

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1 DASY Version DASY52 52.10.4 Extrapolation Advanced Extrapolation Triple Flat Phantom 5.1C Phantom Distance Dipole Center - TSL 10 mm with Spacer Graded Ratio = 1.4 (Z direction) Zoom Scan Resolution dx, dy = 4 mm, dz = 1.4 mm 3900 MHz ± 1 MHz Frequency

Head TSL parameters at 3900MHz

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.5	3.32 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.8 ± 6 %	3.31 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 3900MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition		
SAR measured	100 mW input power	6.88 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	68.6 W/kg ± 24.4 % (<i>k</i> =2)	
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition		
SAR measured	100 mW input power	2.41 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	24.0 W/kg ± 24.2 % (<i>k</i> =2)	

Certificate No: 23J02Z80064

Page 3 of 6

	CALIBRATION LABORATORY	
Add: No.52 Ht Tel: +86-10-62 E-mail: emf@0	uaYuanBei Road, Haidian District, Beijing 304633-2117 caict.ac.cn http://www.caict.ac.cn	g, 100191, China
Appendix (Add Antenna Paran	litional assessments outsineters with Head TSL at 39	de the scope of CNAS L0570) 00MHz
Impedance, trar	nsformed to feed point	46.3Ω- 5.34jΩ
Return Loss		- 23.4dB
General Anten	na Parameters and Design	
Electrical Delay	(one direction)	1.008 ns
The division is used		able. The conter conductor of the feeding line is directly
The dipole is made connected to the soft the dipoles, sma according to the p affected by this ch No excessive force connections near the	e of standard semirigid coaxial c second arm of the dipole. The an all end caps are added to the dip osition as explained in the "Meas lange. The overall dipole length i e must be applied to the dipole a the feed-point may be damaged.	able. The center conductor of the feeding line is directly tenna is therefore short-circuited for DC-signals. On some pole arms in order to improve matching when loaded surement Conditions" paragraph. The SAR data are not is still according to the Standard. arms, because they might bend or the soldered
The dipole is made connected to the soft the dipoles, sma according to the p affected by this ch No excessive force connections near the Additional EUT	e of standard semirigid coaxial c second arm of the dipole. The an all end caps are added to the dip osition as explained in the "Meas ange. The overall dipole length i e must be applied to the dipole a the feed-point may be damaged. Data	able. The center conductor of the feeding line is directly tenna is therefore short-circuited for DC-signals. On some pole arms in order to improve matching when loaded surement Conditions" paragraph. The SAR data are not is still according to the Standard. arms, because they might bend or the soldered
The dipole is made connected to the soft the dipoles, sma according to the p iffected by this ch lo excessive force connections near the Additional EUT	e of standard semirigid coaxial c second arm of the dipole. The an all end caps are added to the dip osition as explained in the "Meas ange. The overall dipole length i e must be applied to the dipole a the feed-point may be damaged. Data	able. The center conductor of the feeding line is directly tenna is therefore short-circuited for DC-signals. On some pole arms in order to improve matching when loaded surement Conditions" paragraph. The SAR data are not is still according to the Standard. arms, because they might bend or the soldered
The dipole is made connected to the soft the dipoles, sma according to the p iffected by this ch to excessive force connections near the Additional EUT	e of standard semirigid coaxial c second arm of the dipole. The an all end caps are added to the dip osition as explained in the "Meas ange. The overall dipole length i e must be applied to the dipole a the feed-point may be damaged. Data	able. The center conductor of the feeding line is directly tenna is therefore short-circuited for DC-signals. On some pole arms in order to improve matching when loaded surement Conditions" paragraph. The SAR data are not is still according to the Standard. arms, because they might bend or the soldered SPEAG
The dipole is made connected to the soft the dipoles, small according to the p iffected by this ch to excessive force connections near the Additional EUT	e of standard semirigid coaxial c second arm of the dipole. The an all end caps are added to the dip osition as explained in the "Meas ange. The overall dipole length i e must be applied to the dipole a the feed-point may be damaged. Data	able. The center conductor of the feeding line is directly tenna is therefore short-circuited for DC-signals. On some bole arms in order to improve matching when loaded surement Conditions" paragraph. The SAR data are not is still according to the Standard. arms, because they might bend or the soldered SPEAG
The dipole is made connected to the soft the dipoles, small according to the p iffected by this ch to excessive force connections near the Additional EUT	e of standard semirigid coaxial c second arm of the dipole. The an all end caps are added to the dip osition as explained in the "Meas range. The overall dipole length i e must be applied to the dipole a the feed-point may be damaged. Data	able. The center conductor of the feeding line is directly tenna is therefore short-circuited for DC-signals. On some bole arms in order to improve matching when loaded surement Conditions" paragraph. The SAR data are not is still according to the Standard. arms, because they might bend or the soldered SPEAG
The dipole is made connected to the soft the dipoles, smale according to the p affected by this ch to excessive force connections near the Additional EUT	e of standard semirigid coaxial c second arm of the dipole. The an all end caps are added to the dip osition as explained in the "Meas range. The overall dipole length i e must be applied to the dipole a the feed-point may be damaged. Data	able. The center conductor of the feeding line is directly tenna is therefore short-circuited for DC-signals. On some bole arms in order to improve matching when loaded surement Conditions" paragraph. The SAR data are not is still according to the Standard. arms, because they might bend or the soldered SPEAG
The dipole is made connected to the soft the dipoles, smale according to the p affected by this ch to excessive force connections near the Additional EUT	e of standard semirigid coaxial c second arm of the dipole. The an all end caps are added to the dip osition as explained in the "Meas range. The overall dipole length i e must be applied to the dipole a the feed-point may be damaged. Data	able. The center conductor of the feeding line is directly tenna is therefore short-circuited for DC-signals. On some bole arms in order to improve matching when loaded surement Conditions" paragraph. The SAR data are not is still according to the Standard. arms, because they might bend or the soldered SPEAG
The dipole is made connected to the soft the dipoles, sma according to the p affected by this ch No excessive force connections near the Additional EUT	e of standard semirigid coaxial c second arm of the dipole. The an all end caps are added to the dip osition as explained in the "Meas range. The overall dipole length i e must be applied to the dipole a the feed-point may be damaged. Data	able. The center conductor of the feeding line is directly itema is therefore short-circuited for DC-signals. On some bole arms in order to improve matching when loaded surement Conditions" paragraph. The SAR data are not is still according to the Standard. arms, because they might bend or the soldered .
The dipole is made connected to the soft the dipoles, smale according to the patifected by this ch No excessive force connections near the Additional EUT Manufactured b	e of standard semirigid coaxial c second arm of the dipole. The an all end caps are added to the dip osition as explained in the "Meas range. The overall dipole length i e must be applied to the dipole a the feed-point may be damaged. Data	able. The center conductor of the feeding line is directly tenna is therefore short-circuited for DC-signals. On some bole arms in order to improve matching when loaded surement Conditions" paragraph. The SAR data are not is still according to the Standard.
The dipole is made connected to the soft the dipoles, smale coording to the p iffected by this ch to excessive force connections near the Additional EUT Manufactured b	e of standard semirigid coaxial c second arm of the dipole. The an all end caps are added to the dip osition as explained in the "Meas ange. The overall dipole length i e must be applied to the dipole a the feed-point may be damaged. T Data y	able. The center conductor of the feeding line is directly tenna is therefore short-circuited for DC-signals. On some bole arms in order to improve matching when loaded surement Conditions" paragraph. The SAR data are not is still according to the Standard. The soldered
The dipole is made connected to the soft the dipoles, smale according to the p affected by this ch No excessive force connections near the Additional EUT Manufactured b	e of standard semirigid coaxial c second arm of the dipole. The an all end caps are added to the dip osition as explained in the "Meas range. The overall dipole length i e must be applied to the dipole a the feed-point may be damaged. ' Data y	able. The center conductor of the feeding line is directly tenna is therefore short-circuited for DC-signals. On some sole arms in order to improve matching when loaded surement Conditions" paragraph. The SAR data are not is still according to the Standard.

APPENDIX D RETURN LOSS&IMPEDANCE MEASUREMENT

Equipment Details:

Description:	Dipole
Manufacturer:	Speag
Model Number:	D750V3
Serial Number:	1229
Calibration Date:	2024/03/26
Calibrated By:	Bob Lu
Signature:	Bob Lu

All Calibration have been conducted in the closed laboratory facility: Lab Temperature 18°C-25°C and humidity < 70%

The calibration methods and procedures used were as detailed in:

KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz" 1. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.

2. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

Calibrated Equipment:

Equipment	Model	S/N	Calibration Date	Calibration Due Date
Simulated Tissue Liquid Head	HBBL600-10000V6	2200808-2	Each Time	
SAM Twin Phantom	SAM-Twin V8.0	1962	NCR	NCR
Network Analyzer	E5071C	SER MY46519680	2023/06/08	2024/06/07
Network Analyzer Calibration Kit	50 Ω	51026	NCR	NCR

Test Data:

Frequency (MHz)	Simulated Liquid	Parameter	Measured Value	Target Value	Deviation	Reference Range	Results
		Return Loss	27.796 dB	29.503 dB	-5.786%	±20%;≥20dB	Pass
750	Head	Real Impedance	49.557 Ω	53.314 Ω	3.757 Ω	\leq 5 Ω	Pass
		Imaginary Impedance	-5.432 Ω	-0.992 Ω	4.44 Ω	\leq 5 Ω	Pass

Bay Area Compliance Laboratories Corp.(Shenzhen)

Dipole, 750MHz, 1229

Description:	Dipole
Manufacturer:	Speag
Model Number:	D900V2
Serial Number:	132
Calibration Date:	2024/09/26
Calibrated By:	Bob Lu
Signature:	Bob Lu

All Calibration have been conducted in the closed laboratory facility: Lab Temperature 18°C-25°C and humidity < 70%

The calibration methods and procedures used were as detailed in:

KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"

1. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.

2. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

Calibrated Equipment:

Equipment	Model	S/N	Calibration Date	Calibration Due Date
Simulated Tissue Liquid Head	HBBL600-10000V6	2200808-2	Each Time	
SAM Twin Phantom	SAM-Twin V8.0	1962	NCR	NCR
Network Analyzer	E5071C	SER MY46519680	2024/05/21	2025/05/20
Network Analyzer Calibration Kit	50 Ω	51026	NCR	NCR

Test Data:

Frequency (MHz)	Simulated Liquid	Parameter	Measured Value	Target Value	Deviation	Reference Range	Results
		Return Loss	21.803 dB	22.005 dB	-0.92%	±20%;≥20dB	Pass
900	Head	Real Impedance	49.421 Ω	47.694 Ω	1.727 Ω	\leq 5 Ω	Pass
		Imaginary Impedance	-8.084 Ω	-7.428 Ω	0.656 Ω	\leq 5 Ω	Pass

Bay Area Compliance Laboratories Corp.(Shenzhen)

Dipole, 900MHz, 132

Description:	Dipole
Manufacturer:	Speag
Model Number:	D1750V2
Serial Number:	1199
Calibration Date:	2024/03/26
Calibrated By:	Bob Lu
Signature:	Bob Lu

All Calibration have been conducted in the closed laboratory facility: Lab Temperature 18°C-25°C and humidity < 70%

The calibration methods and procedures used were as detailed in:

KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz" 1. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.

2. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

Calibrated Equipment:

Equipment	Model	S/N	Calibration Date	Calibration Due Date
Simulated Tissue Liquid Head	HBBL600-10000V6	2200808-2	Each Time	
SAM Twin Phantom	SAM-Twin V8.0	1962	NCR	NCR
Network Analyzer	E5071C	SER MY46519680	2023/06/08	2024/06/07
Network Analyzer Calibration Kit	50 Ω	51026	NCR	NCR

Test Data:

Frequency (MHz)	Simulated Liquid	Parameter	Measured Value	Target Value	Deviation	Reference Range	Results
		Return Loss	26.929 dB	26.017 dB	3.505%	±20%;≥20dB	Pass
1750	Head	Real Impedance	45.532 Ω	46.939 Ω	1.407 Ω	\leq 5 Ω	Pass
		Imaginary Impedance	-1.154 Ω	3.765 Ω	4.919 Ω	\leq 5 Ω	Pass

Dipole, 1750MHz, 1199

Description:	Dipole
Manufacturer:	Speag
Model Number:	D2600V2
Serial Number:	1207
Calibration Date:	2024/03/26
Calibrated By:	Bob Lu
Signature:	Bob Lu

All Calibration have been conducted in the closed laboratory facility: Lab Temperature 18°C-25°C and humidity < 70%

The calibration methods and procedures used were as detailed in:

KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"

1. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.

2. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

Calibrated Equipment:

Equipment	Model	S/N	Calibration Date	Calibration Due Date
Simulated Tissue Liquid Head	HBBL600-10000V6	2200808-2	Each	Time
SAM Twin Phantom	SAM-Twin V8.0	1962	NCR	NCR
Network Analyzer	E5071C	SER MY46519680	2023/06/08	2024/06/07
Network Analyzer Calibration Kit	50 Ω	51026	NCR	NCR

Test Data:

Frequency (MHz)	Simulated Liquid	Parameter	Measured Value	Target Value	Deviation	Reference Range	Results
		Return Loss	30.923 dB	27.361 dB	13.019%	±20%;≥20dB	Pass
2600	Head	Real Impedance	48.396 Ω	45.943 Ω	2.453 Ω	\leq 5 Ω	Pass
		Imaginary Impedance	-0.109 Ω	-0.667 Ω	0.558 Ω	\leq 5 Ω	Pass

Dipole, 2600MHz, 1207

Description:	Dipole
Manufacturer:	Speag
Model Number:	D3500V2
Serial Number:	1113
Calibration Date:	2024/09/26
Calibrated By:	Bob Lu
Signature:	Bob Lu

All Calibration have been conducted in the closed laboratory facility: Lab Temperature 18°C-25°C and humidity < 70%

The calibration methods and proc30.9edures used were as detailed in:

KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"

1. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.

2. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

Calibrated Equipment:

Equipment	Model	S/N	Calibration Date	Calibration Due Date
Simulated Tissue Liquid Head	HBBL600-10000V6	2200808-2	Each	Time
SAM Twin Phantom	SAM-Twin V8.0	1962	NCR	NCR
Network Analyzer	E5071C	SER MY46519680	2024/05/21	2025/05/20
Network Analyzer Calibration Kit	50 Ω	51026	NCR	NCR

Test Data:

Frequency (MHz)	Simulated Liquid	Parameter	Measured Value	Target Value	Deviation	Reference Range	Results
		Return Loss	21.690 dB	25.749 dB	-15.76%	±20%;≥20dB	Pass
3500 Hea	Head	Real Impedance	51.012 Ω	49.726 Ω	1.286 Ω	\leq 5 Ω	Pass
		Imaginary Impedance	8.282 Ω	5.144 Ω	3.138 Ω	\leq 5 Ω	Pass

Dipole, 3500MHz, 1113

Description:	Dipole
Manufacturer:	Speag
Model Number:	D3700V2
Serial Number:	1084
Calibration Date:	2024/09/26
Calibrated By:	Bob Lu
Signature:	Bob Lu

All Calibration have been conducted in the closed laboratory facility: Lab Temperature 18°C-25°C and humidity < 70%

The calibration methods and proc30.9edures used were as detailed in:

KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"

1. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.

2. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

Calibrated Equipment:

Equipment	Model	S/N	Calibration Date	Calibration Due Date
Simulated Tissue Liquid Head	HBBL600-10000V6	2200808-2	Each	Time
SAM Twin Phantom	SAM-Twin V8.0	1962	NCR	NCR
Network Analyzer	E5071C	SER MY46519680	2024/05/21	2025/05/20
Network Analyzer Calibration Kit	50 Ω	51026	NCR	NCR

Test Data:

Frequency (MHz)	Simulated Liquid	Parameter	Measured Value	Target Value	Deviation	Reference Range	Results
		Return Loss	21.247 dB	22.509 dB	-5.61%	±20%;≥20dB	Pass
3700 Hea	Head	Real Impedance	42.779 Ω	43.404 Ω	0.625 Ω	\leq 5 Ω	Pass
		Imaginary Impedance	3.543 Ω	2.341 Ω	1.202 Ω	\leq 5 Ω	Pass

Dipole, 3700MHz, 1084

Description:	Dipole
Manufacturer:	Speag
Model Number:	D3900V2
Serial Number:	1058
Calibration Date:	2024/09/26
Calibrated By:	Bob Lu
Signature:	Bob Lu

All Calibration have been conducted in the closed laboratory facility: Lab Temperature 18°C-25°C and humidity < 70%

The calibration methods and proc30.9edures used were as detailed in:

KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"

1. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.

2. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

Calibrated Equipment:

Equipment	Model	S/N	Calibration Date	Calibration Due Date
Simulated Tissue Liquid Head	HBBL600-10000V6	2200808-2	Each	Time
SAM Twin Phantom	SAM-Twin V8.0	1962	NCR	NCR
Network Analyzer	E5071C	SER MY46519680	2024/05/21	2025/05/20
Network Analyzer Calibration Kit	50 Ω	51026	NCR	NCR

Test Data:

Frequency (MHz)	Simulated Liquid	Parameter	Measured Value	Target Value	Deviation	Reference Range	Results
		Return Loss	21.070 dB	23.417 dB	-10.02%	±20%;≥20dB	Pass
3900 Head	Real Impedance	50.044 Ω	46.285 Ω	3.759 Ω	\leq 5 Ω	Pass	
	Imaginary Impedance	-8.893 Ω	-5.342 Ω	3.551 Ω	\leq 5 Ω	Pass	

Bay Area Compliance Laboratories Corp.(Shenzhen)

Dipole, 3900MHz, 1058