

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: JYTSZE200906602

FCC REPORT

Applicant: Teracube Inc

Address of Applicant: 16625 Redmond Way, Ste M #175 Redmond, Washington

98052 USA

Equipment Under Test (EUT)

Product Name: Smart Phone

Model No.: Teracube 2e

Trade mark: teracube

FCC ID: 2AT6G-TERACUBE2E

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 16 Sep., 2020

Date of Test: 16 Sep., to 14 Oct., 2020

Date of report issued: 15 Oct., 2020

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version

Version No.	Date	Description
00	15 Oct., 2020	Original

Tested by:	Janet Test Engin		Date:	15 Oct., 2020	
Reviewed by:	Winner M	lang	Date: _	15 Oct., 2020	
	Droinot Engl	inoor			

Project Engineer

3 Contents

			Page
1	COV	ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4		T SUMMARY	
- 5		IERAL INFORMATION	
Э	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST ENVIRONMENT AND MODE	6
	5.4	DESCRIPTION OF SUPPORT UNITS	6
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
	5.7	LABORATORY FACILITY	
	5.8	LABORATORY LOCATION	7
	5.9	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT:	8
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	12
	6.4	OCCUPY BANDWIDTH	14
	6.5	POWER SPECTRAL DENSITY	17
	6.6	BAND EDGE	19
	6.6.1		
	6.6.2		
	6.7	SPURIOUS EMISSION	
	6.7.1		
	6.7.2	Radiated Emission Method	32
7	TES	T SETUP PHOTO	38
8	EUT	CONSTRUCTIONAL DETAILS	39
_			

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass

Remark:

Test Method:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

ANSI C63.4-2014 ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	Teracube Inc
Address:	16625 Redmond Way, Ste M #175 Redmond, Washington 98052 USA
Manufacturer:	Teracube Inc
Address:	16625 Redmond Way, Ste M #175 Redmond, Washington 98052 USA

5.2 General Description of E.U.T.

3.2 General Descripti	011 01 2:0:11:
Product Name:	Smart Phone
Model No.:	Teracube 2e
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps & 2Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0.6 dBi
Power supply:	Rechargeable Li-ion Battery DC3.85V-4000mAh
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and mode

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		
Test mode:			
Transmitting mode	Keep the EUT in continuous transmitting with modulation		

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

● ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.9 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2020	07-21-2021
Loop Antenna	SCHWARZBECK	FMZB1519B	044	03-07-2020	03-06-2021
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-07-2020	03-06-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2020	03-06-2021
Horn Antenna	COLIMADZDECK	DDLIAGAGOD	4005	06-22-2020	06-21-2021
nom Antenna	SCHWARZBECK	BBHA9120D	1805	06-19-2020	06-20-2021
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2019	11-17-2020
EMI Test Software	AUDIX	E3	V	ersion: 6.110919t)
Pre-amplifier	HP	8447D	2944A09358	03-07-2020	03-06-2021
Pre-amplifier	CD	PAP-1G18	11804	03-07-2020	03-06-2021
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-05-2020	03-04-2021
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2019	11-17-2020
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-05-2020	03-04-2021
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2020	03-06-2021
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2020	03-06-2021
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2020	03-06-2021
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0		

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-05-2020	03-04-2021
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-05-2020	03-04-2021
LISN	CHASE	MN2050D	1447	03-05-2020	03-04-2021
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2020	07-20-2021
Cable	HP	10503A	N/A	03-05-2020	03-04-2021
EMI Test Software	AUDIX	E3	Version: 6.110919b		

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is 0.6 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207	FCC Part 15 C Section 15.207		
Test Frequency Range:	150 kHz to 30 MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9kHz, VBW=30kHz			
Limit:	Frequency range (MHz)	Limit ((dBuV)	
	, , , , , ,	Quasi-peak	Average	
	0.15-0.5			
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logarithm	of the frequency.		
Test procedure:	The E.U.T and simulators line impedance stabilizati 50ohm/50uH coupling implements. The peripheral devices at LISN that provides a 50ole.	on network (L.I.S.N.), who pedance for the measuring also connected to the	nich provides a nice of the	
	termination. (Please refer to the block diagram of the test setup and photographs).			
	3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10(latest version) on conducted measurement.			
Test setup:	Reference Plane			
	AUX Equipment E.U.T	80cm LISN Filter Filter Receiver	– AC power	
	Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Net Test table height=0.8m	iwork		
Test Instruments:	Refer to section 5.9 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Product name:	Smart Phone	Product model:	Teracube 2e
Test by:	Janet	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5 °C Huni: 55%

	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu₹	<u>ab</u>	<u>d</u> B	dB	—dBu∀	dBu√	<u>dB</u>	
1	0.665	21.15	-0.51	-0.39	10.77	31.02	46.00	-14.98	Average
2	0.751	21.91	-0.55	-0.24	10.79	31.91	46.00	-14.09	Average
2	0.809	25.23	-0.57	-0.05	10.81	35.42	46.00	-10.58	Average
4	9.451	32.44	-0.70	1.85	10.92	44.51	60.00	-15.49	QP
4 5 6	11.139	36.86	-0.72	2.38	10.93	49.45	60.00	-10.55	QP
6	12.988	37.85	-0.70	3.01	10.91	51.07	60.00	-8.93	QP
7	15.552	39.67	-0.71	3.30	10.90	53.16	60.00	-6.84	QP
8 9	15.635	23.19	-0.72	3.22	10.90	36.59	50.00	-13.41	Average
9	16.750	41.99	-0.76	2.60	10.91	54.74	60.00	-5.26	QP
10	16.839	27.14	-0.76	2.52	10.91	39.81	50.00	-10.19	Average
11	17.568	43.46	-0.79	2.13	10.92	55.72	60.00	-4.28	QP
12	17.568	30.19	-0.79	2.13	10.92	42.45	50.00	-7.55	Äverage

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

Product name:	Smart Phone	Product model:	Teracube 2e
Test by:	Janet	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5 °C Huni: 55%

	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>ab</u>	<u>ab</u>	<u>ab</u>	—dBu∀	—dBu√	<u>ab</u>	
1	0.162 0.751	18.78 34.32	-0.68 -0.65	0.01 0.05	10.77 10.79	28.88 44.51		-26.46 -11.49	Average
3	0.751	20.28	-0.65	0.05	10.79	30.47	46.00	-15.53	Äverage
4	2.167 4.822	20.76 34.66	-0.70 -0.64	0.20 0.65	10.95 10.86	31.21 45.53		-14.79 -10.47	Average
234 56789	7.606	34.87	-0.76	0.00	10.83	45.91		-14.09	5.40 T. 10.100
7	12.449	22.89	-0.80	2.33	10.92	35.34			Average
9	13.267 16.839	36.27 40.20	-0.80 -1.00	2.57 1.96	10.91 10.91	48.95 52.07	60.00	-11.05 -7.93	
10	16.839	28.02	-1.00	1.96	10.91	39.89		-10.11	Average
11 12	17.475 17.568	30.19 40.00	-1.05 -1.07	1.63 1.55	10.92 10.92	41.69 51.40	50.00 60.00		Average QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

6.3 Conducted Output Power

Measurement Data:

wicasarciniciti Data.						
Test CH	Maximum Conduc (dB		Limit(dBm)	Result		
	1M PHY	2M PHY				
Lowest	-2.34	-2.43				
Middle	-3.23	-3.16	30.00	Pass		
Highest	-1.58	-1.52				

Test plot as follows:

6.4 Occupy Bandwidth

Measurement Data:

Test CH	6dB Emission B	andwidth (MHz)	Limit(kHz)	Result	
lest on	1M PHY	2M PHY	LIIIII(KHZ)		
Lowest	0.690	1.190			
Middle	0.696	1.190	>500	Pass	
Highest	0.696	1.190			
Test CH	99% Occupy Ba	andwidth (MHz)	Limit(kHz)	Result	
lest Oil	1M PHY	2M PHY	Littit(KI IZ)		
Lowest	1.044	2.080			
Middle	1.044	2.090	N/A	N/A	
Highest	1.044	2.080			

Test plot as follows:

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)				
Limit:	8 dBm/3kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

Test CH	•	ctral Density '3kHz)	Limit (dBm/3kHz)	Result	
	1M PHY	2M PHY	(UBIII/SKIIZ)		
Lowest	-17.64	-20.38		Pass	
Middle	-18.57	-21.37	8.00		
Highest	-16.77	-19.56			

Test plots as follow:

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.9 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plots as follow:

6.6.2 Radiated Emission Method

0.0.2 Radiated Ellission	i ilicuioa							
Test Requirement:	FCC Part 15 (C Section 15.20	5 and 15.209					
Test Frequency Range:	2310 MHz to 2	2310 MHz to 2390 MHz and 2483.5MHz to 2500 MHz						
Test Distance:	3m							
Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
		RMS	1MHz	3MHz	Average Value			
Limit:	Frequer	ncy Lir	mit (dBuV/m @3		Remark			
	Above 10	GHz	54.00 74.00	A	verage Value Peak Value			
Test Procedure:	the groun to determ 2. The EUT antenna, tower. 3. The anter the groun Both horiz make the 4. For each case and meters ar to find the 5. The test-Specified 6. If the emite the limits of the EU have 10 ce	d at a 3 meter ine the position was set 3 meter which was more many height is want to determine zontal and vertice measurement. Suspected emit then the antened the rota table maximum reareceiver system Bandwidth with ssion level of the specified, then the trould be repaired.	ed emission, the EUT was arranged to its worst antenna was tuned to heights from 1 meter to 4 ta table was turned from 0 degrees to 360 degrees					
Test setup:	AE Wagg	furntable) Ground Test Receiver	Horn Artenna Reference Plane Pre- Amplifer Cont	Antenna Tower				
Test Instruments:	Refer to section	on 5.9 for detail	s					
Test mode:	Refer to section	on 5.3 for detail	s					
Test results:	Passed							

1M PHY:

Product Name:	SmartPhone	Product Model:	Teracube 2e
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Lowestchannel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp:24°C Huni:57%

Freq		Antenna Factor						Over Limit	
MHz	dBu₹	dB/m	₫B	₫B	−−−−dB	dBuV/m	dBu∜/m	<u>dB</u>	
2390.000 2390.000									

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Smart Phone	Product Model:	Teracube 2e
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Lowestchannel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Freq		Antenna Factor							
MHz	₫₿uѶ	<u>dB</u> /m	₫B	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
2390.000 2390.000									

- $1. \ \ \textit{Final Level} = \textit{Receiver Read level} + \textit{Antenna Factor} + \textit{Cable Loss} \textit{Preamplifier Factor}.$
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Smart Phone	Product Model:	Teracube 2e
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Highestchannel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp:24 [℃] Huni:57%

Freq						Aux Preamp Factor Factor		Limit Line		
2	MHz	dBu∜	<u>dB</u> /m		<u>ab</u>	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dB}\overline{uV}/\overline{m}$	<u>ab</u>	
	2483.500 2483.500									

- $1. \ \ \textit{Final Level} = \textit{Receiver Read level} + \textit{Antenna Factor} + \textit{Cable Loss} \textit{Preamplifier Factor}.$
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Smart Phone	Product Model:	Teracube 2e
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Highestchannel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp:24°C Huni:57%

	Freq	Read/ Level	Antenna Factor	Cable Loss	Aux Factor	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u> /m	<u>ab</u>	<u>d</u> B	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$		
1 2	2483.500 2483.500									

- $1. \ \ \textit{Final Level} = \textit{Receiver Read level} + \textit{Antenna Factor} + \textit{Cable Loss} \textit{Preamplifier Factor}.$
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

2M PHY:

Product Name:	Smart Phone	Product Model:	Teracube 2e
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Lowestchannel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp:24 [°] C Huni:57%

Free		Antenna Factor							
MHz	z dBuV	<u>dB</u> /m	<u>d</u> B	<u>q</u> B	<u>dB</u>	$\overline{dB}\overline{uV/m}$	dBuV/m	<u>dB</u>	
2390.000 2390.000									

Remark:

- 3. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 4. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Smart Phone	Product Model:	Teracube 2e
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Lowestchannel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp:24 [°] C Huni:57%

	Freq	Read Level	Antenna Factor	Cable Loss	Aux Factor	Preamp Factor	Level	Limit Line	Over Limit	
	MHz	₫₿u₹	<u>dB</u> /m	₫B	<u>d</u> B	dB	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000									

- 3. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 4. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Smart Phone	Product Model:	Teracube 2e
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Highestchannel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp:24℃ Huni:57%

	Freq		Antenna Factor					Over Limit	
-	MHz	dBu∇	<u>d</u> B/π	 <u>ab</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
	2483.500 2483.500								

- $3. \ \ \textit{Final Level} = \textit{Receiver Read level} + \textit{Antenna Factor} + \textit{Cable Loss} \textit{Preamplifier Factor}.$
- 4. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Smart Phone	Product Model:	Teracube 2e
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Highestchannel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp:24 [℃] Huni:57%

	Freq				Cable Aux Preamp Loss Factor Factor			Limit Line	Remark
-	MHz	dBu∜	<u>dB</u> /m	<u>d</u> B	<u>ab</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	
	2483.500 2483.500								

- 3. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 4. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)								
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.								
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane								
Test Instruments:	Refer to section 5.9 for details								
Test mode:	Refer to section 5.3 for details								
Test results:	Passed								

Test plot as follows:

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	FCC Part 15 C Section 15.205 and 15.209							
Test Frequency Range:	9kHz to 25GHz								
Test Distance:	3m								
Receiver setup:	Frequency	Detector	RBW	VB	W	Remark			
· ·	30MHz-1GHz	Quasi-peak	120KHz	300	KHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz	3M		Peak Value			
		RMS	1MHz	3M					
Limit:	Frequenc		mit (dBuV/m @	3m)	_	Remark			
	30MHz-88M		40.0			luasi-peak Value			
	88MHz-216N		43.5			Quasi-peak Value			
	216MHz-960I		46.0			Quasi-peak Value			
	960MHz-1G	HZ	54.0		Q	Quasi-peak Value			
	Above 1GH	łz —	54.0 74.0			Average Value Peak Value			
Test Procedure:	1GHz)/1.5r The table we highest rad antenna, we tower. 3. The antenry the ground Both horizon make the meters and to find the meters and	m(above 1GHwas rotated 3 iation. was set 3 minimum reasurement. Suspected en the ante I the rota table maximum reasurement siscon level of the cified, then the mould be reasurement and with the rota table maximum reasurement and with the rota table and with	dz) above the 360 degrees to see a saway unted on the towaried from one the maximutical polarizations was tuned e was turned ding. The EUT in percesting could be ported. Other lid be re-tested	e groun o deter from the op of a ane met um valuions of EUT was d to he from 0 to Pea old Mo ak mod be stop wise the d one b	d at a rmine ne inter to fue of the a as arracights degreede. When the degree de was ped arre e emisy one	table 0.8m(below a 3 meter camber. the position of the efference-receiving ble-height antenna four meters above the field strength. antenna are set to anged to its worst from 1 meter to 4 tes to 360 degrees tect Function and a 10 dB lower than and the peak values ssions that did not using peak, quasi-reported in a data			
Test setup:	Below 1GHz Turn Table Ground Plane Above 1GHz	4m 4m 0.8m lm			Antenna Search Antenn Test eiver —	1			

Measurement Data (worst case):

Below 1GHz:

Product Name:	Smart Phone	Product Model:	Teracube 2e		
Test By:	Janet	Test mode:	BLE Tx mode		
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp:24℃ Huni:57%		

	Freq	ReadAntenna Freq Level Factor						Limit vel Line I		Remark
-	MHz	—dBu∇	— <u>dB</u> /m	<u>d</u> B	<u>ab</u>	<u>ab</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	38.888	47.86	12.76	0.35	0.00	29.91	31.06	40.00	-8.94	QP
2	77.865	43.34	12.25	0.47	0.00	29.66	26.40	40.00	-13.60	QP
3	159.225	45.92	15.38	0.63	0.00	29.14	32.79	43.50	-10.71	QP
4	167.824	46.19	16.10	0.65	0.00	29.07	33.87	43.50	-9.63	QP
5	205.675	41.89	18.32	0.73	0.00	28.79	32.15	43.50	-11.35	QP
6	245.951	36.17	18.48	0.77	0.00	28.56	26.86	46.00	-19.14	QP

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Product Name:	SmartPhone	Product Model:	Teracube 2e
Test By:	Janet	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp:24°C Huni:57%

	Freq		Antenna Factor			Preamp Factor		Limit Line	Over Limit	Remark
-	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>ab</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	77.865	39.20	12.25	0.47	0.00	29.66	22.26	40.00	-17.74	QP
2	100.934	41.00	8.97	0.52	0.00	29.52	20.97	43.50	-22.53	QP
3	170.793	45.95	16.54	0.66	0.00	29.04	34.11	43.50	-9.39	QP
4	195.137	47.42	17.80	0.71	0.00	28.86	37.07	43.50	-6.43	QP
5	203.523	47.14	18.32	0.72	0.00	28.81	37.37	43.50	-6.13	QP
6	254.728	44.13	18.52	0.79	0.00	28.53	34.91	46.00	-11.09	QP

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz 1M PHY:

	Test channel: Lowest channel											
	Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4804.00	47.79	30.78	6.80	2.44	41.81	46.00	74.00	-28.00	Vertical			
4804.00	47.77	30.78	6.80	2.44	41.81	45.98	74.00	-28.02	Horizontal			
				Detector:	Average Va	alue						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4804.00	39.49	30.78	6.80	2.44	41.81	37.70	54.00	-16.30	Vertical			
4804.00	39.26	30.78	6.80	2.44	41.81	37.47	54.00	-16.53	Horizontal			
			T		el: Middle cl or: Peak Val							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4884.00	48.09	30.96	6.86	2.47	41.84	46.54	74.00	-27.46	Vertical			
4884.00	47.48	30.96	6.86	2.47	41.84	45.93	74.00	-28.07	Horizontal			
				Detector:	Average Va	alue						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4884.00	39.94	30.96	6.86	2.47	41.84	38.39	54.00	-15.61	Vertical			
4884.00	39.67	30.96	6.86	2.47	41.84	38.12	54.00	-15.88	Horizontal			
			Te	est channe	el: Highest c	hannel						
				Detecto	r: Peak Val	ue						
	Read	Antenna	Cable	Aux	Preamp		Limit	Over				

	Test channel: Highest channel											
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4960.00	48.26	31.11	6.91	2.49	41.87	46.90	74.00	-27.10	Vertical			
4960.00	47.29	31.11	6.91	2.49	41.87	45.93	74.00	-28.07	Horizontal			
				Detector:	Average V	alue						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4960.00	39.55	31.11	6.91	2.49	41.87	38.19	54.00	-15.81	Vertical			
4960.00	39.95	31.11	6.91	2.49	41.87	38.59	54.00	-15.41	Horizontal			

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss + Aux Factor - Preamplifier Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

2M PHY

M PHY:											
		Te	est channe	el: Lowest cl	hannel						
Detector: Peak Value											
Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
48.09	30.78	6.80	2.44	41.81	46.30	74.00	-27.70	Vertical			
47.07	30.78	6.80	2.44	41.81	45.28	74.00	-28.72	Horizontal			
Detector: Average Value											
Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
39.99	30.78	6.80	2.44	41.81	38.20	54.00	-15.80	Vertical			
39.40	30.78	6.80	2.44	41.81	37.61	54.00	-16.39	Horizontal			
		To	est chann	el: Middle cl	nannel						
			Detecto	r: Peak Val	ue						
Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
48.30	30.96	6.86	2.47	41.84	46.75	74.00	-27.25	Vertical			
47.09	30.96	6.86	2.47	41.84	45.54	74.00	-28.46	Horizontal			
			Detector:	Average Va	alue						
Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
39.67	30.96	6.86	2.47	41.84	38.12	54.00	-15.88	Vertical			
39.45	30.96	6.86	2.47	41.84	37.90	54.00	-16.10	Horizontal			
		Т.		al. I limbaat a	hannal						
		16									
Pond	Antonno	Cablo			ue	Limit	Over				
Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Factor (dB)	Level (dBuV/m)	Line (dBuV/m)	Limit (dB)	Polarization			
48.53	31.11	6.91	2.49	41.87	47.17	74.00	-26.83	Vertical			
47.09	31.11	6.91	2.49	41.87	45.73	74.00	-28.27	Horizontal			
			Detector:	Average Va	alue						
Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
39.51	31.11	6.91	2.49	41.87	38.15	54.00	-15.85	Vertical			
	Level (dBuV) 48.09 47.07 Read Level (dBuV) 39.99 39.40 Read Level (dBuV) 48.30 47.09 Read Level (dBuV) 39.67 39.45 Read Level (dBuV) 48.53 47.09 Read Level (dBuV)	Level (dBuV) Factor (dB/m) 48.09 30.78 47.07 30.78 Read Antenna Level (dBuV) (dB/m) 39.99 30.78 39.40 30.78 Read Antenna Level (dBuV) (dB/m) 48.30 30.96 47.09 30.96 Read Antenna Factor (dBuV) (dB/m) 39.45 39.45 30.96 39.45 30.96 47.09 31.11 47.09 31.11 47.09 31.11 47.09 31.11 47.09 31.11 47.09 31.11 47.09 31.11	Read Level Factor (dBuV) Antenna (dB/m) Cable Loss (dBuV) 48.09 30.78 6.80 47.07 30.78 6.80 Read Antenna Cable Level Factor Loss (dBuV) (dB/m) (dB) 39.99 30.78 6.80 39.40 30.78 6.80 To an experimental Cable Level Factor Loss (dBuV) (dB/m) (dB) 48.30 30.96 6.86 47.09 30.96 6.86 47.09 30.96 6.86 39.45 30.96 6.86 39.45 30.96 6.86 39.45 30.96 6.86 Te an experimental Cable Loss (dBuV) (dB/m) (dB) (dB) 48.53 31.11 6.91 47.09 31.11 6.91 47.09 31.11 6.91 47.09 31.11 6.91	Read	Read Antenna Cable Level Factor Loss Factor Factor GBuV) (dB/m) (dB) (dB)	Read Antenna Cable Level (dBuV) (dB/m) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB	Read Antenna Cable Aux Preamp Level (dBuV) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB	Detector: Peak Value			

Remark:

4960.00

39.72

2.49

41.87

38.36

54.00

-15.64

31.11

6.91

Project No.: JYTSZE2009066

Horizontal

 $^{3. \}quad \textit{Final Level} = \textit{Receiver Read level} + \textit{Antenna Factor} + \textit{Cable Loss} + \textit{Aux Factor} - \textit{Preamplifier Factor}.$

^{4.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.