

26dB BW 802.11ax40 Channel: 38

Channel: 46

Att	evel 3	0.00 dBr 40 d		RBW 500 kHz VBW 2 MHz M	ode Auto FFT			
DIPk M	ах		and the pro-					
					M1[1]		-1.73 dBn	
20 d8m	_						5.225950 GH	
CO GOIL					ndB		25.00 di 44.110000000 MH	
10 dBm	_			-	O factor		118.	
				MI	Q Inceros	T I	110.	
0 dBm-					manin	2 32		
			moun	many	mum	may		
-10 dBn	1					1		
						1		
-20 d8n	1		TI			172		
-			TI			12		
-30 dBn		~				/	6	
-46°dBa	any	m					mann	
40 008								
-50 d8n								
50 abii								
-60 dBn	1							
CF 5.2	3 GHz	5		691 pts		-	Span 80.0 MHz	
larker								
Type	Ref	Trc	X-value	Y-value	Function	Fund	tion Result	
M1		1	5.22595 GHz	-1.73 dBm	ndB down	44.11 MHz		
Τ1		1	5.20789 GHz	-27.64 dBm	ndB		26.00 dB	
T2		1	5.252 GHz	-27.80 dBm	Q factor		118.5	

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Report No.: AAEMT/RF/230322-04-01

Spectrum RBW 1 MHz SWT 22.7 μs VBW 3 MHz Ref Level 30.00 dBm Att 40 dB Mode Auto FFT • 1Pk Max -1.14 dBm 5.231300 GHz M1[1] 20 d8 26.00 dB 84.28000000 MHz ndB Bw 10 dBm Q factor 62.1 MI 0 dBr -son moun -10 dBm -20 dBm -30 dBm month 40 YBm44 -50 dBm -60 dBm 691 pts Span 160.0 MHz CF 5.21 GHz Marker Type | Ref | Trc Y-value Function **Function Result** X-value E 5.2313 GHz 5.16855 GHz 5.25284 GHz -1.14 dBm -27.27 dBm -26.93 dBm ndB down ndB Q factor 84.28 MHz T1 T2 26.00 dB 62.1

26dB BW 802.11ax80 Channel: 42

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

				Chann	el: 149		
Spect		0.00 dBr		RBW 100 kHz			T T
Att	Ver Si	50 di			Mode Auto FFT		
DIPk M	эх						
20 dBm 10 dBm					D3[1]		0.08 d 16.5560 MH 2.56 dBi 5.7400220 GH
0 dBm-		1 -3 440	marker hel	M1	where benefit and and the	where	
-10 dBn				-		1	
-20 d8n			and			and a ward	
-30 dBn	into	ward	**				hummalahm
-40 dBn							
-50 dBn	+						
-60 dBm							
CF 5.7	15 GH	z		691 p	ts		Span 40.0 MHz
Marker Type	Bof	Tec	X-value	Y-value	Function	Euro	tion Result
M1	nei	1	5.740022 GHz	2.56 dBm		Func	cion Result
M2		1	5.736722 GHz	-4.11 dBm	D		
D3	M2	1	16.556 MHz	0.08 da			

6dB BW 802.11a

Channel: 157

Spect			a					UT I I I I I I I I I I I I I I I I I I I
Att	vel 30	0.00 dBr 50 d			BW 100 kHz BW 300 kHz Mi	de Auto FFT		
1Pk M	зx	00.0	5 GW1 55.	o µo 🖷 🔹		de saterri		
			1			M1[1]		2.76 dBn
20 d8m								5.7925250 GHz
20 0011						M2[1]		-5.19 dBm 5.7767220 GHz
10 dBm	-		-		-	- 1	and the	5.7767220 GH7
							MI	
0 dBm-	0	1 -3.250	100	tu tot	Alway probably pro	Andrew Product	A where	
		1 -3/200					Ť	
-10 dBn	1						1	
-20 dBm			J				2	
~20 ubli			- Sala				L	
-30 dBn			prover				1	-
anna	maril	www						- Mannan marken
-40 dBm			+					
-50 dBm								
-60 d8m								
-ou ubn								
CF 5.7					691 pts	N		Span 40.0 MHz
darker	sa GH	2			pat his	5		span 40.0 MHz
Type	Ref	Tre	X-value		Y-value	Function	Eur	nction Result
M1		1	5.7925		2.76 dBm	, anotion	1.41	
M2		1	5.7767		-5.19 dBm			
D3	M2	1	16.5	56 MHz	1.89 dB			

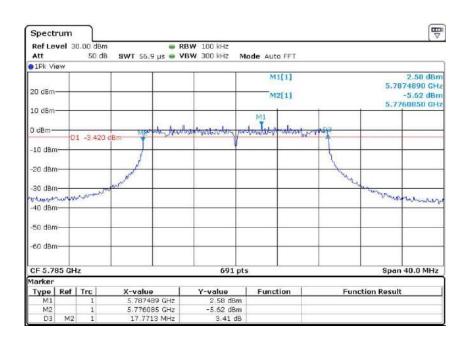
53 | P a g e

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Channel: 165

Ref Le	vel 3	0.00 dBr 50 d		BW 100 kHz BW 200 kHz - M	de Auto FFT		
D1Pk M	зx	50 u	в SWI 56.9 µs 🖷 V	BW 300 KHZ M	DOLE AUTO FFI		
20 dBm 10 dBm					D3[1] M1[1]		1.96 d 16.5560 MH 3.41 dBr 5.8325250 GH
0 dBm-		1 -2.590	martichely	- upon mand on a	hadensterelat	MI ma	
-10 dBn	100	1 -2.590	Jasm	-		t	
-20 dBn			- and a second			and the second	
	are	an march	north .			- MA	manufrance
-40 dBn	·						
-50 dBn							
CF 5.8: Marker	25 GH	Z		691 pts			Span 40.0 MHz
Type	Ref		X-value	Y-value	Function	Func	tion Result
M1 M2		1	5.832525 GHz 5.816722 GHz	3.41 dBm -4.67 dBm			
D3	M2	1	16.556 MHz	1.96 dB			

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels



6dB BW 802.11n20 Channel: 149

					iumer.	117			6
Spect	rum	1							
	vel 3	0.00 dBm		RBW 100 kHz					
Att		50 dB	SWT 56.9 µs 🖷	VBW 300 kHz 1	Mode Auto	FFT			
D1Pk Vi	6W		22						
					Da	[1]			0.54 di
20 d8m	_							1	7.8290 MH
					M1.	[1]		5 7	2.14 dBn 481260 GH
10 dBm	-			-	1000		-	5.7	TOTZUG GIT
					M1				
0 dBm-	-		Monday bo	When when the Million A	mannets	moun	AMANN'S		
		1 -3,860	dBm			6.	•		
-10 dBn	n			-		-	1		-
12							2		
-20 dBn	n		J.				The.		
-30 dBn			Participation				and		
-30 080		mondown						may and a	manun
-40 dBn	mon	0(854)						- Dong	mannen
10 000	·								
-50 dBn	-								
	20. J								
-60 dBn	n								
CF 5.7	45 GH	z	d de la companya de l	691 p	ts			Spar	40.0 MHz
larker									
Type	Ref	Trc	X-value	Y-value	Funct	ion	Fune	ction Resul	t
M1		1	5,748126 GHz	2.14 dBm					
M2	_	1	5.736085 GHz	-4.96 dBm					
D3	M2	1	17.829 MHz	0.54 dB	81.				

Channel: 157

55 | P a g e

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Channel: 165

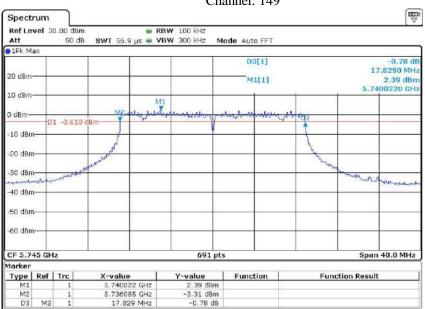
Spect	rum						
Ref Le Att	vel 3	0.00 dBn 50 d8		BW 100 kHz BW 300 kHz Ma	ode Auto FFT		
01Pk Vi	ew		13				
20 d8m					D3[1] M1[1]		0.65 dt 17.8290 MH 3.31 dBn 5.8325250 GH
10 dBm					_	MI	
0 dBm-	0	1 -2.690	dBm Monthly MA	with the with por	public when a	polyage	
-10 dBn	20					1	
-20 dBn	n					"Youme	
-30 dBn			Amar .			M. W.	mar
-40 dBn	when	-rordress					and the second second
-50 dBn	n						
-60 dBn	n						
CF 5.8	25 GH	z		691 pts			Span 40.0 MHz
Marker						0	
Type	Ref		X-value	Y-value	Function	Fund	tion Result
M1		1	5.832525 GHz	3.31 dBm			
M2		1	5.8160854 GHz	-4.24 dBm			
D3	M2	1	17.829 MHz	0.65 dB			

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: www.aaemtlabs.com Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

					Cha	annel:	151			
Spect										
Ref L	evel	30.00 d 50			BW 100 kHz BW 300 kHz N	lode Auto	FFT			
O 1Pk M	ах									
20 dBm						D3[50	51		0.36 dB 36.640 MHz -0.16 dBm 750020 GHz
10 dBm			1		M1					
0 dBm-	-	2. BOD	Mender	Inen to faires	*	helichang	- under to the Au	udga -		-
-10 dBn	<u>ס</u> יי	1 -6.16	0 dBm		V			t		
-20 dBn								1		-
-30 dBn	-	1011-0-03	all					march		
-40 dBn	1 million	mm			-				the mathematic	-lona
-50 dBn										
-60 dBm										
CF 5.7	55 GH	z			691 pts	i .			Spar	1 80.0 MHz
Marker										
Type	Ref		X-value		Y-value	Functi	on	Fun	ction Resul	t
M1		1	5,75002		-0.16 dBm					
M2 D3	M2	1	5.73665 36.64		-5.83 dBm 0.36 dB					
03	inic.	1	30.04	indi inc	0.30 05					į

6dB BW 802.11n40 Channel: 151

Channel: 159


					Channe	1. 157		
		30.00 dB			88W 100 kHz			
Att		50 d	B SWT	94.8 µs 🖷 🕻	/BW 300 kHz	Mode Auto FFT	÷	
01Pk M	ах							
20 d8m						D3[1]		2.87 d£ 36.580 MH; -0.25 dBn 5.812480 GH;
10 dBm							MI	
0 dBm-	-	1 2200	M	jan kalondartara	on public about	renderheit durinder		
-10 dBn		1 -6.250	dBm				-	
-20 dBn	n		- /		-			
-30 dBn			N				"The was	
here have	ma	unamo	Y					Mulananderson
-40 dBn	n		+	-				
-50 dBn	n		-		-			
-60 d8n								
CF 5.7	95 GH	z	-	202	691	ots	in a	Span 80.0 MHz
Marker							NA	
Type	Ref		X-va		Y-value	Function	Func	tion Result
M1		1		81248 GHz	-0.25 dBr			
M2		1		77671 GHz	-7.44 dBr			
D3	M2	1		36.58 MHz	2.87 d	5		

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

6dB BW 802.11ac20 Channel: 149

Channel: 157

Spect		L							B
	vel 3	0.00 dB			3W 100 kHz				
Att		50 c	IB SWT 56	.9 µs 🖷 VI	BW 300 kHz M	de Auto FFT			
P1Pk M	ах								1.5
						D3[1]			0.43 dE
20 d8m	_							1	7.8290 MHz
						M1[1]		E 74	2.04 dBn 909620 GH
10 dBm	\rightarrow		_	-	-			5.79	anapyn GHS
						M	1		
0 dBm-	-		MR	Mr. Marl	and antimation of the	an her marine	Manas		-
verom en	D	1 -3.96	D dBm				-	-	
-10 dBr	n		1	-			1	-	
			1						
-20 dBm	n		1 Alexandre	+			- lan		
			a marine				m		
-30 dBn		100	4	<u> </u>	-				
nutron		www						ver	-
-40 dBm	1-1-1			-				-	
-50 dBr	n-+-		-		-			1	
-60 dBm	n								
CF 5.7	85 GH	z		2012	691 pts	8	1.11	Spar	40.0 MHz
larker							2.4		
Type	Ref	Trc	X-valu		Y-value	Function	Fur	nction Resul	t
M1		1		962 GHz	2.04 dBm				
M2		1		085 GHz	-3.69 dBm				
D3	M2	1	17.8	329 MHz	0.43 dB				

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Channel: 165

		1.00 dBm		RBW 100 kHz			
Att		50 dB	SWT 56.9 µs 🖷 🕅	BW 300 KHZ MC	de Auto FFT		
20 dBm					D3[1] M1[1]		-1.91 dB 19.2190 MH 2.13 dBn 5.8201950 GH
0 dBm-			Mandusa	M1 Jonation of Jon	ر مادهه الراقعي		
-10 dBn		1 -3,870	dBm			Ţ	
-20 dBn						h	
-30 dBn -40 dBn	me	ranne					the May restrictions
-50 dBn	+						
-60 dBn	-						
CF 5.8	25 GH	z	1 I	691 pts			Span 40.0 MHz
larker	Rof	Tre	X-value	Y-value	Function	Eunet	ion Result
M1	nor	1	5.820195 GHz	2.13 dBm	rancaun	Funct	aon No suit
M2	-	1	5.815449 GHz	-2.81 dBm			
D3	M2	1	19.219 MHz	-1.91 d8			

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: www.aaemtlabs.com Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

6dB BW 802.11ac40 Channel: 151

Spect	rum							
Ref Le	vel 3			1.0	8W 100 kHz	8		
Att		50 (18 SWT 9	4.8 µs 🖷 V	BW 300 kHz M	ode Auto FFT		
O 1Pk M	ax				-			
						D3[1]		-0.08 d£
20 d8m	_		_					36.580 MHz
						M1[1]		-1.29 dBm 5.740640 GHz
10 dBm	_		_	-		+		5.740040 GFM
				MI			1 1	
0 dBm-	-		Ma		up mapled the mo			
				M. B. Maderice Pro	and more and have	habelies processes	material and 3	
-10 dBm	n	1 -7.29	0 dBm	-			1	
					Y		1	
-20 dBn	n							
			1				1	
-30 dBm			1 m	-	-		No.	
-30 UBII	whilten	willow	son					unanter manager
-40 dBn			-	-	-		_	
-50 dBm			-					
-60 dBn	n		_				-	
CF 5.7	55 GH	z			691 pts			Span 80.0 MHz
larker								
Type	Ref	Trc	X-val	ue	Y-value	Function	Func	tion Result
M1		1		4064 GHz	-1.29 dBm			
M2		1		3671 GHz	-5.69 dBm			
D3	M2	1	з	6.58 MHz	-0.08 dB			

Channel: 159

Spect	rum									
RefLe	vel 3	0.00 dB	m	■ RBW	100 kHz					
Att		50 d		-		Mode Aut	O FFT			
1Pk M	ах									
20 d8m	_						3[1] 1[1]			2.17 dE 36.530 MHz -0.58 dBm
10 dBm	_						1	1	5.8	12480 GH
								MI		
0 dBm-			Mananta	Andrew of the	montestage	putulation	James Micha	-	-	
-10 dBn	D	1 -6.58) dBm					1	-	
-10 080										
-20 d8n	n									
								h		
-30 dBn	n		Warden -					- to	V A	-
abrowin	angental	u.m.	<i>u</i>						under more	million
-40 dBn	n									
-50 dBn										
-50 060										
-60 dBn	n								-	
CF 5.7	95 GH	lz			691	pts			Span	80.0 MHz
Marker										
Туре	Ref		X-value		Y-value	Func	tion	Fur	nction Result	t
M1		1	5.81248		-0.58 de					_
M2 D3	M2	1	5.77671 36.53 (-7.12 de 2.17					
Da	1415	1	30.531	MP12	2.17	ub				

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

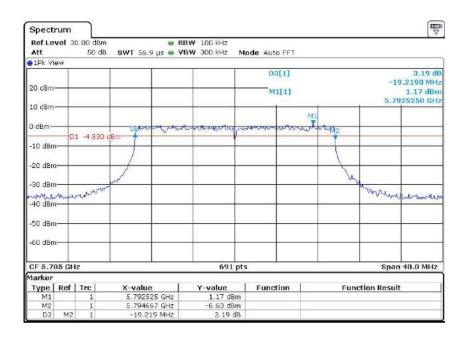
Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Report No.: AAEMT/RF/230322-04-01

6dB BW 802.11ac80 Channel: 155

Att	vel 3	0.00 dBm 50 dB		RBW 100 kHz VBW 300 kHz M	Aode Auto FFT			
01Pk M	ах							
					D3[1]		4	10.30 d
20 d8m	-				M1[1]			-2.85 dBr
					WITT1		5.8	00010 GH
10 dBm	-			-	1	1		
-					M	1		
0 dBm-			M. Butteleler	unpremonent and and	1	11.1.1.193		
-10 dBn	0	1 -8.850	dBm-me	and and a construction from	an a hat when the	mentioned		
-10 000		-	MIZ		_			
-20 dBn								
			1			1		
-30 dBn	n	No. of Concession, Name	wet	-		1	and the second second	and a second second
		فالمعراد بالإعالي	¥100				menterwar	manham
-40 dBn	1			-				
-50 d8n								
-20 aBu								
-60 dBn								
CF 5.7	75 GH	Iz		691 pts	5		Span :	160.0 MHz
Marker								
Туре	Ref	Trc	X-value	Y-value	Function	Fun	ction Result	5
M1		1	5,80001 GHz	-2.85 dBm				
M2	M2	1	5.73665 GHz 76.47 MHz	-15.08 dBm 10.30 dB				
D3								

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels



Spectrum Ref Level 30.00 dBm RBW 100 kHz Att 50 dB SWT 56.9 us - VBW 300 kHz Mode Auto FFT 1Pk View M2[1] 5.20 dBn 5.7353910 GHz 20 dBr 2.11 dBm 5.7525250 GHz M1[1] 10 dBm M 0 dBn D1 -3.890 dB -10 dBm -20 dBm -30 dBm stown entirtar umanuch -40 dBm -50 dBm -60 dBm Span 40.0 MHz CF 5.745 GHz 691 pts Marker Type | Ref | Trc Function **Function Result** X-value Y-value 5.752525 GHz 5.735391 GHz 2.11 dBm 5.20 dBm M1 M2 M2 D3 19.219 MHz 1.91 d8

6dB BW 802.11ax20 Channel: 149

Channel: 157

62 | P a g e

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Channel: 165

Att		0.00 dBm 50 dB		BW 100 kHz BW 300 kHz Mc	de Auto FFT		
20 dBm	_				D3[1]		-1.91 df 19.2190 MH 2.13 dBn 5.8201950 GH
0 dBm-		1 -3,870	Manduson	12 Convenience	Anna and and and and and and and and and		
-10 dBn		1 -3,870	dBm			1	
-20 dBn						4	
-30 dBn -40 dBn	more	menter					Muentin externe
-50 dBn	°						
-60 dBn) -						
CF 5.8	25 GH	z		691 pts			Span 40.0 MHz
Marker Type	Ref	Trc	X-value	Y-value	Function	Func	tion Result
M1		1	5.820195 GHz	2,13 dBm			
M2		1	5.815449 GHz	-2.81 dBm			
D3	M2	1	19.219 MHz	-1.91 dB			

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

				Channel:	151		
Spect	rum						B
Ref Le	vel 3	0.00 dBn 50 dE		BW 100 kHz	de Auto FFT		
P1Pk M	ax	50 U	5 3WI 94.6 µs 🖷 V	BW 300 KH2 M	de Autorri		
					D3[1]		0.23 đ
20 d8m					201-32		38.490 MH
20 0611					M1[1]		-0.60 dBr
10 dBm	_						5.739490 GH
			F43 1				
0 dBm-	-		water and and a start	12 millionent on	and the second	A	
	D	1 -6.600		- Automation and the second	and the second	and cons	
-10 dBn	n					1	
on doe							
-20 dBn	1						
-30 dBn	0		- Marth			Je.	
		unter	when			No.	mulhabarahbarbara
-40 dBn							
-50 dBn	n					-	
-60 dBn	n-						
CF 5.7	55 GH	Iz		691 pts			Span 80.0 MHz
Marker							
Туре	Ref		X-value	Y-value	Function	Func	tion Result
M1		1	5.73949 GHz	-0.60 dBm			
M2 D3	M2	1	5.73573 GHz 38.49 MHz	-7.51 dBm 0.23 dB			
L/3	1712		30,49 MHZ	0.23 08			

6dB BW 802.11ax40 Channel: 151

Channel: 159

Spect		L								
Ref Le	vel 3	0.00 dB 50 d		-	₩ 100 kHz	de Auto FFT				
ALL 1Pk M	ev.	50 0	15 SWI 94.8 µs	· VB	W 300 KH2 M	de Auto FFI				
ACK 15	-		1 1		<u> </u>	D3[1]				1.63 dP
						7				38.150 MHz
20 d8m	-					M1[1]				-0.50 dBm
									5.	796740 GHz
10 dBm	1		S 82		2					
0 dBm-					MI					
o ubiii-			Mannahan	sebart	adean more pel	wanter	Autombili	12		
-10 dBn	0	1 -6.50	0 dBm					1		
10 000	M.									
-20 dBn								-		
								2		
-30 dBn			- Star					20		2
Jama	unin	unulant	M					-	hanner	mainter
-40 dBn				_					-	
-50 dBn				-					-	
-60 dBn									1	
CF 5.7	95 GH	z			691 pts				Spa	n 80.0 MHz
Marker										
Type	Ref	Trc	X-value	1	Y-value	Function		Fun	ction Resu	lt
M1		1	5.79674 G		-0.50 dBm					
M2		1	5.7759 G		-5.68 dBm					
D3	M2	1	38.15 M	-iz	1.63 dB					

64 | P a g e

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

6dB BW 802.11ax80 Channel: 155

Ref Le	vel 3	0.00 dBn 50 dE			BW 100 kHz BW 300 kHz (Mode Au	to FET				
D1Pk M	ах		0111 10010			Touc Ho					
20 dBm	_						2[1] 1[1]				-6.01 dBn .735960 GH -2.48 dBn .744200 GH
10 dBm	-				-		-	1	-		TTZUG GIT
0 dBm-	-		M2 1	_					2		
-10 dBn	1-D	1 -8,480	dBm	Manare	encommonserpe	minutingung	whom	www.ullines	-		-
-20 dBn					-			_	-		-
-30 dBn			1						1		
		mult	how						merch	month	-
-40 dBn								-			
-50 dBn	-+-				-		-	-			-
-60 dBn											
00.000											
CF 5.7	75 GH	z			691 pt:	5	00 00			Span	160.0 MHz
Marker											
Type	Ref	Trc	X-value		Y-value	Func	tion		Fund	tion Resu	lt
M1		1	5.7442		-2.48 dBm						
M2		1	5.73596		-6.01 dBm						
DB	M2	1	77.86 1	MHz	-0.01 dB						

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

99% OBW 802.11a Channel: 36

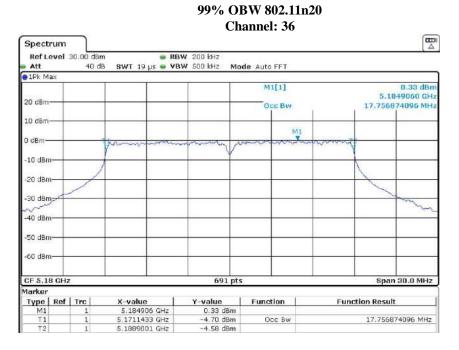
0							
Spect Ref Li		0.00 dB	m 🖷 RB	W 200 kHz			
Att		40 c	18 SWT 19 µs 🖷 VB	W SOO kHz Mo	de Auto FFT		
PIPk M	ах		60. Chi 1105				
20 d8m	_				M1[1] Occ Bw		0.11 dBn 5.1852100 GH 16.541244573 MH
10 dBm	-			-	2000	2	
0 dBm-	-		Temmemorthe	mm	M1	mange	
-10 dBm	n		1 I	<u>+ Y</u>	-	1	
-20 dBm	n		X				
-30 dBn		/					1
40 dBm	1						- m
-50 dBr							
	×.						
-60 dBn	n						
CF 5.1	8 GHz			691 pts			Span 30.0 MHz
Marker							
Туре	Ref		X-value	Y-value	Function	Fund	tion Result
M1		1	5.18521 GHz	0.11 dBm			
Τ1		1	5.1717511 GHz	-5.04 dBm	Occ Bw		16.541244573 MHz
T2		1	5.1882923 GHz	-5.26 dBm			

Channel: 44

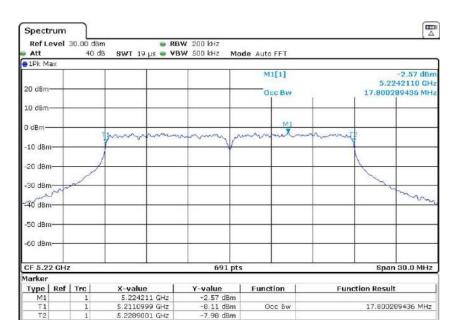
Spectrum						
Ref Level			88W 200 kHz	8		
Att	40 0	18 SWT 19 µs 🖷 🕅	BW 500 kHz Mo	de Auto FFT		
1Pk Max						
				M1[1]		~2.98 dBm
20 dBm				and a constant		5.2156150 GH
				Occ Bw	7	16.497829233 MH
10 dBm					-	
		5.00				
0 dBm		MI			-	
10000000		Timmonit	morrow a	mann	munut?	
-10 dBm		1	V	< 85 J. (A. 76)		
		1	Y		1	
-20 dBm			-		1	
	1	1				
-30 dBm	~				-	~
m						man
46 dBm						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-50 dBm						
-60 dBm						
CF 5.22 GH	z	53	691 pts		20	Span 30.0 MHz
1arker						
Type Ref	Trc	X-value	Y-value	Function	Fund	tion Result
		5.215615 GHz	-2,98 dBm			
M1 T1	1	5.2117511 GHz	-8.01 d8m	Occ Bw		16.497829233 MHz

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels



				Channel	: 48		
Spect Ref L		30.00 dB	m 🖷 RB	W 200 kHz			
Att		40 0	18 SWT 19 µs 🖷 VB	W SOO kHz Mo	de Auto FFT		
🛛 1Pk M	ах		10 AVA				
20 d8m	_				M1[1] Occ Bw	v	-4.29 dBr 5.2356580 GH 16.541244573 MH
10 dBm	+					-	
0 dBm-	_		Turning				
-10 dBn	n		Thursday	many	man	mounts	
-20 dBn						1	
-30 dBn		/		-			Jan.
140-8 50	1					_	mound
-50 dBn							
-60 dBn	n						
CF 5.2	4 GHz			691 pts			Span 30.0 MHz
Marker							
Туре	Ref	Trc	X-value	Y-value	Function	Fund	ction Result
M1		1	5.235658 GHz	-4.29 dBm			
T1		1	5.2317077 GHz	-10.09 dBm	Occ Bw		16.541244573 MHz
T2		1	5.2482489 GHz	-9.07 dBm			


Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Channel: 44

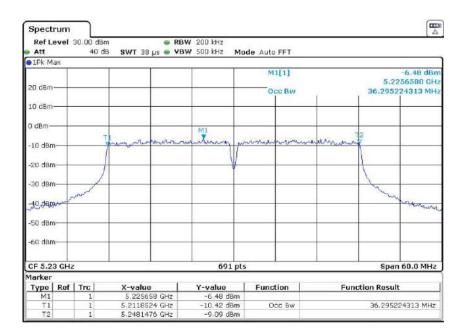
Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Channel: 48

Att	40 d	lB SWT 19 µs 🖷 VB	W 500 kHz Mo	de Auto FFT	
1Pk Max		1 1		M1[1]	-3.98 dBn
					5.2362660 GH
20 d8m				Occ Bw	17.800289436 MH
10 dBm					
0.40-					
0 dBm		The second second	And the second second second second second	mann	www.TE
-10 dBm		Annan hanne a	manual to	and a contraction of the contrac	month
10 0011			Y		1 A
-20 dBm		4			<u> </u>
	1				~
-30 dBm	1	+ +	-		~
mon					mon
-40 dBm					
-50 dBm					
-60 d8m					
ee abin					
CF 5,24 G	łz	I	691 pts		Span 30.0 MHz
larker		CORE CHE AN			
Type Re	f Trc	X-value	Y-value	Function	Function Result
		T DOCODE OUT	a a.a. ia		
M1 T1	1	5.236266 GHz 5.2310999 GHz	-3.98 dBm -9.42 dBm	Occ Bw	17.800289436 MHz

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels



99% OBW 802.11n40 Channel: 38

<u> </u>			Ch	annei. 30		œ
Spectrue Ref Leve	m el 30.00 d 40		BW 200 kHz BW 500 kHz Mo	de Auto FFT		
1Pk Max						
20 d8m				M1[1]		-3.53 dBm 5.2031980 GHz 36.295224313 MHz
10 dBm	-		-		-	
0 dBm	-		-		M2	10
-10 dBm-	-	forman	munum -	m	man	ud-
-20 d8m		/	γ			1
-30 dBm	1					1
	war					N M
40 dBm						Anadora
-50 dBm			-			
-60 dBm						
CF 5.19 0	Hz		691 pts			Span 60.0 MHz
Marker						
	ef Trc	X-value	Y-value	Function	Fu	nction Result
M1	1	5.203198 GHz	-3.53 dBm	200002000		
T1 T2	1	5.1719392 GHz 5.2082344 GHz	-7.85 dBm -7.50 dBm	Occ Bw		36.295224313 MHz
12	1	5.2082344 GHZ	-7.50 dBm			

Channel: 46

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

		_		Ch	annel: 36	_
Spectr						
	evel 30			W 200 kHz	9 E -	
Att		40 (dB SWT 19 µs 🖷 VE	W SED KHZ MO	de Auto FFT	
1Pk Ma	3X					
					M1[1]	-3.95 dBn
20 d8m-	_				0	5.1855570 GHz 17.800289436 MHz
					Occ Bw	17.800289430 MH
10 dBm-	-					
0 dBm—	-			_	141	
			human	money 10	mannin	~~~~~ZE
-10 dBm			1 1	W		
0.0			1			N
-20 dBm		1	/			1
-30 dBm		1				~
-30 dBm		-			S	
40 dBm	-					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-40 ubili						
-50 dBm	_		-			
-60 dBm						
CF 5.18	B GHz			691 pts		Span 30.0 MHz
Marker						
Type	Ref	Trc	X-value	Y-value	Function	Function Result
M1		1	5.185557 GHz	-3.95 dBm		
T1	-	1	5.1711433 GHz	-9.11 dBm	Occ Bw	17.800289436 MHz
T2		1	5.1889436 GHz	-9.41 dBm		

99% OBW 802.11ac20 Channel: 36

Channel: 44

				Channel.	77		-
Spect							
	evel	30.00 dB		W 200 kHz			
Att		40 d	18 SWT 19 µs 🖷 VB	W SOD KHZ MO	de Auto FFT		_
01Pk M	ax						1 m
					M1[1]	-4.87	
20 d8m					Occ Bw	17.800289436	
					OLC BW	17,000209430	MILL
10 dBm	-			-			_
0 dBm-	-				191		_
			Burnann	non an	manhor	nummite	
-10 dBr	n		1 1	- W		1 1	
0.0			1			N	
-20 dBr	n	1	/				
-30 dBr	2	1					
-30 UBI		/			~		
-10 dBr						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
10 001							
-50 dBr	0						_
-60 dBr	n						_
	-						
CF 5.2	2 GHz			691 pts		Span 30.0 M	1Hz
Marker							
Туре	Ref	Trc	X-value	Y-value	Function	Function Result	
M1		1	5.224298 GHz				
T1		1	5.2111433 GHz	-9.61 dBm	Occ Bw	17.800289436 N	1Hz
Τ2		1	5.2289436 GHz	-10.10 dBm			

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Channel: 48

		40 di	8 SWT 19 µs 🖷 VB	W 500 kHz Mo	de Auto FFT	
01Pk M	ax		1 1		M1[1]	-4.96 dBr
center.						5.2341390 GH
20 d8m					Occ Bw	17.843704776 MH
10 dBm						
20 0011					<u> </u>	
0 dBm-	_		NI			
			minuture	in manual a	mann	Stammen
-10 dBn	<u>ا</u> ــــ	-	7	- V		V
			Λ			k.
-20 dBn		-/				
		1				
-30 dBn	1	-				
40 dBn						mon
Ho abi						
-50 dBn						
	°					
-60 dBn	12					
CF 5.2	4 GHz	(LL	691 pts		Span 30.0 MHz
Marker						
Type	Ref	Trc	X-value	Y-value	Function	Function Result
M1		1	5.234139 GHz	-4.96 dBm		
T1		1	5.2310564 GHz	-10.58 dBm	Occ Bw	17.843704776 MHz
T2			5.2489001 GHz	-9.95 dBm		

72 | P a g e

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Report No.: AAEMT/RF/230322-04-01

99% OBW 802.11ac40 Channel: 38

Ref L	evel :	30.00 dBr	m 🖷 I	BW 500 kHz			
Att		40 d	B SWT 15.2 µs 🖷 🕅	VBW 2 MHz M	ode Auto FFT		
D1Pk M	ах		14 March 14				
					M1[1]		0.04 dBn
20 d8m	_				Occ Bw		5.2077130 GH 36.468885673 MH
					OCC BW	T.	30.408885073 MH
10 dBm	-			-	5		
						n	1 L
0 dBm-	-	_	Innorm	minne 1	mon	mont	2
			and a loss of			-	7
-10 dBn	n	1	1				
		1					
-20 dBn	n	1				-	N
		1					
-30 dBn	7	<u>e</u> ,					1 m
-40 dBn						_	
-40 050							
-50 dBn							
-50 000	2						
-60 dBn							
00 000	·						
CF 5.1	9 GHz			691 pts			Span 60.0 MHz
Marker							
Type	Ref	Trc	X-value	Y-value	Function	Fun	iction Result
M1		1	5.207713 GHz	0.04 dBm			
Τ1		1	5.1718524 GHz	-5.53 dBm	Occ Bw		36.468885673 MHz
T2		1	5.2083213 GHz	-5.66 dBm	10000000000		

Channel: 46

Spect Ref L		80.00 dBr 40 d		NBW 500 kHz VBW 2 MHz N	lode Auto FFT			
1Pk M	ах	40.0	B SWT 15.2 µs 🖷 '	BW 2 MHZ N	IODE AUTO FFI			
20 d8m	_				M1[1]		5,22	-2.52 dBn 52240 GH 77713 MH
10 dBm	+			-		-		
0 dBm-	_			MI				
-10 dBn	n		tra maria	mound	man	man	12	
-20 dBn		/					X	
		1					1	
-30 dBn	w	6						m
40 dBn								
-50 dBn	<u>۱</u>					-		
-60 dBn	n						-	
CF 5.2	3 GHz	8		691 pts	E		Span	60.0 MHz
Marker								
Type	Ref	Trc	X-value	Y-value	Function	Fun	ction Result	k -
M1		1	5.225224 GHz	-2.52 dBm				
Τ1		1	5.2115919 GHz	-7.97 dBm	Occ Bw		36.7293	77713 MHz
T2		1	5.2483213 GHz	-8.36 dBm	0.000.000000			

73 | P a g e

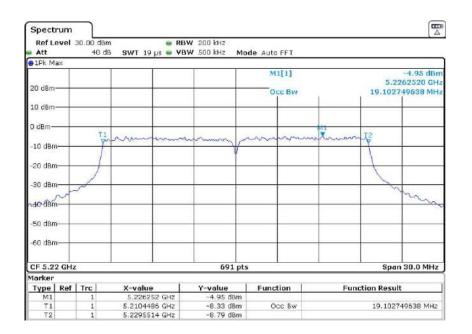
Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Report No.: AAEMT/RF/230322-04-01

99% OBW 802.11ac80 Channel: 42

Att		30.00 dBr 40 d		W 1 MHz W 3 MHz Mode	e Auto FFT		
D1Pk M	ax		-	· · · ·			
					M1[1]		-1.57 d 5.244730 (
20 dBm					Occ Bw		76.063675832 N
- 2012 -						I I	
10 dBm					2		
0 dBm-						Ma	
D GBIII-		T1	monorm	mannan	mount	mont	12
-10 dBr		7	down when a	y Y			1
20.001	82 I	1					
20 dBr	n						1
		1					~
-30 dBr	n	~	-	-		-	VL
mn	N						Vm
40 dBr	0		2	-	-	-	
-50 dBr							
-50 dBr	n – –						
-60 dBr							
00 001							
CF 5.2	1 GHz	5		691 pts			Span 120.0 Mi
Marker							
Туре	Ref	Trc	X-value	Y-value	Function	Fund	tion Result
		1	5,24473 GHz	-1.57 dBm			
M1							
M1 T1 T2		1	5.172142 GHz 5.248205 GHz	-8.10 dBm -6.55 dBm	Occ Bw		76.063675832 M

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels



Report No.: AAEMT/RF/230322-04-01

99% OBW 802.11ax20 Channel: 36

Spect	rum						
Ref L Att	evel :	30.00 dBr 40 d		W 200 kHz W 500 kHz Mo	de Auto FFT		
1Pk M	ах		la viante				
20 d8m	_				M1[1] Occ Bw		-2.64 dBn 5.1745300 GH 19.146164978 MH
10 dBm	+						
0 dBm-	_	11	MI			the second	0
-10 dBn	n	J		and the		1	
-20 d8n	n						1
-30 dBn				-			
Adden				-		_	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-50 dBn	n						
-60 dBn	n						
CF 5.1	8 GHz			691 pts			Span 30.0 MHz
Marker							
Туре	Ref	Trc	X-value	Y-value	Function	Functio	in Result
M1		1	5.17453 GHz	-2.64 dBm			
Τ1		1	5.170492 GHz	-5.60 dBm	Occ Bw		19.146164978 MHz
T2		1	5.1896382 GHz	-7.71 dBm			

Channel: 44

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Channel: 48

Ref L	evel 3	30.00 dBi	n 🖷 RB	W 200 kHz				
Att		40 d	B SWT 19 µs 🖷 VB	W SOO kHz Mo	de Auto FFT			
01Pk M	ах		10 10 10 10 10 10 10 10 10 10 10 10 10 1					
					M1[1]			5.06 dBr
20 d8m								4240 GH
					Occ Bw	I.	19.05933	4298 MH
10 dBm	_							_
							1 1	
0 dBm-	-	-	-			1.00		
		T1	mannen	mann -	man	un the	12	
-10 dBn		1		+	and set of the point of the Annual		1 T	
	÷.	1		1			1	
-20 dBn	1					-		
		1						
-30 dBn		/			6		1	-
-40 dBn	~							2
-40 aBn								
-50 dBn								
-Su ubii								
-60 dBn								
00 000								
		_						
CF 5.2	+ GHZ	55		691 pts			Span :	0.0 MHz
Marker Type	Dof	Tec	X-value	Y-value	Function	E	nction Result	
M1	Ker	1	5.247424 GHz	-5.06 dBm	Function	Fu	iccion Result	
T1		1	5.230492 GHz	-8.30 dBm	Occ Bw		19.059334	298 MHz
T2		1	5.2495514 GHz	-8.63 dBm			21100000	

76 | P a g e

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Report No.: AAEMT/RF/230322-04-01

99% OBW 802.11ax40 Channel: 38

-				Ch	anner: 58	m
Spect Ref L Att		10.00 dBi 40 d		RBW 500 kHz VBW 2 MHz M	ode Auto FFT	
01Pk M	ах					
20 d8m	_				M1[1]	1.91 dBr 5.2084080 GH 38.031837916 MH
10 dBm	-			-		
0 dBm-	_	TI	human	many		
-10 dBn	n			-		
-20 dBn	n	1				
-30 dBn			-	_		
-40 dBn				_		
-50 dBn	n					
-60 d8n	n					
CF 5.1 Marker	9 GHZ	5		691 pts		Span 60.0 MHz
Type	Ref	Trc	X-value	Y-value	Function	Function Result
M1		1	5.208408 GHz	1.91 dBm		
Τ1		1	5.1710709 GHz	-2.40 dBm	Occ Bw	38.031837916 MHz
T2		1	5.2091027 GHz	-2.61 dBm	000000000	

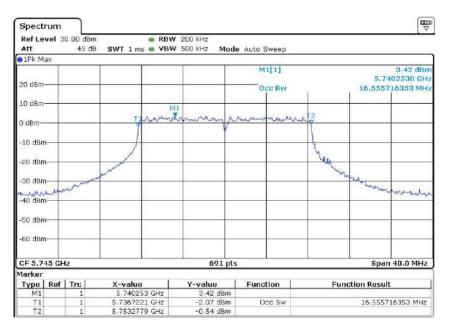
Channel: 46

Spect		0.00 dBn		RBW 500 kHz				
Att	ever 3	40 dt			lode Auto FFT			
01Pk M	ах		5					
20 d8m	_				M1[1]		-1.41 5.2336470 38.031837916	GH
10 dBm	-			-		+ +		_
0 dBm-	_	TI	man	man m	MI	mun	12	_
-10 dBn	n	J		V.	~			
-20 dBn	n						<u></u>	
-30 dBn	n	/	<u> </u>	-			Y	
40 dBn	~						- Jul	~
-50 dBn	n			_		-		
-60 dBn	n							
CF 5.2	3 GHz	-		691 pts			Span 60.0 M	IHz
Marker					2			
Туре	Ref	Trc	X-value	Y-value	Function	Funct	ion Result	
M1		1	5,233647 GHz	-1.41 dBm				
T1 T2	-	1	5.2109841 GHz 5.2490159 GHz	-5.94 dBm -4.75 dBm	Occ Bw		38.031837916 N	1Hz
12		1	3.2490139 0HS	-4.75 ubm				_

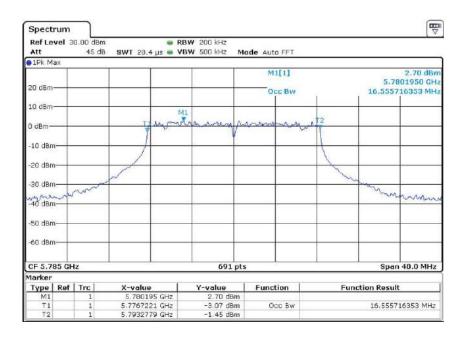
Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

99% OBW 802.11ax80 Channel: 42


Spect		30.00 dB	m		W 1 MHz				
Att		40 d				e Auto FFT			
01Pk M	ах								
20 dBm						M1[1]	r.		-0.58 dBn 235880 GH 966715 MH
10 dBm	+								
0 dBm-	+	T1	0	~~	mon	winn	MI	minit	-
-10 dBn			A America .					1	
-20 dBn									
-30 dBn		1						2	
-40 dBn	1					-			mon
-50 dBn									
-60 dBn								-	
CF 5.2	1 GHz	8			691 pts			Span	120.0 MHz
Marker									
Type	Ref		X-value		Y-value	Function	Fi	unction Resul	t
M1		1	5.23588 G		-0.58 dBm				
Τ1		1	5.171447 0		-6.27 dBm	Occ Bw		77.4529	66715 MHz
T2		1	5,2489 0	HZ	-5.03 dBm				

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels



99% OBW 802.11a Channel: 149

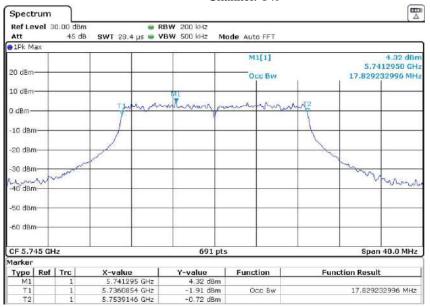
Channel: 157

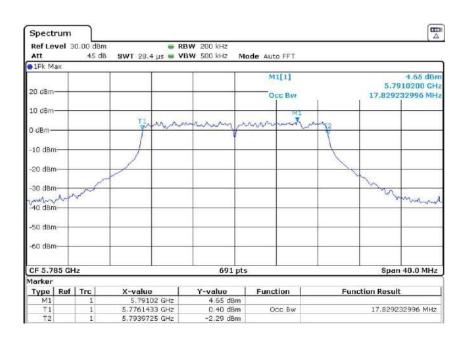
79 | Page

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Channel: 165

Spect		.00 dBm		RBW 200 kHz				
Att	VEI 30	45 dB			de Auto FFT			
1Pk M	ах							
					M1[1]		ALCO YOU	2.17 dBn
20 d8m	_							125250 GH
					Occ Bw	1	16,4978	29233 MH
10 dBm	_							
						M1		
0 dBm-	_		the pro	man man man	man and and	112		
				V		1		
-10 dBn	<u>۱</u>			-		1		
						X		
-20 dBn						1		
			- martin			1		
-30 dBn		and		-	-		tolan.	
my	mun	m					m	mm
-40 dBn								
-50 dBn								
-60 dBn								
-00 080	1.							
CF 5.8	25 GH	z		691 pts	l		Span	40.0 MHz
larker								
Type	Ref		X-value	Y-value	Function	Fund	ction Result	t
M1		1	5.832525 GHz	2,17 dBm				
Τ1		1	5.81678 GHz	-1.06 dBm	Occ Bw		16.4978	29233 MHz
T2		1	5.8332779 GHz	-2.12 dBm				


Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels



Report No.: AAEMT/RF/230322-04-01

99% OBW 802.11n20 Channel: 149

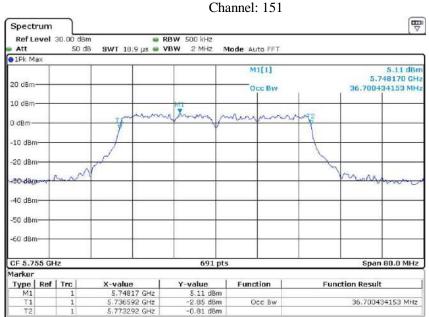
Channel: 157

81 | Page

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Ref Le	vel 3	0.00 dBm 45 dB	🖷 R SWT 28.4 µs 🖷 V	BW 200 kHz BW 500 kHz Mr	de Auto FET			
DIPk M	ах	10 40	un 20.1 ps - 1	on boonne me	de saterra			
20 dBm	_				M1[1]	T		5.42 dBr 235530 GH 345876 MH
10 dBm	+		T1 ma	mminding m	month	4 32		3
0 dBm-	-		1	Y		Y		
-10 dBn						1		
-20 dBn			1					
-30 dBn		and and	r -				Ng	
-40 dBn	- mar	2	- <u>1</u> 2					mar
-50 dBn								
-60 dBn								
CF 5.8	25 GH	z		691 pts		- 1	Spar	n 40.0 MHz
larker								
Type M1	Ref	Trc 1	X-volue 5.823553 GHz	Y-value 5.42 dBm	Function	Fun	ction Resul	t
T1		1	5.8161433 GHz	1.57 dBm	Occ Bw		17.7713	45876 MHz
T2		1	5.8339146 GHz	-0.36 dBm	www.en			in a server of the

Channel: 165

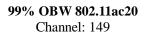

82 | P a g e

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Report No.: AAEMT/RF/230322-04-01

99% OBW 802.11n40 Channel: 151

Channel: 159


Spect		0.00 dBi	~ ~ 1	RBW 500 kHz			
Att	aver 3	50 d			lode Auto FFT		
PIPk M	ах						
					M1[1]		4.97 dBn
20 d8m					2.2.2		5.808080 GH
20 UBIN					Occ Bw	V.	36.700434153 MH
10 dBm					101		
			Tt		mynum		
0 dBm-	-		Timm	monand	mun	nauts	
				1			
-10 dBn						1	
						1	
-20 dBn	1					5	
- 6 - 10	33.4	· mr	N				mun aparate a
-30-den	And and	WP T					12 STANDAUMAN
-40 dBn							
-to ubii							
-50 d8n	<u> </u>						
0.000.000							
-60 dBn							
CF 5.7	95 GH	z	<u> </u>	691 pts		1	Span 80.0 MHz
larker							
Type	Ref	Trc	X-value	Y-value	Function	Fun	ction Result
M1		1	5.80808 GHz	4.97 dBm			
Τ1		1	5.776823 GHz	-0.16 dBm	Occ Bw		36.700434153 MHz
T2		1	5.813524 GHz	-1.66 dBm			

83 | P a g e

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels



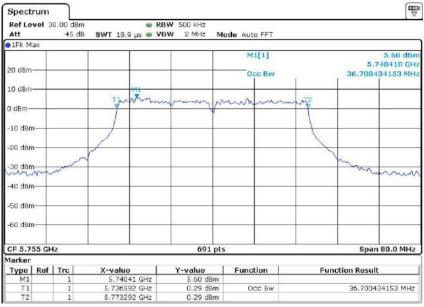
Spectrum							₩ V	
Ref Level 3	30.00 dBm	n 🖷 Ri	BW 200 kHz					
Att	45 d8	SWT 28.4 µs 🖷 V	BW 500 kHz Mo	de Auto FFT				
1Pk Max		GH						
20 d8m			M1[1]			3.62 dBn 5.7375900 GHz 17.829232996 MHz		
10 dBm		M1						
0 dBm		Thimm	month	mon	ment?			
-10 dBm					1			
-20 dBm					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
-30 dBm	North					m.		
-40 dBm-			-		_	~	miner	
-50 dBm								
-60 d8m								
CF 5.745 G	Iz		691 pts			Span	40.0 MHz	
Marker		2017a - 1110 - 140						
Type Ref	Trc	X-value	Y-value	Function	Function Result			
M1	1	5.73759 GHz	3.62 dBm					
T1	1	5.7360854 GHz	-0.72 dBm	Occ Bw		17.829232996 MHz		
T2	1	5.7539146 GHz	-0.42 dBm					

Channel: 157

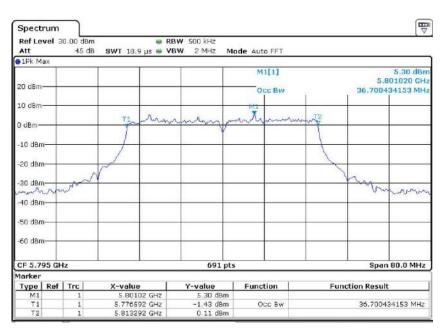
Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Channel:165

Spect										H
	vel 3	0.00 dBm			BW 200 kHz					
Att		45 dB	SWT 28.4	µs 🖷 V	BW 500 kHz (Mode Auto FF	T			
1Pk M	ах									
20 d8m	_					M1[1]			3.88 dBn 303260 GH 458755 MH	
10 dBm	+					M	1		-	
0 dBm-	+		TA	mm	many		mar	T2		
-10 dBn			<u> </u>	-						
-20 d8n			1					1		
-30 dBn	-	M	r	-					m	
40 dBn	v	N		-						mon
-50 d8n										-
-60 dBn	۰÷									
CF 5.8	25 GH	Iz			691 p	ts			Spa	n 40.0 MHz
Marker										
Type	Ref	Trc	X-value		Y-value	Function	T	Function Result		
M1		1	5.83032	6 GHz	3.88 dBm					
Τ1			3 GHz	-0.39 dBm	Occ B	w	17.713458755 MHz			
T2	T2 1 5.8338567 GHz			-0.30 dBm	6					


85 | P a g e

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels



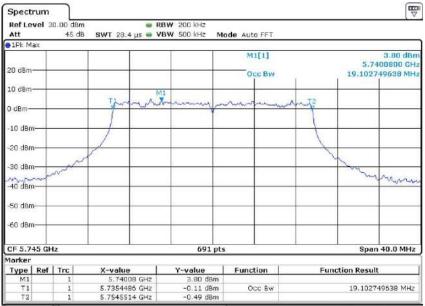
99% OBW 802.11ac40 Channel:151

Channel:159

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

99% OBW 802.11ac80 Channel:155


Spect		_						(W
	vel 3	0.00 dBn		RBW 1 MHz	20 1 17 h			
Att		45 di	3 SWT 22.7 µs 🖷	VBW 3 MHz Mo	de Auto FFT			
1Pk M	ах							
					M1[1]		141	6.05 dBn
20 d8m	_						the state of the s	741660 GH
					Occ Bw	I	76.4109	998553 MH
10 dBm	_		P43	_				
			Thomas	many	11 marsh	ST. TE	1	
0 dBm-	_		A Mark	- manner Wi	and an Unit of a second	Var y		
							1	
-10 dBn				6		-		20
	12					by .	1	
-20 dBn			1			2		-
		. (1				1	
-SR dBe	Inna	Jun		-			- month	mont
								882
-40 dBn	+						-	-
							1	
-50 dBn							1	
-60 dBn								
CF 5.7	75 GH	z		691 pt	s		Span	160.0 MHz
Marker								
Type	Ref	Trc	X-value	Y-value	Function	Fun	ction Resul	t
M1		1	5.74166 GHz	6.05 dBm				
Τ1		1	5.736795 GHz	1.45 dBm	Öcc Bw		76.4109	98553 MHz
T2		1	5.813205 GHz	1.38 dBm				

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

99% OBW 802.11ax20 Channel:149

Channel: 157

Specta Ref Let		0.00 dBn 45 di			W 200 kHz W 500 kHz Mi	ode Auto FFT		
1Pk Ma	ax .							
20 d8m-	_					M1[1]		4.63 dBr 5.7797320 GH 19.160636758 MH
10 dBm-	+			MI			-	
) dBm—	_		Thurs	man	mony	mum	romage	
-10 dBm								
	<u> </u>							
-20 d8m	-						1	
-30 dBm	-	m		_	-			ma .
-30 dBm	m	~						marian
-50 dBm								
-60 dBm	+							
CF 5.78	B5 GH	Z			691 pts	l		Span 40.0 MHz
larker	-	Trail			Marine 1			the Barris
Type M1	Ref	1	X-value 5.779732 G	Hz	Y-value 4.63 dBm	Function	Funi	ction Result
T1		1	5.7754486 G		-0.73 dBm	Occ Bw		19.160636758 MHz
T2		1	5.7946093 G	Hz	-0.68 dBm			

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Channel: 165

Ref Le	vel 30		i 🖷 R	BW 200 kHz			
Att		45 d8	SWT 28.4 µs 🖷 V	BW 500 kHz M	ode Auto FFT		
01Pk M	ах						
					M1[1]		4.88 d 5.8304990 (
20 d8m					0		19.160636758 N
					Occ Bw	T.	19.100030758 M
10 dBm	_				BALT	_	
NORTH AND			TI para ma		anon the	-marit2	
0 dBm-	_		burndme	manan alla	manum	- and a start of the start of t	
						1	
-10 dBn						1	
10 0.01	S2						
-20 dBn						1	
20 000							1
-30 dBn		1	M				the second
	100	sur			1		man of
40 dBn	hara	165	· · · · · · · · · · · · · · · · · · ·				mohn
10 000	·						
-50 dBn							
OU UDII							
-60 d8n							
00 000							
CF 5.8	25 GH	z	20 24/12	691 pts		15	Span 40.0 Mi
larker							
Type	Ref	Trc	X-value	Y-value	Function	Fun	ction Result
M1		1	5.830499 GHz	4.88 dBm			
Τ1		1	5.8155065 GHz	1.99 dBm	Occ Bw		19.160636758 M
T2		1	5.8346671 GHz	0.69 dBm			

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

AA Electro Magnetic Test Laboratory Private Limited

Report No.: AAEMT/RF/230322-04-01

				Cha	annel: 151		
Spect	rum						E
Ref Le	vel 3	0.00 dBm	🖷 R	BW 500 kHz			
Att		45 dB	SWT 18.9 µs 🖷 V	BW 2 MHz Mc	de Auto FFT		
01Pk M	ах		a				
					M1[1]		6.20 dBr
20 d8m							5.760330 GH
20 0611					Occ Bw	Y	38.089725036 MH
10 dBm					841		
20 0011	1		Thenal	mannon	non man	T2	
0 dBm-	_		1 - 100 · m	month marting	and all here and	my	
0.02111						1	
-10 dBn	-						
	S		/ /			1	
-20 dBn			1			2	
		10				1	
-30 dBn		AV	Y	-		-	M
Mari	min	×					Mummum
-40 dBn	1		-			-	
-50 dBn						-	
-60 dBn							
CF 5.7	55 GH	z		691 pts			Span 80.0 MHz
Marker			1007 - 1110 - 100				norden an anna
Туре	Ref	Trc	X-value	Y-value	Function	Fun	ction Result
M1		1	5.76033 GHz	6.20 dBm			
T1		1	5.735897 GHz	0.55 dBm	Occ Bw		38.089725036 MHz
T2		1	5.773987 GHz	2.58 dBm			

99% OBW 802.11ax40

Channel: 159

Pofla	ual o	0.00 dBm		BW 500 kHz				
Att	Ver 5	45 dE			de Auto FFT			
DIPk M	ax							
					M1[1]			5.69 dBn
20 d8m					1.1.1.1		and the second se	810860 GH
20 0810					Occ Bw	¥	37.9739	950796 MH
10 dBm	_					1.41		
			Timm		moundand	X. 12		
0 dBm-	-		-	a trans outra	and and the said	and a mark		-
-10 dBn	n			-		1	-	
- 22								
-20 dBn	n		1			- Sector		
-30 dBn		N	N I				M	
which.		man					www	how
-40 dBn	-							2
-50 dBn	n			-			-	
-60 dBn	n							
CF 5.7	95 GH	lz		691 pts			Spar	n 80.0 MHz
Marker								
Type	Ref	Trc	X-value	Y-value	Function	Fun	ction Resul	t
M1		1	5.81086 GHz	5.69 dBm	14-10-10-10-10-10-10-10-10-10-10-10-10-10-			
T1 T2	_	1	5.776013 GHz	1.55 dBm	Occ Bw		37.9739	50796 MHz
		1	5.813987 GHz	2.36 dBm				

90 | P a g e

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Spect	rum				Chi	annel: 153	, ,		
Att		0.00 dBn 45 df		-	SWI1 MHz SWI3 MHz Moo	le Auto FFT			
01Pk M	ах								
						M1[1]			6.37 dBn
20 d8m						Occ Bw			740500 GH
						OLC DW		1	09450 mm
10 dBm	-		T1 .		2		TO	1	
			antra	mm	mann	man	mult?		
0 dBm-									
-10 dBn									
-10 050							1		
-20 d8n	n								
			1				7		
30, dan	12.9	man						mont	mound
	1240	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10						14	1.2
-40 dBn	n		-						
FO 10									
-50 dBn	0								
-60 dBn									
ou uni									
CF 5.7	75 GH	2			691 pts			Snan	160.0 MHz
larker					031 pt			opun	
Type	Ref	Trc	X-value	ſ	Y-value	Function	Fur	ction Resul	t
M1		1	5.7405	GHz	6.37 dBm				
Τ1		1	5,7361		2.90 dBm	Occ Bw		77,8002	189436 MHz
T2		1	5.8139	GHz	2.34 dBm				

99% OBW 802.11ax80 Channel: 155

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

6. MAXIMUM CONDUCTED OUTPUT POWER

Test Requirement:	FCC Part15 E Section 15.407
Test Method:	KDB 789033 D02 General UNII Test Procedures New Rules v02r01
Limit:	For the band 5.15-5.25 GHz, the maximum conducted output power over the frequency bands of operation shall not exceed 250mW. For the band 5.745-5.850 GHz, the maximum conducted output power over the frequency bands of operation shall not exceed 30dBm
Test setup:	Power Meter E.U.T Non-Conducted Table Ground Reference Plane
Test procedure:	Measurement using an RF average power meter
	 (i) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied a) The EUT is configured to transmit continuously or to transmit with a constant duty cycle. b) At all times when the EUT is transmitting, it must be transmitting at its maximum power control level. c) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five. (ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in section B). (iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter. (iv) Adjust the measurement in dBm by adding 10 log(1/x) where x is the duty cycle (e.g., 10log(1/0.25) if the duty cycle is 25 percent).
Track In structure and so	
Test Instruments:	Refer to section 5.10 for details

Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: www.aaemtlabs.com

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

	· IESI KES						
CH.	Frequency		Outp	out Power (dBm))		
No.	(MHz)	802.11a	802.11n (HT20)	802.11ac (VHT20)	802.11ax (HE20)	Limit(dBm)	Result
36	5180.00	16.57	15.62	15.63	16.83	19	Pass
44	5220.00	17.14	16.04	15.95	17.10	19	Pass
48	5240.00	16.89	16.39	16.72	17.39	19	Pass
149	5745.00	16.97	16.56	16.65	17.03	19	Pass
157	5785.00	18.01	18.29	17.84	17.18	19	Pass
165	5825.00	17.94	17.54	16.86	16.92	19	Pass

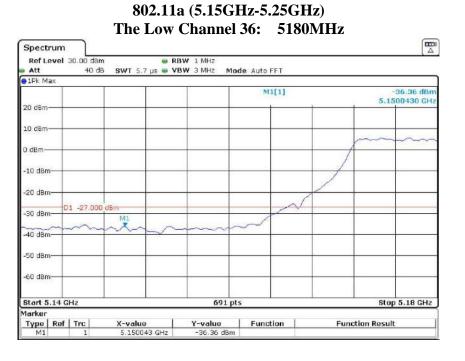
6.1. TEST RESULT

CH.	Fraguanay		Output Powe	er (dBm)		
No.	Frequency (MHz)	802.11n	802.11ac	802.11ax	Limit(dBm)	Result
INU.	(IVII IZ)	(HT40)	(VHT40)	(HE40)		
38	5190.00	15.83	15.95	16.90	19	Pass
46	5230.00	16.24	16.40	17.19	19	Pass
151	5755.00	16.45	16.52	16.61	19	Pass
159	5795.00	17.82	17.75	17.16	19	Pass

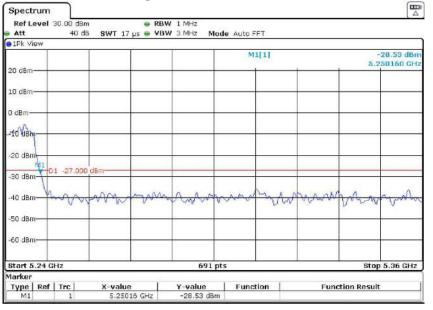
CH.	Frequency	Output Powe	er (dBm)	Limit(dDm)	Decult
No.	(MHz)	802.11ac(VHT80)	802.11ax(HE80)	Limit(dBm)	Result
42	5210.00	15.24	15.89	19	Pass
155	5775.00	15.12	15.47	19	Pass

Test Requirement:	FCC Part15 E Section 15.407 and 5.205
Test Method:	ANSI C63.10:2013
Limit:	 Undesirable emission limits: (1) For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz. Devices operating in the 5.25-5.35 GHz band that generate emissions in the 5.15-5.25 GHz band must meet all applicable technical requirements for operation in the 5.15-5.25 GHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5.15-5.25 GHz band. (3) For transmitters operating in the 5.47-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27 dBm/MHz.
Test Procedure:	 a. The Transmitter output of EUT was connected to the spectrum analyzer. Equipment mode: Spectrum analyzer Detector function: Peak mode SPAN: 100MHz RBW: 1 MHz VBW: 1 MHz Sweep time= Auto. b. Using Peak Search to read the peak power of Carrier frequencies after Maximum Hold function is completed. c. Find the next peak frequency outside the operation frequency band.
Test setup:	EUT SPECTRUM ANALYZER
Test results:	Pass

7. Band Edges Measurement


Remark:

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels



7.1. TEST RESULT

802.11a (5.15GHz-5.25GHz) The High Channel 48: 5240MHz

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Report No.: AAEMT/RF/230322-04-01 802.11a (5.725GHz-5.85GHz) The Low Channel 149: 5745MHz

Att	vel 30.00		e RB ms e VB	W 1 MHz W 3 MHz Mod	le Auto Sweep		
DIPk M	ах				in the streep		
Lin 20 dBm	nit Check e Band Er	lge FCC 5GHz		PASS	M1[1] M2[1]	PA 077	10.71 dBn 5.73910 GH -25.11 dBn 5.72500 ÅÅ
10 dBm			+			+ +	
0 dBm-	_						
-10 dBn	n	_				_	
-20 dBn					_		
		17					and a star
and cu	An is the reader	744			- A & - We shall a fill an all a fill a	multimenter and the second	inter the second of the second of the
	super-	and and the former and	Hurrann	mandersenime	argentally. Alexandrati	and the second of the second of the	
		ne presidente	Himmenn	n Mandags and Ad	angerijske strenet en se		and of the second of the second of the
-40 dBn	n	and and the second second	John States	n Mandaganinin	anga-adder dan an a		and and a start of the
vaa dah	n	ne An the second	Hunner M	n den skrigt som her det	arganyakter Barandi ander		
-40 dBn	n	ne acus and <u>a</u> dension and a	JAGU CARANTANA	n an	angangalitan Pananti anta		
-40 d8n -50 d8n -60 d8n	n	ne genne an der detten gestenden gestenden gestenden gestenden gestenden gestenden gestenden gestenden gestenden g	Julie Carlotter Mi	691 pt			Stop 5.855 GHz
-40 dBn -50 dBn -60 dBn Start 1 Marker	ח		- - - - - - - - - - - - - -	691 pt	5		Stop 5.855 GHz
-40 dBn -50 dBn -60 dBn Start 1 Marker	n 	X-valu	- - - - - - - - - - - - - -				

802.11a (5.725GHz-5.85GHz) The High Channel 165: 5825MHz

Spectrum							B
Ref Level 3				W 1 MHz	1.15.16		
Att	50 d8	SWT 4.9 n	ns 🗰 VB	W 3 MHz Mode	e Auto Sweep		
1Pk Max		a					
Limit Ch	eck			PASS	M1[1]		9.59 dBn 5.83040 GHz
20 dBm	in cuge	ruo aunz	,	6da	M2[1]		-25.20 dBm
10 d8m						1	5.85000 GH
0 dBm							
-10 dBm							
-20 dBm			2	-			
and Edge FC	C 5GHz				unpresenter and without	and the regeneration	considerations and
SQUERA-	togge lat	And the second second second	statu war				
-40 dBm		-					
-50 d8m							
SS 10 10 12 42 42							
-60 dBm							
Start 1.0 GH	Iz	1		691 pts			Stop 5.855 GHz
Marker							
Type Ref	Trc	X-value		Y-value	Function	Fun	ction Result
M1 M2	1	5.830	4 GHz 5 GHz	9.59 dBm -25.20 dBm			
M2	1	5.8	5 GHZ	-25.20 d8m			

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India

Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: www.aaemtlabs.com

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Att

0 dBr

40 d -50 de -60 dBm

Marker Type Ref Trc M1 1

Start 5.14 GHz

M1

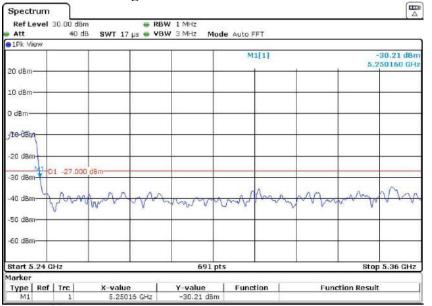
X-value 5.150043 GHz

AA Electro Magnetic Test Laboratory Private Limited

Stop 5.18 GHz

Function Result

Report No.: AAEMT/RF/230322-04-01


802.11n(20M) (5.15GHz-5.25GHz) The Lowest Channel 36: 5180MHz Spectrum Ref Level 30.00 dBm BBW 1 MHz SWT 5.7 µs . VBW 3 MHz 40 dB Mode Auto FFT 1Pk Ma -36.82 dBn 5.1500430 GHz M1[1] 20 dBm 10 dBm -10 dB -20 de -27.000 -30 dB

802.11n(20M) (5.15GHz-5.25GHz) The High Channel 48: 5240MHz

691 pts

Function

Y-value -36.82 dBm

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: www.aaemtlabs.com

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

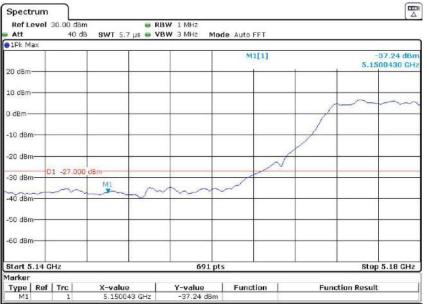
Report No.: AAEMT/RF/230322-04-01 802.11n(20M) (5.725GHz-5.85GHz) The Low Channel 149: 5745MHz

	1 30.00 dBm	n 😐 Ri	W 1 MHz		
Att	50 d8	SWT 4.9 ms 🖷 VI	W 3 MHz Mod	e Auto Sweep	
1Pk Max		a			
Limit	Check Band Edge	FCC 5GHz	PASS PASS	M1[1]	9.37 dBn 5.75310 GH
20 abiii				M2[1]	-26.07 dBn 5.72500 (3H)
10 d8m-					3.72500 (4)
0 dBm	_				
-10 dBm-					
-20 dBm-					
					Ma
and Edge	FCC SGHz		. Ind. success rates where	en mark marked with	internet and some many and a service and the
and Edge	FCC SGHz	ويعتمونه ومروغ والمرار وسرار والمعتقق	had a descent and the second	alman month and have	in and and manuscrement in age the
	FCC SGHz	and a state and the second	had bed not the product of the produ	economy and south dates	ilen and and the many and the second and the
and Edge -30, d800-r -40 d8m	FCC SGHz	and a superior of the superior of the	had the company and a second	an manager and a second second	her and and many considered and the
	FCC 5GHz	y dia sin ha ang ang ang ang ang ang ang ang ang an	the second second	enter an terretarial destre	her and and man consider and and the
-40 dBm	FCC 5GHz	gyddiadau da ydd ywynau golyddiad bla	tal doorganation and all	international line	tor and and the consideration of the
-40 dBm	FCC 5GHz	and and a state of the second s	tall decomposite consider	ul-un what	tor and and the conservation of the second of the
-40 d8m -50 d8m	FCC SGHz	gata in day a gang ang ang ang ang ang ang ang ang		animanan kanadarakan 	Lon and an announce and an and the
-40 dBm		gata inden ad out to a second s	691 pts		Stop 5.855 CHz
-40 dBm -50 dBm -60 dBm Start 1.0 Marker	GHz	gata inde-adapt of a support of the		5	Stop 5.855 GHz
-40 dBm -50 dBm -60 dBm	GHz	رواند المراجع من معروف المراجع ا X-volue 5.7531 GHz			ton and and many commission and an and the

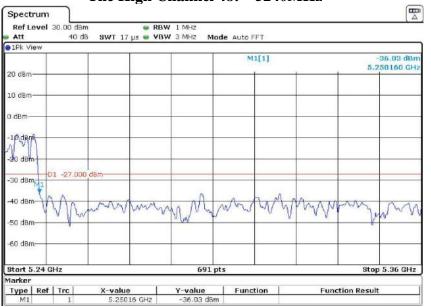
802.11n(20M) (5.725GHz-5.85GHz) The High Channel 165: 5825MHz

Spectrum			8				(W)
Ref Level 3 Att	0.00 dBm 50 dB			W 1 MHz W 3 MHz Mode	a Auto Sweep	0	
1Pk Max	50 00	3991 7/2			a Hara aweeb	2	
Limit Ch Line Bar 20 dBm	ieck nd Edge (FCC 5GHz		PASS	M1[1]		8.78 dBm 5.81640 GHz
					M2[1]		-25.57 dBm 5.85000 GHz
10 dBm						+	
0 dBm		_					
-10 dBm							
-20 dBm							
	C 5GHz				ALL ALL ALL	a stranger and Anonemarker	1. esemply work how we have
SO-dBRD		nhamen and	understates	when we have a state of the sta	and we are and a second		have marge and the second and
-40 dBm							
-50 dBm		-	ē	-			
-60 dBm							
Start 1.0 GH	łz	1	12.0	691 pts		I	Stop 5.855 GHz
larker							
Type Ref	Trc	X-value	2	Y-value	Function	Fun	iction Result
M1	1		64 GHz	8.78 dBm			
M2	1	5.8	5 GHz	-25.57 dBm			

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India


Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: www.aaemtlabs.com

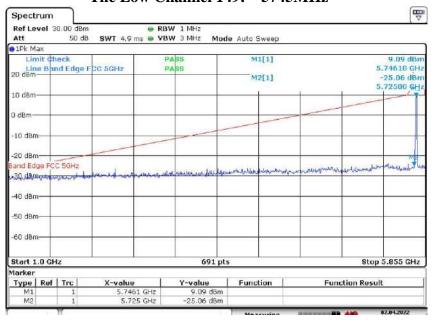
Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels



802.11ac(20M) (5.15GHz-5.25GHz) The Lowest Channel 36: 5180MHz

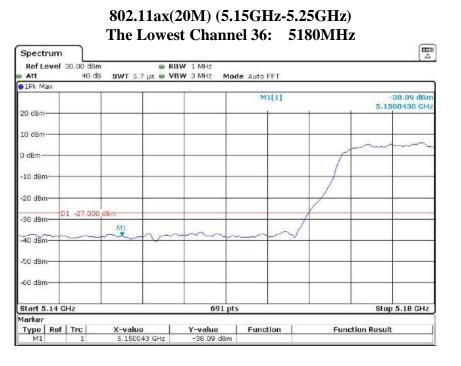
802.11ac(20M) (5.15GHz-5.25GHz) The High Channel 48: 5240MHz

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

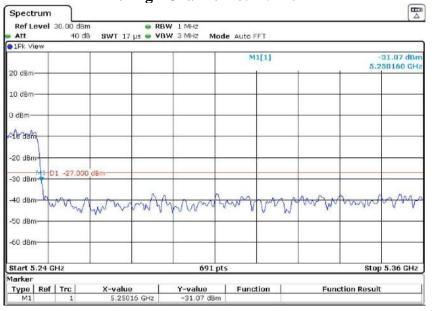

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Report No.: AAEMT/RF/230322-04-01 802.11ac(20M) (5.725GHz-5.85GHz) The Low Channel 149: 5745MHz

802.11ac(20M) (5.725GHz-5.85GHz) The High Channel 165: 5825MHz


Spectrum						E Series
Ref Level			RBW 1 MHz	a li ta in		
Att	50 dB	SWT 4.9 ms 🖷 1	BW 3 MHz Mod	le Auto Sweep		
1Pk Max						
Limit G	heck	Contraction of the second	PASS	M1[1]		8.19 dBn 5.82340 GH
20 dBm	nd Eage F	GG SGHZ	PASS	M2[1]		-26.17 dBn
				MZ[1]		5.85000 GH
10 dBm						o.ouodo dig
0 dBm						
-10 dBm						
10 00.00						
-20 dBm						
	C SGHz			and and a second	- Contraction of the	and the second second
-Riudan	the response berry	man handless and	aparter party and the same	annohiladellanders	- with the way of the way of	unumore respected
A A A A A A A A A A A A A A A A A A A	conco ferman					
-40 d8m						
ing again						
-50 dBm-						
DC GDIT						
-60 d8m						
-ou ubiii				÷		
Start 1.0 G	Hz		691 pt	s		Stop 5.855 GHz
Marker						
Type Ref	Trc	X-value	Y-value	Function	Functio	in Result
M1	1	5.8234 GHz	8.19 dBm			
M2	1	5.85 GHz	-26.17 dBm			

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India


Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

802.11ax(20M) (5.15GHz-5.25GHz) The High Channel 48: 5240MHz

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Report No.: AAEMT/RF/230322-04-01 802.11ax(20M) (5.725GHz-5.85GHz) The Low Channel 149: 5745MHz

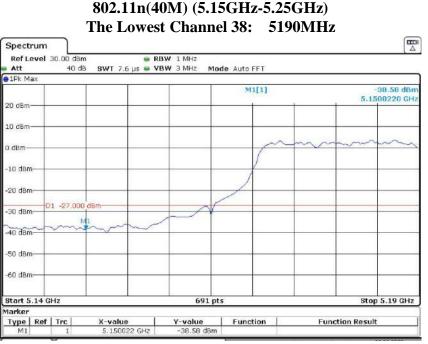
Spectrum Ref Level	30.00 dBm		BW 1 MHz			
Att	50 dB	SWT 4.9 ms 🖷 🔪	BW 3 MHz Mode	e Auto Sweep		
1Pk Max						
Limit Cl Line Ba 20 dBm	nd Edge I	CC 5GHz	PASS PASS	M1[1]		10.18 dBn 5.81640 GH -24.66 dBn 5.85000 GH
10 dBm					+ +	5.85000 GH
0 dBm						
-10 dBm						
-20 dBm						
and Edge FC		Astro manageriantico	production	halphannahis	unut documentar Me	and a second sec
-40 dBm						
-50 dBm					_	
-60 dBm					_	
Start 1.0 Gi	-lz		691 pts			Stop 5.855 GHz
larker						
	Trc	X-value	Y-value	Function	Functio	n Result
M1	1	5.8164 GHz	10.18 dBm			
M2	1	5.85 GHz	-24.66 dBm			

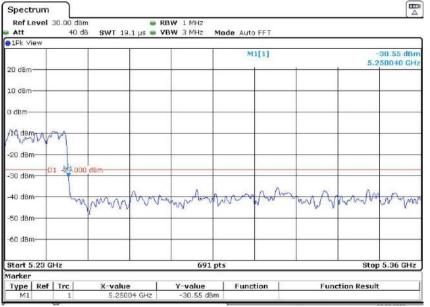
802.11ax(20M) (5.725GHz-5.85GHz) The High Channel 165: 5825MHz

Spectrum			-				(B)
Ref Level 3			RBW 1 MHz	0 Z I V			
Att 1Pk Max	50 d8	SWT 4.9 ms	VBW 3 MHz	Mode Auto	Sweep		
Limit Ch	ack	1 1	PASS	N	1[1]		10.68 dBm
20 dBm	d Edge	ECC SGHz	PASS		urf 11		5.73910 GHz
20 dBm	in cugo	JU UUITE		N	2[1]		-25.78 dBm
					1		5.72500 GHz
10 dBm				-	+	-	
500							
0 dBm		+ +					
347.94							
-10 dBm					1		
10000							
-20 dBm	-						M
and Edge FCI	C 5GHZ	and the second second		marchen	multe	importations	which the study are
BR. dBmater	o-poco-hits	and states and strengthered	a suprementation of the property of	1	-		
10.10							
-40 dBm							
-50 dBm							
-50 0800							
-60 dBm							
-co dom			1				
Start 1.0 GH	z		69	1 pts			Stop 5.855 GHz
Marker							
Type Ref	Trc	X-value	Y-value	Fund	tion	Functio	n Result
M1	1	5.7391 G	Hz 10.68 d	Bm			
M2	1	5.725 G	Hz -25.78 d	Bm			

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India

Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: www.aaemtlabs.com


Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels


AA Electro Magnetic Test Laboratory Private Limited

Report No.: AAEMT/RF/230322-04-01

802.11n(40M) (5.15GHz-5.25GHz) The High Channel 46: 5230MHz

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India

Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: www.aaemtlabs.com

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

802.11n(40M) (5.725GHz-5.85GHz) The Lowest Channel 151: 5755MHz ₽ Spectrum BWT 4.9 ms BW 1 MHz Ref Level 30.00 dBm 50 dB Mode Auto Sweep Att 1Pk Max PASS 7.47 dBn 5.76720 GH Limit Check M1[1] 20 dBm Edge FCC SGHz -24.84 dBr 5.72500 GH M2[1] 10 dBm 0 dB -10 dBm -20 dBmand Edge FCC SGHz And RD, dBrowtener 40 dBr -50 dBm -60 dBm-Start 1.0 GHz 691 pts Stop 5.855 GHz Marker Type Ref Trc M1 1 M2 1 -value 5.7672 GHz 5.725 GHz Y-value 7.47 dBm -24.84 dBm Function Function Result

802.11n(40M) (5.725GHz-5.85GHz) The High Channel 159: 5795MHz

Spectrum						B
Ref Level 3 Att	0.00 dBn 50 d8		BW 1 MHz VBW 3 MHz Mo	de Auto Sweep		
1Pk Max						
Limit Ch Line Bar 20 dBm	neck nd Edge	FCC 5GHz	PASS PASS	M1[1]		6.22 dBn 5.78120 GH -25.85 dBn
10 dBm						5.85000 GH2
0 dBm						
-10 dBm						
-20 dBm						
and Edge FC	C SGHZ	وسيتعامله لمربعهم	wanter berge and the stand of the	unformation and a second	watermarken	hand had the man and the second of the
40 dBm	level 4					
-50 dBm						
-60 dBm						
Start 1.0 GH	łz	<u> </u>	691 p	its		Stop 5.855 GHz
larker						
Type Ref	Trc	X-value	Y-value	Function	Funct	ion Result
M1 M2	1	5.7812 G 5.85 G				
IN/2	1	5.85 G	-25.85 dBh	11		

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India

Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: www.aaemtlabs.com

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

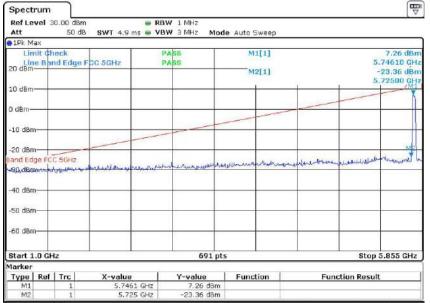
Report No.: AAEMT/RF/230322-04-01 802.11ac(40M) (5.15GHz-5.25GHz) The Lowest Channel 38: 5190MHz

RefLevel 30.00 dBm Att 40 dB SWT 7.6 µ	RBW 1 MHz WBW 3 MHz Mo	de Auto FFT		
1Pk Max				
		M1[1]		38.37 dBn 10220 GH
0 dBm				
0 dBm				
dBm-		~~~	m	-
10 dBm-				
20 dBm				
0 dBm				
40 dBm	~~			
50 dBm-				
50 dBm				
tart 5.14 GHz	691 pt	s	Stop	5.19 GHz
arker	Y-value	Function	Function Result	

802.11ac(40M) (5.15GHz-5.25GHz) The High Channel 46: 5230MHz

Spectrum					
Ref Level 30.00 dBn		RBW 1 MHz	12 I A 1		
Att 40 de	SWT 19.1 µs 🖷	VBW 3 MHz M	ode Auto FFT		
1Pk View					
			M1[1]		-32.66 dBm 5.250040 GHz
20 dBm			1	1 1	0.200010 0112
10 dBm				_	
0 dBm					
Alexand m		-			
-20 dBm-					
-30 dBm D1 -27,000	dBm				
-40 dBm	my my my	how	mont	when	monto
-50 d8m	• • w				
-60 dBm					
Start 5.23 GHz		691 p	s		Stop 5.36 GHz
Marker			L munther 1		
Type Ref Trc M1 1	X-value 5.25004 GHz	-32.66 dBm	Function	Functi	on Result

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India


Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: www.aaemtlabs.com

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

802.11ac(40M) (5.725GHz-5.85GHz) The Lowest Channel 151: 5755MHz

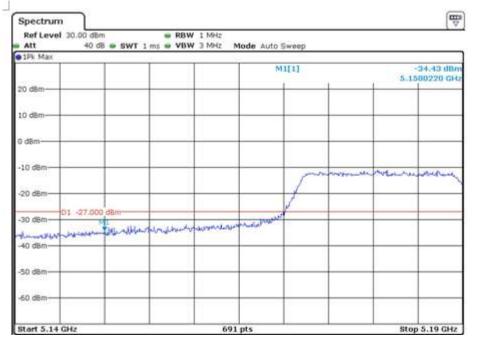
802.11ac(40M) (5.725GHz-5.85GHz) The High Channel 159: 5795MHz

Spectrum RefLevel 30.00 dBm Att 50 dB SWT 4.	9 ms e VB	W 1 MHz W 3 MHz Mode	a Auto Sweep		
1Pk Max	5 1115 . 10	n shine mou	Auto Sweep		
Limit Check Line Band Edge F3C 5GHz 20 dBm		ASS	M1[1] M2[1]		6.05 dBn 5.79530 GH -25.96 dBn 5.85000 GH
10 dBm	-				
0 dBm	_				f
10 dBm	-				
-20 dBm					
and Edge FCC SGHz		huberton	nelseemph	menorenteren	an remaining the
-40 dBm					
50 dBm					
-60 d8m					
Start 1.0 GHz		691 pts			Stop 5.855 GHz
larker					
Type Ref Trc X-val M1 1 5.7	953 GHz	Y-value 6.05 dBm	Function	Function	Result
	5.85 GHz	-25.96 dBm			

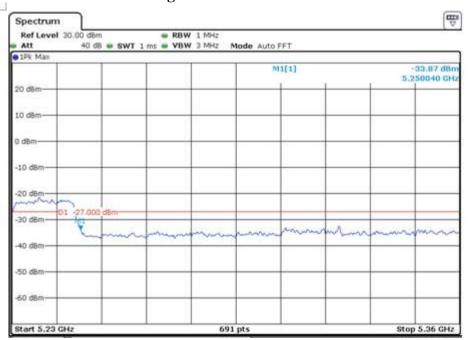
Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India

Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: www.aaemtlabs.com

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels



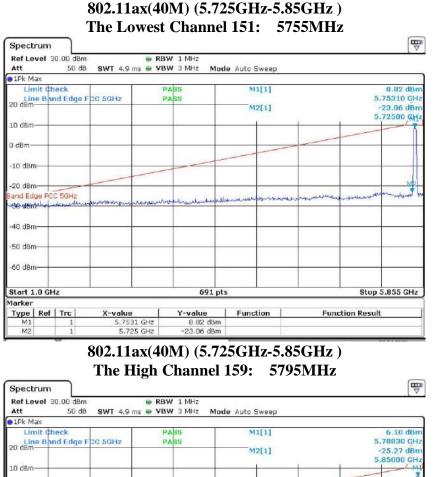
AA Electro Magnetic Test Laboratory Private Limited



Report No.: AAEMT/RF/230322-04-01

802.11ax(40M) (5.15GHz-5.25GHz) The Lowest Channel 38: 5190MHz

802.11ax(40M) (5.15GHz-5.25GHz) The High Channel 46: 5230MHz

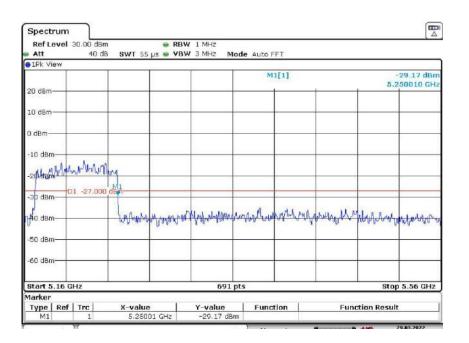


Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Att 50 dB	SWT 4.9 ms 🖶 VB	W 3 MHz Mod	e Auto Sweep	
1Pk Max	1342			
Limit Check		ASS	M1[1]	6.10 dBn
Line Band Edge FC	C 5GHz	PASS		5.78830 GH
20 dBm			M2[1]	-25.27 dBn
				5.85000 GH
10 dBm				
0.40				
0 dBm				
1000				
-10 dBm-				
-20 dBm				
and Edge FCC 30Hz	A CONTRACTOR OF	and the second second	100 mersohahamand	be marine the all a second of the should be a second of the second of th
-SQuaBrance and and and and	monthing platester	trailling and the	an work and	be made to a second and the second
	man-Triteran Laborationskapet	and the states of the second	as a contraction of the second	beine with and a section of mathematical with
-40 dBm	monthing platester	grant and approximation	as an	be and the all a new second and to add and
-40 dBm	waxantitiinaa Laalaadaadaada	gan allanda gan ala an	ason was been and a second	la nora a the defense of the second
	naparalitikaan Laplankhankan	gans Manaharan Maka	general and an and a second	la for an
-40 dBm	an an an Tribon, Liplensburger an	and the state of the second	gesennersebenhaumen	be we we have a second of the
-40 dBm	an ne Miller an Latenske skolovet	and a share and a share a share	gen over the second	
-40 dBm	annellitien, Jeposlerieter	and all and a share a s	430,000,000,000,000,000,000,000,000,000,	
-40 dBm	annellitieren depletietetete	691 pts		Stop 5.855 GHz
-40 dBm -50 dBm -60 dB	an ne li tie cu di pient le tie te			
-40 dBm	X-value	691 pts Y-value		
-40 dBm -50 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -70 GHz Marker		691 pts	6	Stop 5.855 GHz

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>


Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

802.11ac(80M) (5.15GHz-5.25GHz) The Lowest Channel 42: 5210MHz

Spectr	um						
Ref Le	evel 3	30.00 dBn 40 dB		RBW 1 MHz VBW 3 MHz Mod	e Auto FFT		
1Pk Ma	зx						
					M1[1]		-38.02 dBm 5.150140 GHz
20 dBm-	+				1		
10 dBm-							
0 dBm—	-						mannahring
-10 dBm						M	
-20 dBm							
-30 dBm	D	1 -27.000	dBm				4
40/35H	man	wyshawalle	another man	anonimport	morranthan	MMbury Mer	
-50 d8m	-						
-60 dBm							
Start 4	.86 GI	Hz		691 pt:	5		Stop 5.26 GHz
Marker Type	Ref	Trc	X-value	Y-value	Function	Fund	tion Result
M1		1	5.15014 GHz	-38.02 dBm	, under our		

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

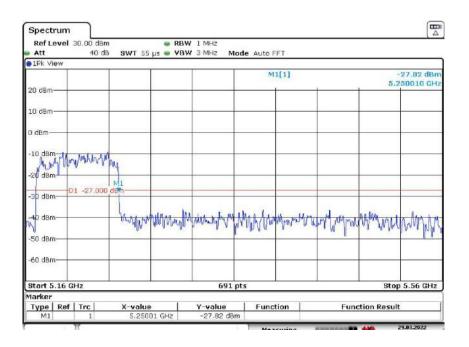
Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Report No.: AAEMT/RF/230322-04-01 802.11ac(80M) (5.725GHz-5.85GHz) The High Channel 155: 5775MHz

	30.00 dBm		RBW 1 MHz	1.16.16	
Att 1Pk Max	50 dB	SWT 4.9 ms 📟	VBW 3 MH2 Mode	e Auto Sweep	
Limit C Line Ba 20 dBm	aeck nd Edge F	CC 5GHz	PASS PASS	M1[1]	4.62 dB 5.74610 G -25.38 dB 5.85000 G
10 dBm		<u> </u>			
0 dBm					
-10 dBm					
-20 dBm					
and Edge FC	C 5GHz	-	- Lulaladagardagara	membershimmen	representation of the second second
-40 dBm					
-50 dBm-			_		
-So usin					
-60 dBm					
-60 dBm	4z		691 pts		Stop 5.855 GH
-60 dBm Start 1.0 G Narker					
		X-value 5.7451 GHz	691 pts	Function	Stop 5.855 GH

110 | Page

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels



AA Electro Magnetic Test Laboratory Private Limited

Report No.: AAEMT/RF/230322-04-01

802.11ax(80M) (5.15GHz-5.25GHz) The Lowest Channel 42: 5210MHz Spectrum RBW 1 MHz SWT 55 µs VBW 3 MHz Ref Level 30.00 dBm Att 40 dB Mode Auto FFT o 1Pk Ma M1[1] -37.86 dBr 5.150300 GH 20 dB 10 dBn o dB mon homen -10 dBn -20 dBn -27.000 -30 dBr MI an not -50 dBn -60 dBn Start 4.86 GHz 691 pts Stop 5.26 GHz Marke Type Ref Trc X-value 5,1503 GHz Function Function Result Y-value 37.86 dBn

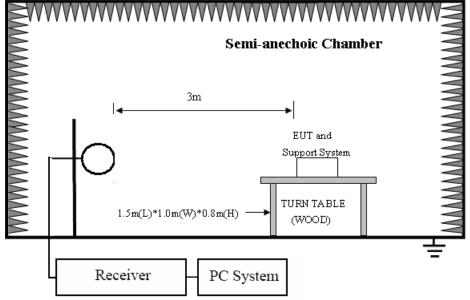
Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

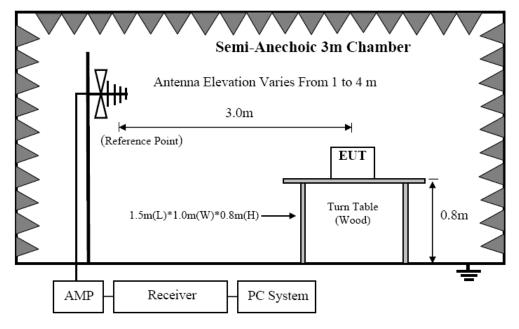
Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Report No.: AAEMT/RF/230322-04-01 802.11ax(80M) (5.725GHz-5.85GHz) The High Channel 155: 5775MHz

Spectrum						
Ref Level			BW 1 MHz	1.0		
Att 1Pk Max	50 dB	SWT 4.9 ms 📟 V	BW 3 MHz Mode	e Auto Sweep		
Limit di	h a sh	- T	PASS	M1[1]		1.68 dBm
Line Da	nd Edao E	DO SOUN	PASS	wifil		5310 GHz
20 dBm	nu cuye r	-00 00Hz	PADO	M2[1]		5.19 dBm
				marti		5000 GH2
10 dBm						- (91)
						X.
0 dBm						
-10 dBm						
-20 dBm-						
and Edge EC	C SGHZ				and a second and a second	remarked "
tanidam turk	have and a	anterested and a herenable	week a sundly high or may	underthe states and the states	ret-readendupermourte	
	* W * PERSONNEL					
-40 d8m						
To dom						
-50 dBm						
-Sti ubili						
-60 d8m						
-ou usiii						
Start 1.0 GI	Hz	s	691 pts		Stop 5.	355 GHz
larker						
Type Ref	Trc	X-value	Y-value	Function	Function Result	
M1	1	5.7531 GHz	4.68 dBm			
M2	1	5.85 GHz	-25.19 dBm			

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels




Report No.: AAEMT/RF/230322-04-01 8. RADIATED EMISSION MEASUREMENT

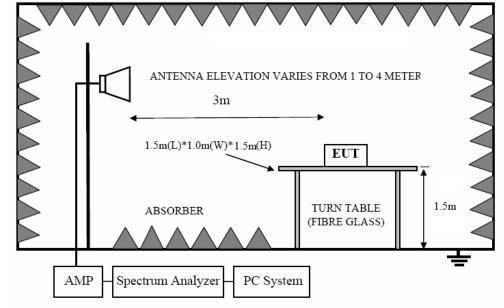
8.1. Block diagram of test setup

In 3m Anechoic Chamber Test Setup Diagram for 9KHz-30MHz

In 3m Anechoic Chamber Test Setup Diagram for 30MHz-1GHz

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels



AA Electro Magnetic Test Laboratory Private Limited

Report No.: AAEMT/RF/230322-04-01

In 3m Anechoic Chamber Test Setup Diagram for frequency above 1GHz

Note: For harmonic emissions test a appropriate high pass filter was inserted in the input port of AMP.

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

8.2. Limit

9.3.1 FCC	15.205	Restricted	frequency band
J.J.I I CC	15.205	restricted	nequency build

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)

9.3.2. FCC 15.209 Limit.

FREQUENCY	DISTANCE	FIELD STRENGTHS LIMIT	
MHz	Meters	μV/m	dB(µV)/m
0.009 ~ 0.490	300	2400/F(KHz)	67.6-20log(F)
0.490 ~ 1.705	30	24000/F(KHz)	87.6-20log(F)
1.705 ~ 30.0	30	30	29.54
30 ~ 88	3	100	40.0
88 ~ 216	3	150	43.5
216 ~ 960	3	200	46.0
960 ~ 1000	3	500	54.0
Above 1000	3	74.0 dB(μV)/ 54.0 dB(μV)/m	

- Note: (1) The emission limits shown in the above table are based on measurements employing a CISPR QP detector except for the frequency bands 9-90KHz, 110-490KHz and above 1000MHz. Radiated emissions limits in these three bands are based on measurements employing an average detector.
 - (2) At frequencies below 30MHz, measurement may be performed at a distance closer then that specified, and the limit at closer measurement distance can be extrapolated by below formula: Limit_{3m}(dBuV/m)= Limit_{30m}(dBuV/m) + 40Log(30m/3m)

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India

Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: www.aaemtlabs.com

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

9.3.3. Limit for this EUT

All the emissions appearing within 15.205 restricted frequency bands shall not exceed the limits shown in

15.209, all the other emissions shall be at least 30dB below the fundamental emissions, or comply with 15.209 limits.

8.3. Test Procedure

- (1) EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber.
- (2) Setup EUT and assistant system according clause 2.4 and 7.2

(3) Test antenna was located 3m(except 18GHz-40GHz was 1m) from the EUT on an adjustable mast, and the antenna used as below

table.

Test frequency range	Test antenna used
9KHz-30MHz	Active Loop antenna
30MHz-1GHz	Bilog Broadband Antenna
1GHz-18GHz	Double Ridged Horn Antenna(1GHz-18GHz)
18GHz-40GHz	Horn Antenna(18GHz-40GHz)

According ANSI C63.10:2013 clause 6.4.4.2 and 6,5.3, for measurements below 30 MHz, the loop antenna was positioned with its plane vertical from the EUT and rotated about its vertical axis for maximum response at each azimuth position around the EUT. And the loop antenna also be positioned with its plane horizontal at the specified distance from the EUT. The center of the loop is 1 m above the ground. for measurement above 30MHz, the Trilog Broadband Antenna or Horn Antenna was located 3m from EUT, Measurements were made with the antenna positioned in both the horizontal and vertical planes of Polarization, and the measurement antenna was varied from 1 m to 4 m. in height above the reference ground plane to obtain the maximum signal strength.

- (4) Below pre-scan procedure was first performed in order to find prominent frequency spectrum radiated emissions from 9KHz to 25GHz:
- (a) Scanning the peak frequency spectrum with the antenna specified in step (3), and the EUT was rotated 360 degree, the antenna height was varied from 1m to 4m(Except loop antenna, it's fixed 1m above ground.)
- (b) Change work frequency or channel of device if practicable.
- (c) Change modulation type of device if practicable.
- (d) new battery is used during testing
- (e) Rotated EUT though three orthogonal axes to determine the attitude of EUT arrangement produces highest emissions.
- 116 | Page

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Spectrum frequency from 9KHz to 25GHz (tenth harmonic of fundamental frequency) was investigated, and no any obvious emission were detected from 18GHz to 25GHz, so below final test was performed with frequency range from 9KHz to 18GHz.

- (5) For final emissions measurements at each frequency of interest, the EUT was rotated and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.10 2013 on Radiated Emission test.
- (6) The emissions from 9KHz to 1GHz were measured based on CISPR QP detector except for the frequency bands 9-90KHz, 110-490KHz, for emissions from 9KHz-90KHz,110KHz-490KHz and above 1GHz were measured based on average detector, for emissions above 1GHz, peak emissions also be measured and need comply with Peak limit.
- (7) The emissions from 9KHz to 1GHz, QP or average values were measured with EMI receiver with below RBW

Frequency band	RBW
9KHz-150KHz	200Hz
150KHz-30MHz	9KHz
30MHz-1GHz	120KHz

(8) For emissions above 1GHz, both Peak and Average level were measured with Spectrum Analyzer, and the RBW is set at 1MHz, VBW is set at 3MHz for Peak measure; RBW is set at 1MHz, VBW is set at 10Hz for Average measure(according ANSI C63.10:2013 clause 4.2.3.2.3 procedure for average measure). Peak detector is used for Peak and AV measurement both.

According to KDB 789033 v02r01 section G) 1) (d), for For measurements above 1000 MHz @ 3m distance, the limit of field strength is computed as follows:

E[dBuV/m] = EIRP[dBm] + 95.2;

For example, if EIRP = -27 dBm

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

117 | Page

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels AAEMT/A2LA/TRF/FCC-15E/22_01_REV1

8.4. Test result(Below 30MHz)

EUT: IO 5 GHz 1000 Mbps UBR with Integrated Antenna (17 dBi) with dying gasp feature		N	Aodel Name. :	ic	on4x11_BTS_d	
Temperature:		24.7°C		Relative Humidity:		53%
Distance:		3m		Test Power:		AC 110V/60Hz
Polarization:				Test Result:		Pass
Test Mode:		Keeping TX mode		Test By:		Ankur

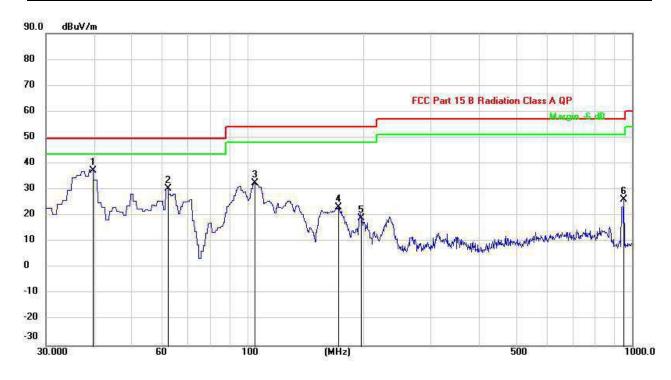
Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				Р
				Р

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =20 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.


Note: N/A

Report No.: AAEMT/RF/230322-04-01 TEST RESULTS (Between 30M – 1000 MHz)

EUT:	IO 5 GHz 1000 Mbps UBR with	Model Name. :	ion4xl1 BTS d
	Integrated Antenna (17 dBi) with		
	dying gasp feature		
Temperature:	24.7°C	Relative Humidity:	53%
Distance:	3m	Test Power:	AC 110V/60Hz
Polarization:	Vertical	Test Result:	Pass
Standard:	(RE) FCC PART 15E	Test By:	Ankur
Test Mode:	Keeping TX mode		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	39.7000	61.16	-23.66	37.50	49.50	-12.00	QP
2		62.0100	48.76	-18.38	30.38	49.50	-19.12	QP
3		104.6900	50.58	-17.98	32.60	54.00	-21.40	QP
4		172.5900	42.48	-19.08	23.40	54.00	-30.60	QP
5		197.8100	37.77	-18.86	18.91	54.00	-35.09	QP
6	9	951.5000	41.75	-15.61	26.14	57.00	-30.86	QP

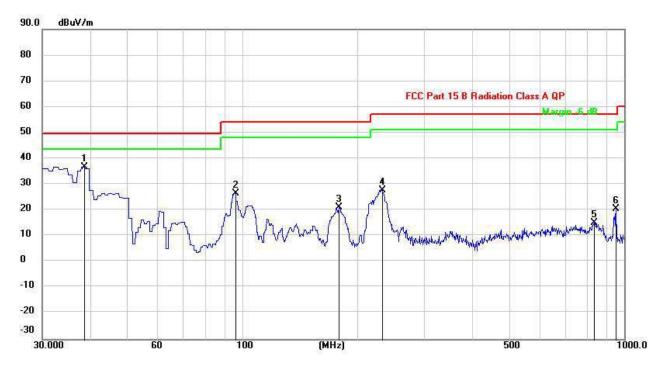
The test result is calculated as the following:

- (1) Result = Reading + Correct Factor
- (2) Correct Factor = Antenna Factor + Cable Loss Amplifier Gain + Attenuator
- (3) Margin = Result Limit

119 | Page

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels



AA Electro Magnetic Test Laboratory Private Limited

Report No.: AAEMT/RF/230322-04-01

EUT:	IO 5 GHz 1000 Mbps UBR with Integrated Antenna (17 dBi) with dying gasp feature	Model Name. :	ion4xl1_BTS_d
Temperature:	24.7°C	Relative Humidity:	53%
Distance:	3m	Test Power:	AC 110V/60Hz
Polarization:	Horizontal	Test Result:	Pass
Standard:	(RE)FCC PART 15E	Test By:	Ankur
Test Mode:	Keeping TX mode		

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	38.7300	61.21	-24.37	36.84	49.50	-12.66	QP
2		95.9600	44.47	-17.96	26.51	54.00	-27.49	QP
3		179.3800	39.69	-18.66	21.03	54.00	-32.97	QP
4		231.7600	46.03	-18.21	27.82	57.00	-29.18	QP
5		831.2199	26.09	-11.06	15.03	57.00	-41.97	QP
6		951.5000	36.13	-15.61	20.52	57.00	-36.48	QP

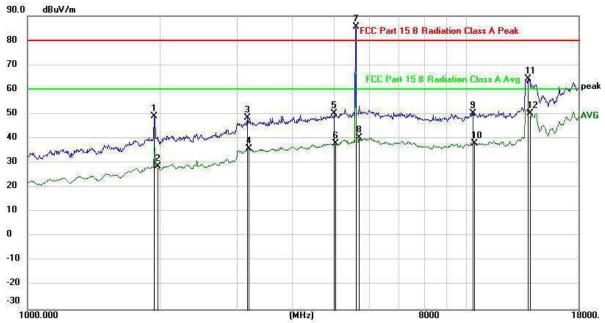
The test result is calculated as the following:

(4) Result = Reading + Correct Factor

- (5) Correct Factor = Antenna Factor + Cable Loss Amplifier Gain + Attenuator
- (6) Margin = Result Limit

120 | P a g e

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>


Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

TEST RESULTS (Between 1000M - 18000 MHz)

EUT:	IO 5 GHz 1000 Mbps UBR with Integrated Antenna (17 dBi) with	Model Name. :	ion4xl1_BTS_d
	dying gasp feature		
Temperature:	24.7°C	Relative Humidity:	53%
Distance:	3m	Test Power:	AC 110V/60Hz
Polarization:	Vertical	Test Result:	Pass
Standard:	(RE)FCC PART 15E	Test By:	Ankur
Test Mode:	Keeping TX mode		

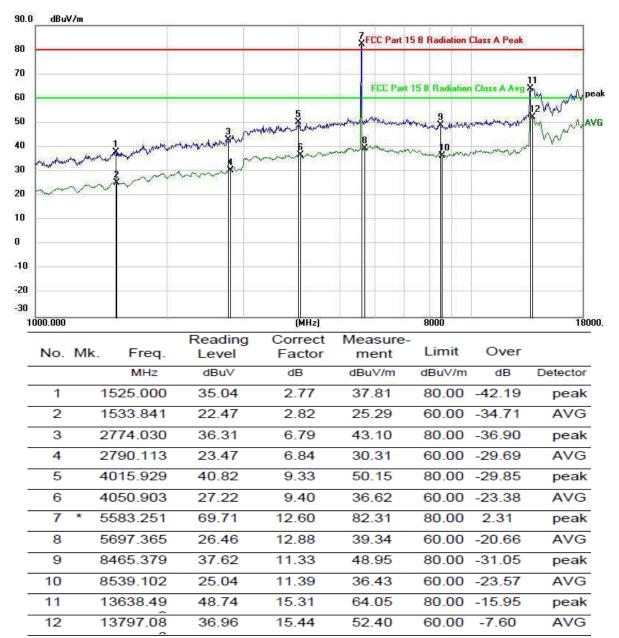
		Reading	Correct	Measure-			
No.	Mk. Freq.	Level	Factor	ment	Limit	Over	
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector
1	1944.073	43.75	5.18	48.93	80.00	-31.07	peak
2	1972.373	23.42	5.35	28.77	60.00	-31.23	AVG
3	3168.500	40.74	7.67	48.41	80.00	-31.59	peak
4	3196.094	28.02	7.71	35.73	60.00	-24.27	AVG
5	5002.496	38.65	11.62	50.27	80.00	-29.73	peak
6	5031.498	26.14	11.67	37.81	60.00	-22.19	AVG
7	* 5583.251	73.01	12.60	85.61	80.00	5.61	peak
8	5697.365	27.43	12.88	40.31	60.00	-19.69	AVG
9	10303.97	37.74	12.62	50.36	80.00	-29.64	peak
10	10423.79	25.35	12.70	38.05	60.00	-21.95	AVG
11	13797.08	49.00	15.44	64.44	80.00	-15.56	peak
12	13957.52	34.83	15.57	50.40	60.00	-9.60	AVG

Note: Marker 7 is the intentional frequency from EUT, Hence considered as pass.

The test result is calculated as the following:

- (1) Result = Reading + Correct Factor
- (2) Correct Factor = Antenna Factor + Cable Loss Amplifier Gain + Attenuator
- (3) Margin = Result Limit

121 | Page


Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

EUT:	IO 5 GHz 1000 Mbps UBR with Integrated Antenna (17 dBi) with dying gasp feature	Model Name. :	ion4xl1_BTS_d
Temperature:	24.7°C	Relative Humidity:	53%
Distance:	3m	Test Power:	AC 110V/60Hz
Polarization:	Horizontal	Test Result:	Pass
Standard:	(RE)FCC PART 15E	Test By:	Ankur
Test Mode:	Keeping TX mode		

Note: Marker 7 is intentionally radiated frequency from the EUT.

- The test result is calculated as the following:
 - (4) Result = Reading + Correct Factor
 - (5) Correct Factor = Antenna Factor + Cable Loss Amplifier Gain + Attenuator
 - (6) Margin = Result Limit

122 | P a g e

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

The field strength is calculated by adding the Antenna Factor. Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

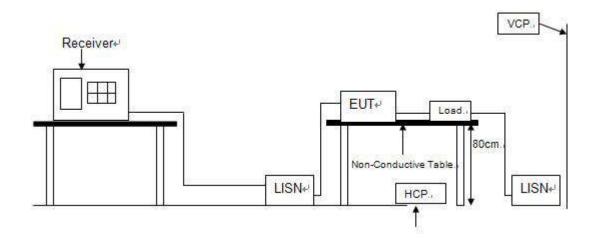
Final Test Level =Receiver Reading + Antenna Factor + Cable Factor –Preamplifier Factor.

Average measurement was not performed if peak level lower than average limit.

No any other emissions level very low which are attenuated less than 20dB below the limit.

According to 15.31(o), The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this Part.

Hence there no other emissions have been reported.


Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels AAEMT/A2LA/TRF/FCC-15E/22_01_REV1

9. POWER LINE CONDUCTED EMISSION

9.1. Block diagram of test setup

9.2. Power Line Conducted Emission Limits

Frequency	Quasi-Peak Level dB(µV)	Average Level dB(µV)
150kHz ~ 500kHz	66 ~ 56*	56 ~ 46*
500kHz ~ 5MHz	56	46
5MHz ~ 30MHz	60	50

Note 1: * Decreasing linearly with logarithm of frequency.

Note 2: The lower limit shall apply at the transition frequencies.

124 | P a g e

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels AAEMT/A2LA/TRF/FCC-15E/22_01_REV1

9.3. Test Procedure

The EUT and Support equipment, if needed, were put placed on a non-metallic table, 80cm above the ground plane.

Configuration EUT to simulate typical usage as described in clause 2.4 and test equipment as described in clause 10.2 of this report.

All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.

All support equipment power received from a second LISN.

Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.

The Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.

During the above scans, the emissions were maximized by cable manipulation.

The test mode(s) described in clause 2.4 were scanned during the preliminary test.

After the preliminary scan, we found the test mode producing the highest emission level.

The EUT configuration and worse cable configuration of the above highest emission levels were recorded for reference of the final test.

EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.

A scan was taken on both power lines, Neutral and Line, recording at least the six highest emissions.

Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.

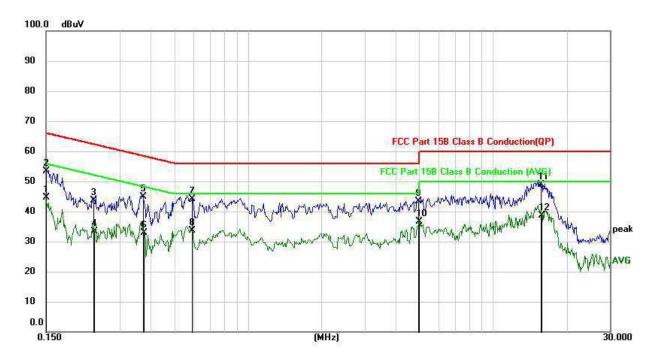
The test data of the worst-case condition(s) was recorded.

The bandwidth of test receiver is set at 9 KHz.

9.4. Test Result

PASS. (See below detailed test result)

Note1: All emissions not reported below are too low against the prescribed limits.


Note2: "-----" means peak detection; "-----" mans average detection

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels AAEMT/A2LA/TRF/FCC-15E/22_01_REV1

EUT:	IO 5 GHz 1000 Mbps UBR with Integrated Antenna (17 dBi) with dying gasp feature	Model Name. :	ion4x11_BTS_d
Temperature:	24.5°C	Relative Humidity:	52%
Probe:	Line	Test Power:	AC 110V/60Hz
Test Mode:	TX	Test Result:	Pass
Standard:	(CE)FCC PART 15 E_QP		

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1499	32.94	11.76	44.70	56.00	-11.30	AVG
2	0.1507	41.54	11.76	53.30	65.96	-12.66	QP
3	0.2353	33.28	10.41	43.69	62.26	-18.57	QP
4	0.2363	22.98	10.37	33.35	52.22	-18.87	AVG
5	0.3750	34.04	10.75	44.79	58.39	-13.60	QP
6	0.3769	22.04	10.75	32.79	48.35	-15.56	AVG
7	0.5916	33.25	10.80	44.05	56.00	-11.95	QP
8	0.5916	22.95	10.80	33.75	46.00	-12.25	AVG
9	4.9599	32.39	11.02	43.41	56.00	-12.59	QP
10	5.0045	25.56	11.02	36.58	50.00	-13.42	AVG
11 *	15.6996	37.78	11.07	48.85	60.00	-11.15	QP
12	15.8010	27.58	11.07	38.65	50.00	-11.35	AVG

The test result is calculated as the following:

(1) Result = Reading + Correct Factor

- (2) Correct Factor = (LISN, ISN, PLC or Current Probe) Factor + Cable Loss +Attenuator
- (3) Margin = Result Limit

126 | P a g e

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Report No.: AAEMT/RF/230322-04-01

EUT:	IO 5 GHz 1000 Mbps UBR wi Integrated Antenna (17 dBi) with dying gasp feature	th Model Name. :	ion4xl1_BTS_d					
Temperature:	24.5°CRelative Humidity:52%							
Probe:	Neutral	AC 110V/60Hz						
Test Mode:	TX	Test Power: Test Result:	Pass					
Standard:	(CE)FCC PART 15 E_QP							
100.0 dBuV	<u>AL AL IN 22 312 202 312</u> 15 D. D. D. M. H. H. H.	The state of the s						
90								
30								
70								
50		FCC Part 15B Cla	ss B Conduction(QP)					
50 MA		FCC Part 158 Class	B Conduction (AVG)					
40 Marmon 3	Marry month more	and the whole was a state of the second state	www.man.www. 24					
30 My Wardy My	Mary Marine Survey	- Marina Marina	www.www.www.					
20			Altia Alexa					
10								
0.0								
0.150		(MHz)	30.00					
No. Mk.		orrect Measure- actor ment Lim	iit Over					
	MHz dBuV	dB dBuV dBu	IV dB Detector					

No. Mk.	Freq.	Level	Factor	ment	Limit Over	
	MHz	dBuV	dB	dBuV	dBuV dB	Detecto
1	0.1507	41.54	11.76	53.30	65.96 -12.66	QP
2	0.1514	30.52	11.77	42.29	55.92 -13.63	AVC
3	0.2800	32.84	10.10	42.94	60.81 -17.87	QP
4	0.2816	21.42	10.12	31.54	50.77 -19.23	AVC
5	0.3850	32.10	10.75	42.85	58.17 -15.32	QP
6	0.3870	18.01	10.75	28.76	48.13 -19.37	AVC
7	0.5796	32.61	10.80	43.41	56.00 -12.59	QP
8	0.5854	23.38	10.80	34.18	46.00 -11.82	AVC
9	4.5400	29.36	11.01	40.37	56.00 -15.63	QP
10	4.5899	18.38	11.01	29.39	46.00 -16.61	AVC
11	15.6996	37.78	11.07	48.85	60.00 -11.15	QP
12 *	15.7797	29.04	11.07	40.11	50.00 -9.89	AVG

The test result is calculated as the following:

(1) Result = Reading + Correct Factor

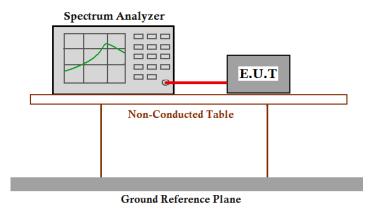
(2) Correct Factor = (LISN, ISN, PLC or Current Probe) Factor + Cable Loss + Attenuator

(3) Margin = Result - Limit

127 | Page

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: www.aaemtlabs.com

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels



10. CONDUCTED SPURIOUS EMISSIONS

Test Requirement:	FCC Part 15 C section 15.407
	(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating. the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Based on either an RF conducted or a radiated measurement. Provided the transmitter demonstrates compliance with the peak conducted power limits.
Test Method:	ANSI C63.10: Clause 6.7
Test Status:	Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. Pre-test the EUT under 2 modes: power-supplied by using the AC adapter and power-supplied by using internal

Test Configuration:

battery. After pre-testing, we found the worst case is the test mode of EUT power-supplied by using internal battery.

Test Procedure:

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum analyzer or power meter.
- 2. Set the spectrum analyzer: RBW=100 KHz, VBW = 300KHz. Sweep = auto; Detector Function = Peak. Trace = Max Hold, Scan up through 10th harmonic.
- 3. Measure the Conducted Spurious Emissions of the test frequency with special test status.
- 4. Repeat until all the test status is investigated.
- 5. Report the worse case.

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Report No.: AAEMT/RF/230322-04-01

Result plot as follows:

a20 5.180 GHz Spectrum BW 1 MHz
 SWT 1 ms
 VBW 3 MHz Ref Level 30.00 dBm Mode Auto Sweep 40 dB Att • 1Pk Max M1[1] -39.71 dBm 760.70 MHz 20 dBn 10 dBn 0 dBn -10 dBm -20 dBm D1 -27.000 -30 dBm MI -40 dBm all some and mount when we all the state of the state holo-morene -50 dBm -60 dBm-Stop 1.0 GHz 691 pts Start 30.0 MHz Marker Type | Ref | Trc | Function Function Result X-value 760.7 MHz Y-value -39.71 dBm M1 Spectrum Ref Level 30.00 dBm RBW 1 MHz SWT 102 ms . VBW 3 MHz Att 40 dB Mode Auto Sweep • 1Pk Max -30.16 dBm 15.4840 GHz M2[1] 20 dB 7.06 dBm 5.1880 GHz M1[1] 10 dBr

0 dBm-	-						-		
-10 dBn									
-20 dBn	-	-							
-30 dBn	D	1 -27,00	O'dBm	announcement	an the	numan	in many and	nume	puture
-50 dBn									
-60 dBn									
Start 1	.0 GH	IZ		691 pt	s			Stop	26.5 GHz
Marker									
Type	Ref	Trc	X-value	Y-value	Func	tion	Fund	tion Result	
M1		1	5,188 GHz	7.06 dBm					
M2		1	15,484 GHz	-30.16 dBm					

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Report No.: AAEMT/RF/230322-04-01

	<u>a.</u>	20 5.240 GHz	<u> </u>		Ē
Spectrum					
Ref Level 30.00 dBm	RBW 1				· · · · · · · ·
Att 40 dB	SWT 1 ms VBW 3	MHz Mode Auto S	iweep		
PIPK Max		M	1[1]		-39.21 dBm
			TTTT		989.50 MHz
20 dBm					
10 d8m					
10 0011					
0 dBm					
-10 dBm					
-20 dBm					
-30 dBm-01 -27.000 dB	m				-
-40 dBm	of the last marine bi	we change revenues and a	how with the state	sub- un think	M Chateren M
-50 dBm-					
-60 d8m					
Start 30.0 MHz		691 pts			Stop 1.0 GHz
					Stop 1.0 GHz
		/-value Func -39.21 dBm	tion	Function Re	əsult
Marker Type Ref Trc		7-value Func -39.21 dBm	tion	Function R	Ē
Marker Type Ref Trc M1 1 Spectrum Ref Level 30.00 dBm Att 40 dB	989.5 MHz	/-value Func -39.21 dBm 1 MHz		Function R	
Marker Type Ref Trc M1 1 Spectrum Ref Level 30.00 dBm Att 40 dB	989.5 MHz	1 MHz 3 MHz Mode Auto	o Sweep	Function R	
Marker Type Ref Trc M1 1 Spectrum Ref Level 30.00 dBm Att 40 dB PIPk Max	989.5 MHz	1 MH2 3 MH2 Mode Auto	5 Sweep 12[1]	Function R	-30.84 dBm 16.3330 GHz
Marker Type Ref Trc M1 1 Spectrum Ref Level 30.00 dBm Att 40 dB	989.5 MHz	1 MH2 3 MH2 Mode Auto	o Sweep	Function R	-30,84 dBm 16,3330 GHz 4,13 dBm
Marker Type Ref Trc M1 1 Spectrum Ref Level 30.00 dBm Att 40 dB 1Pk Max 20 dBm	989.5 MHz	1 MH2 3 MH2 Mode Auto	5 Sweep 12[1]	Function R	-30,84 dBm 16,3330 GHz 4,13 dBm
Marker Type Ref Trc M1 1 Spectrum	989.5 MHz	1 MH2 3 MH2 Mode Auto	5 Sweep 12[1]	Function R	-30,84 dBm 16,3330 GHz 4,13 dBm
Marker Type Ref Trc M1 1 Spectrum Ref Level 30.00 dBm Att 40 dB 1Pk Max 20 dBm	989.5 MHz	1 MH2 3 MH2 Mode Auto	5 Sweep 12[1]	Function R	Ē
Marker Type Ref Trc M1 1 Spectrum	989.5 MHz	1 MH2 3 MH2 Mode Auto	5 Sweep 12[1]	Function Re	-30,84 dBm 16,3330 GHz 4,13 dBm
Marker Type Ref Trc M1 1 Spectrum Ref Level 30.00 dBm Att 40 dB 10 dBm 10 dBm 10 dBm M1 0 dBm M1 0 dBm	989.5 MHz	1 MH2 3 MH2 Mode Auto	5 Sweep 12[1]	Function R	-30.84 dBn 16.3330 GH 4.13 dBn
Marker Type Ref Trc M1 1 Spectrum Ref Level 30.00 dBm Att 40 dB 1Pk Max 10 dBm 10 dBm M1 -10 dBm M1	989.5 MHz RBW SWT 102 ms • VBW	/-value Func -39.21 dBm 1 MHz 3 MHz Mode Auto	2[1] 2[1]		-30.84 dBn 16.3330 GH 4.13 dBn 5.2250 GH
Marker Type Ref Trc M1 1 Spectrum Ref Level Att 40 dB IPk Max 20 dBm 10 dBm M1 -10 dBm M1 -20 dBm 01 -22 000 nB	989.5 MHz RBW SWT 102 ms • VBW	1 MH2 3 MH2 Mode Auto	2[1] 2[1]		-30.84 dBn 16.3330 GH 4.13 dBn 5.2250 GH
Marker Type Ref Trc M1 1 Spectrum Ref Lowel Ref 20.00 dBm Att 40 dB IPk Max 20 dBm 10 dBm 10 dBm M1 -10 dBm -10 dBm -20 dBm -20 dBm	989.5 MHz RBW SWT 102 ms • VBW	/-value Func -39.21 dBm 1 MHz 3 MHz Mode Auto	2[1] 2[1]		-30.84 dBn 16.3330 GH 4.13 dBn 5.2250 GH
Marker Type Ref Trc M1 1 Spectrum Ref Lower 30.00 dBm Att 40 dB IPk Max 20 dBm 20 dBm 10 dBm -10 dBm M1 -20 dBm 01 -27.000 dBm	989.5 MHz RBW SWT 102 ms • VBW	/-value Func -39.21 dBm 1 MHz 3 MHz Mode Auto	2[1] 2[1]		-30.84 dBm 16.3330 GHz 4.13 dBm 5.2250 GHz
Marker Type Ref Trc M1 1 Spectrum Ref Level 30.00 dBm Att 40 dB 91Pk Max 20 dBm 20 dBm 10 dBm -10 dBm M1 -20 dBm 01 -27.000 dB -30 dBm 01 -27.000 dB -60 dBm -50 dBm	989.5 MHz RBW SWT 102 ms • VBW	/-value Func -39.21 dBm 1 MHz 3 MHz Mode Auto	2[1] 2[1]	na Mane	-30.84 dBm 16.3330 GHz 4.13 dBm 5.2250 GHz
Marker Type Ref Trc M1 1 Spectrum Ref Level 30.00 dBm Att 40 dB 1Pk Max 20 dBm 10 dBm M1 -10 dBm M1 -20 dBm 01 -27.000 dB -30 dBm -10 -27.000 dB -50 dBm -50 dBm -60 dBm -50 dBm	989.5 MHz RBW SWT 102 ms VBW	1 MH2 3 MH2 Mode Auto M M M M M M M M M M M M M	2[1] [1[1]	on the second of	-30.84 dBm 16.3330 GHz 4.13 dBm 5.2250 GHz
Marker Type Ref Trc M1 1 Spectrum Ref Level 30.00 dBm Att 40 dB 91Pk Max 20 dBm 20 dBm 10 dBm -10 dBm M1 -20 dBm 01 -27.000 dB -30 dBm 01 -27.000 dB -60 dBm -50 dBm	989.5 MHz RBW SWT 102 ms VBW	1 MHz 3 MHz Mode Auto MHz Mode Auto	2[1] [1[1]	na Mane	-30.84 dBm 16.3330 GHz 4.13 dBm 5.2250 GHz

130 | Page

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Report No.: AAEMT/RF/230322-04-01

Spectrum					
Ref Level 30.00 d8	m 🖷 R	BW 1 MHz			
Att 40 c	1B SWT 1 ms 🖷 V	BW 3 MHz Mod	e Auto Sweep		
9 1Pk Max			- 5.6		
			M1[1]		-39.97 dBn
20 d8m				- T - T	957.20 MH
10 d8m					-
0 dBm					
2250022702					
-10 d8m	-			-	
-20 dBm		-			
01 -27.00	0 d0m				
-30 dBm	o ubin				
					M1
-40 dBm	La La Alasad	and all the present states and	ment - Andreas hill	and the state of t	all durk More to Houst
	Marcal and a contraction	environment of the	Concerned a to a fills	and a second	
-50 dBm-					
-60 d8m					
Start 30.0 MHz		691 pt	s		Stop 1.0 GHz
Marker					

Ref L	evel 3	0.00 d 40		🖷 R F 102 ms 🖷 V	BW 1 MHz	de Auto Sweer		
DIPk M	ax.	-10	00 304	102 ms 🖷 🕯	DW SINNE INU	de Auto Sweet		
20 dBm 10 dBm	_	MI				M2[1]	1	-29.64 dBr 18.1410 GH 7.29 dBr 5.1880 GH
0 dBm-		Ĭ	_					
-10 dBn		_						
-20 dBn							M2	
-30 dBn			DO dBm	a a bittai	. Hunsel aboreaby		-	Managerphice
-40-disri	uner	ar ar	Ser.	and the second		1		
-50 dBri			-					
-60 dBn	+							
Start 1	.0 GHz		-		691 pt:	5		Stop 26.5 GHz
Marker				_				
Type	Ref	Trc	Х-у	alue	Y-value	Function	Fun	ction Result
M1		1		5.188 GHz	7.29 dBm			
M2		1		18.141 GHz	-29.64 dBm			

131 | P a g e

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Report No.: AAEMT/RF/230322-04-01

<u>n20 5.240 GHz</u>

Spectrum						
Ref Level	30.00 d8r 40 d		WIMHz WI3MHz Mod	e Auto Sweep		
1Pk Max				8.7 <i>0</i>		
				M1[1]		-38.83 dBm 891.20 MHz
20 d8m						
10 d8m						
0 dBm						
-10 dBm						
-20 d8m	_	-				
-30 dBm	1 -27.000	dam				
10 dBm Jun	Northermon	maliliandersentition	mankhamak	www.in-two-out-two-out-to-	and an and the second second	MI
-50 dBm						
-60 d8m						
Start 30.0 M	IHz	71	691 pt	s		Stop 1.0 GHz
Marker	Teel	W.ushis I	V. ushus	Function	Function	Desult
Type Ref M1	1	X-value 891.2 MHz	Y-value -38.83 d8m	Function	Function	Result

Ref Lo Att	vel 3	80.00 de 40			BW 1 MHz BW 3 MHz	Mode Auto	Sweep			
91Pk Ma	x		-							
						M	2[1]			-29.89 dBn 5.7800 GHz
20 dBm-						M	1[1]		1	3.7800 GH
							*[1]			5.2620 GH
10 dBm-		M1	-					+		Contraction and
		T								
0 dBm-	+	-		-	-		0	-		
-10 dBm	-							1		1
-20 dBm										
-50 GBW										
-30 dBm	01	-27.00	00 dBm		-	M2				
		. h	addi.	1.1. 1.5	nenname	ahowna	mann	marshan	reman	mound
He den	- Alt	the for a	- Andrew	www.	Withorson					
-50 dBm			-	-	-			+	-	-
-60 d8m				<u>.</u>	-			-		-
Start 1	O GH	z			691	pts			Stop	26.5 GHz
Marker										
Type	Ref		X-valı		Y-value	Func	tion	Fun	ction Result	t
M1	_	1		262 GHz	3.77 dBr -29.89 dBr					
M2										

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Report No.: AAEMT/RF/230322-04-01

Att	el 30.00 dBm 40 dB	Company of the contract of the	W 1 MHz W 3 MHz Mode	Auto Sweep		
1Pk Max	1		1 1	M1[1]		-38.61 dBn
20 dBm			_		1	814.00 MH
10 dBm			_			
0 dBm			_			
-10 dBm			_			
-20 dBm	_					
-30 dBm	-01 -27,000	dBm				
40 d8m-	1		and Mil	ar a tait las successibles	mplant when the	Who a Land to be
-50 dBm-	and the second second	an a supply of the same	and a manager a	**************************************		G . U
-60 dBm			_			
Start 30.0	MHz		691 pt	s		Stop 1.0 GHz
Marker	ef Trc	X-value	Y-value	Function	Function (

	vel 30.00			RBW 1 MHz	5 1 1 1 1 1 1	2			
Att 1Pk Ma		40 dB	8WT 102 ms 🖷	VBW 3 MHz N	Iode Auto	Sweep			
20 dBm-						2[1] 1[1]		1	-29.97 dBn 5.4110 GH 1.84 dBn 5.1880 GH
10 dBm-	_					-	-	1	
0 dBm	1	IN I				-	-		
-10 dBm-									
-20 dBm-				_	M2		-		
-30 dBm-	DI -25	winter		unununun		anianam	howanter	adumnad	-
-40 68m-									
-60 dBm-									
Start 1.	0 GHz	39 29		691	pts			Sto	26.5 GHz
Marker									
	Ref Trc	-	X-value	Y-value	Func	tion	Fur	nction Result	
M1 M2		1	5,188 GH: 15,411 GH:			-			
1116	1		10,414 004	29.97 UD					

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Report No.: AAEMT/RF/230322-04-01

Spectrum Ref Level 30.00 dBm		W 1 MHz	Auto Sweep	
1Pk Max	5 5WIIIns - VI	ow a mine Mode	Auto Sweep	
			M1[1]	-39.53 d 975.40 M
20 dBm				
10 dBm				
0 dBm	-			
-10 dBm		-		
-20 dBm				
-30 dBm-01 -27,000	dBm			
40 dBm	methorismetrich	when when a star	wytheredependenter	anautorian and a supersonal and
-50 dBm				
-60 dBm				
Start 30.0 MHz		691 pt	<u> </u>	Stop 1.0 G

Spect		10.00 dBm		RBW 1 MHz			
Att	ever :	40 dB			Node Auto Sweep		
B 1Pk M	ак						
20 dBm-					M2[1]		-30.30 dBn 16.7390 GH -2.32 dBn 5.2250 GH
10 dBm	-					-	1
0 dBm—	_	MI					
-10 dBm		_					
-20 dBm		_					
-30 dBm	1	1 -27,000		-	M2		
-40-686	- Andrew	www.	ant have been the	unarrication	wither warne	a production of the	Manshaphilipping
-50 dBm	e						
-60 dBm							
Start 1	.0 GH	z		691	pts		Stop 26.5 GHz
Marker			110-71-710	11.111 10011			9140 - 2112 - 12
Туре	Ref	Trc	X-value	Y-value	Function	Fun	ction Result
M1		1	5.225 Gł				
M2		1	16.739 GH	iz -30.30 dB	m		

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Report No.: AAEMT/RF/230322-04-01

ac20 5.180 GHz

Spectrum						
Ref Level 30.00 d		W 1 MHz W 3 MHz Mod	e Auto Sweep			
1Pk Max						
			M1[1]			38.73 dBn 22.80 MH
20 dBm-						
10 dBm						
0 dBm						
-10 dBm					_	
-20 dBm					-	
-30 dBm	00 dBm					
-40 dam	Annaldhughadad	Landanse	handland handlater	MI	Housenert	Harthoo
-50 dBm						
-60 d8m						
Start 30.0 MHz		691 pt	s		Sto	p 1.0 GHz
Marker Type Ref Trc	X-value	Y-value	Function	Func	tion Result	
M1 1	722.8 MHz	-38.73 dBm		1 4110		

	evel 3	30.00 dB			RBW 1 MHz	21 12 13 19 12 1			
Att	No. 4	40 (IB SWT	102 ms 🖷 🖌	BW 3 MHZ N	lode Auto Swee	P		
20 dBm-		M1				M2[1]	1	18.1	.68 dBn 050 GH .86 dBn 880 GH
0 dBm-		1		_					
-10 dBm		_		_	_				
-20 dBm		-		_	-				
-30 dBm	D	1 -27.00	0 dBm			under and a	M2		
00 001			1 h Ann			a laudial and U Laura	was a reversion of the	. Animana	-
		mh	hourse	mound	warne	noutrand	rs verwary	r manage	-have a defense of
-50 dBm	portail	unh	howe	money	wanner	whold	- valender of the	- harmona	
-to abh	1	ma	una.		maarele	Now with the second		- Marina Marina	-and the second
-50 dBn -50 dBn	1	z			691;			Stop 26	
-50 dBm -50 dBm -60 dBm Start 1	1				691	ots		Stop 26	.5 GHz
-50 dBm	1		X-va			ots			

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Report No.: AAEMT/RF/230322-04-01

Spectrum				
RefLevel 30.00 d8m Att 40 dB SWT 1 ms	RBW 1 MHz VBW 3 MHz Mod	le Auto Sweep		
e 1Pk Max				
		M1[1]		-39.96 dBn
20 dBm				745.20 MH
10 dBm				
0 dBm				
-10 dBm				
-20 dBm				
D1 -27.000 dBm				
-30 dBm			MI	
-40 dBm าะในของเมืองไม่หางใหญ่หม่องกรี่สุดมีครามที่งานเป็นได้	a canadiante a superior and a superior an	aundhinknin	internished Aber Markensen	anna ha bhall belan an
-50 dBm-				
-60 dBm				
Start 30.0 MHz	691 p	ts		Stop 1.0 GHz
Marker Type Ref Trc X-value	Y-value	Function	Function	

Ref L Att	evel :	30.00 dB 40 d			BW 1 MHz BW 3 MHz I	Mode Auto	Sweep			
01Pk M	ax									
20 dBm							2[1]			30.84 dBn 5.7430 GH
20 4611						M	1[1]			4.60 dBn 5.2250 GH
10 dBm	-	MI	-	+				1		1.2200 011
0 dBm-	-	-					e			
-10 dBn	n									
-20 dBn	n	-	-		_			-		
on day	0	1 -27.00	0 dBm	70 /		M2				
-30 dBn	0					ALA	1. 11.6			
	n	wh	wholehow	normander	whencomethous	amanista	house	withahis	an manulator	permethant
	n pur	wh	workshipe	normander	whencement	annanista	which	withship	when	uninkent
-no tish	n n	wh	manapahan	normander	upenenetros	amawrite	hounder	withahis	a manufacture	permethank
-50 dBn -60 dBn	n	wh	northalter theme	normander	une.com.lh.an 691		www.inv	white		
-50 dBn -50 dBn -60 dBn Start 1 Marker	n 0 GH	z	-underham		691	pts			Stop	26.5 GHz
-60 dBn	n 0 GH	z	X-val			pts				26.5 GHz

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Report No.: AAEMT/RF/230322-04-01

Spectrum Ref Level 30.00 dBm Att 40 dB	SWT 1 ms	RBW 1 MHz VBW 3 MHz M	ode Auto Sweep		
1Pk Max	ant this	i torr o conce in	oue Auto Sweep		
			M1[1]		-39.46 dBr
20 dBm				+ + +	929.10 MH
10 dBm					-
0 dBm					
-10 dBm				-	6
-20 dBm					
-30 dBm-01 -27.000	iBm				1
and and the					MI
-40 dBm	NA MARINE LA COMMAN	whether a shearaba	anima annana Lana	and water and the second	militar
-50 dBm	and advantage of	a a contraction of the second s	and a second second		
-50 dBm					
-60 dBm-					
Start 30.0 MHz		69:	L pts	S	top 1.0 GHz

Spect	rum								E
Ref L	evel 3	0.00 dBm 40 dB			BW 1 MHz BW 3 MHz Mic	de Auto Sweep			
1Pk M	ак		0111 20			are mere encop			
						M2[1]			LO dBm
20 dBm	_					M1[1]			60 GHz 16 dBm
									80 GH2
10 dBm		Sector			-				
8//22		MI							
0 dBm-							-	-	
-10 dBm	n	_							
-20 dBm	n								
	-	-27.000	dBm			M2			
-30 dBm						minun	Accention		0.00000000
HO UBN	youldown	walnes	anyun	unna	grandation	source in source	e she sad	monormande	ann
-50 dBr									
-60 dBn	a 								
		!			691 pt	5		Stop 26.	5 GHz
Start 1	.0 GHz		-		17215			1040 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	5 GHz
-60 dBm Start 1 Marker Type M1			X-value	3	691 pt Y-value 2.06 dBm	s Function	Fu	Stop 26.	5 GHz

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Report No.: AAEMT/RF/230322-04-01

Spectrun Ref Leve	n I 30.00 dBm	1	. RBW	1 MHz			(E
Att	40 dB	SWT 1	ms 🖷 YBW	3 MHz Mode	e Auto Sweep	1	
91Pk Max	-		-	1 1	M1[1]		-38.39 dBr
					MALTI		938.90 MH
20 dBm			1				
10 dBm							
10 0011							
0 dBm			-				
-10 dBm						-	
-20 dBm			-				
-30 dBm	01 -27.000	dBm					
							MI
40 dBm	murrault	whente	approximite	Summer the mast	warman and a	market attended and	and have been and the
-50 d8m			-				
60 dbm			-				
-60 dBm							
Start 30.0	MHz			691 pt	ts		Stop 1.0 GHz
Marker Type Re	f Trc	X-valu	. 1	Y-value	Function	1	nction Result

Att	evel 30.00			RBW 1 MHz VBW 3 MHz	Mode Auto Sweep		
1Pk Ma	ак			112			
					M2[1]		-30.40 dBn
20 dBm-	-				M1[1]		16.1490 GH -1.90 dBn
					maral		5.2250 GH
10 dBm-						-	
0 dBm-	_	MI					
		1					
-10 dBm	e 						
-20 dBm	E 					-	
	01 -2	7,000 dBm-			M2		
-30 dBm	-	An An		1	1 - Martin Martine	Styphymere.	an talanteen interestion
-40 d'Bri	ambould	Manana	emphasis	man and the second	and the second s	Win .	MA AD AN UNITED AD A
and april							
-50 dBm							
-50 dBm							
-50 dBm -60 dBm				691	pts		Stop 26.5 GHz
-50 dBm -60 dBm Start 1				691	pts		Stop 26.5 GHz
-50 dBm -60 dBm Start 1		: ×	-value	691	pts Function	Fur	Stop 26.5 GHz
-50 dBm -60 dBm Start 1 Marker	.0 GHz Ref Tro	2 X	-value 5.225 GH 16.149 GH	Y-value 12 -1.90 dB	Function	Fur	

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Report No.: AAEMT/RF/230322-04-01

Spect Ref L		30.00 dBm	n 🖷 RB	W 1 MHz				[₽
Att		40 dB		W 3 MHz Mode	Auto Sweep			
01Pk M	ах							
					M1[1]			9.33 dBr 94.30 MH
20 dBm			· · · · ·		1		1	
10 dBm	_							
0 dBm-	_							
-10 dBr				-				
-20 dBm								-
-30 dBr	0	1 -27.000	dBm					
40.40-						MI		
-40 dBn	whethe	support	an emanual providence	alphablactures.	and the statements	withinknowling	ula all a share a share	multiplic
-50 dBr								
-60 dBn							-	
Start 3	0.0 M	Hz		691 pt	5		Sto	0 1.0 GHz
Marker	Ref	Trc	X-value	Y-value	Function	Fring	tion Result	
Type M1	Rel	1	794.3 MHz	-39.33 dBm	Punction	Punc	aton Result	

Spect	rum									
Ref Lo Att	evel 3	0.00 dB 40			BW 1 MHz BW 3 MHz Mo	de Auto Sv	veep			
a 1Pk M	ак									
						M2[1]			-30.22 dBn
20 dBm						- ALAT			1	5.7060 GH
20.0000						MI	1]			-6.60 dBn 5.2250 GH
10 dBm	_							<u>16</u>	1	
0 dBm—										
o dem		MI	1							
-10 dBm) 									
-20 dBrr										
		-27.00	0 dBm			M2				
-30 dBm	1	1				Mayou	montel		2	A CONTRACTOR
-se dali	production	white	rounderen	on Mederal	utranstration between	read	cellen	and a second the	and the state of t	and a strate and the second second
-50 dBm										
-30 460										
-60 dBm			-	-						-
Start 1	.0 GHz		3		691 pt	<u>s</u>			Sto	9 26.5 GHz
larker								0.0		
Type	Ref Trc X-value		e	Y-value	Functio	n	Fun	ction Result	t	
M1		1	5,	225 GH2	-6.60 dBm					
M2		1	15,	706 GHz	-30.22 dBm					

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Report No.: AAEMT/RF/230322-04-01

ax20 5.180 GHz

Spectrum						
Ref Level Att	30.00 dBr 40 d		WIMHz WI3MHz Mode	e Auto Sweep		
1Pk Max				1.567		
				M1[1]		-38.79 dBm 933.30 MHz
20 d8m						
10 dBm						
0 dBm						
-10 dBm		· · · · ·				
-20 dBm		-				
-30 dBm	1 -27.000	dam				M1
40 dam	handbaddety	Lawar were and a stranger	mannontrolling	be the states of	-attachter water	-
-50 dBm						
-60 d8m						
Start 30.0 M	IHz		691 pt	5		Stop 1.0 GHz
Marker	1 - 1			i -		
Type Ref M1	1 Trc	X-value 933.3 MHz	Y-value -38.79 dBm	Function	Function R	esult

Spectr Ref Le		0.00 de	sm		BW 1 MHz					
Att		40	dB SW1	102 ms 🖷 🕻	VBW 3 MHz N	lode Auto S	Sweep			
1Pk Ma	×									
						M2	[1]			-31.09 dBn 9.8390 GH
20 dBm-						MI	[1]		1	5.15 dBn
										5.1880 GH
10 d8m-		MI	-			+		+	-	and the second second second
2092B		T								
0 dBm—						-				-
-10 dBm										
-10 UBM										
-20 dBm			_		_					
								M2		_
-30 dBm	-	-27.00				Mah				
Mettern	entre	with	thorn	henry word	manner	ANT ANT ANT	andman	servery	a management	handhand
Me dem	all a little	55.1.1	-			-		-		
-50 dBm	-									-
-60 d8m										
-oo ubiii										
Start 1	0 GHz			_	691 p	ts			Sto	p 26.5 GHz
Marker					0719	1770			010	4112
	Ref	Trc	X-v	alue	Y-value	Functi	on	Fun	ction Resul	t
M1		1		5.188 GHz	5.15 dBm					
M2		1		19.839 GHz	-31.09 dBm	6				

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Report No.: AAEMT/RF/230322-04-01

ax20 5.240 GHz

Spectrum					
Ref Level 30.00 dB		WIMHz WI3MHz Mode	Auto Sweep		
1Pk Max	a				
			M1[1]		-38.50 dBm 839.30 MHz
20 dBm			ľ		
10 dBm					
0 dBm					
-10 dBm		-		-	
-20 dBm	-				
-30 dBm -27.00	0 dBm				
-40 dBm	utermethicked	interesting and shall be and	munumenter	where where where where	mohumanter
-50 dBm					
-60 dBm					
Start 30.0 MHz		691 pt	5		Stop 1.0 GHz
Narker Type Ref Trc M1 1	X-value 839.3 MHz	Y-value -38.50 dBm	Function	Function Re	əsult
M1 1	839.3 MHZ	-38.50 dBm			21.02.2022

0.11	rum			- 0010						A
Att	evel 3	0.00 dBm 40 dB		e RBW 1		le Auto	Sweep			
DIPk M	ак									
						MI2	2[1]			29.84 dBn
20 dBm	_					M1[1] 15.705				
Lo upro						MI	[[1]			-0.35 dBn 5.2250 GH
10 dBm								-	-	J.2230 GH.
		MI								
0 dBm-		-								
-10 dBn	n	_								
-28 dBn	n								-	
	01	-27.000	dBm			M2				
-30 dBn	0-		1			M	Marcan	auto Acre	Auron 1 a	and the second
-40 dan	unanan	when a mark	where where are	unour house	monthern	140		tham .	a margaret	horard the second
HO dBh	0									
-50 dBn										
-50 0.50										
-DEI CIBR										
-60 dBn					691 pts				Stor	26.5 GHz
	0 GHz				091 pts				5(0)	2010 0112
Start 1	.0 GHz	_				Function		Function Result		
Start 1 Marker		Trc	X-value	Y-	value	Funct	ion	Fund	tion Result	
Start 1 Marker Type M1	.0 GHz Ref	Trc	X-value 5,225		value -0.35 dBm	Funct	ion	Fund	tion Result	

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Report No.: AAEMT/RF/230322-04-01

	<u>ax40 5.190 GE</u>	<u>Iz</u>	
Spectrum Ref Level 30.00 dBm Att 40 dB SWT 1 ms	BW 1 MHz /BW 3 MHz Mode Auto 9	ween	
PIPk Max		in oop	
		M1[1]	-37.79 dBr 781.70 MH
20 dBm			
10 dBm			
0 dBm-		· · · · ·	
-10 dBm			
-20 dBm			
-30 dBm			
		M	
40 dBm	near printmental particulation	money being the month	upper and the second of the second
-50 dBm			
-60 dBm			
Start 30.0 MHz	691 pts		Stop 1.0 GHz
Marker	MIL WARMEN IN MARKS		
Type Ref Trc X-value M1 1 781.7 MHz	Y-value Fun -37.79 dBm	iction Fu	Inction Result

Spect	rum							
Ref L Att	evel :	30.00 d 40		📟 Ri .02 ms 🖷 V	BWI1MHz BWI3MHz Moo	de Auto Sweep		
0 1Pk M	ак		14		1.2			A MAR SHARE
						M2[1]		-30.39 dBm
20 dBm								18.1050 GH
20 0011						M1[1]		2.72 dBn 5.1880 GH
10 dBm							1	0.1000 GH
20 0000		M3						
0 dBm-		I	<u> </u>					
-10 dBn	h			_	_			
		1						
-20 dBn	n				_			
	-						40	
-30 dBn	1	1 -27.0	IOO dBm			46.44		
		1 All	warmen	I de march	monumental	and market	a read rough the	a trouble and marked
HO BRI	arra	14 A. C.	China and	AND A MALLAR				
-50 dBn	n						-	-
-60 dBn	n							
Start 1	.0 GH	z	- 22		691 pt:	5		Stop 26.5 GHz
Marker	arker							
Type	Ref	Trc	X-val		Y-value	Function	Fur	ction Result
		1	5	,188 GHz	2.72 dBm			
M1 M2		1		.105 GHz	-30.39 dBm			

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Report No.: AAEMT/RF/230322-04-01

Att	ever a	0.00 dBm 40 dB		RE 1 ms • VE	W 1 MHz W 3 MHz Mode	e Auto Sweep		
🖯 1Pk M	ак							
						M1[1]		-38.35 dBr 887.00 MH
20 dBm-	-				-			
10 dBm	_			_				
0 dBm—	-			_	_			1
-10 dBm					_			
-20 dBm				-	_			
-30 dBm	01	-27,000	dBm					144
-40 dBm	-	- nrh Julian		Juli Jahan J	and which he	n Martan Martin	and Municipation of Survey and a	Munipellim
-50 dBm								
-60 dBm								
Start 3	0.0 MH	z			691 p	ts		Stop 1.0 GHz
Marker			5.0 No					
Type	Ref	Trc	X-va	lue 187.0 MH2	Y-value -38.35 dBm	Function	Functio	n Result

Att		40 di	3 SWT 1	02 ms 🖷 V	BW 3 MHz Mo	de Auto	Sweep			
🛛 1Pk M	ак									and and
					1	M	2[1]			30.83 dBn
20 dBm					_	M1[1] 15.7060 (
						141	V[Y]		23	5.2250 GH
10 dBm					+ +		-	-		
		MI								
0 dBm-		-	-		-		-		-	
					1 1					
-10 dBn	1			-			-		-	5
-20 dBm	1			1			-			-
-30 dBm	01	-27,000	dBm-		7	M2		-	-	
-30 080	a	e laid	unity .	Res and	yourseductorich	LUNDAN	holmonth	Anonim .	Murana	unhunnus
40'081	igner	undu	Yuluto	- Martin	Municipality	1 Be W. S.		and the second s	3	a Malancia da Kini a
				1						
-50 dBm				-						
					1					
-60 dBn			-	-			-	0	-	11
	.0 GH	2			691 pt	5			Stop	26.5 GHz
Start 1	larker									
_		Trc X-value			2000 50	Function		Function Result		
Start 1 Marker Type	Ref	Trc			Y-value	Func	tion	Fun	ction Result	
Marker	Ref	1 1	5.	225 GHz 706 GHz	<u>Y-value</u> -0.68 dBm -30.83 dBm	Func	tion	Fun	tion Result	

ax40 5.230 GHz

143 | Page

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Report No.: AAEMT/RF/230322-04-01

Att		40 dB	SWT 1	ms 🖷 YBY	V 3 MHz Mode	e Auto Sweep			
🛛 1Pk Ma	18								
						M1[1]		-39.7	
20 dBm-	+				-	1			a chin
10 dBm-	_								
0 dBm—	_								
-10 dBm									
-20 dBm	_			-				_	
-30 dBm	D	-27,000	dBm	8					
-40 dBm						M		1	1.1
shipphille in	when	Alternation	allenations	www.herley.ww	with the store interest	and a second second of the	Control for the local	kawing an an Mariaka	~Crus
-50 dBm							12		
-60 dBm			-	-					
Start 3	0.0 MI	Hz			691 p	ts		Stop 1.0	GHz
Marker			57 90-52V				4		
Type	Ref	Trc	X-valu	ie	Y-value	Function	Fi	unction Result	_

Ref Le Att	vel 3		dBm 0 dB	SWT	102			VIMHz VI3MHz Mio	de Auto	Sweep			
1Pk Ma	18												
20 dBm-										2[1] 1[1]			-30.11 dBn 15.7060 GH: -2.15 dBn
10 dBm-	_			0	_		_			1		-	5.1880 GH
0 dBm—	_	M	1		_					-		_	
-10 dBm	-	_			_		-			-		_	
-20 dBm		-			-		_						
-30 dBm	D	1 -27	000	dBm	-		-		M2	month	MALINA		
AFGBM	mynai	is a start	and the s	windhard	Mary	Maryan	tur	numunu	per			winner	we and and and and a
-50 dBm	_		_		_								_
-60 dBm			_				-					_	-
Start 1	.0 GH	z						691 pt	5			St	op 26.5 GHz
larker													
Type	Ref	Trc		X-v	alue		_	Y-value	Func	tion	FL	inction Res	ult
M1		1			5,18	38 GHz		-2.15 dBm					

ax80 5.210 GHz

144 | Page

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Report No.: AAEMT/RF/230322-04-01

a20 5.745 GHz

			<u>a20 5.745</u>	GHZ			E.
Spectrum							1
Ref Level Att	30.00 dBn 40 dB		W 1 MHz W 3 MHz Mode	Auto Sweep			
1Pk Max	10.00	5 3WT 1 115 • 40	A STATE MOUL	Addo Sweep			
1		<u> </u>		M1[1]		-39.	36 dB
							10 MH
0 dBm							
-							
0 dBm							
dBm							
UBIII-							
10 d8m							
LO UDITI							
20 dBm							
30 dBm	1 -27.000) dBm					
						MI	
IO, dBm	and interest	a marken all and the second	and all the first second	Sauger and a subsection	What and makers		when
en and an and an	And It Almonthetic	- manufacture and a second and a	ad arm dress days		Card and a second s		1000
50 dBm-							
60 dBm							
tart 30.0 M	1H2		691 pts			Stop 1	.0 GH
Ype Ref M1	1	X-value 835.1 MHz	Y-value -39.36 dBm	Function		ction Result	
pectrum Ref Level	30.00 dBn	n a B	BW 1 MHz				
Att	40 di			de Auto Sweep	6		
1Pk View							
				M2[1]			74 dB 350 GI
0 dBm			-	M1[1]			02 dB
	M1						120 G
0 dBm	-					<u> </u>	
82							
dBm							
LO dBm							
LO GDIN							
20 dBm			_				
	1 -27.000	1 dBm		1	M2		
dBm	A27.000			manu	howwwwwwww	-	217.540.50
A Startes	memorialy	antranaughten it	1 My marken 10	Ster and and and	- on the stand	and have not	rista-fra
And But The But The But Star							
50 dBm							
a asm							
50 dBm							
a upin							
tart 1.0 GH			691 pts			Stop 26	
	12		051 pt			3top 20	.5 GH
arker		X-value	Y-value	Function	Fun	ction Result	.5 GH
arker Type Ref M1 M2		X-value 5.742 GHz 18.105 GHz			Fun		.5 GH

145 | P a g e

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Report No.: AAEMT/RF/230322-04-01

a20 5.825 GHz

Att 40 dB SV		1 MHz	and a darker Course		
1Pk Max	WT 1 ms 🖷 VBW	3 MHZ N	lode Auto Sweep		
APR IDda	1		M1[1]		-39.47 di
					901.00 M
20 dBm		-	1	1	
10 dBm					
0 dBm					
o abiii					
-10 dBm					
-20 dBm			<u> </u>		
D1 -27.000 dBm-					
-30 dBm					
					MI
-40 dBm	manife an an and di	and allowed	ann was trail and with	1 by low algorith	upple-bearing this is in
	and south a receive	all of the second			
-50 d8m-					
-60 dBm					
-60 UBIN					
		5			
Type Ref Trc X M1 1	-value 901.0 MHz	Y-value -39.47 d	Function Bm	FU	inction Result
M1 1					
M1 1 Spectrum	901.0 MHz	-39.47 d			
M1 1 Spectrum Ref Level 30.00 dBm	901.0 MHz	-39.47 d W 1 MHz			
M1 1 Spectrum Ref Level 30.00 dBm	901.0 MHz	-39.47 d W 1 MHz	Bm		
M1 1 Spectrum Ref Level 30.00 dBm Att 40 dB S1	901.0 MHz	-39.47 d W 1 MHz	Bm		-30,68 di
M1 1 Spectrum Ref Level 30.00 dBm Att 40 dB S1	901.0 MHz	-39.47 d W 1 MHz	Mode Auto Swee; M2[1]		-30.68 di 18.1050 C
M1 1 Spectrum Ref Level 30.00 dBm Att 40 dB St 1Pk View	901.0 MHz	-39.47 d W 1 MHz	Bm Mode Auto Swee;		-30.68 d 18.1050 C 11.15 d
M1 1 Spectrum Ref Level 30.00 dBm Att 40 dB St 1Pk View 20 dBm	901.0 MHz	-39.47 d W 1 MHz	Mode Auto Swee; M2[1]		-30.68 di 18.1050 C
M1 1 Spectrum Spectrum Ref Level 30.00 dBm Add B Att 40 dB St 1Pk View 20 dBm M1 10 dBm M1 10 dBm	901.0 MHz	-39.47 d W 1 MHz	Mode Auto Swee; M2[1]		-30.68 d 18.1050 C 11.15 d
M1 1 Spectrum Ref Level 30.00 dBm Att 40 dB St 1Pk View 20 dBm M1	901.0 MHz	-39.47 d W 1 MHz	Mode Auto Swee; M2[1]		-30.68 d 18.1050 C 11.15 d
M1 1 Spectrum Ref Level 30.00 dBm Att 40 dB St 1Pk View 20 dBm M1 10 dBm M1 0 dBm	901.0 MHz	-39.47 d W 1 MHz	Mode Auto Swee; M2[1]		-30.68 d 18.1050 C 11.15 d
M1 1 Spectrum Spectrum Ref Level 30.00 dBm Add B Att 40 dB St 1Pk View 20 dBm M1 10 dBm M1 10 dBm	901.0 MHz	-39.47 d W 1 MHz	Mode Auto Swee; M2[1]		-30.68 d 18.1050 C 11.15 d
M1 1 Spectrum	901.0 MHz	-39.47 d W 1 MHz	Mode Auto Swee; M2[1]		-30.68 d 18.1050 C 11.15 d
M1 1 Spectrum	901.0 MHz	-39.47 d W 1 MHz	Mode Auto Swee; M2[1] M1[1]		-30.68 d 18.1050 C 11.15 d
M1 1 Spectrum Ref Level 30.00 dBm Att 40 dB St 1Pk View 20 dBm M1 10 dBm M1 0 dBm -10 dBm 01 - 27.000 dBm	901.0 MHz	-39.47 d W 1 MHz W 3 MHz	Mode Auto Swee; M2[1] M1[1]	2	-30.68 d 18.1050 (11.15 d) 5.8230 (
M1 1 Spectrum Ref Level 30.00 dBm Att 40 dB St 1Pk View 20 dBm M1 10 dBm M1 0 dBm -10 dBm 01 -27.000 dBm -30 dBm 01 -27.000 dBm	901.0 MHz	-39.47 d W 1 MHz W 3 MHz	Mode Auto Swee; M2[1] M1[1]	2 102	-30.68 d 18.1050 C 11.15 d
M1 1 Spectrum Ref Level 30.00 dBm Att 40 dB St 1Pk View 20 dBm M1 10 dBm M1 0 dBm -10 dBm 01 - 27.000 dBm	901.0 MHz	-39.47 d W 1 MHz W 3 MHz	Mode Auto Swee; M2[1] M1[1]	2 102	-30.68 d 18.1050 (11.15 d) 5.8230 (
M1 1 Spectrum Ref Level 30.00 dBm Att 40 dB St 1Pk View 20 dBm M1 10 dBm M1 0 dBm -10 dBm 01 -27.000 dBm -30 dBm 01 -27.000 dBm	901.0 MHz	-39.47 d W 1 MHz W 3 MHz	Mode Auto Swee; M2[1] M1[1]	2 102	-30.68 d 18.1050 (11.15 d) 5.8230 (

691 pts

Function

Y-value 11.15 dBm -30.68 dBm

X-value 5.823 GHz 18.105 GHz

Start 1.0 GHz Marker

Ref | Trc

Type

M2

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

AAEMT/A2LA/TRF/FCC-15E/22_01_REV1

Stop 26.5 GHz

Function Result

<u>n20 5.745 GHz</u>

Spectrum				[4
RefLevel 30.00 d8m Att 40 d8		3W 1 MHz 3W 3 MHz Mod	e Auto Sweep	
1Pk Max				
			-39.43 dB 597.80 Mi	
20 dBm				
10 dBm				
0 dBm		_		
-10 dBm				
-20 dBm				
-30 dBm-01 -27.000	dBm			
-40 dBm	anterest temper and	, He adam how have	M1 worth when adam	concerning war advantighter dawarden og
-50 dBm				
-60 d8m				
Start 30.0 MHz		691 pt	s	Stop 1.0 GH
/larker Type Ref Trc	X-value	Y-value	Function	Function Result
M1 1	597.8 MHz	-39.43 d8m	, unseiten	, showing hosting

Spectrum Ref Level	30.00 dBm 40 dB		BW 1 MHz BW 3 MHz Mo	de Auto Sweep				
1Pk View	10.30	3WT 102 HIS # 4	DH SHIE MO	de Auto Sweep	10. 			
20 dBm	ML			M2[1]	1 1	-30.84 dBm 18.1410 GHz 9.47 dBm 5.7420 GHz		
0 dBm								
-10 dBm								
-20 dBm	01 -27.000				MQ			
-30 dBm	montant	man have been	number			Manhabbennow		
-50 dBm								
-60 dBm								
Start 1.0 G	Hz		691 pts			Stop 26.5 GHz		
Marker								
Type Ref M1 M2	1 1	X-value 5,742 GHz 18,141 GHz	9.47 dBm -30.84 dBm	Function	Func	tion Result		

147 | P a g e

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Report No.: AAEMT/RF/230322-04-01

Spectrum Ref Level 30.00 dBm	🖷 RBW 1 MHz		Ę
	1 ms 🖷 VBW 3 MHz Mod	e Auto Sweep	
P1Pk Max	- T - T	M1[1]	-38.99 dB)
00.40-			881.40 MH
20 dBm-			
10 dBm	_		
2022 0 0 - 2			
0 dBm			
-10 dBm			
13403-0.005			
-20 dBm			
-30 dBm			
			ML
-40 dBm	nubrilization	hip was a water and the second	while the another here was
-50 dBm			
101000000			
-60 dBm-			
Start 30.0 MHz	691 pt	s	Stop 1.0 GHz
Marker			

Ref Le	vel 30.00 da 40		RBW 1 MHz VBW 3 MHz Mo	de Auto Sweep				
1Pk Vie	7.5 E			de Hate Enterp				
20 dBm-		41		M2[1]		-30.54 dBm 19.4700 GHz 11.20 dBm 5.8160 GHz		
10 dBm-	_				+ +			
0 dBm	-	-			_			
-10 d8m-	_				_			
-20 dBm-					_			
-30 d8m-	D1 -27.00				M2			
ule dem-	whenter	had much men	Mutomation	montenen	and the served	Munningsonaletaine		
-50 dBm-					_			
-60 dBm-	-				_			
Start 1.	0 GHz		691 pts	l		Stop 26.5 GHz		
Marker								
Tunal	Ref Trc	X-value	Y-value	Function	Functi	ion Result		
Type								
M1 M2	1	5.816 GHz 19.47 GHz	11.20 dBm -30.54 dBm					

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Report No.: AAEMT/RF/230322-04-01

0					<u>n40 5.75</u>	<u>S GIIZ</u>		E
Spectr		30.00 dBr	**	a Pi	BW 1 MHz			
Att	VCI	40 d		1 ms . Vi		le Auto Sweep		
• 1Pk Ma	ax							
						M1[1]		-39.35 dBn
20 d8m-	-			_	_		- T - T	901.00 MH
10 d8m-	+							
0 dBm—	+						_	
-10 dBm			-					
-20 dBm	2							
		1 -27,000) dam	-				
-30 dBm								MI
-40 d8m		المريد مريا		11			and a contraction and a contraction	Millionathantin
-50 dBm		denes march	anne a thread and a	monune	new we do a company			
-60 d8m	-		-	-				
Start 3	0.0 M	Hz			691 p	ts		Stop 1.0 GHz
						0		
Marker	Ref		X-va		Y-value	Function	Function R	

Att	evel 3	0.00 dBm 40 dB			NBW 1 MHz NBW 3 MHz N	lode Auto	Sweep				
01Pk Vi	iew						-				
						M	1[1]			8.06 dBn 5.7790 GH	
20 dBm	-					M2[1]			-30,96 dBm		
10 dBm		MI							1	5.7800 GH	
10.000		Ĩ									
0 dBm-	-										
-10 dBn	n						-				
-20 dBn											
-30 dBn	D1	-27.000	dBm	-		-M2		-			
015-00000	dhi	monte	manue.	or needle	noundand	manutary	manifilty	Willich Hills	Human	munch	
140-blah	-	rw		1.		10,004					
	n		-		-			-			
-50 dBn											
-50 dBn -60 dBn	n			1							
-60 dBn		z			691 p	ts			Stop	26.5 GHz	
-60 dBn Start 1 Marker	.0 GH:					d coo.					
			X-valu	e	691 p Y-value 8.06 dBr	Func	tion	Fun	Stop ction Result		

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Report No.: AAEMT/RF/230322-04-01

<u>n40 5.795 GHz</u>

Spectrum						
Ref Level	30.00 dBr 40 d		W 1 MHz W 2 MHz Mode	e Auto Sweep		1. A
1Pk Max	10 0	5 3WT 1 ms • VB	W 3 PIPE MOU	e Auto Sweep		
				M1[1]		-38.66 dBm 769.10 MHz
20 dBm						
10 dBm						
0 dBm			-			
-10 dBm		· · · ·				
-20 d8m		-				
-30 dBm	D1 -27.00	0 dBm			M1	
40 dBm	hours	nothickness in the second	water willing	unabulabulation	-	runnation
-50 dBm						
-60 d8m						
Start 30.0	MHz		691 pt	s		Stop 1.0 GHz
Marker Type Ref	1 Tee 1	X-value	Y-value	Function	Function	Desult
M1	1	769.1 MHz	-38.66 d8m	Function	Function	result

Ref Le	vel 3	30.00 dBn 40 dB			BW 1 MHz BW 3 MHz M	lode Auto	Sween				
1Pk Vie	W	10.00	5 UNI 102	ing - i	on one i	noue Auto	Sweep				
20 dBm-	_	MI					1[1] 2[1]	<u>7</u> 1	6.71 dBn 5.7790 GH -30.83 dBn 15.7800 GH		
10 dBm-		Ĭ									
0 dBm—	+				-		ĉ		-		
-10 dBm	+										
-20 dBm-	+				-			-			
-30 dBm	0	1 -27.000	dBm	0	-	-M2	-				
Hauttant	um	would	withourses	Marcharth	university	wwwww	betweend	under matrice and	ny Miliani nuk	synahitedan	
-50 dBm								-		-	
-60 d8m	+			:		-					
Start 1.	0 GH	z	ļ		691	ots			Sto	p 26.5 GHz	
Marker		0.000000				1		10.000			
Type	Ref		X-value	0.014	Y-value	Func	tion	Fur	iction Resul	t	
M1		1	5.77	9 GHz	6.71 dBr	n					

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Report No.: AAEMT/RF/230322-04-01

Ref Level 30.00 dBm RBW 1 MHz Att 40 dB SWT 1 ms VBW 3 MHz Mode Auto Sweep 1Pk Max Image: Sweet and Sweet	-39.29 dBi 637,10 Mi
IPk Max IPk Max M1[1] 20 dBm I0 dBm O dBm -10 dBm -20 dBm -20 dBm D1 -27.000 dBm M1	
20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm D1 -27.000 dBm -30 dBm M1	
10 dBm	
0 dBm	
-10 dBm -20 dBm -30 dBm 01 -27.000 dBm M1	
-20 d8m	
-30 dBm M1	
-30 dBm	
M1	
- PU gBm	
any properties and the second s	where a support of the second s
-50 dBm-	
-60 d8m-	
Start 30.0 MHz 691 pts	Stop 1.0 GHz
Marker Type Ref Trc X-value Y-value Function	Function Result

Ref Li	evel 3	80.00 dB 40 d			BW 1 MHz BW 3 MHz M	ode Auto	Sweep			
D1Pk Vi	9W									
20 dBm							2[1] [1]		-30.79 dBm 6.9606 GHz 9.46 dBm	
10 d8m-	+	M	1					+		5.7420 GH
0 dBm-	+									
-10 dBm		_						-		
-20 dBm	-		1					-		
-30 dBm	DI	-27.00	0 dBm		1	rale	M2 Well werds	1 Add .		
Halden	phi and	turthornu	The manual and the second	Mulery	Manmanowh	sten		man a lading	mound	
-50 dBm	-									
-60 dBm	+									
Start 1	.0 GH:	z	-		691 p	s		-	Stop	26.5 GHz
Marker										
Type	Ref	Trc	X-value		Y-value	Funct	ion	Fun	tion Result	
M1		1		42 GHz	9,46 dBm					
M2		1		06 GHz	-30.79 dBm					

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Report No.: AAEMT/RF/230322-04-01

ac20 5.825 GHz

Spectrum					
RefLevel 30.00 dBm Att 40 dB	SWT 1 ms SWT 1 ms	3W 1 MHz 3W 3 MHz Mod	le Auto Sweep		
91Pk Max					
			M1[1]		-38.58 dBm 960.00 MHz
20 dBm-			1		
10 dBm					-
0 dBm					
-10 dBm					
-20 dBm-					
-30 dBm D1 -27.000 d	Bm				M1
-40 dBm	Amenalistikking	where the areas of the	and the providence	enderweiteren Martineteren	~
-50 dBm		and a draw and a			
-60 dBm					
Start 30.0 MHz		691 p	ts	S	top 1.0 GHz
Marker Type Ref Trc	X-value	Y-value	Function	Function Resu	ılt
M1 1	960.0 MHz	-38.58 dBm			

Ref Lev	el 30.00 d	Bm	RBW 1 MHz			₩ ₩
Att	40	dB SWT 102 ms	WBW 3 MHz M	ode Auto Sweep		
1Pk Max	6	(B) (A)(A)				
				M2[1]		~29.48 dBn
20 dBm-						18.1046 GH
20 000		MI		M1[1]		12.15 dBn
10 dBm-		T		-	1 1	5.8160 GH
10.0Bm						
0 dBm-						
D GDIN-						
-10 dBm-						
-10 UDHI-						
-20 dBm-	-					
-20 050	and another			M	0	
-30 dBm-	D1 -27.0	DO dBm				
oo abiii	N. N.	tam. la	win manutate	day marcharas	martha	mannantanter
HI dam-	and and a set	Anone water	Pro OA Promo m 41 0	COLUMN THE REAL OF		2 TO 12 14 15 10 10 10 10 10 10 10 10 10 10 10 10 10
- to dom						
-50 dBm-						
ou ubm						
-60 dBm-						
-oo abiii						
					-	
Start 1.0	GHZ		691 pt	'S		Stop 26.5 GHz
larker						
Marker Type I	Ref Trc	X-value	Y-value	Function	Func	tion Result
Marker	Ref Trc	X-value 5.816 GH 18.1046 GH	iz 12.15 dBm	Function	Fund	tion Result

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Report No.: AAEMT/RF/230322-04-01

Spectrum	1						
Ref Level 30.0 Att		👄 🕅 T 102 ms 👄 🕅	RBW 1 MHz	Mode Auto Sw			
1Pk View	10 00 314	1 102 ms 🖷 1	DW SIMIS	Mode Adto Si	ieep		
				M1[1			7.88 dBn 5.7790 GH 30.83 dBn
20 d8m				M2[1	1		5.4110 GH
10 dBm	MI		-			-	
0 dBm							
-10 d8m	_					_	
-20 dBm						-	
-30 dBm-	27.000 dBm-			M2 Allona La	a and the contra	and the second	
tal aputo antipatication	al with a state way	strationed	upluhorna	www.aw	unthurphy	ourse Multiplier	Manahuriwhan
-50 dBm			-				
-60 dBm							

Ref Level 30.0 Att		RBW 1 ms VBW	1 MHz 3 MHz M	ode Auto Sw	eep		
1Pk Max				M1[[1]		-39.26 dBn 840.70 MH
20 dBm			-			-	
10 dBm			2				
D dBm							
-10 dBm							
-20 dBm							
-30 dBm	27.000 dBm						
-40 dBm	I contra		Transmon com		t	mi mi	ANHANA , LANA
.50 dBm	university	mathing	norman	and an	meaning and the a	- contraction of the	
60 d8m		_					

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Report No.: AAEMT/RF/230322-04-01

Spectrum			
Ref Level 30.00 dBm	👜 RBW 1 MHz		
	WT 102 ms 🖷 VBW 3 MHz	Mode Auto Sweep	
1Pk View	1	100513	na ac due
		M2[1]	-31.16 dBn 15.4110 GH
20 dBm		M1[1]	7.33 dBn
			5.8160 GH
10 dBm			
0 dBm			
-10 dBm			
-20 dBm	24		
D1 -27.000 dBm		M2	
-30 dBm		standardrawnhoritestale	or were the second
1 marcine the march of the start	a been only a share filling them of	standing of a comparison	many philipping and philipping
AOId8n/www			
-50 dBm			
-60 d8m			
-oo ubiii			

Att	80.00 dBm 40 dB S 1	WT 1 ms 🖷 VB	W 3 MHz Mode	Auto Sweep		
1Pk Max	1	1				
				M1[1]		-39.02 dBn 917.90 MH
20 dBm			-		+ +	
10 dBm			-			
0 dBm						
-10 dBm						
-20 d8m					-	
DI	-27.000 d8m-					
-30 dBm			-			
						MI
40 dBm	shapelabaranters	malihurun	multiple Pergunal adde	Huntmalulturies	allamatical	when the design of the second
-50 dBm						
-50 0010						

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Report No.: AAEMT/RF/230322-04-01

ac80 5.775 GHz

Spectrum				
RefLevel 20.00 dBm Att 30 dB SWT 1 ms V	BW 1 MHz BW 3 MHz Mod	e Auto Sweep		
1Pk Max				
		M1[1]		-48.71 dBn 833.70 MH
10 dBm				
D dBm	_			
-10 dBm				
-20 dBm-				
-30 dBm				
-40 dBm			M1	
59. dBM www. allow and a section was	a superior and a superior	when and the second		and a state of the second
-60 d8m-				
-70 dBm				
Start 30.0 MHz	691 pt	s		Stop 1.0 GHz
1arker Type Ref Trc X-value	Y-value	Function	Function R	locult
M1 1 833.7 MHz	-48.71 dBm	Function	runction	esuit

Ref Level	20.00 dBm		RBW 1 MHz			(W
Att	30 dB	SWT 102 ms 🖷	VBW 3 MHz N	lode Auto Sweep	8	
1Pk Max						
				M2[1]		-39.89 dBn
10 dBm	MI			M1[1]		1.5720 GH 6.55 dBn
	1			WILLI		5.8160 GH
0 dBm					+	
-10 dBm						
-20 dBm						
-30 dBm	21 -27.000	dBm	_			
US UDIII					-	
M2				_		
M2	- analy N	halling and a week wat	A Annukana	www.hund	Annalian	e mariaret perception
M2	mension	would get and the designed	a runahanan	nourithment	Rowaldshare	frances have been been all and the
M2 -40 dBm	manufield	uning planed a she have	antur estructures	nonvolumed	Manageneration	y manakal parket in
M2	nousid	were placed and the second	an terrestance	nownshere	Renkinstand	y manager and proceedings
M2 -40 dBm	newser	when and the sea	an the second	monorman	Anna Anna Anna	waracher Jacobard
-60 dBm	newstern	when and the sea	an terrestance	monnihumoh	Prinking way	ev anather production
-60 dBm -70 dBm		and years where	a		Proventier	Stop 26.5 GHz
M2 -40 dBm -60 dBm -70 dBm -70 dBm Start 1.0 GF Marker	Hz		691 ;	ots		Stop 26.5 GHz
M2 -40 dBm -60 dBm -70 dBm -70 dBm Start 1.0 GF Marker		Х- volue 5.816 GHz		its		

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

ax20 5.745 GHz

Spectrum Ref Level 30.00 dBm				[₩ ▼
Att 40 dB	SWT 1 ms . VB	WIMHz WI3MHz Mod	e Auto Sweep	
91Pk Max				
			M1[1]	-39.63 dBm 889.80 MHz
20 dBm-			1	
10 dBm				
0 dBm				
-10 dBm				
-20 dBm-				
-30 dBm D1 -27.000 dB	m			
-40 dBm	a little advector	I A R	ithe the mark and	M1
-50 dBm	n an the fore-fore-fore and and a	charter and a	1.00.00	
-60 dBm-				
Start 30.0 MHz		601 pt	-	Ctop 1 9 CUz
Start 30.0 MHZ Marker		691 pt	5	Stop 1.0 GHz
Type Ref Trc	X-value 889.8 MHz	Y-value -39.63 dBm	Function	Function Result

Reft	evel	30.00 dBr	n	👄 B	BW 1 MHz				
Att		40 d				de Auto Sw	reep		
DIPk Vi	iew/			1975					
20 dBm	_	M				M2[1 M1[1			-29.88 dBn 15.4110 GH 10.03 dBn 5.7420 GH
10 dBm		Ť		+	-	+		-	
0 dBm-	_			-				_	-
-10 dBn	n				_			_	
-20 dBn	n							_	
-30 dBr	D	1 -27.000	d8m	-	-	M2			
		march	al and	TH and	www.	multina an	mitistulinustation	multimpa	Muncherenally
040-88h	Map 2627		- Aller and a	IL A DR. AM.					
	n								
-50 dBn									
-50 dBn -60 dBn	n								
-60 dBn Start 1	.0 GH	z			691 pt	s		Sto	p 26.5 GHz
-60 dBn Start 1 Marker	.0 GH								
	.0 GH		x-valu	1e 742 GHz	691 pt Y-value 10.03 dBm	s Function	•	Sto Function Resu	

156 | P a g e

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

ax20 5.825 GHz

Spect	rum						
Ref L	evel	30.00 dBr 40 d		BW 1 MHz BW 3 MHz Mod	e Auto Sweep		
1Pk M	ах		1				
					M1[1]		-39.07 dBm
20 dBm	-				- f		972.60 MHz
10 dBm	+						
0 dBm-	-						_
-10 dBn	n			-			
-20 dBm	n	_					
-30 dBn	1	1 -27.000) d8m				
-40 dBm							M1
a Hursel	ingrad	alumation	well-march-hardwith	central providence of the second seco	which w	hundren was and	the hyperbolic sectors and
-50 dBn	-						
-60 dBn	n						
Start 3	0.0 N	1Hz		691 pt	5		Stop 1.0 GHz
Marker		1 - 1	1000 10000 BL 10000	11 (140/02/2003)	II. 34-38-384-384-11		100.000
Type M1	Ref	1 Trc	X-value 972.6 MHz	-39.07 dBm	Function	Function Re	suit

							9
Att	vel 30.00 d8 40 (BW 1 MHz	2 C N A		
Att 1Pk Ma	10.00	15 SWI 1	02 ms 🖷 💙	BW 3 MHZ MO	de Auto Sweep		
IFK Ma	×		1		hants 1		on on do
					M2[1]		-29.80 dB 18.1410 G
20 dBm-	_		+		M1[1]		12.50 dB
	N	11			INTET1		5.8160 G
10 dBm-			-			-	0.0100 01
0 dBm-	_	<u> </u>					
			1				
-10 dBm-							
TO GOM			1				
-20 dBm-				· · · · · ·			
-20 000						10	
-30 dBm-	D1 -27.00	IO dBm			M		
-ou uom	I.L.A.	line .	1	ALLAN AL ALLAND	a monther way	Month Marine my	got man a present
40 dBm	- which have	Mutha	Manan	And the a dialog	763.S		A CONTRACTOR OF MARKED
-40 upin							
50 dam.			2 C				
-50 dBm-							
-50 dBm- -60 dBm-							
-60 dBm-				691 pts			Stop 26.5 GH
-60 dBm- Start 1.				691 pts			Stop 26.5 GH
-60 dBm- Start 1. Marker		X-valu	e	691 pts Y-value	Function	Fun	Stop 26.5 GH
-60 dBm- Start 1. Marker	0 GHz		e			Fun	

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

ax40 5.755 GHz

Spectrur	n					
Ref Leve Att	al 30.00 d8m 40 d8		WIMHZ WI3MHZ Mod	e Auto Sweep		
1Pk Max		1				
				M1[1]		-39.21 dBm 851.90 MHz
20 d8m	-			1		651.90 Miriz
10 dBm	-					
0 dBm	-					
-10 dBm						
-20 dBm—	-					
-30 dBm	01 -27.000	dBm	-			
-40 d8m	Ma Same & a	anno anno anno	A to be and to water	all and wet belle had	M.M. Munder	M1 What when the strathy
-50 d8m-		a new first and a distant	- Produce of the last			
-60 dBm						
Start 30.0) MHz		691 pt	s		Stop 1.0 GHz
Marker						
Type Re M1	ef Trc	X-value 851.9 MHz	Y-value -39.21 dBm	Function	Functio	on Result
						AF 61 3633

Spect	um										
Ref Le	evel 3	80.00 d 40		SWT 1		NBW 1 MHz NBW 3 MHz	Mode Aut	o Sween			
1Pk Vi	9W		0.05	0111 10		on one	House Hat	e sweep	S.		
					T		N	11[1]			8.65 dBn
20 dBm-											5.7790 GH
LU UDIII							N	12[1]			-32.40 dBn 6.4070 GH
10 dBm-			MI					1	+	4	0.4070 GH
0 dBm-								+		_	-
-10 dBm					-		-	+		_	
			1								
-20 dBm		_						-		-	S
	0	-27.0	00 dBr	m		_		12		_	-
-30 dBm						-	Muga	Ridy Sin	Machanda	aller in	And the second second
-HD-diam	tone	manahara	Negers	Lehnen	nound	-Humanya	where	a dea	actor of the	mysmouth	a produce to the second
Although a series											
-50 dBm			_							_	
-60 dBm			_			-		-		-	
					1						
Start 1	O GH	z			1	691	pts	1		Sto	p 26.5 GHz
Marker											
Type	Ref	Trc	X-value Y-value		X-value		Fund	Function		Function Result	
M1		1			79 GHz	8.65 d8					
M2		1		16.4	07 GHz	-32.40 dB	m				

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Report No.: AAEMT/RF/230322-04-01

ax40 5.795 GHz

Spectrum)				Em ▽
Ref Level 30. Att		🖷 RBW 「1ms 🖷 VBW		Auto Sweep	
• 1Pk Max				1.107	
				-39.92 dBm 517.80 MHz	
20 d8m-					
10 dBm					
0 dBm					
-10 dBm	-				
-20 d8m					
-30 dBm 01 -	27.000 dam-	-			
-40 dBm	and alight a short and	u Ana an u u uali	M1	wortherall	the month of the stand of the stand
-50 dBm	- (r i i i i i i i i i i i i i i i i i i	and and a construction of	and and the second s		
-60 d8m					
Start 30.0 MHz			691 pts		Stop 1.0 GHz
Marker Type Ref Ti	w l	alue	Y-value	Function	Function Result
M1 M1	1 X-V	517.8 MHz	-39.92 dBm	Function	Punction Result

Spect		30.00 dBr	n 🖷	RBW 1 MHz			
Att		40 d	B SWT 102 ms 🖷	VBW 3 MHz M	ode Auto Swee	ep	
DIPk Vi	ew		2			20.	
					M2[1]		-31.04 dBn
20 dBm-	_				M1[1]		16.4070 GH 8.75 dBn
		M			WITET1		5.8160 GH
10 dBm·		IVI.	-			+	-
0 dBm-							
-10 dBm							
-20 dBm				-		-	
-	0	1 -27.000) dBm		N2		
-30 dBm					Manhana	LARAMA And a	a bian markark
-40.40	melled	utermut	and more many	myslephenularkeiter	willing	a stran white	- and a second second
Jerter state							
-50 dBm			-	-			
-60 dBm							
Start 1	.0 GH	z		691 p	s		Stop 26.5 GHz
Marker					2640		
Type	Ref	Trc	X-value	Y-value	Function	Fun	ction Result
M1		1	5.816 GHz	8.75 dBm			
M2		1	16.407 GHz	-31.04 dBm			

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

Report No.: AAEMT/RF/230322-04-01

ax80 5.775 GHz

Spectrum				
Ref Level 20.00 d8 Att 30 d		W 1 MHz W 3 MHz Mod	e Auto Sweep	
• 1Pk Max				
			M1[1]	-49.35 dBm 975.40 MHz
10 dBm				
0 dBm				
-10 dBm				
-20 dBm				
-30 dBm	0 dBm			
-40 dBm	-			
-50 dBm White marked from -60 dBm	with the second state of t	wanter and which	international Menterse	III Multimetrication of the second second
-70 d8m				
Start 30.0 MHz		691 pt	s	Stop 1.0 GHz
Marker				
Type Ref Trc M1 1	X-value 975.4 MHz	Y-value -49.35 dBm	Function	Function Result

Spectro	um)					E S
	vel 20.0			RBW 1 MHz			
Att 1Pk Ma:		30 dB	SWI 102 ms	VBW 3 MHz N	Iode Auto Swee	P.	
TEK MB	~	-	1		M2[1]	1	-38.09 dBm
		MI			met 11		1.5720 GH
10 dBm-		7			M1[1]		8.51 dBn
							5.8160 GH
0 dBm-						+	-
-10 dBm-							
-20 dBm-	-						
	01 -2	7.000 di	m				
-30 dBm-	U+ 1	11		-			
M2		1					
-40 dBm-				and the second	Manute	MANINADA	The second second second second second
	Underly	an the	Themandown	anthrough	when	APR - APR	munumum
-50 dBm-		-	of the other				
-60 dBm-		-					
-70 dBm-	-	-					
Start 1.	0 GHz			691	ots		Stop 26.5 GHz
Marker							
	Ref Tro	:	X-value	Y-value	Function	Fun	ction Result
M1		1	5,816 GH				
M2		1	1.572 GH	z -38.09 dBr	n		

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels

11. ANTENNA REQUIREMENTS

11.1. Limit

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

11.2. EUT ANTENNA

The antennas used for this product are Integrated antenna and that no antenna other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is 17 dBi. and the antenna connector is designed with permanent attachment and no consideration of replacement. Therefore the EUT is considered sufficient to comply with the provision.

End of report

161 | Page

Plot No.174, Udyog Vihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact:0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>

Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels