=====	======						
Line 1:											
Range: 1	.45 - 30MHz										
<mark>.50532</mark>	35.71qp	10	.8 Margin	[dB]:	46.51	48 <mark>-1.49</mark>	60 -13.49				
.46168	29.44qp	10	.9 Margin	[dB]:	40.34	48 -7.66	60 -19.66				
<mark>.50433</mark>	35.57qp	10	.8 Margin	[dB]:	46.37	48 <mark>-1.63</mark>	60 -13.63				
Line 2:											
Range: 1	.45 - 30MHz										
.50784	34.29qр	10	.8 Margin	[dB]:	45.09	48 <mark>-2.91</mark>	60 -14.91				
.46119	27.08qp	10	.9 Margin	[dB]:	37.98	48 -10.0	60 2 -22.02				
<mark>.50479</mark>	34.73qp	10	.8 Margin	[dB]:	45.53	48 <mark>-2.47</mark>	60 -14.47				
qp = Quas	si-Peak dete	ctor									
LIMIT 1:	CFR 47 PART	15 CLASS B									
LIMIT 2:	CFR 47 PART	15 CLASS A									
File: qp	for all emi	ssions - Rx	.TXT								

Test Sample EUM3003	::	FCC Pa	art 15, Subj	oart C (20	000)	Report No.:m01e2708 rev. 2
Murandi	Communictions L	td.				
Transmit	Mode					
Line 1 &	ž 2					
Project	number m01e2708					
Test	Meter Gai	n/Loss	Transdu	lcer I	Level L	imit:1
Frequency	y Reading Fa	ctor	Factor	c [dB	(uVolts)]
[MHz]	[dB(uV)]	[dB]	[dB]			
======================================		======			=======	======
Range: 1	.45 - 30MHz					
<mark>.50761</mark>	33.82qp	10	.8 Margin	[dB]:	44.62	48 <mark>-3.38</mark>
.46103	27.16qp	10	.9 Margin	[dB]:	38.06	48 -9.94
<mark>.50254</mark>	33.22qp	10	.8 Margin	[dB]:	44.02	48 <mark>-3.98</mark>
.50472	33.75qp	10	.8 Margin	[dB]:	44.55	48 <mark>-3.45</mark>
qp = Quas	si-Peak detector					
LIMIT 1:	FCC Part 15.207					
File: qp	for all emission	ns - Liì	ne 1.TXI	Г		
Line 2:						
Range: 1	.45 - 30MHz					
.50347	33.89qp	10	.8 Margin	[dB]:	44.69	48 <mark>-3.31</mark>
.45976	28.5qp	10	.9 Margin	[dB]:	39.4	48 -8.6
<mark>.50352</mark>	34.11qp	10	.8 Margin	[dB]:	44.91	48 <mark>-3.09</mark>
<mark>.50632</mark>	33.93qp	10	.8 Margin	[dB]:	44.73	48 <mark>-3.27</mark>
qp - Quas	si-Peak detector					
LIMIT 1:	FCC Part 15.207					
File: qp	for all emission	ns - Lim	ne 2.TXI	Г		

Plot of Conducted Emissions Test Chamber Ambient:

Plot of Conducted Emissions:

Plot of Conducted Emissions:

Plot of Conducted Emissions Test Chamber Ambient:

Plot of Conducted Emissions:

This report shall not be reproduced, except in full, without prior written approval of **MPB Technologies Inc.**

Plot of Conducted Emissions:

Picture of Conducted Emissions test setup:

Picture of Conducted Emissions test setup:

Picture of Conducted Emissions test setup:

Picture of Conducted Emissions test setup:

4.2 CONDUCTED EMISSIONS MEASURED AT ANTENNA PORT

Test Lab: Electr	ronics Test Centr	e (Airdrie)	Product:		
Test Personnel:	David Raynes		EUM3003		
Test Date: 20 [December 2002				
		Test Result, EL	JM3003: PASS		
Objectives/Crite The Conducted	ria emissions produ	iced by a exceed the	Specifications:	FCC Part 15.247	Ċ
limits for the sp Temperature =	ecifications as st 19 °C Humidity =	ated. = 27%	Emission level requirements	s should meet t with a margin o	the of 6dB.
15.247(a): BW	≥ 500 kHz		15.247(b): 1 Wa	att (30 dBm)	
Carrier Frequency [MHz]	Bandwidth [MHz]	Delta from limit [MHz]	Carrier Frequency [MHz]	RF Power [dBm]	Delta [dB from limit]
905	> 2.50	> 2.00	905	24.7	-5.3
915	> 2.48	> 1.98	915	25.2	-4.8
925	> 2.41	> 1.91	925	25.4	-4.6
15.247(c): -20 c	JB f c		15.247(d): 8 dB	m (115 dBμV)	
Carrier Frequency [MHz]	RF Voltage [dBμV]	Limit [dBµV]	Carrier Frequency [MHz]	RF Power [dBm]	Delta [dB from limit]
905	120.4	100.4	905	2.7	-5.3
915.08	120.9	100.9	915	2.5	-5.5
925.29	121.1	100.8	925	4.4	-3.6
There were no were p	o other emissions performed while the Refer t	measured within ne EUM3003 was to the test data a	n -10 dB of the s s transmitting cor	pecified limits. M ntiuously in CCU detail	leasurements mode.

р не 0 dB/	30.									
is pk					-	way				
	MAR	KER	2				~	-		
	Ø.	10 d		-				-	b 1, 2	
	-	-Driver			-			-14	aluer AWA	Vilenday

Spectrum Analyzer Plot of 6 dB Bandwidth: Tx @ 905 MHz

B/						Г			
	_	-	-				-		⊢
PK	-								L
MAR	KER								Г
905	.10	ИНz							T
-24	. /0	u.D.m.							t
						+			t
	-			-	-		-		┝
	-	\vdash		-			<u> </u>	-	┡
						-			L
									L
									Г

Spectrum Analyzer Plot of Maximum Peak Output Power: Tx @ 905 MHz

REF	30.	ØdBm	ΑΤΤ	EN 40	dB			мкғ	₹ ∆ 2 0.40	48 MH; dB
0 dB∕ DS PK	_			- 10	when	the work of the second s		-		
	MAR	KER	4	1			1			
	2.4 Ø.	3 MH 40 d	\$ /			-		\sum		
-	A CARA	annw/M	4-14.P	-			-	later.	litraj reje	Non-ten
ŀ	-									
ŀ										
INTER 91	5.0	MHz						SI	PAN 10	0 MH

Spectrum Analyzer Plot of 6 dB Bandwidth: Tx @ 915 MHz

and the second second			
MANIN WY W			
"MARKER			
914.96	ИНz		
25.20	dBm		
-			
	1 1	1 1	 1 1
	+		

Spectrum Analyzer Plot of Maximum Peak Output Power: Tx @ 915 MHz

dB/								Γ		
IS PK					-	mann				
	MAR	KER	Δ	\sim			Z			
	2.4	1 MH 20 d	š /					Λ		
	WANN	winnin	www		2			WHW	Magdinalin	Mary

Spectrum Analyzer Plot of 6 dB Bandwidth: Tx @ 925 MHz

						-				Г
	-		-	-						⊢
PK	1	-	-							L
-	-			-	-	+	-	-	-	P
N	IAR	KER								
5	925	.22	ИHz							Г
	25	. 40	dBm			-	<u> </u>			⊢
										1
-	-		-	-		+	+			⊢
										L
										Г
-	-	-	+	-		+	+		—	⊢
- 1										
-	_		-	-	t	+	+		<u> </u>	+

Spectrum Analyzer Plot of Maximum Peak Output Power: Tx @ 925 MHz

This report shall not be reproduced, except in full, without prior written approval of **MPB Technologies Inc.**

This report shall not be reproduced, except in full, without prior written approval of **MPB Technologies Inc.**

This report shall not be reproduced, except in full, without prior written approval of **MPB Technologies Inc.**

DS PK										
	NYANA		WARMAN AND	hylyate	17 Ny	WATH	www	Mum	Mayam	a alla
	904	.568 70 d	MHz Bm							
					÷			-		
RR'D										

Spectrum Analyzer Plot of Power Spectral Density per Part 15.247(d): Tx @ 905 MHz

Spectrum Analyzer Plot of Power Spectral Density per Part 15.247(d): Tx @ 915 MHz

IS PK		-	-	-	_	-				-
		10.00	-	-	1			-		
	MAR	KER I	ALL MAIL 1	likta.	1.44	Arts. h	in the second	THE	a lates	M
	924	.816	MHz			1	0			
	4.	40 d	Bm	-		-				-
		-	_							
RR'D										
			-	-		-				

Spectrum Analyzer Plot of Power Spectral Density per Part 15.247(d): Tx @ 925 MHz

Picture of setup for measuring Conducted Emissions at Antenna Port:

4.3 RADIATED EMISSIONS INCLUDING RESTRICTED BANDS OF OPERATION

4.3a Receive Mode

Test Lab: MPE	3 Technologies Ind	c. Airdrie	Product:		
Test Personne	el: David Raynes,		EUM3003		
	James MacKay	,			
Test Dates: 2	to 7 December 20	02			
		Test Result, E	UM3003: Pass		
Objectives/Crit	teria		Specifications		
The Radiated	E-Field emissions	produced by a	FCC Part 15 S	Subpart B	
system or sub of 3m from the for the specific	-system, measure EUT, shall not ex cations as stated	ed at a distance xceed the limits	Frequency [MHz]	Class A	Class B
Emission leve	els should meet	the of 6dB		QP @ 3m	QP @ 3m
The FLIT was	assessed against	the	30 - 88	49.54	40.00
requirements of	of <u>Class B</u> .		88 - 216	53.98	43.52
Temperature =	= 19 °C		216 - 960	56.90	46.02
Humidity = 27	7 %		above 960	60.00	53.98
			Units of measu	urement are $[dB\mu^{V}]$	//m].
Vertical:			Horizontal:		
Frequency [MHz]	Field Strength [dBµV/m]	Delta [dB from limit]	Frequency [MHz]	Field Strength [dBµV/m]	Delta [dB from limit]
43.9516	37.10	<mark>-2.9</mark>	729.2956	38.91	-7.11
74.9462	36.86	<mark>-3.14</mark>	564.0229	38.74	-7.28
563.9913	39.93	-6.09			
497.6229	39.22	-6.80			
There were	no more emission	ns measured with data and plots	in -6 dB of the s for more detail.	specified limit. Re	fer to the test

Radiated Emissions Data:

The emissions data is presented in tabular form, showing the uncorrected spectrum analyzer reading, the correction factors applied, the net result, the value(s) of up to 4 limits at the frequency measured, and the margin between the result and the limit(s).

For example:

Test	Meter	Gain	/Loss	Transd	ucer	Leve	l Lim:	it:1	2	3	4	
Frequence	cy Read	ing 1	Factor	· Fa	ctor	[dB(uVo	olts)]				
[MHz]	[dB(uV)]	[dB]	[dB]							
========		=====	=====	======	=====		=====		=====	======		===
94.0036	37.	1 qp	2.2	8	.5	4	7.8	54	43.5	50.5	40.5	5
Azimuth	156	Heigh	t:113	Vert	Maı	rgin	[dB]	-6.2	4.3	-2.7	7.3	

Test Frequency [MHz}	94.0036	Test Frequency f = 94.0036 MHz
Meter Reading [dB (uV)]	37.1 qp	The reading with Quasi-Peak detector
Gain/Loss Factor [dB]	2.2	Net correction for preamp gain & cable loss
Transducer Factor [dB]	8.5	Correction for antenna loss
Level [dB (uVolts)]	47.8	Corrected value for field strength
Limit: 1	54	The value of Limit 1 at 94.0036 MHz
Margin [dB]	-6.2	The field strength is 6.2 dB below Limit 1
Limit: 2	43.5	The value of Limit 2 at 94.0036 MHz
Margin [dB]	4.3	The field strength is 4.3 dB above Limit 2
Limit: 3	50.5	The value of Limit 3 at 94.0036 MHz
Margin [dB]	-2.7	The field strength is 2.7 dB below Limit 3
Limit: 4	40.5	The value of Limit 4 at 94.0036 MHz
Margin [dB]	7.3	The field strength is 7.3 dB above Limit 4

Meter Reading in dBuV + Gain/Loss Factor in dB + Transducer Factor in dB = Corrected Field Strength

Notes: When a preamp is used, the resulting gain is compensated. Margin of less than 6 dB is indicated by highlighting.

Test Sample EUM3003	::	FCC Part 15,	Subpart C (200	00)	Repor	t No.:m01e2708 rev. 2
Waveride EUM3003	er Communication	s Inc.				
Project 1	Number m02e2708					
Test Frequency [MHz]	Meter Gai: 7 Reading Fa [dB(uV)]	n/Loss Tran ctor Fac [dB] [d	nsducer I ctor dB[u dB] =========	Level Li NVolts/me	mit:1 ter]	↓ 2
Range: 1	30 - 1000MHz HO	RIZONTAL POI	LARIZATION	1		
79.3064	10.04 qp	2.93	7.16	20.13	49.54	40
Azimuth:	79 Height:400	Horz	Margin	[dB]:	-29.41	-19.87
81.6461	10.82 qp	3.01	7.33	21.16	49.54	40
Azimuth:	78 Height:355	Horz	Margin	[dB]:	-28.38	-18.84
81.6796	15.63 qp	3.01	7.33	25.97	49.54	40
Azimuth:	103 Height:222	Horz	Margin	[dB]:	-23.57	-14.03
81.7064	8.05 qp	3.01	7.34	18.4	49.54	40
Azimuth:	34 Height:156	Horz	Margin	[dB]:	-31.14	-21.6
83.1604	8.13 qp	3.06	7.45	18.64	49.54	40
Azimuth:	18 Height:345	Horz	Margin	[dB]:	-30.9	-21.36
85.787	11.03 qp	3.15	7.73	21.91	49.54	40
Azimuth:	89 Height:161	Horz	Margin	[dB]:	-27.63	-18.09
529.619	8 qp	7.39 2	18.69	34.08	56.9	46.02
Azimuth:	6 Height:196	Horz	Margin	[dB]:	-22.82	-11.94
564.0229	12.91 qp	7.15 2	18.68	38.74	56.9	46.02
Azimuth:	138 Height:102	Horz	Margin	[dB]:	-18.16	-7.28
696.2087	10.04 qp	7.95 2	20.42	38.41	56.9	46.02
Azimuth:	138 Height:120	Horz	Margin	[dB]:	-18.49	-7.61
728.1976	9.79 qp	8.11 2	21.37	39.27	56.9	46.02
Azimuth:	262 Height:117	Horz	Margin	[dB]:	-17.63	-6.75
729.2956	9.46 qp	8.12 2	21.33	38.91	56.9	46.02
Azimuth:	261 Height:112	Horz	Margin	[dB]:	-17.99	-7.11
749.7557	6.06 qp	8.15 2	21.49	35.7	56.9	46.02
Azimuth:	264 Height:112	Horz	Margin	[dB]:	-21.2	-10.32
910.1099	6 qp	9.11 2	23.6	38.71	56.9	46.02
Azimuth:	0 Height:168	Horz	Margin	[dB]:	-18.19	-7.31
LIMIT 1: LIMIT 2:	FCC Part 15 Cl. FCC Part 15 Cl.	ass A 3m <mark>ass B 3m</mark>				

qp = Quasi-Peak detector

FCC Part 15, Subpart C (2000)

Test Frequency [MHz]	Meter Y Reading [dB(uV)]	Gain/Loss Factor [dB]	Transducer I Factor dB[u [dB]	Level Li uVolts/me	mit:1 eter]	2
Range: 1	30 - 1000MH	Iz VERTICAL	POLARIZATION			
<mark>43.9516</mark>	20.04 qp	2.51	14.55	37.1	49.54	40
Azimuth:	210 Height	:111 Vert	Margin	[dB]:	-12.44	<mark>-2.9</mark>
<mark>74.9462</mark>	26.42 qp	2.74	7.7	36.86	49.54	40
Azimuth:	7 Height	:186 Vert	Margin	[dB]:	-12.68	<mark>-3.14</mark>
75.9382	13 qp	2.79	7.68	23.47	49.54	40
Azimuth:	7 Height	2:127 Vert	Margin	[dB]:	-26.07	-16.53
78.1819	18.09 qp	2.89	7.64	28.62	49.54	40
Azimuth:	113 Height	2:149 Vert	Margin	[dB]:	-20.92	-11.38
78.5458	16.01 qp	2.9	7.63	26.54	49.54	40
Azimuth:	132 Height	:102 Vert	Margin	[dB]:	-23	-13.46
78.8692	13.68 qp	2.91	7.62	24.21	49.54	40
Azimuth:	259 Height	2:271 Vert	Margin	[dB]:	-25.33	-15.79
79.2769	21.14 qp	2.93	7.61	31.68	49.54	40
Azimuth:	40 Height	2:166 Vert	Margin	[dB]:	-17.86	-8.32
79.5704	14.02 qp	2.94	7.61	24.57	49.54	40
Azimuth:	162 Height	2:347 Vert	Margin	[dB]:	-24.97	-15.43
79.8188	21.19 qp	2.94	7.6	31.73	49.54	40
Azimuth:	103 Height	2:187 Vert	Margin	[dB]:	-17.81	-8.27
80.1217	21.49 qp	2.96	7.59	32.04	49.54	40
Azimuth:	196 Height	2:131 Vert	Margin	[dB]:	-17.5	-7.96
80.2119	17.98 qp	2.96	7.58	28.52	49.54	40
Azimuth:	235 Height	2:235 Vert	Margin	[dB]:	-21.02	-11.48
80.2397	19.15 qp	2.96	7.58	29.69	49.54	40
Azimuth:	226 Height	2:203 Vert	Margin	[dB]:	-19.85	-10.31
80.3659	15.36 qp	2.96	7.57	25.89	49.54	40
Azimuth:	62 Height	2:298 Vert	Margin	[dB]:	-23.65	-14.11
80.4091	18.04 qp	2.97	7.57	28.58	49.54	40
Azimuth:	226 Height	2:172 Vert	Margin	[dB]:	-20.96	-11.42
81.8604	20.53 qp	3.02	7.45	31	49.54	40
Azimuth:	83 Height	2:126 Vert	Margin	[dB]:	-18.54	-9
82.0002	13.13 qp	3.02	7.44	23.59	49.54	40
Azimuth:	356 Height	2:286 Vert	Margin	[dB]:	-25.95	-16.41
LIMIT 1: <mark>LIMIT 2:</mark>	FCC Part 15 FCC Part 15	Class A 3 Class B 3	m <mark>m</mark>			

qp = Quasi-Peak detector

Test Frequency [MHz]	Meter Gain 7 Reading Fac [dB(uV)]	n/Loss Transd tor Facto [dB] [dB]	ucer Level L. or dB[uVolts/mo	imit:1 eter]	<mark>↓</mark> 2
82.2809	17.85 qp	3.03 7.4	2 28.3	49.54	40
Azimuth:	230 Height:158	Vert	Margin [dB]:	-21.24	-11.7
82.4616	15.89 qp	3.04 7.4	26.33	49.54	40
Azimuth:	204 Height:102	Vert	Margin [dB]:	-23.21	-13.67
82.4897	19.76 qp	3.04 7.4	30.2	49.54	40
Azimuth:	104 Height:103	Vert	Margin [dB]:	-19.34	-9.8
82.494	17.75 qp	3.04 7.4	28.19	49.54	40
Azimuth:	166 Height:103	Vert	Margin [dB]:	-21.35	-11.81
82.8248	16.28 qp	3.05 7.3	7 26.7	49.54	40
Azimuth:	98 Height:103	Vert	Margin [dB]:	-22.84	-13.3
82.8314	19.71 qp	3.05 7.3	7 30.13	49.54	40
Azimuth:	124 Height:102	Vert	Margin [dB]:	-19.41	-9.87
84.0249	17.51 qp	3.09 7.2	8 27.88	49.54	40
Azimuth:	108 Height:137	Vert	Margin [dB]:	-21.66	-12.12
84.1565	21.4 qp	3.1 7.2	7 31.77	49.54	40
Azimuth:	164 Height:102	Vert	Margin [dB]:	-17.77	-8.23
84.1817	17.99 qp	3.1 7.2	7 28.36	49.54	40
Azimuth:	243 Height:105	Vert	Margin [dB]:	-21.18	-11.64
88.0231	22.83 qp	3.23 7.4	4 33.5	53.98	43.52
Azimuth:	97 Height:194	Vert	Margin [dB]:	-20.48	-10.02
95.2874	9.97 qp	3.04 8.8	7 21.88	53.98	43.52
Azimuth:	173 Height:149	Vert	Margin [dB]:	-32.1	-21.64
497.6229	15.1 qp	6.92 17.	2 39.22	56.9	46.02
Azimuth:	100 Height:124	Vert	Margin [dB]:	-17.68	-6.8
561.1355	5.6 qp	7.05 18.	25 30.9	56.9	46.02
Azimuth:	113 Height:102	Vert	Margin [dB]:	-26	-15.12
563.9913	14.42 qp	7.15 18.	36 39.93	56.9	46.02
Azimuth:	104 Height:102	Vert	Margin [dB]:	-16.97	-6.09
867.4838	5.36 qp	8.72 21.	25 35.33	56.9	46.02
Azimuth:	3 Height:125	Vert	Margin [dB]:	-21.57	-10.69
895.3428	5.71 qp	8.91 21.	91 36.53	56.9	46.02
Azimuth:	205 Height:158	Vert	Margin [dB]:	-20.37	-9.49
LIMIT 1: <mark>LIMIT 2:</mark>	FCC Part 15 Cla FCC Part 15 Cla	ass A 3m <mark>ass B 3m</mark>			

qp = Quasi-Peak detector

File: Rx2 30-1000 QPall.TXT

This report shall not be reproduced, except in full, without prior written approval of **MPB Technologies Inc.**

This report shall not be reproduced, except in full, without prior written approval of **MPB Technologies Inc.**

MPB Technologies Inc.

This report shall not be reproduced, except in full, without prior written approval of **MPB Technologies Inc.**

This report shall not be reproduced, except in full, without prior written approval of **MPB Technologies Inc.**

4.3b Transmit Mode

Test Lab: MPB Technologies Inc. Airdrie	Product:
Test Personnel: David Raynes,	EUM3003
James MacKay	
Dates: 28 November 2002 to 7 January 2003	
Test Result, EL	JM3003: PASS
Objectives/Criteria	Specification: FCC Part 15.209
The Radiated E-Field emissions produced by EUT, measured at a distance of 3m, shall not	Frequency Limit (QP @ 3m) [MHz] [dBμV/m]
exceed these limits within the restricted bands of operation. Any emissions lying outside these bands shall be at least 20 dB down from the level of the fundamental. Attenuation below the limits of 15.209 is not required.	30 - 8840.0088 - 21643.52216 - 96046.02above 96053.98
Note: See the below for the Restricted Bands of Operation per Part 15.205	Emission levels should meet the requirements with a margin of 6dB.

MHz	MHz	MHz	MHz	MHz	GHz	GHz
0.0900000 –	8.2910000 -	16.804250 -	162.01250 -	1660.0000 –	3.6000000 -	14.470000 –
0.1100000	8.2940000	16.804750	167.17000	1710.0000	4.4000000	14.500000
0.4950000 -	8.3620000 -	25.500000 -	167.72000 -	1718.8000 –	4.5000000 –	15.350000 –
0.5050000	8.3660000	25.670000	173.20000	1722.2000	5.1500000	16.200000
2.1735000 -	8.3762500 -	37.500000 -	240.00000 –	2200.0000 –	5.3500000 –	17.700000 –
2.1905000	8.3867500	38.250000	285.00000	2300.0000	5.4600000	21.400000
4.1250000 -	8.4142500 -	73.000000 -	322.00000 -	2310.0000 –	7.2500000 –	22.010000 –
4.1280000	8.4147500	74.600000	335.40000	2390.0000	7.7500000	23.120000
4.1772500 -	12.290000 -	74.800000 -	399.90000 -	2483.5000 –	8.0250000 –	23.600000 –
4.1777500	12.293000	75.200000	410.00000	2500.0000	8.5000000	24.000000
4.2072500 -	12.519750 -	108.00000 -	608.00000 –	2655.0000 –	9.0000000 –	31.200000 –
4.2077500	12.520250	121.94000 **	614.00000	2900.0000	9.2000000	31.800000
5.6770000 -	12.576750 -	123.00000 -	960.00000 –	32600000 –	9.3000000 –	36.430000 –
5.6830000	12.577250	138.00000 <mark>**</mark>	1240.0000 ***	3267.0000	9.5000000	36.500000
6.2150000 -	13.360000 -	149.90000 -	1300.0000 –	3332.0000 –	10.600000 –	Above
6.2180000	13.410000	150.05000	1427.0000 <mark>***</mark>	3339.0000	12.700000	38.600000
6.2677500 -	16.420000 -	156.52475-	1435.0000 –	3345.8000 –	13.250000 –	
6.2682500	16.423000	156.52525	1626.5000	3358.0000	13.400000	
6.3117500 - 6.3122500	16.694750 - 16.695250	156.70000 - 156.90000	1645.5000 – 1646.5000	3500.0000 – 3600.0000 ****		

US only

<mark>**</mark> Canada 108 – 138 MHz

*** Canada 960 – 1427 MHz

**** Canada only

Diversity Antenna:

nominal f _c (MHz)	f (MHz)	Field Strength (dBµV/m) Average	Limit (dBµV/m) Average	Delta (dB)	Antenna Polarization	Antenna Height (cm)	Azimuth (Degrees)
905	2714.6918	26.26	53.98	-27.72	Н	133	60
905	2714.9044	42.22	53.98	-11.76	Н	133	60
905	2715.1040	46.12	53.98	-7.86	V	102	30
905	3619.9400	33.14	53.98	-20.84	Н	101	30
905	3619.9790	46.25	53.98	-7.73	V	102	192
905	4525.0200	33.76	53.98	-20.22	Н	103	90
905	4524.9288	45.23	53.98	-8.75	V	117	334
915	2745.0000	46.42	53.98	-11.56	V	127	11
915	2745.1727	42.62	53.98	-11.36	Н	120	244
915	2775.0260	42.85	53.98	-11.13	V	112	128
915	2775.0360	44.54	53.98	-9.44	Н	112	128
915	3600.3000	38.82	53.98	-15.16	Н	103	1
915	3659.7950	43.94	53.98	-10.04	V	111	7
915	3660.3000	38.21	53.98	-15.77	Н	102	115
915	3699.9406	45.40	53.98	-8.58	V	121	236
915	3700.4230	41.48	53.98	-12.50	Н	102	44
915	4574.4000	42.66	53.98	-11.32	V	101	146
915	4575.3000	39.85	53.98	-14.13	Н	102	115
915	4624.3900	42.65	53.98	-11.33	Н	151	115
915	4625.0534	44.67	53.98	-9.31	V	143	44
925	2775.0260	42.85	53.98	-11.13	V	114	144
925	2775.0360	44.54	53.98	-9.44	Н	112	128
925	3699.9406	45.40	53.98	-8.58	V	121	236
925	3700.4230	41.48	53.98	-12.50	Н	102	44
925	4624.3900	42.65	53.98	-11.33	Н	151	115
925	4625.0534	44.67	53.98	-9.31	V	143	44
			BuV/m > All	other emise	sions		

Notes:

Except where indicated otherwise, for the rest of the atenna permutations, <u>Peak</u> measurements were performed with a broadband DRG horn.

Comparison of the Peak results with the Average values obtained during the engineering phase of this project indicates that the Average value is typically 20 dB down from the measured Peak.

During the test, the maximum emission from these directional antennas was invariably found to be on-axis, at an antenna height of 100 or 101 cm.

Emissions measuring below $100 \,\mu\text{V}$ per meter (40 dB μ V/m) are not reported.

Panel Antenna: Tx 905 MHz

f (MHz)	Field Strength (dBµV/m) (peak)	Limit (dBµV/m) Average	Delta (dB)	Antenna Polarization	Antenna Height (cm)	Azimuth (Degrees)
2715.7550	45.78	53.98	≥ -8.2	V	101	360
3619.1270	42.16	53.98	≥ -11.82	V	101	360
4524.7820	39.36	53.98	≥ -14.62	V	101	360
5429.8840	38.54	53.98	≥ -15.44	V	101	360
8145.4620	46.08	53.98	≥ -7.9	V	101	360
9050.5530	47.99	53.98	≥ -5.99	V	101	360

Panel Antenna: Tx 915 MHz

f (MHz)	Field Strength (dBµV/m) (peak)	Limit (dBµV/m) Average	Delta (dB)	Antenna Polarization	Antenna Height (cm)	Azimuth (Degrees)
2744.818	44.65	53.98	≥ -9.33	V	101	360
2754.33	44.67	53.98	≥ -9.31	V	101	360
3660.306	41.94	53.98	≥ -12.04	V	101	360
6404.1290	46.17	53.98	≥ -7.81	V	101	360
7319.483	44.67	53.98	≥ -9.31	V	101	360
8234.58	47.79	53.98	≥ -6.19	V	101	360
9149.626	47.07	53.98	≥ -6.91	V	101	360

Panel Antenna: Tx 925 MHz

f (MHz)	Field Strength (dBµV/m) (peak)	Limit (dBµV/m) Average	Delta (dB)	Antenna Polarization	Antenna Height (cm)	Azimuth (Degrees)
2775.0900	45.54	53.98	≥ -8.44	V	101	360
3700.8440	42.50	53.98	≥ -11.48	V	101	360
6475.7610	46.54	53.98	≥ -7.44	V	101	360
7400.8090	44.38	53.98	≥ -9.6	V	101	360
8324.0670	47.48	53.98	≥ -6.5	V	101	360
9249.5780	47.05	53.98	≥ -6.93	V	101	360

 $40 \; dB\mu V/m \geq AII \; other \; emissions$

Patch Antenna: Tx 905 MHz

f (MHz)	Field Strength (dBµV/m) Quasi-Peak	Limit (dBµV/m) Average	Delta (dB)
all emissions	< 40	53.98	≥ 13.98

Patch Antenna: Tx 915 MHz

f (MHz)	Field Strength (dBμV/m) (peak)	Limit (dBµV/m) Average	Delta (dB)	Antenna Polarization	Antenna Height (cm)	Azimuth (Degrees)
2744.2190	53.35	53.98	≥33	Н	101	0
2744.5700	53.65	53.98	≥63	Н	101	0
4574.9560	48.39	53.98	≥ -5.59	Н	101	0
5490.4020	47.07	53.98	≥ -6.91	Н	101	0
6405.4040	53.57	53.98	≥41	Н	101	0
6405.9430	53.27	53.98	≥71	Н	101	0
7320.5930	51.17	53.98	≥ -2.81	Н	101	0
8235.1280	52 .60	53.98	≥ -1.38	Н	101	0
9149.1770	53.88	53.98	≥10	Н	101	0

Patch Antenna: Tx 925 MHz

f (MHz)	Field Strength (dBµV/m) (peak)	Limit (dBµV/m) Average	Delta (dB)	Antenna Polarization	Antenna Height (cm)	Azimuth (Degrees)
2774.7000	53.04	53.98	≥94	V	101	0
3699.2280	52.09	53.98	≥ -1.89	V	101	0
3699.2780	51.29	53.98	≥ -2.69	V	101	0
4625.2180	47.13	53.98	≥ -6.85	V	101	0
5550.4200	45.79	53.98	≥ -8.19	V	101	0
6475.0240	53.24	53.98	≥74	V	101	0
7399.6800	50.58	53.98	≥ -3.4	V	101	0
8324.6460	52.37	53.98	≥71	V	101	0
9250.9290	53.17	53.98	≥81	V	101	0

 $40 \; dB \mu V/m \geq AII \; other \; emissions$

rev. 2

f (MHz)	Field Strength (dBµV/m) (peak)	Limit (dBµV/m) Average	Delta (dB)	Antenna Polarization	Antenna Height (cm)	Azimuth (Degrees)
2714.393	46.46	53.98	≥ -7.52	V	101	0
3619.363	42.66	53.98	≥ -11.32	V	101	0
6335.551	46.3	53.98	≥ -7.68	V	101	0
7239.133	43.97	53.98	≥ -10.01	V	101	0
8145.254	46.88	53.98	≥ -7.1	V	101	0
9050.751	47.88	53.98	≥ -6.1	V	101	0

Yagi Antenna: Tx 915 MHz

f (MHz)	Field Strength (dBμV/m) (peak)	Limit (dBµV/m) Average	Delta (dB)	Antenna Polarization	Antenna Height (cm)	Azimuth (Degrees)
2744.1660	46.15	53.98	≥ -7.83	V	101	0
3660.316	41.94	53.98	≥ -12.04	V	101	0
6405.224	46.37	53.98	≥ -7.61	V	101	0
7319.636	44.07	53.98	≥ -9.91	V	101	0
8234.039	47.38	53.98	≥ -6.6	V	101	0
9149.295	53.08	53.98	≥9	V	101	0

Yagi Antenna: Tx 925 MHz

f (MHz)	Field Strength (dBµV/m) (peak)	Limit (dBµV/m) Average	Delta (dB)	Antenna Polarization	Antenna Height (cm)	Azimuth (Degrees)
2774.554	53.44	53.98	≥ - 0.54	V	101	0
3699.392	49.49	53.98	≥ -4.49	V	101	0
4624.852	45.52	53.98	≥ -8.46	V	101	0
5549.174	44.69	53.98	≥ -9.29	V	101	0
6474.970	52.45	53.98	≥ -1.53	V	101	0
7400.649	52.45	53.98	≥ -3.20	V	101	0
8324.177	50.77	53.98	≥ -3.21	V	101	0
9250.474	53.06	53.98	≥92	V	101	0

40 dB μ V/m \geq All other emissions

This report shall not be reproduced, except in full, without prior written approval of **MPB Technologies Inc.**

Picture of Radiated Emissions Setup: EUM 3003.

Picture of Radiated Emissions Setup: EUM 3003.

Picture of Radiated Emissions Setup: EUM 3003.

Picture of Radiated Emissions Setup: EUM 3003.

Picture of Radiated Emissions Setup: EUM 3003 with Diversity Antenna.

Picture of Radiated Emissions Setup: EUM 3003 with Diversity Antenna.

Picture of Radiated Emissions Setup: EUM 3003 with Diversity Antenna.

Picture of Radiated Emissions Setup: Panel Antenna

Picture of Radiated Emissions Setup: Patch Antenna

Picture of Radiated Emissions Setup: Yagi Antenna

5.0 TEST FACILITY

5.1 LOCATION

The EUT was tested for Electromagnetic Compatibility at the Electronics Test Centre, located in Airdrie, Alberta, Canada.

The RF Anechoic Chamber (RFAC) is identified as Chamber 1, located in the main building complex at the Electronics Test Centre. Its usable working space measures 10.6 m long x 7.3 m wide x 6.5 m high.

This test site is listed with the FCC under Registration Number 99541. Measurements taken at this site are accepted by Industry Canada per file number IC 2046-1.

The floor, walls and ceiling consist of annealed steel panels. The walls and ceiling are covered with ferrite tile, augmented by RF absorbant foam material on the end wall nearest the turntable, and on the adjacent walls and the ceiling. The chamber floor supports a 15 cm high internal floor, constructed of annealed steel panels, that forms the ground plane, and is bonded to the chamber walls.

The 3-m diameter turntable is flush-mounted with the floor. A sub-floor cable-way is provided to route cables between the turntable pit and EUT support equipment. Cables reach the EUT through an opening in the centre of the turntable.

Test instrumentation and EUT support equipment is located in two shielded vestibules located at the side of the main room. Cables are routed through bulkhead panels between the rooms as required. Power feeds are routed into the main room and vestibules through line filters providing at least 100 dB of attenuation between 10 kHz and 10 GHz.

5.2 **GROUNDING PLAN**

The EUT was located on a wooden table 80 cm above the ground plane. In accordance with Waverider Communications Inc. specifications, the EUT was not grounded.

5.3 POWER

AC power was supplied via an Underwriter's Laboratories ULW100-69, 100 dB, 100 Ampere wall mounted filter. Bonding to ground is implemented at the chamber wall.

5.4 EMISSIONS PROFILE

Ambient conducted and radiated electromagnetic emission profiles were generated throughout the tests and are included in the test data.

5.5 TEST CONFIGURATION

Tabletop Equipment

The following diagrams illustrate the configuration of the EUT test and measurement equipment for Radiated and Conducted Emissions Testing of tabletop equipment.

Radiated Emissions

Tabletop

Conducted Emissions

6.0 TEST EQUIPMENT

The following equipment was used for this procedure. All measurement devices are calibrated annually, traceable to NIST.

6.1 RADIATED EMISSIONS

- a) Spectrum Analyzer with RF Preselector
- b) CISPR Quasi-peak Adapter
- c) Power Isolation Transformers
- d) Biconilog antenna (20 MHz to 2 GHz)
- e) Antenna mast positioner, and controller
- f) Flush-mounted turntable, and controller
- g) Personal Computer and EMC software

6.2 CONDUCTED EMISSIONS

- a) Spectrum Analyzer with RF Preselector
- b) Line Impedance Stabilization Network, 50 μH
- c) CISPR Quasi-peak Adapter
- d) Isolation Transformer
- e) Personal Computer and EMC software

6.3 CALIBRATION

All measurement instrumentation conforms to ANSI C63.2. Calibration is maintained in accordance with manufacturer recommendations. Each measurement device is labeled with its ETC asset number and calibration due date.

6.3.1 CALIBRATION ACCURACY

Test equipment used to provide quantitative measurements are calibrated with standards traceable to the National Research Council, National Institute of Standards and Technology or other national standards. Instrumentation systems for emissions measurements have the following accuracies:

Frequency = $\pm 1 \text{ kHz}$ Amplitude (RE) = $\pm 4.01 \text{ dB}$ Amplitude (CE) = $\pm 3.25 \text{ dB}$

6.3.2 TEST EQUIPMENT DESCRIPTION

The equipment used in the tests was selected from the following list.

Instrument	Manufacturer	Model No.	Asset No.	Calibration Due
Spectrum Analyzer	Hewlett Packard	8566B	9565	13 November 2003
Spectrum Analyzer	Hewlett Packard	8566B	9168	10 December 2003
RF Preselector	Hewlett Packard	85685A	9563	14 August 2004
RF Preselector	Hewlett Packard	85685A	9728	30 July 2004
Quasi-Peak Adapter	Hewlett Packard	85650A	4411	30 July 2004
Quasi-Peak Adapter	Hewlett Packard	85650A	9243	7 August 2004
Line Impedance Stabilization Network	EMCO	3825/2r	9331	2 November 2003
Biconilog Antenna	ARA	Lpb-2520/A	4318	3 August 2004
Dual Ridged Guide Antenna	EMCO	3115	19357	2 August 2004
Low Noise Amplifier	MITEQ	JS43-01001800-21-5P	4354	4 Decenber 2003

Appendix A

EUM3003

Test Sample Description

(from data provided by Waverider Communications Inc.)

Product Application	Product Category
Commercial 🗸	Telecommunications o Aerospace o
Military o	Information Technology 🗸 Test & Measurement o
	Surface Transportation o Other o
Product Name	EUM3003
Part/Model No.	EUM3003
Serial Number	n/a
Power Requirements:	120 VAC 60 Hz to AC-DC adaptor
(Voltage, AC/DC, Hz, Current)	
Typical Installation Instructions or Configuration	Connected via an Ethernet cable with a ferrite bead to a personal computer or an Ethernet router. Antenna fixed mounted at a minimum of 20cm from user.
Ground Connection (in addition to power cord)	Nil
Internally Generated Frequencies	32.768 kHz (microprocessor)70 MHz (Intermediate Frequency)3.6864 MHz (microprocessor)140 MHz (IF Oscillator)11 MHz (DSSS BBP)905 – 925 MHz (RFLO – IF)22 MHz (synthesizer reference)975 – 995 MHz (Radio Frequency25 MHz (Ethernet reference)Local Oscillator)44 MHz (reference oscillator)10 MHz (Intermediate Frequency)
Peripheral Support Equipment	Personal Computer
Description and number of interconnecting Leads & Cables	One Ethernet cable with ferrite bead attached. One power supply cable One Antenna
Brief Functional Description	The EUM3003 is a 900MHz radio module intended to provide connectivity between an end-user's computer and an Internet Service Provider. It is a single PCB wireless solution based on the Intersil PRISM II Direct Sequence Chip Set. Data from the I/O port is spread using a defined PN code and then modulated using CCK modulation. The modulated signal is then up-converted to the 900MHz band. In receive mode, the signal from the antenna port is amplified and then down converted to an IF frequency of 70MHz before it is demodulated and despread.