

CFR 47 FCC PART 15 SUBPART C

TEST REPORT

For

PA1009 micro 3.5CH helicopter

FCC ID: 2ASK3ASC-6214R

MODEL NUMBER: VL-6004, VL-6005, ASC-6214

REPORT NUMBER: 4789498713.1-2

ISSUE DATE: June 16, 2020

Prepared for

AMAX INDUSTRIAL GROUP CHINA CO.,LTD OFFICE NO.3 10/F WITTY COMMERCIAL BUILDING 1A-1L TUNG CHOI STREET MONGKOK KOWLOON HONG KONG

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products. This report does not imply that the product(s) has met the criteria for certification.

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	06/16/2020	Initial Issue	

Summary of Test Results					
Clause	Test Items	FCC Rules	Test Results		
1	20dB Bandwidth and 99% Occupied Bandwidth	CFR 47 FCC §15.215 (c)	Pass		
2	Radiated Emission	CFR 47 FCC §15.249 (a)(d)(e) CFR 47 FCC §15.205 and §15.209	Pass		
3	Conducted Emission Test For AC Power Port	FCC Part 15.207	Pass		
4	Antenna Requirement	CFR 47 FCC §15.203	Pass		
Note 1: This test report is only published to and used by the applicant, and it is not for evidence					

Note 1: This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

Note 2: The measurement result for the sample received is <Pass> according to < CFR 47 FCC PART 15 SUBPART C, ISED RSS-210 Issue 9 and ISED RSS-GEN Issue 5 > when <Accuracy Method> decision rule is applied.

Note 3: This is a copy report base on 4789427767.1-1 which is issued by UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch on April 22, 2020. It's only changes the standard from ISED RSS-210 Issue 9 and ISED RSS-GEN Issue 5 to CFR 47 FCC PART 15 SUBPART C and add a new model ASC-6214 for the FCC ID application.

TABLE OF CONTENTS

1. AT	TESTATION OF TEST RESULTS	.5
2. TE	ST METHODOLOGY	.6
3. FA	CILITIES AND ACCREDITATION	.6
4. CA	LIBRATION AND UNCERTAINTY	.7
4.1.	MEASURING INSTRUMENT CALIBRATION	.7
4.2.	MEASUREMENT UNCERTAINTY	.7
5. EQ	UIPMENT UNDER TEST	.8
5.1.	DESCRIPTION OF EUT	.8
5.2.	MAXIMUM AVG FIELD STRENGTH	.8
5.3.	CHANNEL LIST	.8
5.4.	DESCRIPTION OF AVAILABLE ANTENNAS	.9
5.5.	TEST CHANNEL CONFIGURATION	.9
5.6.	THE WORSE CASE POWER SETTING PARAMETER	.9
5.7.	TEST ENVIRONMENT	.9
5.8.	DESCRIPTION OF TEST SETUP	10
5.9.	MEASURING INSTRUMENT AND SOFTWARE USED	11
6. AN	TENNA PORT TEST RESULTS	12
6.1.	ON TIME AND DUTY CYCLE	12
6.2.	20 dB BANDWIDTH AND 99% OCCUPIED BANDWIDTH	14
7. RA	DIATED TEST RESULTS	18
7.1.	LIMITS AND PROCEDURE	18
7.2.	RESTRICTED BANDEDGE AND FIELD STRENGTH OF INTENTIONAL EMISSIONS 24	S
7.3.	SPURIOUS EMISSIONS (1~3GHz)	30
7.4.	SPURIOUS EMISSIONS (3~18GHz)	36
7.5.	SPURIOUS EMISSIONS (18~26GHz)	42
7.6.	SPURIOUS EMISSIONS BELOW 30M	44
7.7.	SPURIOUS EMISSIONS BELOW 1 GHz	47
8. AC	POWER LINE CONDUCTED EMISSIONS	49
8.1.	GFSK MODE	50
9. AN	TENNA REQUIREMENTS	52

1. ATTESTATION OF TEST RESULTS

Applicant Information	
Company Name:	AMAX INDUSTRIAL GROUP CHINA CO.,LTD
Address:	OFFICE NO.3 10/F WITTY COMMERCIAL BUILDING 1A-1L
	TUNG CHOI STREET MONGKOK KOWLOON HONG KONG
Manufacturer Information	
Company Name:	AMAX INDUSTRIAL GROUP CHINA CO.,LTD
Address:	OFFICE NO.3 10/F WITTY COMMERCIAL BUILDING 1A-1L
	TUNG CHOI STREET MONGKOK KOWLOON HONG KONG
EUT Description	
EUT Name:	PA1009 micro 3.5CH helicopter
Model:	VL-6004, VL-6005, ASC-6214
	VE-0004, VE-0003, ASC-0214
Model Difference	All the same except for the model name and color.
Model Difference	

APPLICABLE STANDARDS

STANDARD

TEST RESULTS

CFR 47 FCC PART 15 SUBPART C

PASS

Prepared By:

Sucur on

Denny Huang Engineer Project Associate

Approved By:

stuo

Stephen Guo Laboratory Manager

Checked By:

Shenny les

Shawn Wen Laboratory Leader

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 414788 D01 Radiated Test Site v01r01, FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013.

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1187) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Accreditation Certificate	 Has been recognized to perform compliance testing on equipment subject to the Commission's Delcaration of Conformity (DoC) and Certification rules IC(Company No.: 21320) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with ISED. The Company Number is 21320. VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with VCCI, the Membership No. is 3793. Facility Name: Chamber D, the VCCI registration No. is G-20019 and R-20004 Shielding Room B , the VCCI registration No. is C-20012 and T-20011

Note:

- All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China
- 2. The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.
- 3. For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty	
Conduction emission	3.62dB	
Radiation Emission test(include Fundamental emission) (9KHz-30MHz)	2.2dB	
Radiation Emission test(include Fundamental emission) (30MHz-1GHz)	4.00dB	
Radiation Emission test	5.78dB (1GHz-18Gz)	
(1GHz to 26GHz)(include Fundamental emission)	5.23dB (18GHz-26Gz)	
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.		

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	PA1009 micro 3.5CH helicopter		
EUT Description	The EUT is a wireless remote controlled toy drone.		
Model	VL-6004, VL-6005, ASC-6214		
Model Difference	All the same except for the model name and color.		
Broduct Decoription	Operation Frequency	2402 MHz ~ 2479 MHz	
Product Description	Modulation Type	GFSK	
Battery	DC 3.7V		
Rated Input	DC 5V		

5.2. MAXIMUM AVG FIELD STRENGTH

Frequency (MHz)	Channel Number	Max AVG field strength (dBµV/m)
2479	78[78]	87.17

5.3. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2402	21	2422	41	2442	61	2462
2	2403	22	2423	42	2443	62	2463
3	2404	23	2424	43	2444	63	2464
4	2405	24	2425	44	2445	64	2465
5	2406	25	2426	45	2446	65	2466
6	2407	26	2427	46	2447	66	2467
7	2408	27	2428	47	2448	67	2468
8	2409	28	2429	48	2449	68	2469
9	2410	29	2430	49	2450	69	2470
10	2411	30	2431	50	2451	70	2471
11	2412	31	2432	51	2452	71	2472
12	2413	32	2433	52	2453	72	2473
13	2414	33	2434	53	2454	73	2474
14	2415	34	2435	54	2455	74	2475
15	2416	35	2436	55	2456	75	2476
16	2417	36	2437	56	2457	76	2477
17	2418	37	2438	57	2458	77	2478
18	2419	38	2439	58	2459	78	2479
19	2420	39	2440	59	2460	/	/
20	2421	40	2441	60	2461	/	/

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5.4. DESCRIPTION OF AVAILABLE ANTENNAS

Ant. Frequency (MHz)		Antenna Type	Antenna Gain (dBi)	
1	2402 ~ 2479	Wire antenna	0	

Test Mode	Transmit and Receive Mode	Description
GFSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.

5.5. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
GFSK	CH 1(Low Channel), CH 40(MID Channel), CH 78(High Channel)	2402MHz, 2441MHz, 2479MHz

5.6. THE WORSE CASE POWER SETTING PARAMETER

The Wo	rse Case Power Se	tting Parameter und	ler 2402 ~ 2479MH	z Band
Test Se	oftware	/		
Modulation Type	Transmit Antenna		Test Channel	
	Number	CH 1	CH 40	CH 78
GFSK	1	Default	Default	Default

5.7. TEST ENVIRONMENT

Environment Parameter	Selected Va	lues During Tests	
Relative Humidity	55 ~ 65%		
Atmospheric Pressure:	1	025Pa	
Temperature	TN	22 ~ 28°C	
	VL	/	
Voltage:	VN	DC 3.7V	
	VH	/	

Note: VL= Lower Extreme Test Voltage VN= Nominal Voltage VH= Upper Extreme Test Voltage TN= Normal Temperature

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5.8. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	Description
1	Power adapter	MEIZU	UP0520	DC 5V, 2A

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	DC	DC In	Unshielded	0.5	/

Note: The DC cable was provided by customer and is a typical usage for the EUT.

ACCESSORY

Item	Accessory	Brand Name	Model Name	Description
/	/	/	/	/

TEST SETUP

The EUT have the engineer mode inside.

SETUP DIAGRAM FOR TEST

EUT

Note: New battery was used during all tests.

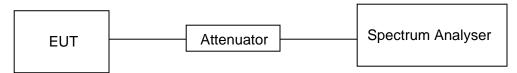
5.9. MEASURING INSTRUMENT AND SOFTWARE USED

	Conducted Emissions									
				Instr	ument					
Used	Equipment	Manufacturer		Mode	el No.		Seria	l No.	Last Cal.	Next Cal.
V	EMI Test Receiver	R&S		ESR3		101	961	Dec.05,2019	Dec.05,2020	
V	Two-Line V- Network	R&S		EN∖	/216		101	983	Dec.05,2019	Dec.05,2020
V	Artificial Mains Networks	Schwarzbeck	1	NSLK	8126		8126	6465	Dec.05,2019	Dec.05,2020
				Sof	tware					
Used		Description	ľ				Manufa	acturer	Name	Version
	Test Softwa	re for Conduct	ted dis	turba	nce		Fai	ad	EZ-EMC	Ver. UL-3A1
			Rad	iated	Emiss	ions				
				Instr	rument					
Used	Equipment	Manufacturer		Mode	el No.		Seria	l No.	Last Cal.	Next Cal.
	MXE EMI Receiver	KESIGHT		N90	38A		MY564	00036	Dec.06,2019	Dec.05,2020
V	Hybrid Log Periodic Antenna	TDK	ŀ	HLP-3	3003C		130	960	Sep.17,2018	Sep.17,2021
	Preamplifier	HP		844	17D		2944A	09099	Dec.05,2019	Dec.05,2020
V	EMI Measurement Receiver	R&S		ESI	R26		101	377	Dec.05,2019	Dec.05,2020
	Horn Antenna	TDK		HRN	-0118		130	939	Sep.17,2018	Sep.17,2021
V	High Gain Horn Antenna	Schwarzbeck	E	3BHA	-9170		69		Aug.11,2018	Aug.11,2021
V	Preamplifier	TDK	F	PA-02	2-0118		TRS- 000)67	Dec.05,2019	Dec.05,2020
V	Preamplifier	TDK		PA-	02-2		TRS- 000		Dec.05,2019	Dec.05,2020
\checkmark	Loop antenna	Schwarzbeck		-	19B		000	800	Jan.07,2019	Jan.07,2022
V	Band Reject Filter	Wainwright	2483	.5-25	2350-24 33.5-40	SS	2	ŀ	Dec.05,2019	Dec.05,2020
V	High Pass Filter	Wi			2700-30 -40SS	00-	2	3	Dec.05,2019	Dec.05,2020
	Software									
Used	De	scription	Manufact		turer		Name	Version		
	Test Software for	Radiated dist	sturbance Farad		d EZ-EMC Ver. UL-3		Ver. UL-3A1			
		Other instruments		ents						
Used	Equipment	Manufac	turer Model No. Se		erial No) .	Last Cal.	Next Cal.		
\checkmark	Spectrum Analyz	, ,	ght	N9(030A	MY	554105	512 D	ec.06,2019	Dec.05,2020
V	Power sensor, Po	wer R&S	5	OS	P120		100921	C	ec.06,2019	Dec.06,2020

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

6. ANTENNA PORT TEST RESULTS

6.1. ON TIME AND DUTY CYCLE

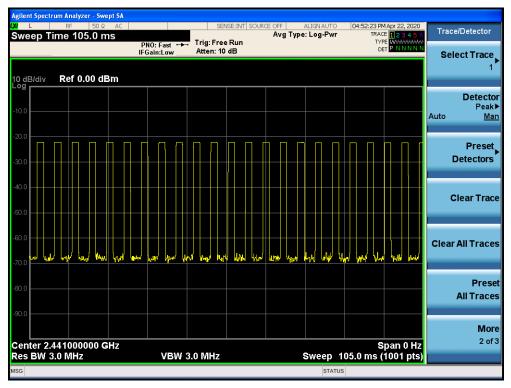

<u>LIMITS</u>

None; for reporting purposes only

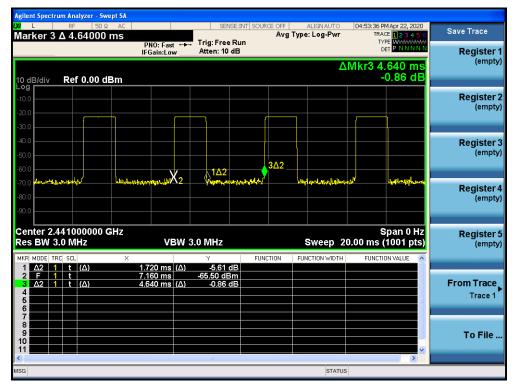
PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method

TEST SETUP


RESULTS

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (db)
GFSK	37.84	100	0.3784	37.84	-8.44


Note: Duty Cycle Correction Factor=20log(x). Where: x is Duty Cycle

ON TIME AND DUTY CYCLE MID CH PLOT

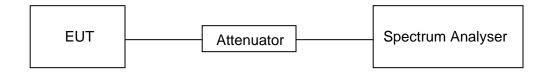
ON TIME AND DUTY CYCLE MID CH PLOT-2

Note: All the modes had been tested, but only the worst duty cycle recorded in the report.

6.2. 20 dB BANDWIDTH AND 99% OCCUPIED BANDWIDTH

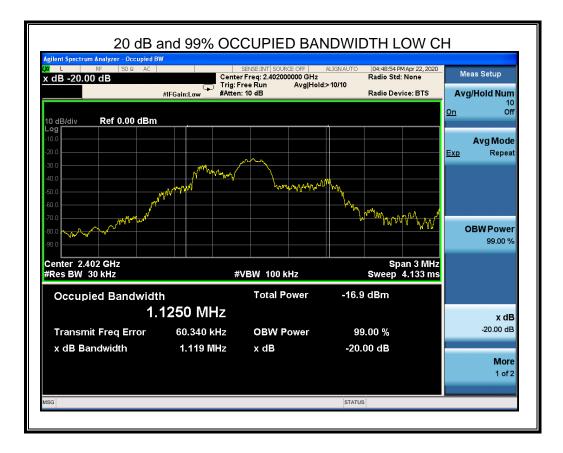
LIMITS

RSS-Gen Issue 5					
Section	Test Item	Limit	Frequency Range (MHz)		
CFR 47 FCC §15.215 (c)	20dB Bandwidth	for reporting purposes only	2400-2483.5		

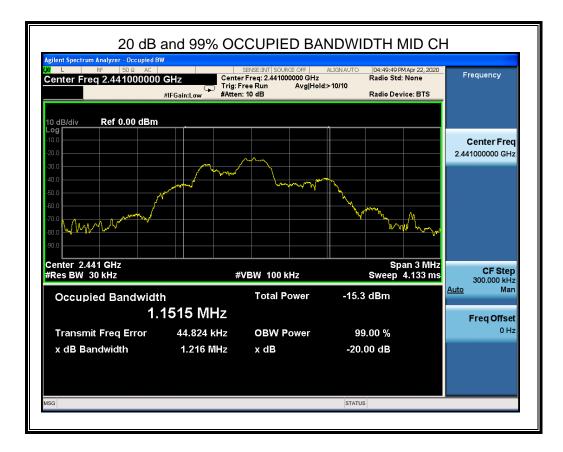

TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

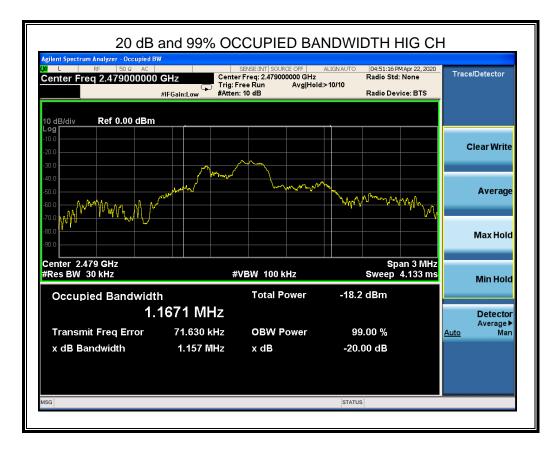
Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	1% to 5% of the occupied bandwidth
VBW	approximately 3×RBW
Trace	Max hold
Sweep	Auto couple


Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB/99% relative to the maximum level measured in the fundamental emission.

TEST SETUP



Frequency	20dB bandwidth	99% bandwidth	Result
(MHz)	(MHz)	(MHz)	
2402	1.119	1.125	PASS



Frequency (MHz)	20dB bandwidth (MHz)	99% bandwidth (MHz)	Result
2441	1.216	1.1515	PASS

Frequency	20dB bandwidth	99% bandwidth	Result
(MHz)	(MHz)	(MHz)	
2479	1.157	1.1671	PASS

7. RADIATED TEST RESULTS 7.1. LIMITS AND PROCEDURE

LIMITS

CFR 47 FCC §15.205 and §15.209

CFR 47 FCC §15.249 (a)(d)(c)(e)

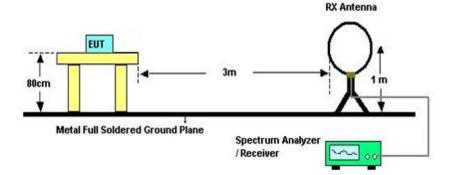
The field strength of emissions from intentional radiators operated within these frequency bands								
Frequency (MHz)								
902 - 928	50 mV/m (94dBuV/m)	500 uV/m (54dBuV/m)	3					
2400 - 2483.5	2400 – 2483.5 50 mV/m (94dBuV/m)		3					
5725 – 5875	50 mV/m (94dBuV/m)	500 uV/m (54dBuV/m)	3					

Emissions radiated outside of the specified frequency bands above 30MHz							
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m						
30 - 88	100	40					
88 - 216	150	43.5					
216 - 960	200	46					
Above 960	500	54					
Above 1000	500	Peak	Average				
	550	74	54				

FCC Emissions radiated outside of the specified frequency bands below 30MHz								
Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters)								
0.009-0.490	2400/F(kHz)	300						
0.490-1.705	24000/F(kHz)	30						
1.705-30.0	30	30						

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

FCC Restricted bands of operation:


MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7- <mark>1</mark> 56.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

TEST SETUP AND PROCEDURE

Below 30MHz

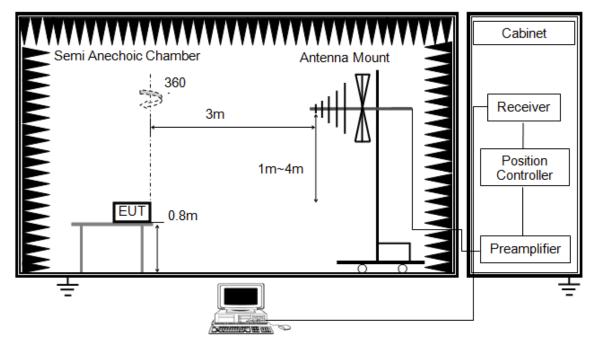
The setting of the spectrum analyser

RBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
VBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
Sweep	Auto
Detector	Peak/QP/ Average
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80cm meter above ground.


4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1m height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

6. Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30m open field site. Therefore, the sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

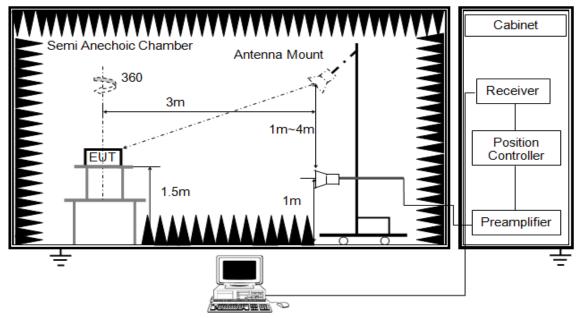
Below 1GHz and Above 30MHz

The setting of the spectrum analyser

RBW	120К
VBW	300K
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.


3. The EUT was placed on a turntable with 80cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

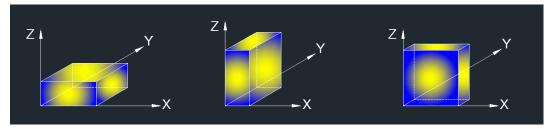
Above 1G

The setting of the spectrum analyser

RBW	1M
NRW	PEAK: 3M AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.

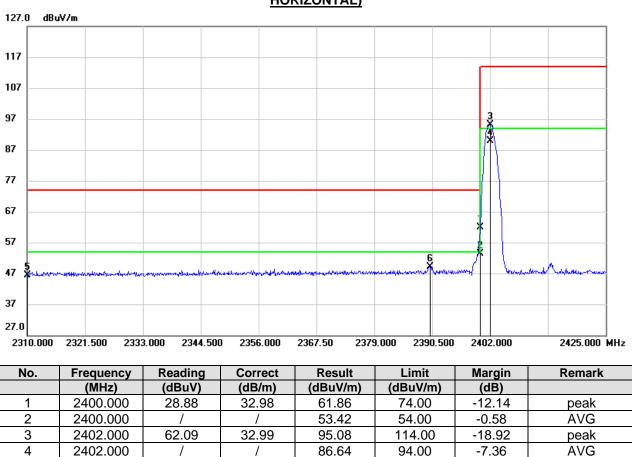
2. The EUT was arranged to its worst case and then tune the antenna tower (1.5 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter or band reject filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.


3. The EUT was placed on a turntable with 150cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements. Where necessary, average emission are determined by applying the Duty Cycle Correction Factor to the peak measurements. For the Duty Cycle and Correction Factor please refer to clause 6.1. ON TIME AND DUTY CYCLE.

X axis, Y axis, Z axis positions:



Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

Page 24 of 52

7.2. RESTRICTED BANDEDGE AND FIELD STRENGTH OF INTENTIONAL EMISSIONS

RESTRICTED BANDEDGE AND FIELD STRENGTH OF INTENTIONAL EMISSIONS (LOW CHANNEL, HORIZONTAL)

Note: 1. Measurement = Reading Level + Correct Factor.

13.71

16.16

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

46.39

49.10

-27.61

-24.90

peak

peak

74.00

74.00

3. Peak: Peak detector.

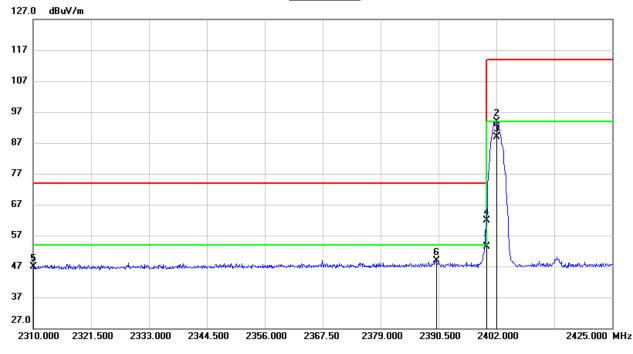
2310.000

2390.000

5

6

4. AVG Result=Peak Result + Duty Cycle Correction Factor.


32.68

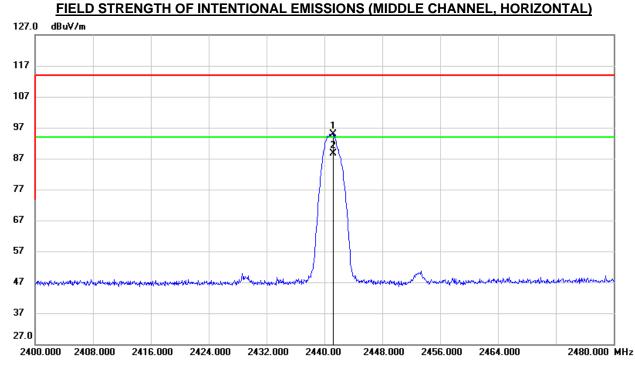
32.94

5. For the Duty Cycle and Correction Factor, please refer to clause 6.1.

RESTRICTED BANDEDGE AND FIELD STRENGTH OF INTENTIONAL EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2400.000	28.80	32.98	61.78	74.00	-12.22	peak
2	2400.000	/	/	53.34	54.00	-0.66	AVG
3	2402.000	60.79	32.99	93.78	114.00	-20.22	peak
4	2402.000	/	/	85.34	94.00	-8.66	AVG
5	2310.000	14.10	32.68	46.78	74.00	-27.22	peak
6	2390.000	15.89	32.94	48.83	74.00	-25.17	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

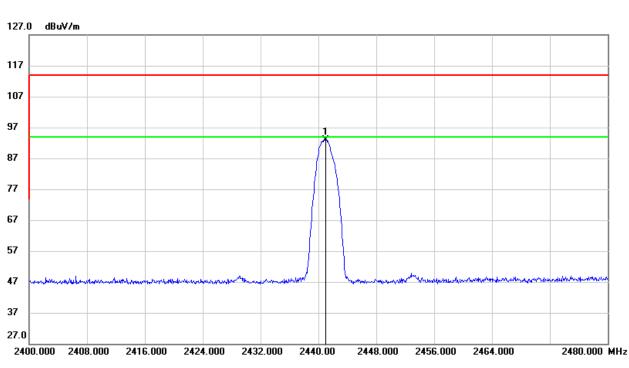
3. Peak: Peak detector.

4. AVG Result=Peak Result + Duty Cycle Correction Factor.

5. For the Duty Cycle and Correction Factor, please refer to clause 6.1.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2441.200	61.68	33.27	94.95	114.00	-19.05	peak
2	2441.200	/	/	86.51	94.00	-7.49	AVG

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

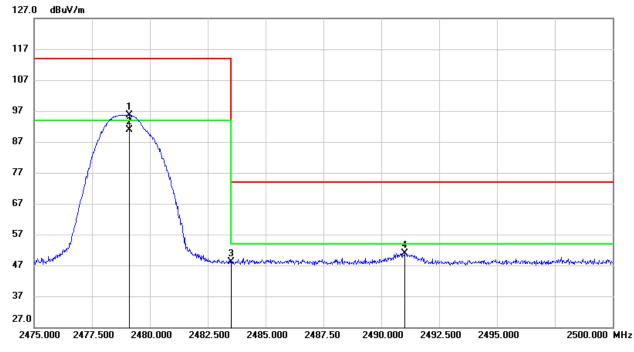
4. AVG Result=Peak Result + Duty Cycle Correction Factor.

5. For the Duty Cycle and Correction Factor, please refer to clause 6.1.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2440.960	59.61	33.27	92.88	114.00	-21.12	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

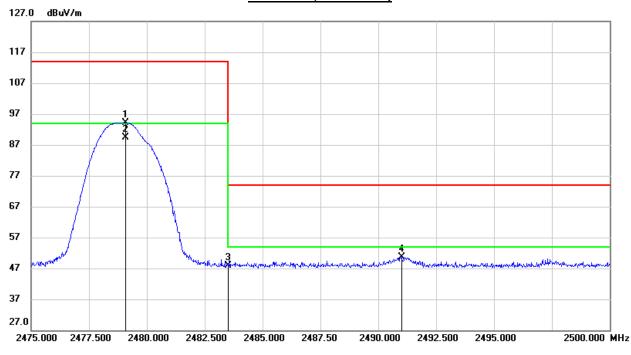
4. AVG Result=Peak Result + Duty Cycle Correction Factor.

5. For the Duty Cycle and Correction Factor, please refer to clause 6.1.

RESTRICTED BANDEDGE AND FIELD STRENGTH OF INTENTIONAL EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2479.125	62.06	33.55	95.61	114.00	-18.39	peak
2	2479.125	/	/	87.17	94.00	-6.83	AVG
3	2483.500	14.46	33.58	48.04	74.00	-25.96	peak
4	2491.000	17.36	33.63	50.99	74.00	-23.01	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. AVG Result=Peak Result + Duty Cycle Correction Factor.

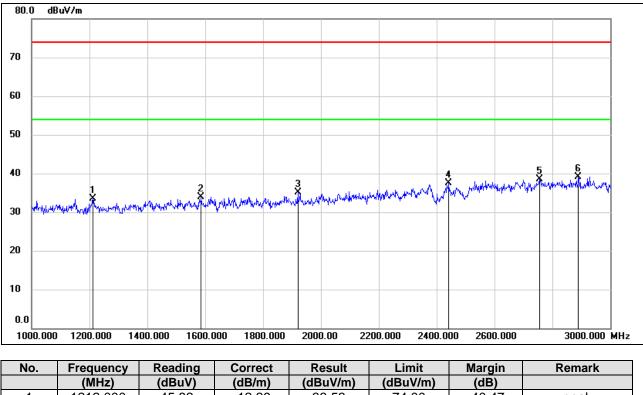
5. For the Duty Cycle and Correction Factor, please refer to clause 6.1.

RESTRICTED BANDEDGE AND FIELD STRENGTH OF INT	ENTIONAL EMISSIONS (HIGH
CHANNEL, VERTICAL)	

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2479.075	60.64	33.55	94.19	114.00	-19.81	peak
2	2479.075	/	/	85.75	94.00	-8.25	AVG
3	2483.500	14.24	33.58	47.82	74.00	-26.18	peak
4	2491.000	17.10	33.63	50.73	74.00	-23.27	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

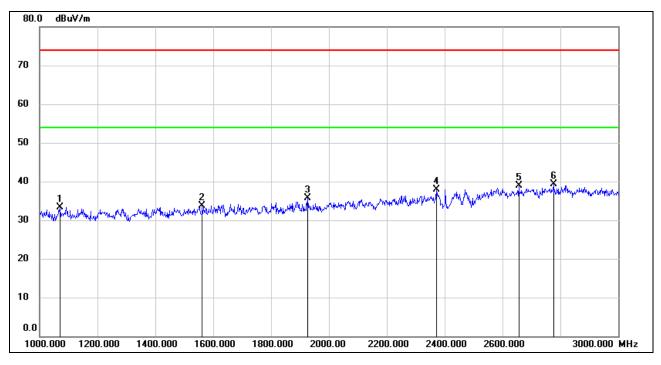
4. AVG Result=Peak Result + Duty Cycle Correction Factor.

5. For the Duty Cycle and Correction Factor, please refer to clause 6.1.

7.3. SPURIOUS EMISSIONS (1~3GHz)

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1212.000	45.82	-12.29	33.53	74.00	-40.47	peak
2	1586.000	44.66	-10.75	33.91	74.00	-40.09	peak
3	1920.000	44.40	-9.39	35.01	74.00	-38.99	peak
4	2442.000	44.21	-6.78	37.43	74.00	-36.57	peak
5	2756.000	44.62	-6.18	38.44	74.00	-35.56	peak
6	2890.000	44.26	-5.15	39.11	74.00	-34.89	peak


Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

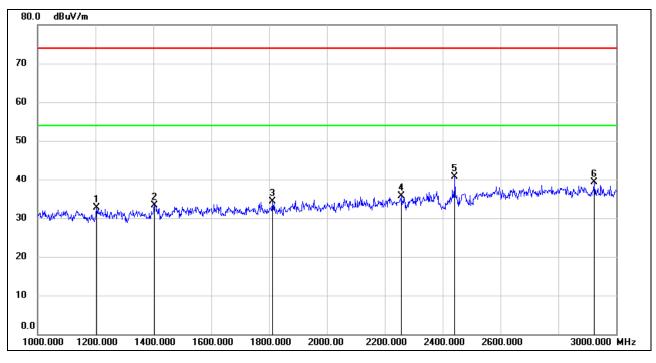
4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1070.000	45.97	-12.75	33.22	74.00	-40.78	peak
2	1562.000	44.65	-10.99	33.66	74.00	-40.34	peak
3	1926.000	45.08	-9.42	35.66	74.00	-38.34	peak
4	2372.000	45.19	-7.22	37.97	74.00	-36.03	peak
5	2656.000	46.10	-7.15	38.95	74.00	-35.05	peak
6	2776.000	45.09	-5.73	39.36	74.00	-34.64	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

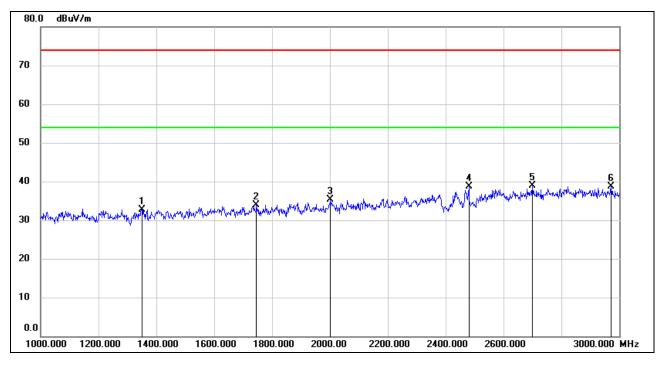
4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1282.000	44.64	-11.43	33.21	74.00	-40.79	peak
2	1620.000	45.37	-10.62	34.75	74.00	-39.25	peak
3	2180.000	44.43	-8.42	36.01	74.00	-37.99	peak
4	2441.000	45.88	-6.78	39.10	/	/	fundamental
5	2584.000	45.26	-6.73	38.53	74.00	-35.47	peak
6	2826.000	44.03	-5.19	38.84	74.00	-35.16	peak

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

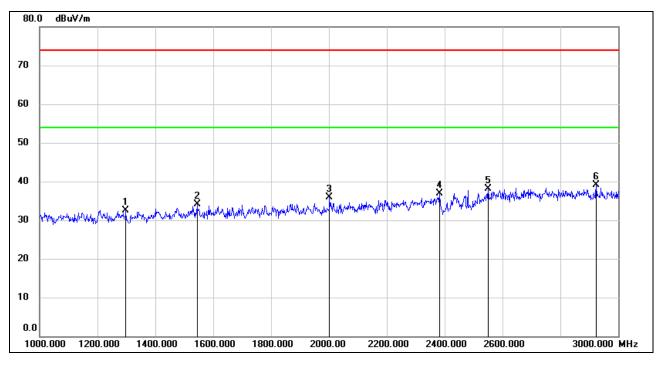
4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1204.000	45.03	-12.39	32.64	74.00	-41.36	peak
2	1404.000	45.26	-11.90	33.36	74.00	-40.64	peak
3	1812.000	43.76	-9.40	34.36	74.00	-39.64	peak
4	2258.000	43.62	-7.89	35.73	74.00	-38.27	peak
5	2441.000	47.44	-6.78	40.66	/	/	fundamental
6	2924.000	44.25	-5.01	39.24	74.00	-34.76	peak

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

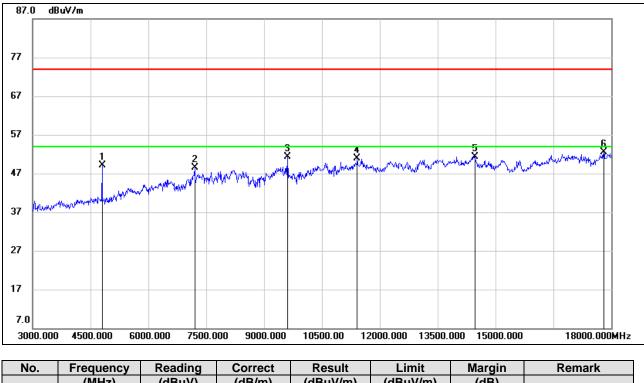

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1350.000	44.36	-11.56	32.80	74.00	-41.20	peak
2	1746.000	43.99	-10.12	33.87	74.00	-40.13	peak
3	2002.000	45.13	-9.76	35.37	74.00	-38.63	peak
4	2479.000	45.13	-6.49	38.64	/	/	fundamental
5	2700.000	46.26	-7.42	38.84	74.00	-35.16	peak
6	2972.000	43.40	-4.74	38.66	74.00	-35.34	peak

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1298.000	43.78	-11.23	32.55	74.00	-41.45	peak
2	1544.000	45.24	-11.16	34.08	74.00	-39.92	peak
3	2002.000	45.76	-9.76	36.00	74.00	-38.00	peak
4	2382.000	44.00	-7.17	36.83	74.00	-37.17	peak
5	2550.000	44.60	-6.57	38.03	74.00	-35.97	peak
6	2924.000	44.10	-5.01	39.09	74.00	-34.91	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

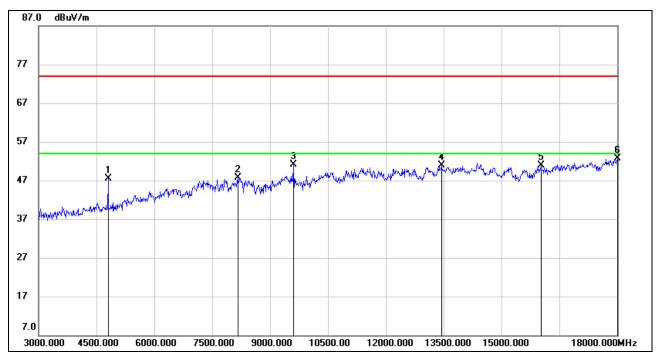
4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

7.4. SPURIOUS EMISSIONS (3~18GHz)

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4800.000	49.42	-0.25	49.17	74.00	-24.83	peak
2	7200.000	41.55	6.88	48.43	74.00	-25.57	peak
3	9600.000	41.40	9.99	51.39	74.00	-22.61	peak
4	11415.000	37.47	13.46	50.93	74.00	-23.07	peak
5	14460.000	35.05	16.35	51.40	74.00	-22.60	peak
6	17805.000	29.25	23.22	52.47	74.00	-21.53	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

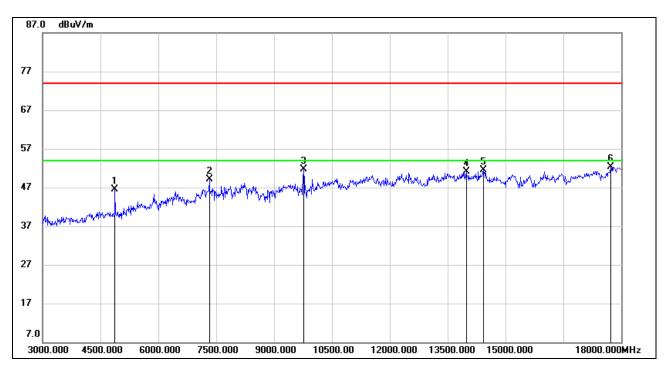
3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4800.000	47.82	-0.25	47.57	74.00	-26.43	peak
2	8175.000	38.18	9.48	47.66	74.00	-26.34	peak
3	9600.000	41.14	9.99	51.13	74.00	-22.87	peak
4	13440.000	35.05	15.80	50.85	74.00	-23.15	peak
5	16020.000	33.57	17.28	50.85	74.00	-23.15	peak
6	18000.000	29.49	23.27	52.76	74.00	-21.24	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

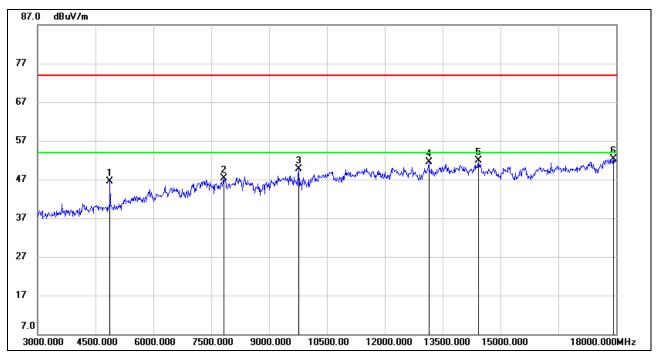

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	46.57	-0.12	46.45	74.00	-27.55	peak
2	7320.000	41.84	7.20	49.04	74.00	-24.96	peak
3	9765.000	41.51	10.14	51.65	74.00	-22.35	peak
4	13980.000	34.81	16.32	51.13	74.00	-22.87	peak
5	14430.000	35.03	16.39	51.42	74.00	-22.58	peak
6	17730.000	29.83	22.54	52.37	74.00	-21.63	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

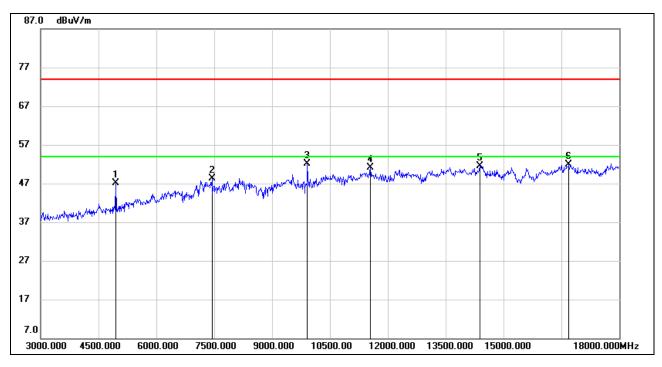

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	46.61	-0.12	46.49	74.00	-27.51	peak
2	7830.000	38.55	8.75	47.30	74.00	-26.70	peak
3	9765.000	39.64	10.14	49.78	74.00	-24.22	peak
4	13140.000	36.42	14.99	51.41	74.00	-22.59	peak
5	14430.000	35.52	16.39	51.91	74.00	-22.09	peak
6	17925.000	29.22	23.18	52.40	74.00	-21.60	peak


Note: 1. Peak Result = Reading Level + Correct Factor.

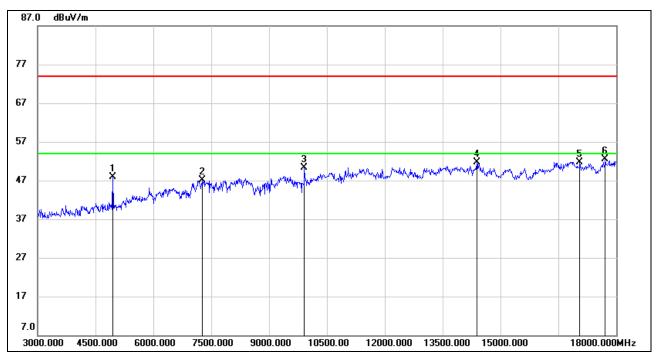
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4950.000	46.99	0.19	47.18	74.00	-26.82	peak
2	7440.000	40.95	7.39	48.34	74.00	-25.66	peak
3	9915.000	41.65	10.54	52.19	74.00	-21.81	peak
4	11550.000	36.99	14.13	51.12	74.00	-22.88	peak
5	14385.000	35.04	16.41	51.45	74.00	-22.55	peak
6	16695.000	32.07	19.81	51.88	74.00	-22.12	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

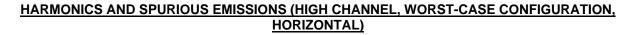

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

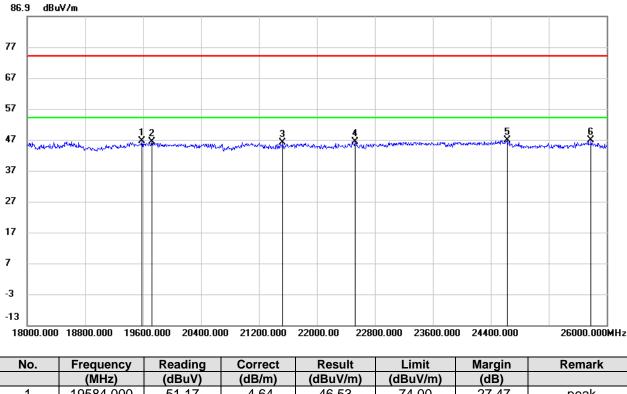
3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4950.000	47.77	0.19	47.96	74.00	-26.04	peak
2	7275.000	39.95	7.07	47.02	74.00	-26.98	peak
3	9915.000	39.77	10.54	50.31	74.00	-23.69	peak
4	14385.000	35.25	16.41	51.66	74.00	-22.34	peak
5	17055.000	31.20	20.57	51.77	74.00	-22.23	peak
6	17715.000	30.08	22.39	52.47	74.00	-21.53	peak

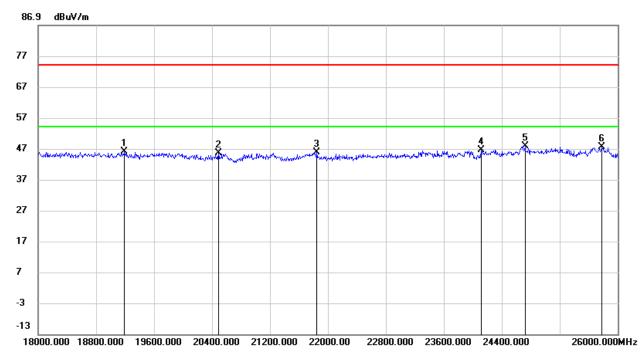

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

7.5. SPURIOUS EMISSIONS (18~26GHz)


NO.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	19584.000	51.17	-4.64	46.53	74.00	-27.47	peak
2	19720.000	50.58	-4.39	46.19	74.00	-27.81	peak
3	21528.000	51.92	-5.78	46.14	74.00	-27.86	peak
4	22528.000	52.16	-5.79	46.37	74.00	-27.63	peak
5	24624.000	49.15	-2.27	46.88	74.00	-27.12	peak
6	25784.000	48.23	-1.49	46.74	74.00	-27.26	peak

Note: 1. Measurement = Reading Level + Correct Factor.

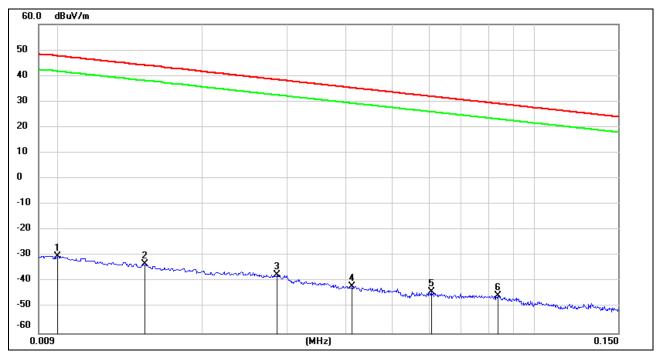
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	19192.000	50.98	-5.01	45.97	74.00	-28.03	peak
2	20488.000	50.45	-4.96	45.49	74.00	-28.51	peak
3	21848.000	51.76	-5.95	45.81	74.00	-28.19	peak
4	24120.000	50.28	-3.81	46.47	74.00	-27.53	peak
5	24720.000	49.87	-2.02	47.85	74.00	-26.15	peak
6	25784.000	49.08	-1.49	47.59	74.00	-26.41	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

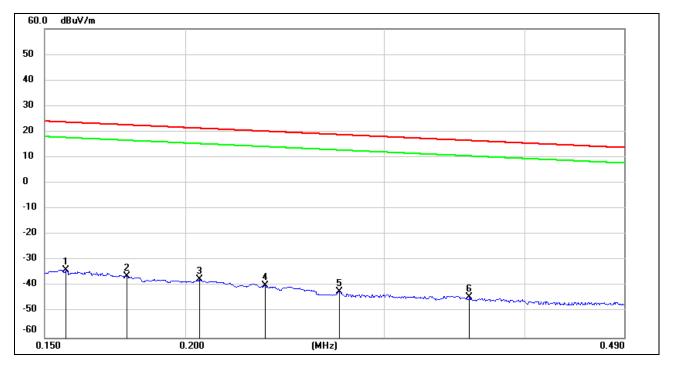
Note: All the modes had been tested, only the worst data record in the report.

7.6. SPURIOUS EMISSIONS BELOW 30M

SPURIOUS EMISSIONS (HIGH CHANNEL, LOOP ANTENNA FACE ON TO THE EUT, WORST-CASE CONFIGURATION)

<u>9kHz~ 150kHz</u>

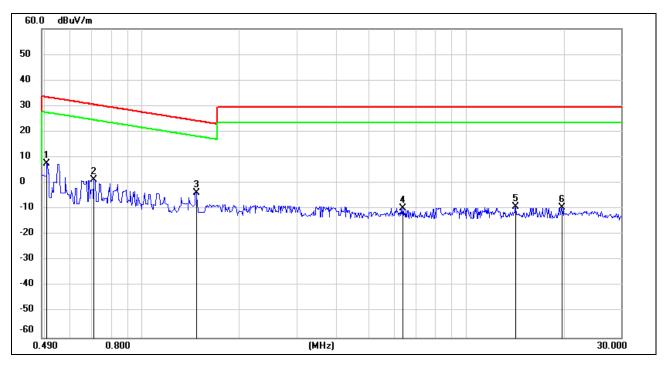
No.	Frequency	Reading	Correct	FCC Result	FCC Limit	ISED Result	ISED Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.0100	71.22	-101.40	-30.18	47.60	-81.68	-3.90	-77.78	peak
2	0.0151	68.37	-101.37	-33.00	44.53	-84.50	-6.97	-77.53	peak
3	0.0286	63.96	-101.38	-37.42	38.55	-88.92	-12.95	-75.97	peak
4	0.0413	59.66	-101.44	-41.78	35.31	-93.28	-16.19	-77.09	peak
5	0.0606	57.45	-101.52	-44.07	31.96	-95.57	-19.54	-76.03	peak
6	0.0839	56.26	-101.67	-45.41	29.14	-96.91	-22.36	-74.55	peak


Note: 1. Measurement = Reading Level + Correct Factor ($dBuA/m = dBuV/m - 20Log10[120\pi] = dBuV/m - 51.5$).

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

<u>150kHz ~ 490kHz</u>


No.	Frequency	Reading	Correct	FCC Result	FCC Limit	ISED Result	ISED Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.1565	68.03	-101.65	-33.62	23.72	-85.12	-27.78	-57.34	peak
2	0.1774	65.47	-101.68	-36.21	22.63	-87.71	-28.87	-58.84	peak
3	0.2058	64.26	-101.73	-37.47	21.38	-88.97	-30.12	-58.85	peak
4	0.2353	62.00	-101.78	-39.78	20.34	-91.28	-31.16	-60.12	peak
5	0.2736	59.58	-101.83	-42.25	18.99	-93.75	-32.51	-61.24	peak
6	0.3573	57.58	-101.91	-44.33	16.63	-95.83	-34.87	-60.96	peak

Note: 1. Measurement = Reading Level + Correct Factor (dBuA/m= dBuV/m- 20Log10[120 π] = dBuV/m- 51.5).

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

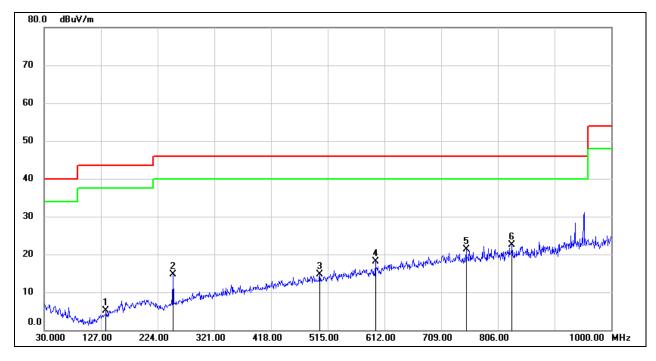
3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

<u>490kHz ~ 30MHz</u>

No.	Frequency	Reading	Correct	FCC Result	FCC Limit	ISED Result	ISED Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.5081	69.85	-62.07	7.78	33.51	-43.72	-17.99	-25.73	peak
2	0.7096	63.36	-62.12	1.24	30.59	-50.26	-20.91	-29.35	peak
3	1.4700	58.39	-62.05	-3.66	24.26	-55.16	-27.24	-27.92	peak
4	6.3624	51.59	-61.30	-9.71	29.54	-61.21	-21.96	-39.25	peak
5	14.2416	51.87	-60.98	-9.11	29.54	-60.61	-21.96	-38.65	peak
6	19.7895	51.42	-60.84	-9.42	29.54	-60.92	-21.96	-38.96	peak

Note: 1. Measurement = Reading Level + Correct Factor (dBuA/m= dBuV/m- 20Log10[120 π] = dBuV/m- 51.5).

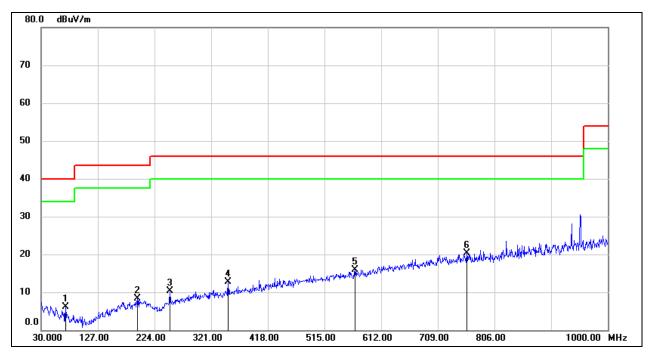
2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.


3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

Note: All the modes had been tested, only the worst data record in the report.

7.7. SPURIOUS EMISSIONS BELOW 1 GHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	135.7300	24.53	-19.46	5.07	43.50	-38.43	QP
2	250.1900	30.83	-16.12	14.71	46.00	-31.29	QP
3	501.4200	25.17	-10.54	14.63	46.00	-31.37	QP
4	596.4800	26.71	-8.51	18.20	46.00	-27.80	QP
5	751.6800	27.27	-6.06	21.21	46.00	-24.79	QP
6	830.2500	27.43	-4.87	22.56	46.00	-23.44	QP


Note: 1. Result Level = Read Level + Correct Factor.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

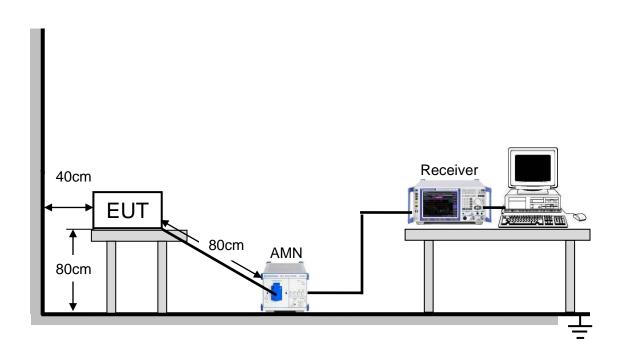
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	71.7100	26.30	-20.27	6.03	40.00	-33.97	QP
2	194.9000	24.66	-16.38	8.28	43.50	-35.22	QP
3	250.1900	26.33	-16.12	10.21	46.00	-35.79	QP
4	350.1000	25.91	-13.16	12.75	46.00	-33.25	QP
5	567.3800	25.05	-9.08	15.97	46.00	-30.03	QP
6	758.4699	26.02	-5.77	20.25	46.00	-25.75	QP

Note: 1. Result Level = Read Level + Correct Factor.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto

Note: All the modes had been tested, only the worst data record in the report.


8. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

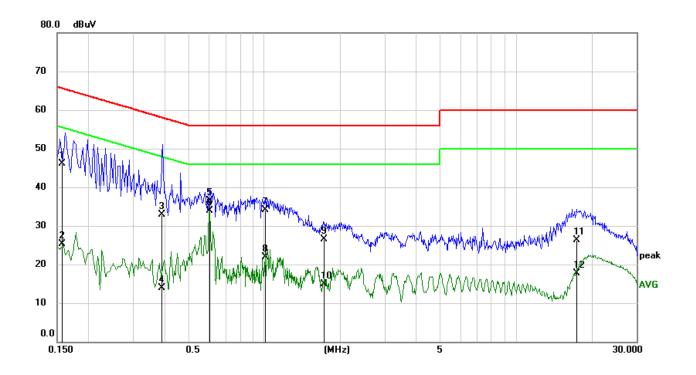
Please refer to ISED RSS-Gen Clause 8.8

FREQUENCY (MHz)	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

TEST SETUP AND PROCEDURE

The EUT is put on a table of non-conducting material that is 80cm high. The vertical conducting wall of shielding is located 40cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9kHz. The arrangement of the equipment is installed to meet the standards and operating in a manner,

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

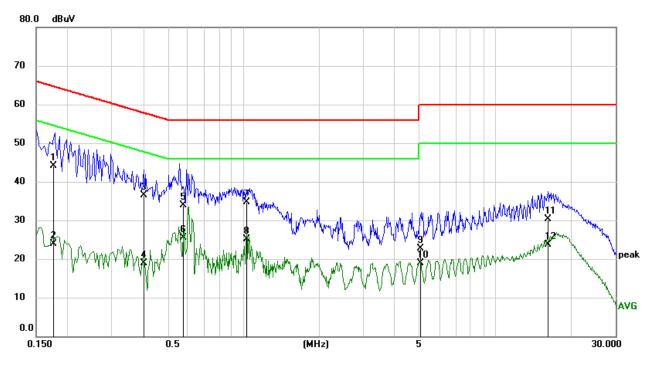

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

8.1. GFSK MODE

TEST RESULTS (HIGH CHANNEL, WORST-CASE CONFIGURATION)

LINE N RESULTS

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1573	36.59	9.60	46.19	65.61	-19.42	QP
2	0.1573	15.80	9.60	25.40	55.61	-30.21	AVG
3	0.3904	23.24	9.60	32.84	58.06	-25.22	QP
4	0.3904	4.32	9.60	13.92	48.06	-34.14	AVG
5	0.6048	26.88	9.60	36.48	56.00	-19.52	QP
6	0.6048	24.29	9.60	33.89	46.00	-12.11	AVG
7	1.0060	24.48	9.61	34.09	56.00	-21.91	QP
8	1.0060	12.26	9.61	21.87	46.00	-24.13	AVG
9	1.7378	16.88	9.62	26.50	56.00	-29.50	QP
10	1.7378	5.28	9.62	14.90	46.00	-31.10	AVG
11	17.4135	16.24	10.07	26.31	60.00	-33.69	QP
12	17.4135	7.65	10.07	17.72	50.00	-32.28	AVG


Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz-150 kHz), 9 kHz (150 kHz-30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

LINE L RESULTS

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1753	34.52	9.61	44.13	64.71	-20.58	QP
2	0.1753	14.30	9.61	23.91	54.71	-30.80	AVG
3	0.4027	26.97	9.60	36.57	57.80	-21.23	QP
4	0.4027	9.38	9.60	18.98	47.80	-28.82	AVG
5	0.5784	24.40	9.60	34.00	56.00	-22.00	QP
6	0.5784	15.82	9.60	25.42	46.00	-20.58	AVG
7	1.0294	25.03	9.61	34.64	56.00	-21.36	QP
8	1.0294	15.45	9.61	25.06	46.00	-20.94	AVG
9	5.0222	13.09	9.67	22.76	60.00	-37.24	QP
10	5.0222	9.31	9.67	18.98	50.00	-31.02	AVG
11	16.1499	20.45	9.91	30.36	60.00	-29.64	QP
12	16.1499	13.75	9.91	23.66	50.00	-26.34	AVG

Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

Note: All test mode has been tested, only the worst data record in the report

9. ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RESULTS

Complies

END OF REPORT