

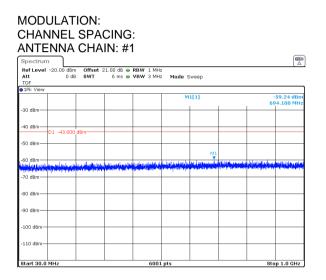
Test specification:	Section 96.41(e)(3), Conducted spurious emissions							
Test procedure:	Section 96.41(e)(3)							
Test mode:	Compliance	Verdict:	PASS					
Date(s):	09-Feb-22	verdict:	PA33					
Temperature: 24.1 °C	Relative Humidity: 49 %	Air Pressure: 1011 hPa	Power: 48 VAC					
Remarks:								

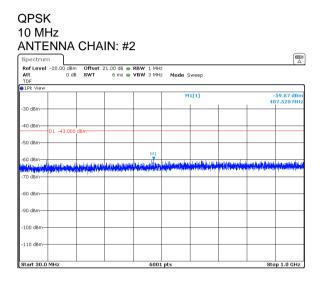
Plot 7.6.5 Spurious emission measurements in 150 kHz - 30 MHz range at mid carrier frequency

Plot 7.6.6 Spurious emission measurements in 150 kHz - 30 MHz range at high carrier frequency

MODULATION: CHANNEL SPACING:

Spectrun	INNA		ΠΝ. Π						
Ref Level Att TDF	-30.00 dBm 0 dB			RBW 10 kH VBW 30 kH		Sweep			
1Pk View					м	1[1]			80.58 dBm
40 dBm	-D1 -43.000	dBm						23.	46640 MHz
50 dBm									
60 dBm									
70 dBm									
80 dBm			dia na	ast a. I	k data	an di an	M1		
98 demi-1	desin tiyat	WANNA	ANNA AND	UNIVERSION		Manapar a		uni altra di	
100 dBm—									
110 dBm—									
120 dBm—									
Start 150.	0.6115			6001	nte			Cton	30.0 MHz

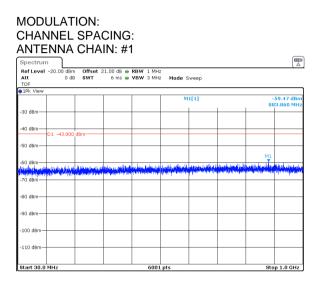

QPSK 10 MHz ANTENNA CHAIN: #2

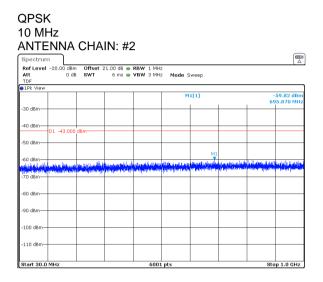

Spectrun	1]								
Ref Level Att TDF	-30.00 dBm 0 dB		21.00 dB 👄 29.9 ms 👄			Sweep			
1Pk View									
					м	1[1]			79.76 dBm 99640 MHz
-40 dBm	D1 -43.000	dBm							
-50 dBm									
-60 dBm									
-70 dBm									
-80 dBm			M1						
And Mark In Line		halanna				ANNA	Halter Rold	hikida lasiria	
-90 8BM	19 19 19 19 19 19 19 19 19 19 19 19 19 1	t i staladi ta ta	1.44.11		h a ta tit			H-stindars.	
-100 dBm—									
-110 dBm—									
-120 dBm—									
Start 150.	0 kHz			6001	pts		-	Stop	30.0 MHz

Test specification:	Section 96.41(e)(3), Conducted spurious emissions						
Test procedure:	Section 96.41(e)(3)						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	09-Feb-22	verdict.	PA33				
Temperature: 24.1 °C	Relative Humidity: 49 %	Air Pressure: 1011 hPa	Power: 48 VAC				
Remarks:							

Plot 7.6.7 Spurious emission measurements in 30 - 1000 MHz range at low carrier frequency

Plot 7.6.8 Spurious emission measurements in 30 - 1000 MHz range at mid carrier frequency

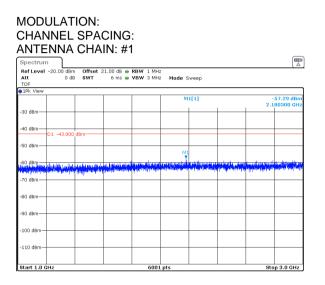

RefLevel -20.00 dBm Offset 21.00 dB RBW 1 MHz	MOD	ULAT	ION:							
Spectrum The level -20.00 dBm Offset 21.00 dB (a) (BW 1 MHz) Att 0 dB (BW 2 MHz) Mode Sweep TDF 0 dB (BW 2 MHz) Mode Sweep TDF 0 dB (BW 2 MHz) Mode Sweep TDF 0 dB (B	CHAI	NNEL	SPA	CING	:					
Spectrum The level -20.00 dBm Offset 21.00 dB (a) (BW 1 MHz) Att 0 dB (BW 2 MHz) Mode Sweep TDF 0 dB (BW 2 MHz) Mode Sweep TDF 0 dB (BW 2 MHz) Mode Sweep TDF 0 dB (B		=NNA	CHA	IN: #1	Ī					
Ref Levol -20.00 dBm Offset 21.00 dB @ RBW 1 MH: DF (1 (1 0 dB SWT 6 ms @ VBW 3 MH: Mode Sweep Mode Sweep TDF 30 dBm 714.630 MH: MI[1] -60.11 dBm 30 dBm 01.43.000 dBm 914.000 MH: MI[1] -60.11 dBm 50 dBm 91.43.000 dBm 91.43.000 MH: MI[1] -60.11 dBm 60 dBm 91.43.000 dBm 91.43.000 MH: MI[1] -60.11 dBm 60 dBm 91.43.000 dBm 91.43.000 MH: MI[1] -60.11 dBm 90 dBm 90 dBm 90 dBm 91.43.000 MH: MI[1] -60.11 dBm			0							
TOP TOP 13PK View -60.11 dBm 30 dBm 714.630 MHz 40 dBm 01.43.000 dBm 50 dBm 90 dBm 60 dBm 91 dBm 50 dBm 91 dBm 60 dBm 91 dBm 60 dBm 91 dBm 60 dBm 91 dBm 60 dBm 91 dBm 90 dBm 90 dBm			Offset :	21.00 dB 👄	RBW 1 MH	z				
30 d8m M1[1] -60.11 d8m 30 d8m 714.030 MHz 40 d8m 01 -43.000 d8m 50 d8m 1 60 d8m 1 90 d8m 1	Att			6 ms 🖷	VBW 3 MH	z Mode S	Sweep			
30 dBm M1[1] -60.11 dBm 30 dBm 714.630 MHz 714.630 MHz 40 dBm 01 -43.000 dBm 91 50 dBm 91 91 50 dBm 91 91 60 dBm 91 91 50 dBm 91 91 60 dBm 91 91 50 dBm 91 91 90 dBm 91 91 90 dBm 90 91										
30 d8m 01 -43.000 d8m						M	1[1]		-	60.11 dBm
40 dBm 01 43.000 dBm 200 20									71	4.630 MHz
O1 43.000 d8m H H H S0 d8m H1	-30 dBm									
D1 -43.000 dBm	40 d8m-									
	HO UDIT	D1 -43.000	dBm							
	50 dBm—									
2014 Constant of the second of										
70 dBm	60 dBm—					and an	. In the state has	TL V	a de la como	
70 dBm	aji Dalahina ammininan	in a failte fa fail a se a sea constation a fail	a service of a service of the servic	ing in part (in the first of the second s	ing ing ing the state		ang protocologies	a second second	a desperatorial	and the second
90 d8m-	-70 dBm									
90 d8m-										
	80 dBm—									
100 dBm	90 dBm-									
	100 dBm-									
	200 000									
-110 dBm	-110 dBm-									
Start 30.0 MHz 6001 pts Stop 1.0 GHz	Start 20 (6001	Inte			Sto	n 1 0 CH2

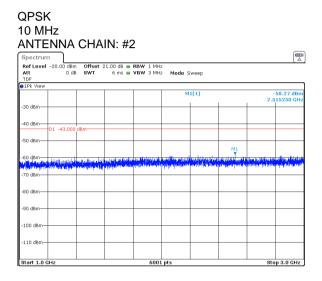

QPSK 10 MH ANTE Spectrum Ref Level	lz NNA	Offset 2	1.00 dB 👄			ween			
TDF	0.00	0111	0 1115	1011 0100	. Mous .	леер			
●1Pk View					м	1[1]			-59.83 dBm 09.290 MHz
-30 dBm									
-40 dBm	01 -43.000	dBm							
-50 dBm									
-60 dBm		to share	the state	La sue a selos	at a second data	N. National contraction	en al bestelle barriere	Manth Assister, etc.	الديدة والملاقية والتلك
-70 dBm			and the second second			la na sana	an a	a parameters	
-80 dBm									
-90 dBm									
-100 dBm									
-110 dBm									
Start 30.0 M	4Hz			6001	pts			Ste	op 1.0 GHz

Test specification:	Section 96.41(e)(3), Conducted spurious emissions						
Test procedure:	Section 96.41(e)(3)						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	09-Feb-22	verdict.	PA33				
Temperature: 24.1 °C	Relative Humidity: 49 %	Air Pressure: 1011 hPa	Power: 48 VAC				
Remarks:							

Plot 7.6.9 Spurious emission measurements in 30 - 1000 MHz range at high carrier frequency

Plot 7.6.10 Spurious emission measurements in 1000 - 3000 MHz range at low carrier frequency


MODUL	ATION:							
	EL SPA	CING						
	NA CHA		-					
Spectrum	ן ייי י פו אינ		•					
Ref Level -20.1	DO dBm Offset : O dB SWT	21.00 dB 👄	RBW 1 MH: VBW 3 MH:					(=)
TDF	0.08 2.01	o ms 🖷	VBW 3 MH	2 Mode 9	sweep			
1Pk View				M	1[1]			57.68 dBm
-30 dBm						I	1.7	37380 GHz
-30 UBIII								
-40 dBm	43.000 dBm							
-50 dBm	43.000 dBm							
-50 UBIII		M1						
60 dBm	in the second second	Last Parts	11				dan ti silata	
-70 dBm	teres de la construcción de la cons							
, o dom								
80 dBm								
90 dBm								
100 dBm								
110 dBm								
Start 1.0 GHz			6001	l pts		I	Sto	p 3.0 GHz


QPSK			
10 MHz			
ANTENNA CHA	IN: #2		
Spectrum			
RefLevel -20.00 dBm Offset Att 0 dB SWT TDF	21.00 dB 👄 RBW 1 MHz 6 ms 👄 VBW 3 MHz	Mode Sweep	(200)
●1Pk View			
		M1[1]	-58.31 dBm 2.921180 GHz
-30 dBm			
-40 dBm			
-50 dBm			
			M1
-60 dBm In the second standing loss of the second			and the second sec
-70 dBm			and the second sec
-80 dBm			
-90 dBm			
-100 dBm			
-110 dBm			
-110 UBII			
Start 1.0 GHz	6001 p	ts	Stop 3.0 GHz

Test specification:	Section 96.41(e)(3), Conducted spurious emissions							
Test procedure:	Section 96.41(e)(3)							
Test mode:	Compliance	Verdict:	PASS					
Date(s):	09-Feb-22	verdict:	PA33					
Temperature: 24.1 °C	Relative Humidity: 49 %	Air Pressure: 1011 hPa	Power: 48 VAC					
Remarks:								

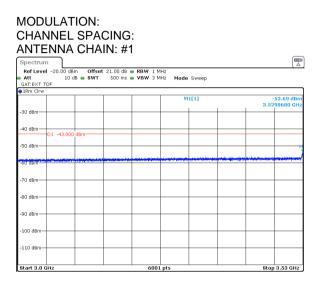
Plot 7.6.11 Spurious emission measurements in 1000 - 3000 MHz range at mid carrier frequency

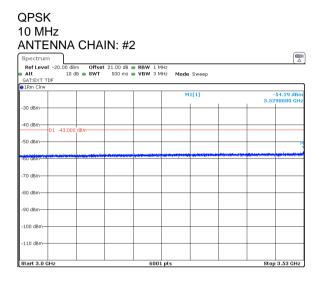
Plot 7.6.12 Spurious emission measurements in 1000 - 3000 MHz range at high carrier frequency

QPSK

MODULATION: CHANNEL SPACING:

Spectrum									
Att	-20.00 dBn 0 dB		21.00 dB 👄 6 ms 👄	RBW 1 MHz VBW 3 MHz		iweep			
TDF 1Pk View									
					м	1[1]	-57.94 dBm 2.899180 GHz		
-30 dBm									
-40 dBm	01 -43.000	10-11							
50 dBm-	01 -43.000	UBIII-							
								M1	
60 dBm		adaptati da Ma Manana da Ma	na da a Urradita Propos probabilita		during points	Network Deep	dajata sabi		
-70 dBm									
80 dBm-									
90 dBm-									
100 dBm—									
110 dBm-			-						
								í l	

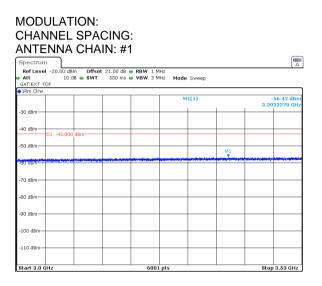

10 MHz ANTENNA CHAIN: #2

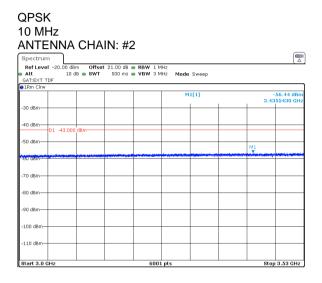

Att	0 dBm Offset 0 dB SWT	21.00 dB 👄 1 6 ms 👄 1	RBW 1 MHz VBW 3 MHz	Mode Sv	reep			
TDF 1Pk View								
				M1	[1]			58.32 dBr 43560 GH
30 dBm								
40 dBm 01 -4	13.000 dBm							
50 dBm							M1	
60 dBm	per la charlendar	a telesiyasik	en de la compañía de	en kijinstepere Naturalise dat	halikine poko Minal Anerodaki			
70 dBm	and Raphiship areas.	di dilda o		- Mar. 19		and the second		
BO dBm								
90 dBm								
100 dBm								

Test specification:	Section 96.41(e)(3), Conducted spurious emissions			
Test procedure:	Section 96.41(e)(3)			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	09-Feb-22	verdict:	PA33	
Temperature: 24.1 °C	Relative Humidity: 49 %	Air Pressure: 1011 hPa	Power: 48 VAC	
Remarks:				

Plot 7.6.13 Spurious emission measurements in 3000 - 3530 MHz range at low carrier frequency

Plot 7.6.14 Spurious emission measurements in 3000 - 3530 MHz range at mid carrier frequency

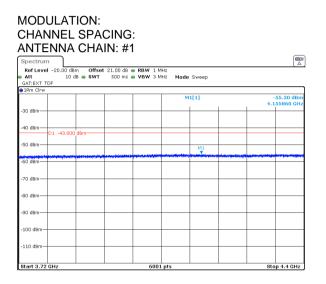

MODULATION: CHANNEL SPAC			
Ref Level -20.00 dBm Offset Att 10 dB SWT GAT:EXT TDF	21.00 dB • RBW 1 MHz 500 ms • VBW 3 MHz Mode	Sweep	
1Rm Cirw	Mi	[1]	-56.42 dBm 3.4453470 GHz
-30 dBm			3.1133170 0112
40 dBm			
-50 dBm			
ou dam			M1
-70 dBm			
80 dBm			
90 dBm			
-100 dBm			
-110 dBm			
Start 3.0 GHz	6001 pts		Stop 3.53 GHz

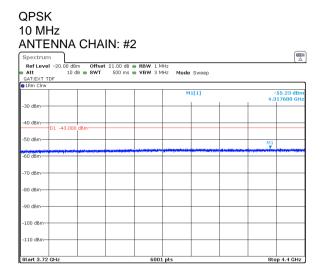

QPSK 10 MHz ANTENNA CHAIN: #2 Spectrum
RefLevel - 20.00 dbm Offset 21.00 db RBW 1 MH2
Att 10 db SWT 500 ms VBW 3 MH2 Mode Sweep
GATEXT TDF 0 1Rm Clr M1[1] -56.35 dB 3.4 30 dBr -40 dBm-D1 -43.00 -50 dBn M1 -70 dBr -80 dBm -90 di -100 dBn -110 dBm 6001 pt Start 3.0 GH Stop 3.53 GHz

Test specification:	Section 96.41(e)(3), Conducted spurious emissions				
Test procedure:	Section 96.41(e)(3)				
Test mode:	Compliance	Vardiate	DASS		
Date(s):	09-Feb-22	Verdict: PASS			
Temperature: 24.1 °C	Relative Humidity: 49 %	Air Pressure: 1011 hPa	Power: 48 VAC		
Remarks:					

Plot 7.6.15 Spurious emission measurements in 3000 - 3530 MHz range at high carrier frequency

Plot 7.6.16 Spurious emission measurements in 3720 - 4400 MHz range at low carrier frequency


G: #1 #8 • RBW 1 MHz ns • VBW 3 MHz Mode Sweep	
M1[1]	-55.20 dBm
	4.141360 GHz
	Stop 4.4 GHz
	41 IB ● RBW 1 MHz Is ● VBW 3 MHz Mode Sweep


Att 10 dB SWT 500 GAT:EXT TDF	D dB 🖶 RBW 1 MHz	lode Sweep	
1Rm Clrw			
		M1[1]	-55.18 dBm 4.151670 GHz
-30 dBm			4.131070 GHz
-40 dBm			
D1 -43.000 dBm			
-50 dBm			
-50 dBm		M1	
-60 dBm	and the second	and the second	an a
00 45.0			
-70 dBm			
-> o ubm			
-80 dBm			
oo usiii			
-90 dBm			
-100 dBm			
-110 dBm			
Start 3.72 GHz	6001 pts		Stop 4.4 GHz

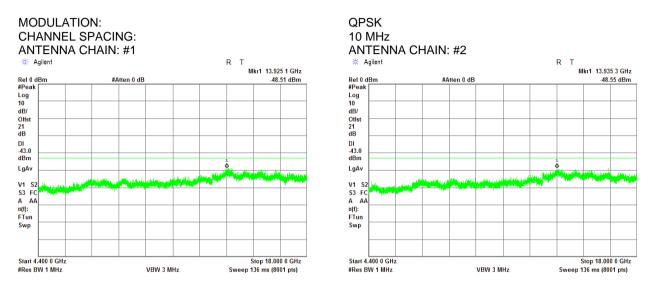
Test specification:	Section 96.41(e)(3), Conducted spurious emissions			
Test procedure:	Section 96.41(e)(3)			
Test mode:	Compliance	Vardiate		
Date(s):	09-Feb-22	Verdict: PASS		
Temperature: 24.1 °C	Relative Humidity: 49 %	Air Pressure: 1011 hPa	Power: 48 VAC	
Remarks:				

Plot 7.6.17 Spurious emission measurements in 3720 - 4400 MHz range at mid carrier frequency

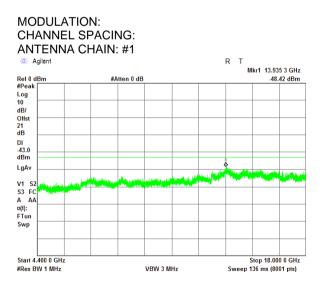
Plot 7.6.18 Spurious emission measurements in 3720 - 4400 MHz range at high carrier frequency

MODULATION: CHANNEL SPACING: ANTENNA CHAIN: #1

Spectrum	-			
Ref Level -20.00 dBm Of Att 10 dB • SV		'1 MHz '3 MHz Mode Swee;	0	
GAT:EXT TDF				
		M1[1]		-54.97 dBm
30 dBm				3.720280 GHz
40 dBm 01 -43.000 dBm				
50 dBm				
60 dBm				
70 dBm				
80 dBm				
90 dBm				
100 dBm				
110 dBm				
Start 3.72 GHz		6001 pts		Stop 4.4 GHz


QPSK 10 MHz ANTENNA CHAIN: #2

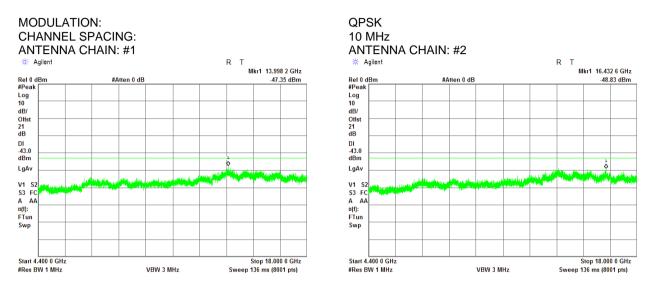
Spectrum	ר			
Ref Level -20 Att GAT:EXT TDF	10 dBm Offset 2 10 dB e SWT	21.00 dB - RBW 1 M 500 ms - VBW 3 M		
●1Rm Clrw			M1[1]	-54.71 dBm 3.720170 GHz
-30 dBm				
-40 dBm-01 -	43.000 dBm			
1 ⁵⁰ dBm				
-60 dBm				
-70 dBm				
-70 dBm				
-80 dBm				
-90 dBm				
-100 dBm				
-110 dBm				
Start 3.72 GHz		6001	pts	Stop 4.4 GHz



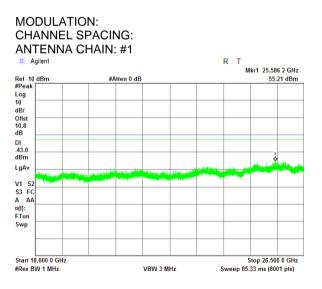
Test specification:	Section 96.41(e)(3), Conducted spurious emissions			
Test procedure:	Section 96.41(e)(3)			
Test mode:	Compliance	Vardiate	DASS	
Date(s):	09-Feb-22	Verdict: PASS		
Temperature: 24.1 °C	Relative Humidity: 49 %	Air Pressure: 1011 hPa	Power: 48 VAC	
Remarks:				

Plot 7.6.19 Spurious emission measurements in 4400 - 18000 MHz range at low carrier frequency

Plot 7.6.20 Spurious emission measurements in 4400 - 18000 MHz range at mid carrier frequency



QPSK 10 MHz ANTENNA CHAIN: #2 🔆 Agilent R Т Mkr1 13.972 7 GHz Ref 0 dBm #Peak #Atten 0 dB 48.48 dBm Log 10 dB/ Offst 21 dB DI -43.0 dBm LgAv V1 S2 S3 FC A AA ¤(f): FTun Swp Start 4.400 0 GHz #Res BW 1 MHz Stop 18.000 0 GHz Sweep 136 ms (8001 pts) VBW 3 MHz



Test specification:	Section 96.41(e)(3), Conducted spurious emissions			
Test procedure:	Section 96.41(e)(3)			
Test mode:	Compliance	Vardiate		
Date(s):	09-Feb-22	Verdict: PASS		
Temperature: 24.1 °C	Relative Humidity: 49 %	Air Pressure: 1011 hPa	Power: 48 VAC	
Remarks:				

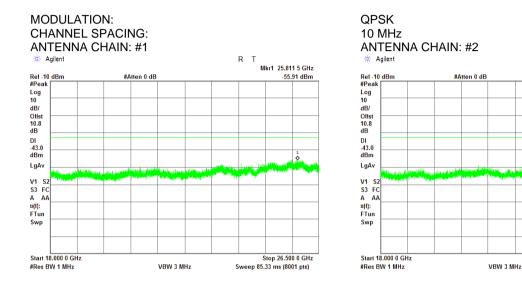
Plot 7.6.21 Spurious emission measurements in 4400 - 18000 MHz range at high carrier frequency

Plot 7.6.22 Spurious emission measurements in 18000 - 26500 MHz range at low carrier frequency

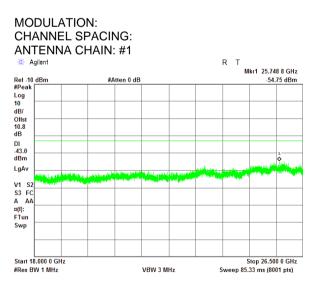
QPSK 10 MHz ANTENNA CHAIN: #2 🔆 Agilent R Т Mkr1 26.371.4 GHz Ref -10 dBm #Peak Log 10 dB/ Offst 10.8 dB #Atten 0 dB -54.90 dBm DI -43.0 dBm LgAv V1 S2 V1 52 S3 FC A AA ¤(f): FTun Swp Start 18.000 0 GHz Stop 26.500 0 GHz VBW 3 MHz Sweep 85.33 ms (8001 pts) #Res BW 1 MHz

R T

Mkr1 26.371 4 GHz


Stop 26.500 0 GHz Sweep 85.33 ms (8001 pts)

-54.90 dBm



Test specification:	Section 96.41(e)(3), Conducted spurious emissions			
Test procedure:	Section 96.41(e)(3)			
Test mode:	Compliance	Vardiate	DASS	
Date(s):	09-Feb-22	Verdict: PASS		
Temperature: 24.1 °C	Relative Humidity: 49 %	Air Pressure: 1011 hPa	Power: 48 VAC	
Remarks:				

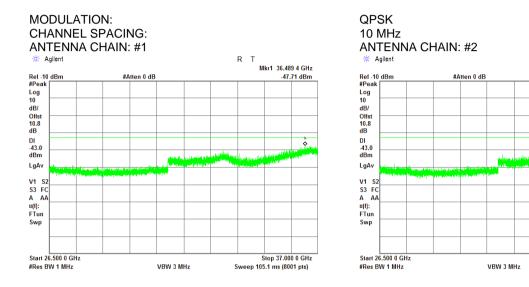
Plot 7.6.23 Spurious emission measurements in 18000 - 26500 MHz range at mid carrier frequency

QPSK 10 MHz ANTENNA CHAIN: #2 🔆 Agilent R Т Mkr1 26.031 4 GHz Ref -10 dBm #Peak Log 10 dB/ Offst 10.8 dB #Atten 0 dB -55.14 dBm DI -43.0 dBm LgAv V1 S2 V1 52 S3 FC A AA ¤(f): FTun Swp Start 18.000 0 GHz Stop 26.500 0 GHz VBW 3 MHz Sweep 85.33 ms (8001 pts) #Res BW 1 MHz

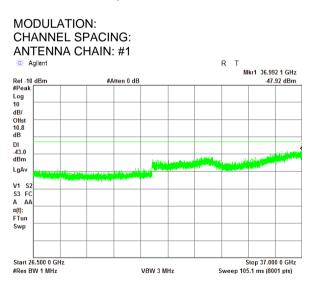
R T

Mkr1 36.717 8 GHz

Stop 37.000 0 GHz Sweep 105.1 ms (8001 pts)


46.47 dBm

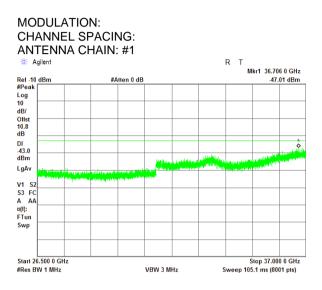
0

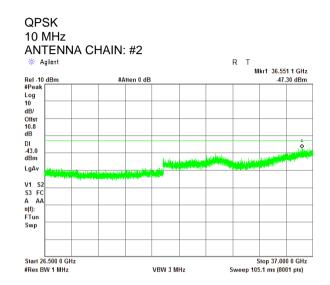


Test specification:	Section 96.41(e)(3), Conducted spurious emissions			
Test procedure:	Section 96.41(e)(3)			
Test mode:	Compliance			
Date(s):	09-Feb-22	Verdict: PASS		
Temperature: 24.1 °C	Relative Humidity: 49 %	Air Pressure: 1011 hPa	Power: 48 VAC	
Remarks:				

Plot 7.6.25 Spurious emission measurements in 26500 - 37000 MHz range at low carrier frequency

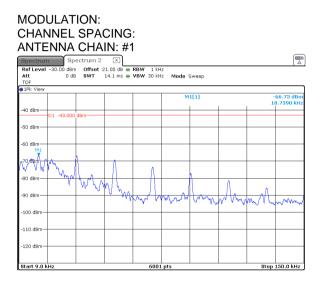
Plot 7.6.26 Spurious emission measurements in 26500 - 37000 MHz range at mid carrier frequency

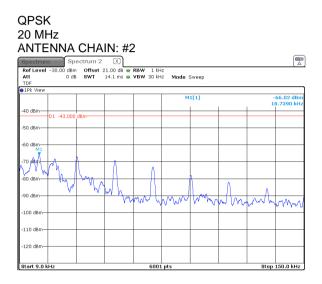


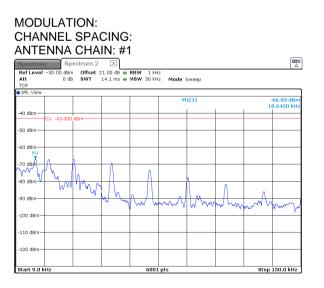

QPSK 10 MHz ANTENNA CHAIN: #2 🔆 Agilent R Т Mkr1 36.835 9 GHz Ref -10 dBm #Peak Log 10 dB/ Offst 10.8 dB #Atten 0 dB .47.41 dBm DI -43.0 dBm ċ LgAv V1 S2 S3 FC A AA ¤(1): FTun Swp Start 26.500 0 GHz Stop 37.000 0 GHz VBW 3 MHz Sweep 105.1 ms (8001 pts) #Res BW 1 MHz

Test specification:	Section 96.41(e)(3), Conducted spurious emissions					
Test procedure:	Section 96.41(e)(3)					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	09-Feb-22	verdict:	PA33			
Temperature: 24.1 °C	Relative Humidity: 49 %	Air Pressure: 1011 hPa	Power: 48 VAC			
Remarks:						

Plot 7.6.27 Spurious emission measurements in 26500 - 37000 MHz range at high carrier frequency

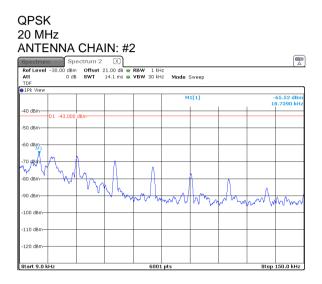





Test specification:	Section 96.41(e)(3), Conducted spurious emissions					
Test procedure:	Section 96.41(e)(3)					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	09-Feb-22	verdict:	PA33			
Temperature: 24.1 °C	Relative Humidity: 49 %	Air Pressure: 1011 hPa	Power: 48 VAC			
Remarks:						

Plot 7.6.28 Spurious emission measurements in 9 - 150 kHz range at low carrier frequency

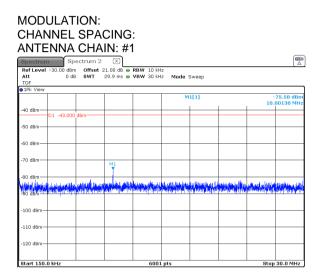
Plot 7.6.29 Spurious emission measurements in 9 - 150 kHz range at mid carrier frequency

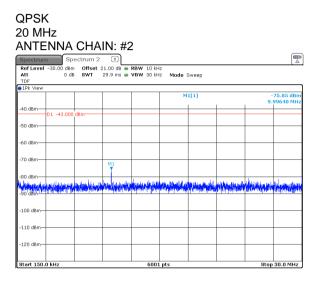

QPSK 20 MHz ANTENNA CHAIN: #2 Spectrum 2 X -30.00 dBm Offset 21.00 dB • RBW 1 kHz 0 dB SWT 14.1 ms • VBW 30 kHz Ref Level Att Mode Sweep TDI 1D -64.60 dB 18.7390 kł M1[1] 40 dBn so da -60 dB -zorden W Λ -80 dBm M M ٦, -100 dBr 110 de -120 dBm 60 Stop

Test specification:	Section 96.41(e)(3), Conducted spurious emissions					
Test procedure:	Section 96.41(e)(3)					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	09-Feb-22	verdict.	PASS			
Temperature: 24.1 °C	Relative Humidity: 49 %	Air Pressure: 1011 hPa	Power: 48 VAC			
Remarks:						

Plot 7.6.30 Spurious emission measurements in 9 - 150 kHz range at high carrier frequency

Plot 7.6.31 Spurious emission measurements in 150 kHz - 30 MHz range at low carrier frequency


MODULATION: CHANNEL SPACING ANTENNA CHAIN: #'	-	_
Spectrum Spectrum 2 X Ref Level -30.00 dBm Offset 21.00 dB •	RBW 10 kHz	
	VBW 30 kHz Mode Sweep	
●1Pk View]
	M1[1]	-76.67 dBm 9.99640 MHz
-40 dBm		
D1 -43.000 dBm		
-50 dBm		
-60 dBm		
-70 dBm		
-80 dBm		
	والمراجع الالمرو ويقوه والقرار فالمالية	an ease of the state of the device of a state to do not all a second
-90 dBm		
-100 dBm		
-110 dBm		
-120 dBm		
Start 150.0 kHz	6001 pts	Stop 30.0 MHz


QPSK			
20 MHz			
ANTENNA CHAIN	l: #2		
Ref Level -30.00 dBm Offset 21.0	(X) 0 dB • RBW 10 kHz 9 ms • VBW 30 kHz Mode Sy	veen	
TDF		icep	
1Pk View	M1[-76.79 dBm 9.99640 MHz
-40 dBm 01 -43.000 dBm			
-50 dBm			
-60 dBm			
-70 dBm	11		
-80 dBm		and a state of the second state of the second state	and the second
-Bo all and a state of the state of the state of the			
-100 dBm			
-110 dBm			
-120 dBm			
Start 150.0 kHz	6001 pts		p 30.0 MHz
	0001 pts	Ste	ip auto MHZ

Test specification:	Section 96.41(e)(3), Conducted spurious emissions					
Test procedure:	Section 96.41(e)(3)					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	09-Feb-22	verdict:	PASS			
Temperature: 24.1 °C	Relative Humidity: 49 %	Air Pressure: 1011 hPa	Power: 48 VAC			
Remarks:						

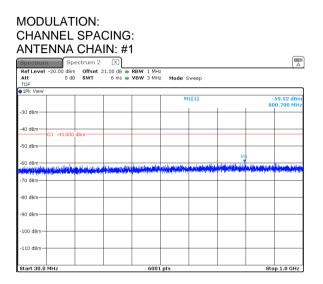
Plot 7.6.32 Spurious emission measurements in 150 kHz - 30 MHz range at mid carrier frequency

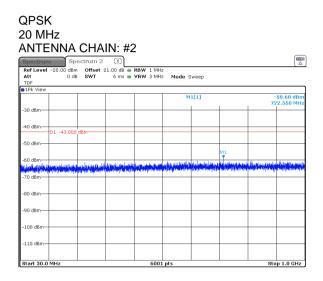
Plot 7.6.33 Spurious emission measurements in 150 kHz - 30 MHz range at high carrier frequency

QPSK

MODULATION: CHANNEL SPACING: ANTENNA CHAIN: #1 Spectrum 2 X

Spectrun		ectrum 2							
	-30.00 dBm			RBW 10 kH		_			
Att TDF	0 de	SWT	29.9 ms 👄	VBW 30 kH	Z Mode	Sweep			
1Pk View									
					M	1[1]			77.21 dBn
-40 dBm						1	1	10.	00130 MH: I
	D1 -43.000	dBm							
-50 dBm									
-50 asm									
-60 dBm									
-00 ubiii-									
-70 dBm									
-70 0011			M1						
-80 dBm									
وراه ارمس الألا	المتحاد المحال	and contract	unhannal	albrechi de si	أنيانا الالتعمر ال	L. Mar. Hall	and and the	Line of the site	الماسيعيا فلا
-90 dBm	Mana shine	dia la desta data esta	Physical Phy	Asherida ali (m.	a subsection of the	h phone in the	the state of the s	different of h	and political de
								l .	
-100 dBm—									
-110 dBm—									
-120 dBm—									
Start 150.	0.1.1.1.			6001		I	I	L	30.0 MHz


20 MHz

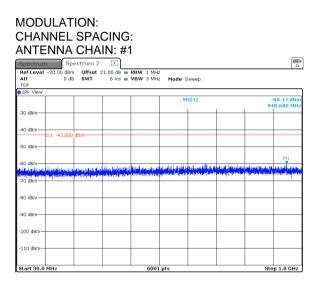

ANTE	:NNA	CHA	IN: #2	<u> </u>					
Spectrun	Sp	ectrum 2	×						
	-30.00 dBm 0 dB			RBW 10 kH		_			
Att TDF	U de	SWI	29.9 ms 👄	VBW 30 kH	Z Mode 1	Sweep			
⊖1Pk View									
					M	1[1]			75.08 dBm 99640 MHz
-40 dBm								<i>.</i>	55010 1112
	D1 -43.000	dBm							
-50 dBm									
-60 dBm									
-70 dBm									
-yo ubiii			M1						
-80 dBm									
والتا الموالية	Million Hillings	والط والله والأفريد ف		44 AMPARTURA	a a later a state of the second s	والإسابيان	and the sea	Marijanju	ali di davi
-90 dBm	ale travely well.	and the local second	an the s	of the state	de contra de	diameter i se		a collación	
-100 dBm									
-110 dBm-									
-120 dBm—									
Start 150.	0 kHz			6001	pts	I	I	Stop	30.0 MHz

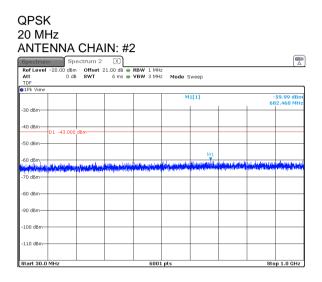
Test specification:	Section 96.41(e)(3), Conducted spurious emissions					
Test procedure:	Section 96.41(e)(3)					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	09-Feb-22	verdict:	PASS			
Temperature: 24.1 °C	Relative Humidity: 49 %	Air Pressure: 1011 hPa	Power: 48 VAC			
Remarks:						

Plot 7.6.34 Spurious emission measurements in 30 - 1000 MHz range at low carrier frequency

Plot 7.6.35 Spurious emission measurements in 30 - 1000 MHz range at mid carrier frequency

MODULATION: CHANNEL SPACING ANTENNA CHAIN: # Spectrum Spectrum 2 (S) RefLevel -20.00 dem offset 21.00 de Att 0 de SWT 6 ms	• RBW 1 MHz	le Sweep	
9 1Pk View			J
		M1[1]	-60.23 dBm 710.100 MHz
-30 dBm			
-40 dBm			
D1 -43.000 dBm			
-50 dBm			
-60 dBm		MI	
-OU dBm In Line of a state of the sector of the state of	de elle coleir, pelè debreix	aliti da dan dijitan tanta di militaka k Manang Propinsi ang mang pangang pangan Manang Propinsi ang	a din kata dalah periodakan dari diku sebasti kasi dari basar dari bertakan dari bertakan dari bertakan dari b Bartakan periodakan dari bertakan dari bertakan dari bertakan dari bertakan dari bertakan dari bertakan dari be
-70 dBm	the second second second		
-80 dBm			
-90 dBm-			
-100 dBm			
-110 dBm			
Start 30.0 MHz	6001 pts		Stop 1.0 GHz

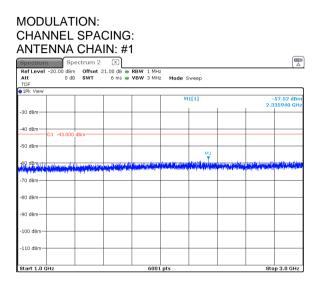

QPSK 20 MHz ANTENNA CHAIN: #2 Spectrum Spectrum Spectrum Spectrum Spectrum Offset Spectrum <

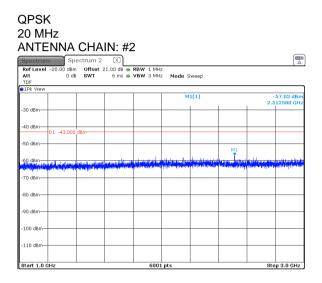

					М	1[1]		60.27 dBn 4.640 MH
-30 dBm								
-40 dBm	D1 -43.000	dam						
50 dBm	01 -43.000	ubili						
-60 dBm								M1
di mata ta ta	is his official later and a second second	depend	falls affine in he	الدورانيون الذرائي وي ج إيرا محموم المحموم	and we have been	¹ - 1997 - 199	interesting to the	
-70 dBm								
-80 dBm								
-90 dBm								
-100 dBm								
110 dBm-								
Start 30.0				6001				p 1.0 GHz

Test specification:	Section 96.41(e)(3), Conducted spurious emissions					
Test procedure:	Section 96.41(e)(3)					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	09-Feb-22	verdict:	PASS			
Temperature: 24.1 °C	Relative Humidity: 49 %	Air Pressure: 1011 hPa	Power: 48 VAC			
Remarks:		· · ·				

Plot 7.6.36 Spurious emission measurements in 30 - 1000 MHz range at high carrier frequency

Plot 7.6.37 Spurious emission measurements in 1000 - 3000 MHz range at low carrier frequency

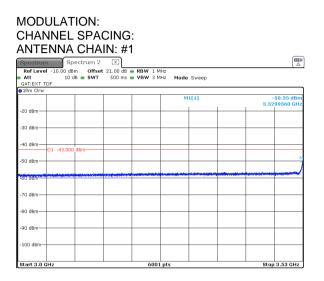

MODULATIOI CHANNEL SF ANTENN <u>A C</u> H	ACING:				_
Spectrum Spectrum Ref Level -20.00 dBm Off Att 0 dB SW TDF	set 21.00 dB . RBW 1		Sweep		
91Pk View					
		м	1[1]	. 1	-58.18 dBm .972340 GHz
-30 dBm		_			
-40 dBm01 -43,000 dBm		_			
-50 dBm		_			
60 d8m		M1	madationalist		d and a second
-60 dBm		and dates and a local se	- production of the state party	Ale and the second second	desired we have been
-70 dBm		_			
-80 dBm					
-90 dBm					
-100 dBm					
-110 dBm					
Start 1.0 GHz	6	001 pts			top 3.0 GHz

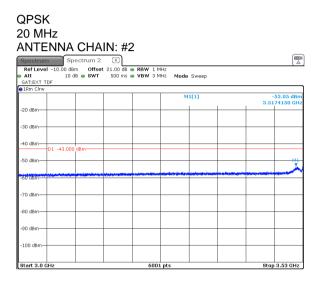

QPSK 20 MHz ANTENNA CHAIN: # Spectrum 2 3 Ref Level -20.00 dbm Offset 21.00 db 0 db SWT 6 m3 6	RBW 1 MHz	ode Sweep			
1Pk View		M1[1]			57.88 dBm
		MILLI			40610 GHz
-30 dBm					
-40 dBm 01 -43.000 dBm					
-50 dBm					
		M1			
-69 dBm			History	appled provident	and the second s
-70 dBm					
-80 dBm					
-90 dBm					
-100 dBm					
-110 dBm					
-110 0800					
Start 1.0 GHz	6001 pts			Sto	p 3.0 GHz

Test specification:	Section 96.41(e)(3), Conducted spurious emissions				
Test procedure:	Section 96.41(e)(3)				
Test mode:	Compliance	Verdict: PASS			
Date(s):	09-Feb-22	verdict.	PA33		
Temperature: 24.1 °C	Relative Humidity: 49 %	Air Pressure: 1011 hPa	Power: 48 VAC		
Remarks:					

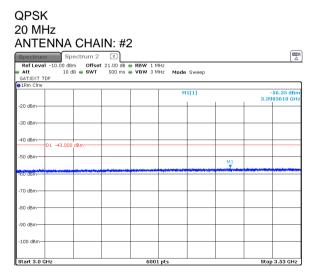
Plot 7.6.38 Spurious emission measurements in 1000 - 3000 MHz range at mid carrier frequency

Plot 7.6.39 Spurious emission measurements in 1000 - 3000 MHz range at high carrier frequency

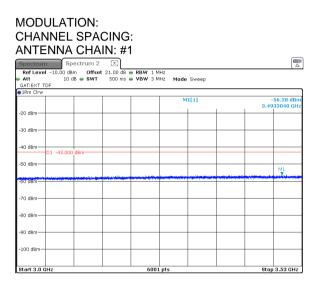

MODULATION: CHANNEL SPACIN ANTENNA CHAIN:			
Att 0 dB SWT 6 m TDF	B RBW 1 MHz S VBW 3 MHz Mode	Sweep	
• 1Pk View			
		41[1]	-58.16 dBm 2.293620 GHz
-30 dBm			
-40 dBm			
-50 dBm		M1	
-60, dBm			in an and a start of the start of
	laftning at delivery of a second state of a second	a name of a second second life	and the second
-70 dBm			
-80 dBm			
-90 dBm			
-100 dBm			
-110 dBm			
Start 1.0 GHz	6001 pts		Stop 3.0 GHz

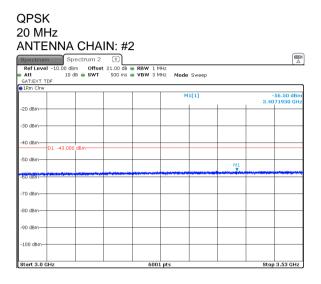

TDF	BW 1 MHz	Mode St	weep			
●1Pk View			[1]			58.16 dBm
		M.	(1)			93850 GHz
-30 dBm						
-40 dBm						
D1 -43.000 dBm						
-50 dBm						
						M1
-60 dBm	ministerrenter	han all a	and the state	abdy sylidyets	warminister.	dente durch #
a historia production de la construction de la production de la production de la production de la production de	dial film and a second	and the party of	ta di na mana si di	a flatta flata fra fr	territer and the second	al of the second second
-70 dBm						
-80 dBm						
-90 dBm						
-100 dBm						
-110 dBm						
Start 1.0 GHz	6001 pt	s			Sto	p 3.0 GHz

Test specification:	Section 96.41(e)(3), Conducted spurious emissions				
Test procedure:	Section 96.41(e)(3)				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	09-Feb-22	verdict:	PA33		
Temperature: 24.1 °C	Relative Humidity: 49 %	Air Pressure: 1011 hPa	Power: 48 VAC		
Remarks:					

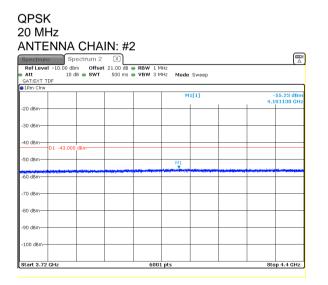

Plot 7.6.40 Spurious emission measurements in 3000 - 3530 MHz range at low carrier frequency

Plot 7.6.41 Spurious emission measurements in 3000 - 3530 MHz range at mid carrier frequency

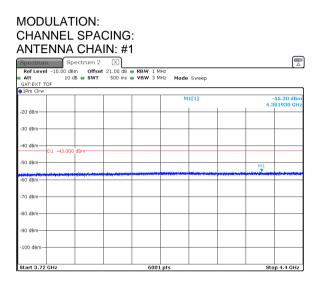

MODULATION: CHANNEL SPACI ANTENNA CHAIN	: #1		
Ref Level -10.00 dBm Offset 21.	X) D0 dB • RBW 1 MHz D0 ms • VBW 3 MHz	Mode Sweep	
●1Rm Cirw			
		M1[1]	-56.47 dBm 3.4400470 GHz
-20 dBm			3.1100170 0112
-30 dBm			
-40 dBm 01 -43,000 dBm			
-50 dBm			
-oU dBm-	-		M1 T
-00 080			
-70 dBm			
-80 dBm			
-90 dBm			
-100 dBm			
Start 3.0 GHz	6001 pts		Stop 3.53 GHz

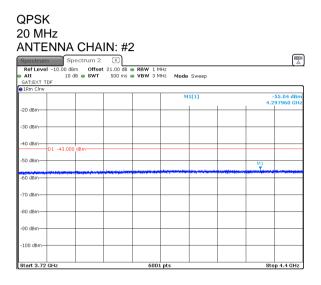


Test specification:	Section 96.41(e)(3), Conducted spurious emissions				
Test procedure:	Section 96.41(e)(3)				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	09-Feb-22	verdict:	PASS		
Temperature: 24.1 °C	Relative Humidity: 49 %	Air Pressure: 1011 hPa	Power: 48 VAC		
Remarks:					


Plot 7.6.42 Spurious emission measurements in 3000 - 3530 MHz range at high carrier frequency

Plot 7.6.43 Spurious emission measurements in 3720 - 4400 MHz range at low carrier frequency


	* 1 3 • RBW 1 MHz	ide Sweep	
IRm Cirw			
		M1[1]	-55.28 dBm 4.051840 GHz
-20 dBm			
-30 dBm			
-40 dBm 01 -43.000 dBm			
-50 dBm	M1		
-60 dBm			layan na iku atan iku
-70 dBm			
-80 dBm			
-90 dBm			
-100 dBm			
Start 3.72 GHz	6001 pts		Stop 4.4 GHz



Test specification:	Section 96.41(e)(3), Conducted spurious emissions				
Test procedure:	Section 96.41(e)(3)				
Test mode:	Compliance	Vardiate	DASS		
Date(s):	09-Feb-22	Verdict: PASS			
Temperature: 24.1 °C	Relative Humidity: 49 %	Air Pressure: 1011 hPa	Power: 48 VAC		
Remarks:					

Plot 7.6.44 Spurious emission measurements in 3720 - 4400 MHz range at mid carrier frequency

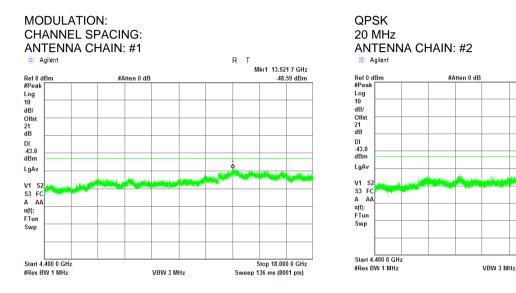
Plot 7.6.45 Spurious emission measurements in 3720 - 4400 MHz range at high carrier frequency

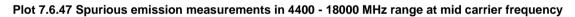
MODULATION: CHANNEL SPAC ANTENNA CHAI		_
Ref Level -10.00 dBm Offset Att 10 dB SWT GAT:EXT TDF	X 21.00 dB • RBW 1 MHz 500 ms • VBW 3 MHz Mode Sweep	
1Rm Cirw		
	M1[1]	-53.81 dBm 3.721190 GHz
-20 dBm		3.721190 GH2
-30 dBm		
10.15		
-40 dBm 01 -43.000 dBm		
50 dBm		
-60 dBm	på for sen en sen sen sen sen sen sen sen sen	na na harantariya sanarikanik ina kanarikanik ina kanarikanika
-70 dBm		
-80 dBm		
90 dBm		
100 dBm		
Start 3.72 GHz	6001 pts	Stop 4.4 GHz

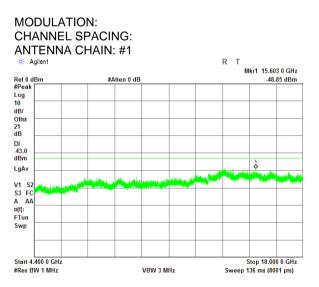
QPSK					
20 MHz					
	A CHAIN:	#2			
Spectrum	Spectrum 2 🛛	<u>ה</u>			
Ref Level -10. Att	00 dBm Offset 21.0 10 dB - SWT 500	0 dB ⊜ RBW 1 M⊢ 0 ms ⊜ VBW 3 M⊢			
GAT:EXT TDF					
●1Rm Clrw					
			M1[1]		-53.60 dBm 3.720280 GHz
-20 dBm					
-30 dBm					
-40 dBm-01 -4	3.000 dBm				
1-50 dBm					
Martin Strategies			instantina survis antitatisticati		
-60 dBm					
-70 dBm				-	
-80 dBm					
-90 dBm					
-100 dBm					
Start 3.72 GHz		6001	ate		Stop 4.4 GHz
oture 0.72 GHz		0001	pcs		500p 4.4 GHz

R T

Mkr1 13.943 8 GHz


Stop 18.000 0 GHz Sweep 136 ms (8001 pts)


48.51 dBm



Test specification:	est specification: Section 96.41(e)(3), Conducted spurious emissions							
Test procedure:	Section 96.41(e)(3)							
Test mode:	Compliance	Verdict:	PASS					
Date(s):	09-Feb-22	verdict:	PASS					
Temperature: 24.1 °C	Relative Humidity: 49 %	Air Pressure: 1011 hPa	Power: 48 VAC					
Remarks:								

Plot 7.6.46 Spurious emission measurements in 4400 - 18000 MHz range at low carrier frequency

 QPSK

 20 MHz

 ANTENNA CHAIN: #2

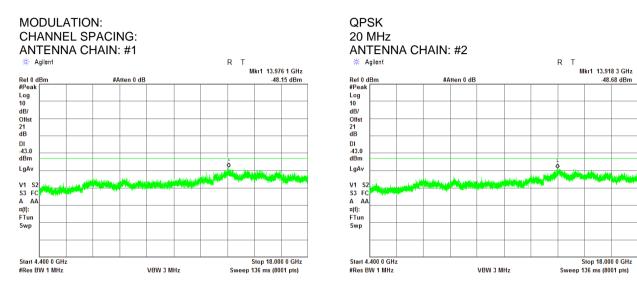
 * Aglent
 R T

 Mkr1 13.959 1 GHz

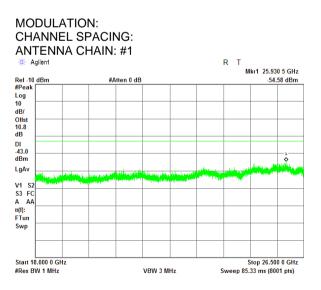
 #Peak
 -49.19 dBm

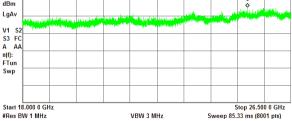
 #Peak
 -49.19 dBm

 #00
 -49.19 dBm


 00/dB/
 -49.19 dBm

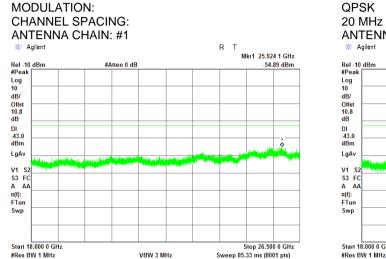
 01/dB/
 -49.19 dBm

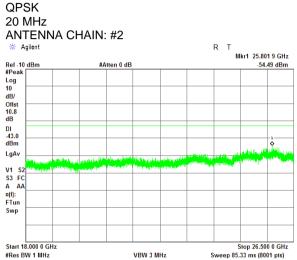


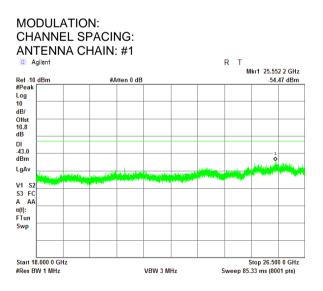

Test specification: Section 96.41(e)(3), Conducted spurious emissions							
Test procedure:	Section 96.41(e)(3)						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	09-Feb-22	verdict:	PA35				
Temperature: 24.1 °C	Relative Humidity: 49 %	Air Pressure: 1011 hPa	Power: 48 VAC				
Remarks:							

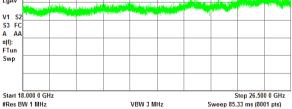
Plot 7.6.48 Spurious emission measurements in 4400 - 18000 MHz range at high carrier frequency

Plot 7.6.49 Spurious emission measurements in 18000 - 26500 MHz range at low carrier frequency


Mkr1 25,116.6 GHz


-55.13 dBm


Test specification:	n: Section 96.41(e)(3), Conducted spurious emissions						
Test procedure:	Section 96.41(e)(3)						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	09-Feb-22	verdict.	PASS				
Temperature: 24.1 °C	Relative Humidity: 49 %	Air Pressure: 1011 hPa	Power: 48 VAC				
Remarks:							


Plot 7.6.50 Spurious emission measurements in 18000 - 26500 MHz range at mid carrier frequency

Plot 7.6.51 Spurious emission measurements in 18000 - 26500 MHz range at high carrier frequency

Mkr1 25 503 4 GHz

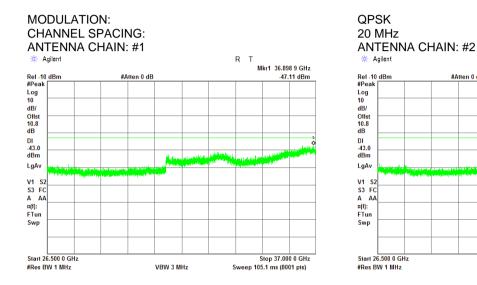
ò

-54.83 dBm

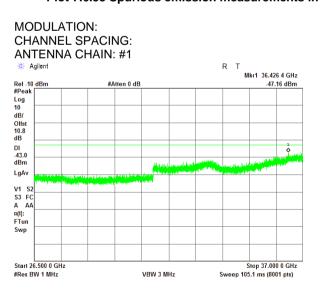
R T

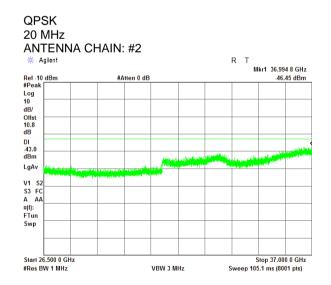
#Atten 0 dB

Mkr1 36.923 9 GHz

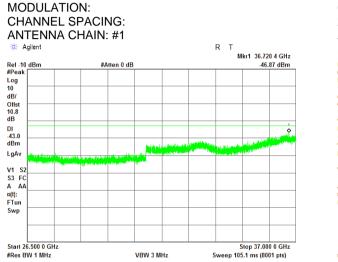

Stop 37.000 0 GHz Sweep 105.1 ms (8001 pts)

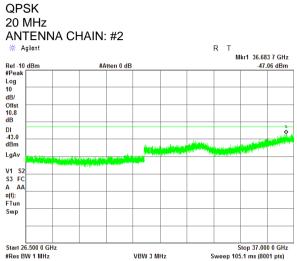
.47.48 dBm



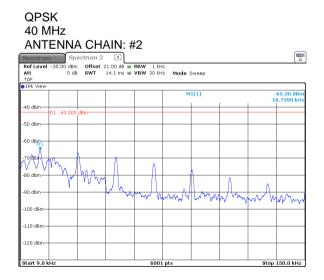

Test specification:	est specification: Section 96.41(e)(3), Conducted spurious emissions							
Test procedure:	Section 96.41(e)(3)							
Test mode:	Compliance	Verdict:	PASS					
Date(s):	09-Feb-22	verdict:	PASS					
Temperature: 24.1 °C	Relative Humidity: 49 %	Air Pressure: 1011 hPa	Power: 48 VAC					
Remarks:								

Plot 7.6.52 Spurious emission measurements in 26500 - 37000 MHz range at low carrier frequency

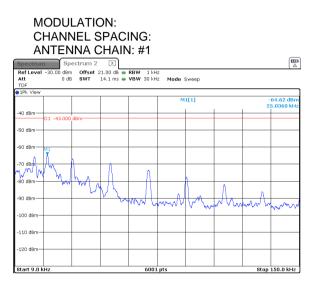


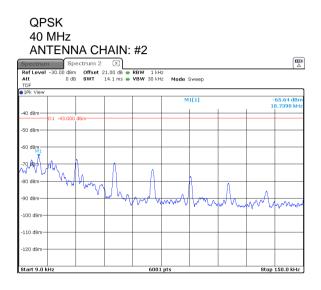

VBW 3 MHz

Test specification: Section 96.41(e)(3), Conducted spurious emissions							
Test procedure:	Section 96.41(e)(3)						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	09-Feb-22	verdict:	PA35				
Temperature: 24.1 °C	Relative Humidity: 49 %	Air Pressure: 1011 hPa	Power: 48 VAC				
Remarks:							

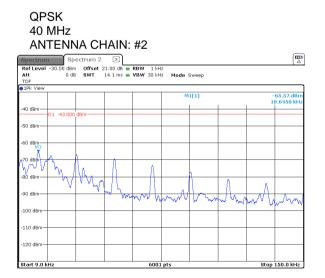

Plot 7.6.54 Spurious emission measurements in 26500 - 37000 MHz range at high carrier frequency

Plot 7.6.55 Spurious emission measurements in 9 - 150 kHz range at low carrier frequency

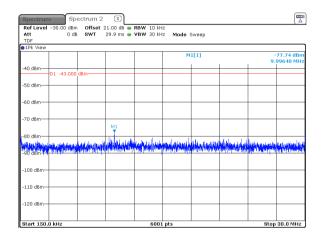





Test specification:	Section 96.41(e)(3), Conducted spurious emissions						
Test procedure:	Section 96.41(e)(3)						
Test mode:	Compliance	Vardiate	PASS				
Date(s):	09-Feb-22	Verdict:	PA33				
Temperature: 24.1 °C	Relative Humidity: 49 %	Air Pressure: 1011 hPa	Power: 48 VAC				
Remarks:							


Plot 7.6.56 Spurious emission measurements in 9 - 150 kHz range at mid carrier frequency

Plot 7.6.57 Spurious emission measurements in 9 - 150 kHz range at high carrier frequency

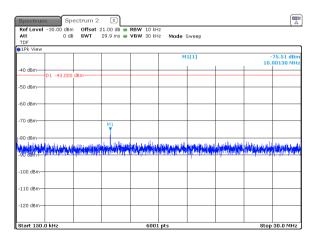

Test specification:	Section 96.41(e)(3), Conducted spurious emissions					
Test procedure:	Section 96.41(e)(3)					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	09-Feb-22	verdict.	FA33			
Temperature: 24.1 °C	Relative Humidity: 49 %	Air Pressure: 1011 hPa	Power: 48 VAC			
Remarks:						

Plot 7.6.58 Spurious emission measurements in 150 kHz - 30 MHz range at low carrier frequency

MODULATION: CHANNEL SPACING: ANTENNA CHAIN: #1

	-30.00 dBn			RBW 10 kH					
Att TDF	0 de	B SWT	29.9 ms 👄	VBW 30 kH	z Mode	Sweep			
1DF 1Pk View									
					м	1[1]			76.53 dBn 99640 MH
40 dBm									
	01 -43.000	I dBm							
50 dBm									
-60 dBm									
70 dBm									
-/U dBm			M1						
-80 dBm									
مترجار المراجلة	and so days	and the states	at Law partie	Man Man	and the held		and states and	ويقدأون والأراري	Aultan di
90 dBm	halippidate	of Mary Mary	and the second	distant south b	a prime a serie a se	and a sufficient search it	and the state of the	ala aktibili in	an an diba
100 dBm-									
110 dBm—									
120 dBm-									
ALC UDIII									

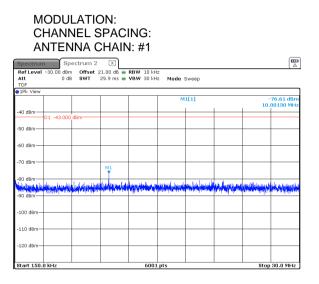
QPSK 40 MHz ANTENNA CHAIN: #2

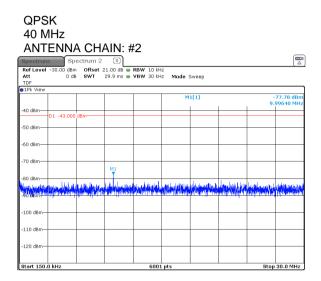


Plot 7.6.59 Spurious emission measurements in 150 kHz - 30 MHz range at mid carrier frequency

MODULATION: CHANNEL SPACING: ANTENNA CHAIN: #1

Ref Level	-30.00 dBm	Offset	21.00 dB 🔵	RBW 10 kH	Z				
Att	0 dE	SWT	29.9 ms 👄	VBW 30 kH	z Mode s	Sweep			
TDF									
1Pk View									
					M	1[1]			77.25 dBm 00130 MHz
-40 dBm						1	1	10.	00130 MHZ
-40 UBIII	01 -43.000	d8m							
-50 dBm									
-60 dBm									
-70 dBm									
70 abiii			M1						
			Ť						
-80 dBm		1		a solution.	I				
No. Calific Access	وبالجبا بالارد	A MARKAN						is the second second	
90 dBm	A the loss of the second second	a sector sector	al al atro ar	or much as		ratas os	an bartiful -	1	the short-
100 dBm-									
-110 dBm—									
-110 UBIII-									
120 dBm—									
			1	1					

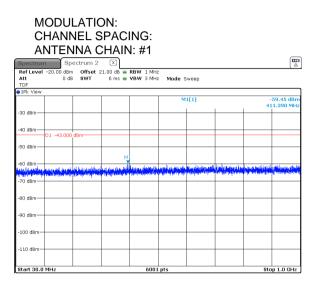

QPSK 40 MHz ANTENNA CHAIN: #2

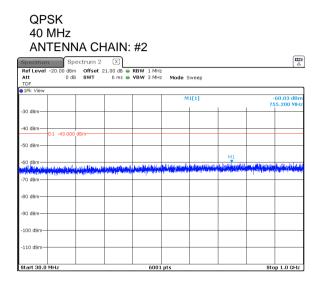


Test specification:	Section 96.41(e)(3), Conducted spurious emissions						
Test procedure:	Section 96.41(e)(3)						
Test mode:	Compliance	Vardiate	PASS				
Date(s):	09-Feb-22	Verdict:	PA33				
Temperature: 24.1 °C	Relative Humidity: 49 %	Air Pressure: 1011 hPa	Power: 48 VAC				
Remarks:							

Plot 7.6.60 Spurious emission measurements in 150 kHz - 30 MHz range at high carrier frequency

Plot 7.6.61 Spurious emission measurements in 30 - 1000 MHz range at low carrier frequency


CH		LATIC NEL S INA C	PAC						
Ref Level -2	0.00 dBm	Offset 2		RBW 1 MHz					
Att TDF	0 dB	SWT	6 ms 👄	VBW 3 MHa	Mode S	weep			
●1Pk View									
					м	1[1]			59.05 dBm 1.030 MHz
-30 dBm									
-40 dBm	-43.000	dBm							
-50 dBm									
-50 00111				M1					
-60 dBm				-	lat internet	at a disk. A	and the state of	car that the	da steall stars
-60 dBm	i i de la constitue	and the face of th	Contraction of the	pulling pulling		any dealers in the	Service Constraints	diteration de altre	a (bal) de para tra
-70 dBm									
-80 dBm									
-90 dBm									
-100 dBm									
-110 dBm									
Start 30.0 MH	lz			6001	pts			Sto	p 1.0 GHz


QPSK						
40 MH	7					
	NNA CHAI	NI: #2				
		~				
Spectrum Ref Level -20.00	Spectrum 2	B RBW 1 MHz				
Att		ns - VBW 3 MHz	Mode Sweep			
TDF 1Pk View						
			M1[1]			9.59 dBm
-30 dBm					857	.840 MHz
-40 dBm	3.000 dBm					
-50 dBm						
-30 0811					M1	
-60 dBm		ton tal ktowale s.t	e constato a la tabili statomi di	at la galà d'anat.		antekonides.
		and the second second second second	AND DESCRIPTION OF STREET	and the second	a series and	Service Advers
-70 dBm						
-80 dBm						
-90 dBm						
-100 dBm						
-110 dBm						
Start 30.0 MHz		6001 pt	:s		Stop	1.0 GHz

Test specification:	on: Section 96.41(e)(3), Conducted spurious emissions					
Test procedure:	Section 96.41(e)(3)					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	09-Feb-22	verdict:	PASS			
Temperature: 24.1 °C	Relative Humidity: 49 %	Air Pressure: 1011 hPa	Power: 48 VAC			
Remarks:						

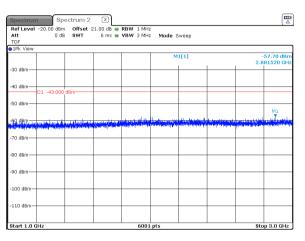
Plot 7.6.62 Spurious emission measurements in 30 - 1000 MHz range at mid carrier frequency

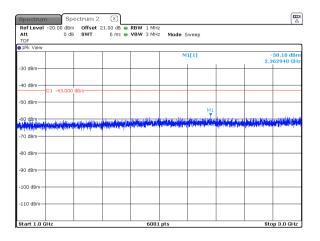
Plot 7.6.63 Spurious emission measurements in 30 - 1000 MHz range at high carrier frequency ULATION: QPSK

MODULATION:
CHANNEL SPACING:
ANTENNA CHAIN: #1

Spectrur		ectrum 2							
	-20.00 dBm		21.00 dB 😑						
Att	0 dE	SWT	6 ms 👄	VBW 3 MH:	Mode S	Sweep			
1Pk View									
					м	1[1]			59.40 dBm
								43	77.660 MHz
-30 dBm									
-40 dBm	-D1 -43.000	dBm							
-50 dBm									
				M1					
-60 dBm	يوزا يعدد بعاري	مرابعاتها بالعرب	والمتلولة والمتلولة والمتراد	والعرباء ومعوداته	Abblach	altill tail sail	hitseldteathd	المائليدة أيتجع با	dilibilitation
stelle so hites	and the second s	a spart by person		of a believed for a	in a subtract from	and the second	a number of the second states	and the second second	a a di su di s
-70 dBm									
-80 dBm									
-90 dBm									
-90 dBm									
-100 dBm—									
-100 ubiii-									
-110 dBm—									
TTO ODIII-									
Start 30.0	MH2			6001	nts			Str	p 1.0 GHz

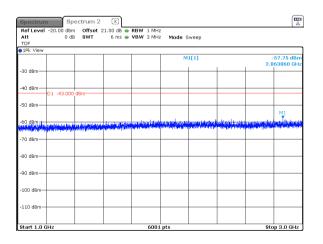
40 MHz		
ANTENINIA	OLI A INI.	


Spectrum	Spectrum	2 🗵						
TDF	dBm Offsel 0 dB SWT	21.00 dB 👄 6 ms 👄	RBW 1 MH: VBW 3 MH:		weep			
1Pk View				м	1[1]			58.67 dBm 54.410 MHz
-30 dBm								
-40 dBm	.000 dBm							
-50 dBm	_					M1		
-60 dBm	and the second state	والألدانية برأيانية أرابي	- Mahulundin	ula biologica di	1949 - Installe	V	الانتخار أتطرحا	adus ajnar
-70 dBm	ul-ring and a second	Hall the second second	a surface surface					
-80 dBm	_	_						
-90 dBm								
-100 dBm								
-110 dBm								
Start 30.0 MHz			6001	pts			Sto	p 1.0 GHz

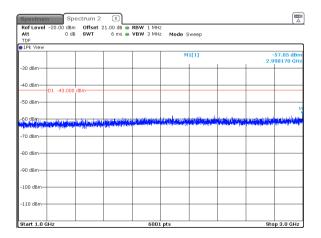

Test specification:	est specification: Section 96.41(e)(3), Conducted spurious emissions				
Test procedure:	Section 96.41(e)(3)				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	09-Feb-22	verdict:	PA33		
Temperature: 24.1 °C	Relative Humidity: 49 %	Air Pressure: 1011 hPa	Power: 48 VAC		
Remarks:					

Plot 7.6.64 Spurious emission measurements in 1000 - 3000 MHz range at low carrier frequency

MODULATION: CHANNEL SPACING: ANTENNA CHAIN: #1

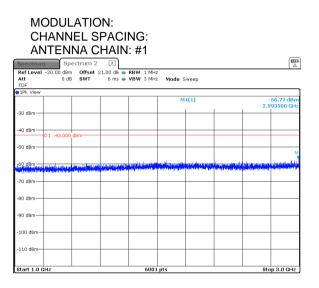


QPSK 40 MHz ANTENNA CHAIN: #2



Plot 7.6.65 Spurious emission measurements in 1000 - 3000 MHz range at mid carrier frequency

MODULATION: CHANNEL SPACING: ANTENNA CHAIN: #1


QPSK 40 MHz ANTENNA CHAIN: #2



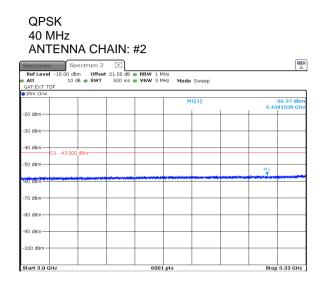
Test specification:	Section 96.41(e)(3), Conducted spurious emissions					
Test procedure:	Section 96.41(e)(3)					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	09-Feb-22	verdict:	PA33			
Temperature: 24.1 °C	Relative Humidity: 49 %	Air Pressure: 1011 hPa	Power: 48 VAC			
Remarks:						

Plot 7.6.66 Spurious emission measurements in 1000 - 3000 MHz range at high carrier frequency

Plot 7.6.67 Spurious emission measurements in 3000 - 3530 MHz range at low carrier frequency

MODULATION: CHANNEL SPACING: ANTENNA CHAIN: #1 Spectrum 2 (X) -10.00 dBm Offset 21.00 dB • RBW 1 MHz 10 dB • SWT 500 ms • VBW 3 MHz Mode Sweep GAT:EXT TDF -49.56 dB 3.5299560 GH M1[1] -20 dBm--30 dBm -40 dBm -43.0 -50 dBm 50 090 -70 dBm -80 dBrr -90 dBm-100 dBm Start 3.0 GH 6001 Stop 3.53 GHz

QPSK 40 MHz ANTENNA CHAIN: #2


Ref Level -1		21.00 dB . RBW 1		
Att GAT:EXT TDF	10 dB 👄 SWT	500 ms 👄 VBW 3	MHz Mode Sweep	
1Rm Cirw			M1[1]	-49.56 dB 3.5298680 GF
20 dBm				
30 dBm				
40 dBm-01	-43.000 dBm			
50 dBm				
60 dBm		and water and the state of the state of the state		
70 dBm				
80 dBm				
90 dBm				
100 dBm				

Test specification:	Section 96.41(e)(3), Conducted spurious emissions					
Test procedure:	Section 96.41(e)(3)					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	09-Feb-22	verdict:	PA33			
Temperature: 24.1 °C	Relative Humidity: 49 %	Air Pressure: 1011 hPa	Power: 48 VAC			
Remarks:						

Plot 7.6.68 Spurious emission measurements in 3000 - 3530 MHz range at mid carrier frequency

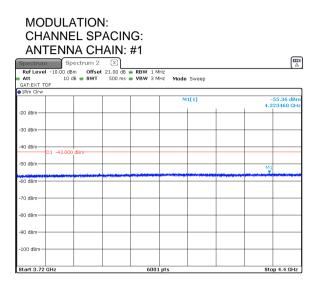
ANTEN	EL SPAC	-			
Ref Level -10.00 d		B 👄 RBW 1 MHz s 👄 VBW 3 MHz			
1Rm Cirw					
-			M1[1]	-	54.54 dBm
-20 dBm				 3.52	96910 GHz
-30 dBm					
-40 dBm-01 -43.00	0 dBm				
-50 dBm					M
-60 dBm	****			ner verste forste en se	***
-70 dBm					
-80 dBm					
-90 dBm					
-100 dBm					
Start 3.0 GHz		6001 p	ts	Stop	3.53 GHz

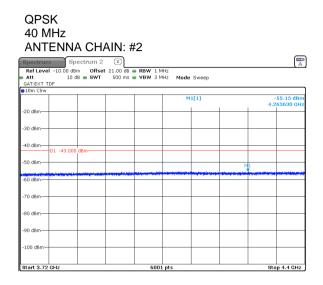
Plot 7.6.69 Spurious emission measurements in 3000 - 3530 MHz range at high carrier frequency

MODULATION: CHANNEL SPACING: ANTENNA CHAIN: #1

Spectrum	Spectrum 2	\times			
	.00 dBm Offset :				(-
Att GAT:EXT TDF	10 dB 👄 SWT	500 ms 👄 VBW 3	MHz Mode Sweep		
1Rm Clrw					
			M1[1]		56.31 dBm 58930 GHz
-20 dBm				-	 00900 0112
-30 dBm				-	
10.40.0					
-40 dBm	43.000 dBm				
-50 dBm				_	
					MI
-60 dBm					Construction (Construction)
-70 dBm					
-/0 ubiii					
-80 dBm				_	
-90 dBm					
-100 dBm					
Start 3.0 GHz			01 pts		3.53 GHz

40 MHz ANTENNA CHAIN: #2

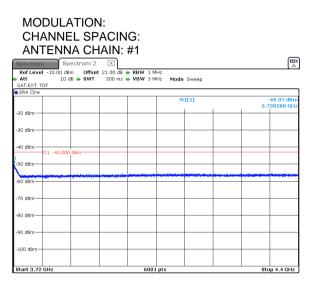

QPSK

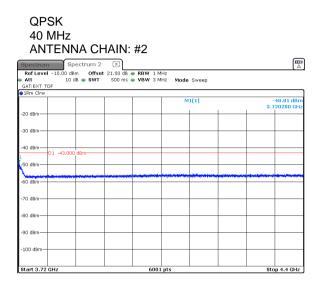

Ref Level -10 Att	0.00 dBm Offset 21 10 dB • SWT 5	.00 dB 👄 RBW 1 f 00 ms 👄 VBW 3 f			
GAT:EXT TDF					
			M1[1]		-56.37 dB
20 dBm				+ +	3.4204410 GH
30 dBm					
40 dBm-01	-43.000 dBm				
50 dBm				MI	
60 aBm	****			V 1	***
70 dBm					
80 dBm					
90 dBm					

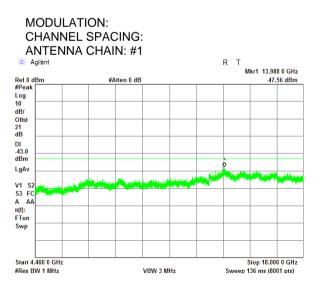
Test specification:	Section 96.41(e)(3), Conducted spurious emissions					
Test procedure:	Section 96.41(e)(3)	Section 96.41(e)(3)				
Test mode:	Compliance	Vardiate	PASS			
Date(s):	09-Feb-22	Verdict:	PA33			
Temperature: 24.1 °C	Relative Humidity: 49 %	Air Pressure: 1011 hPa	Power: 48 VAC			
Remarks:						

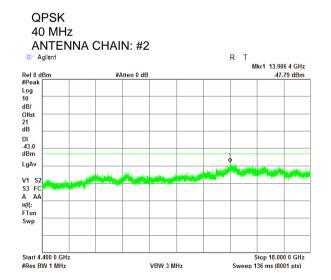
Plot 7.6.70 Spurious emission measurements in 3720 - 4400 MHz range at low carrier frequency

Plot 7.6.71 Spurious emission measurements in 3720 - 4400 MHz range at mid carrier frequency

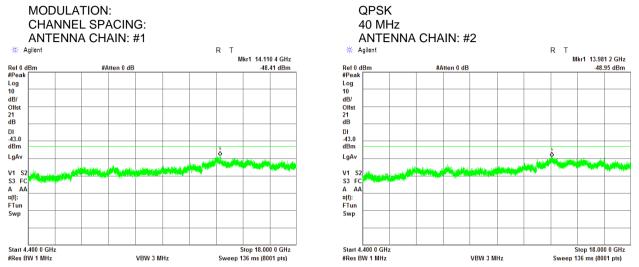

MODULATION: CHANNEL SPACING ANTEN <u>NA CHAIN</u> : #			
GAT:EXT TDF		e Sweep	
e 1Rm Cirw			
	Ň	11[1]	-54.77 dBm 3.720170 GHz
-20 dBm			
-30 dBm			
-40 dBm			
1 ⁵⁰ dBm			
-60 dBm			
-70 dBm			
-80 dBm			
-90 dBm			
-100 dBm			
Start 3.72 GHz	6001 pts	1	Stop 4.4 GHz

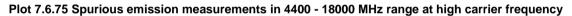

QPSK		
40 MHz		
ANTENNA CHAI	IN· #2	
	2	
	00 dB • RBW 1 MHz	
Att 10 dB SWT 51 GAT:EXT TDF	00 ms 🖶 VBW 3 MHz 🛛 Mode Sweep	
• 1Rm Cirw		
	M1[1]	-55.17 dBm 4.096260 GHz
-20 dBm		
-30 dBm		
-30 dBm		
-40 dBm		
-50 dBm	M1	
-60 dBm		efter van het fan in en en in het in het
-70 dBm		
-80 dBm		
-90 dBm		
-100 dBm		
Start 3.72 GHz	6001 pts	Stop 4.4 GHz

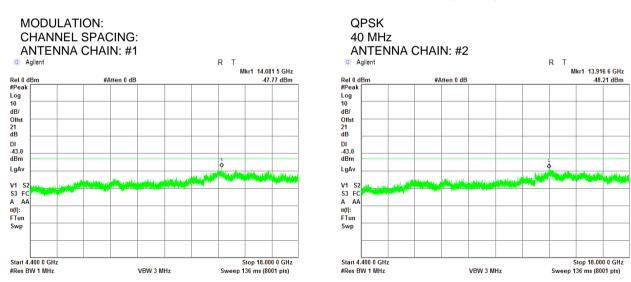

Test specification:	Section 96.41(e)(3), Conducted spurious emissions					
Test procedure:	Section 96.41(e)(3)	Section 96.41(e)(3)				
Test mode:	Compliance	Vardiate	PASS			
Date(s):	09-Feb-22	Verdict:	PA33			
Temperature: 24.1 °C	Relative Humidity: 49 %	Air Pressure: 1011 hPa	Power: 48 VAC			
Remarks:						


Plot 7.6.72 Spurious emission measurements in 3720 - 4400 MHz range at high carrier frequency

Plot 7.6.73 Spurious emission measurements in 4400 - 18000 MHz range at low carrier frequency

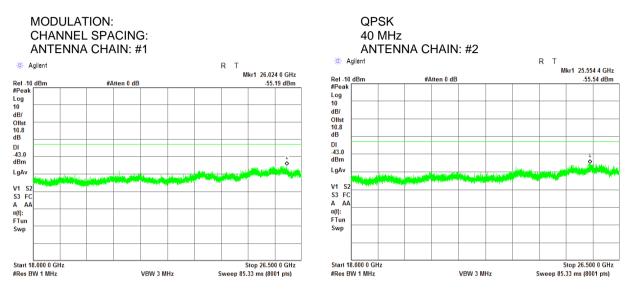


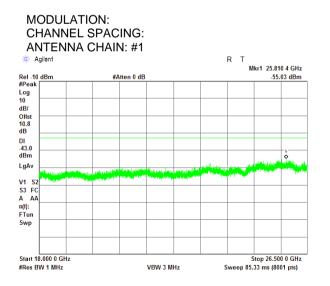


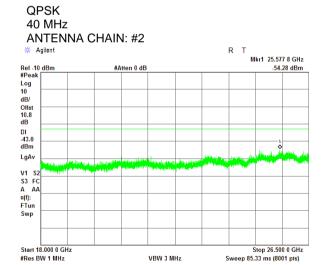


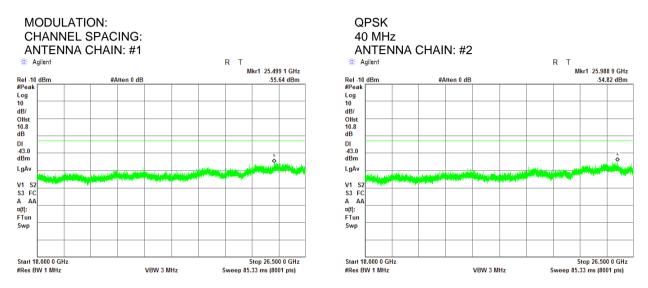
Test specification:	Section 96.41(e)(3), Cond	Section 96.41(e)(3), Conducted spurious emissions					
Test procedure:	Section 96.41(e)(3)	Section 96.41(e)(3)					
Test mode:	Compliance	Verdict:	PASS				
Date(s):	09-Feb-22	verdict:	PA35				
Temperature: 24.1 °C	Relative Humidity: 49 %	Air Pressure: 1011 hPa	Power: 48 VAC				
Remarks:	-						

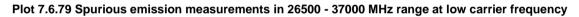
Plot 7.6.74 Spurious emission measurements in 4400 - 18000 MHz range at mid carrier frequency

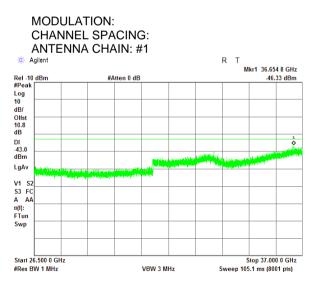


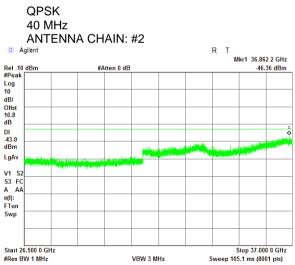



Test specification:	Section 96.41(e)(3), Conducted spurious emissions					
Test procedure:	Section 96.41(e)(3)	Section 96.41(e)(3)				
Test mode:	Compliance	Verdict:	PASS			
Date(s):	09-Feb-22	verdict:	PASS			
Temperature: 24.1 °C	Relative Humidity: 49 %	Air Pressure: 1011 hPa	Power: 48 VAC			
Remarks:	-		·			

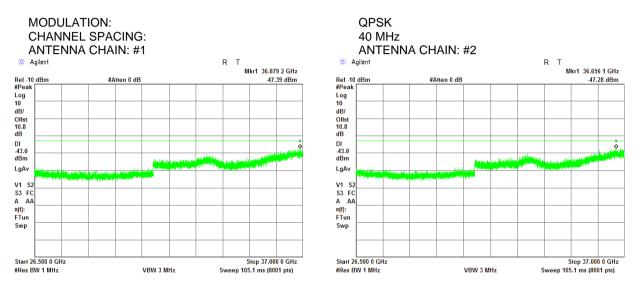


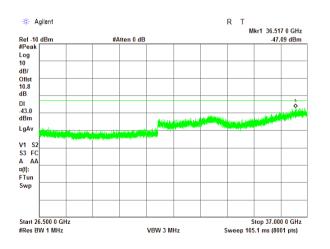




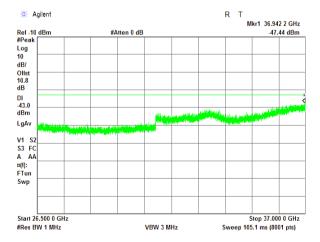

Test specification:	Section 96.41(e)(3), Conducted spurious emissions					
Test procedure:	Section 96.41(e)(3)	Section 96.41(e)(3)				
Test mode:	Compliance	Verdict:	PASS			
Date(s):	09-Feb-22	verdict.	PASS			
Temperature: 24.1 °C	Relative Humidity: 49 %	Air Pressure: 1011 hPa	Power: 48 VAC			
Remarks:	-					

Plot 7.6.78 Spurious emission measurements in 18000 - 26500 MHz range at high carrier frequency




Test specification:	Section 96.41(e)(3), Conducted spurious emissions				
Test procedure:	Section 96.41(e)(3)				
Test mode:	Compliance				
Date(s):	09-Feb-22	Verdict:	PASS		
Temperature: 24.1 °C	Relative Humidity: 49 %	Air Pressure: 1011 hPa	Power: 48 VAC		
Remarks:					

Plot 7.6.80 Spurious emission measurements in 26500 - 37000 MHz range at mid carrier frequency



Plot 7.6.81 Spurious emission measurements in 26500 - 37000 MHz range at high carrier frequency

MODULATION: CHANNEL SPACING: ANTENNA CHAIN: #1

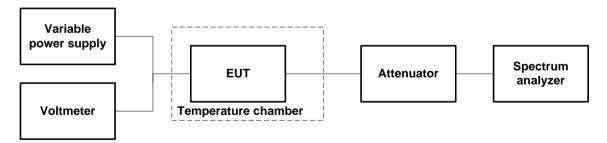
QPSK 40 MHz ANTENNA CHAIN: #2

Test specification:	Section 2.1055, Frequency stability					
Test procedure:	47 CFR, Section 2.1055					
Test mode:	Compliance	Verdict: PASS				
Date(s):	15-Feb-22	verdict:	PASS			
Temperature: 24.2 °C	Relative Humidity: 48 %	Air Pressure: 1011 hPa	Power: 48 VAC			
Remarks:						

7.7 Frequency stability test

7.7.1 General

This test was performed to measure frequency stability of transmitter RF carrier. Specification test limits are given in Table 7.7.1.


Table 7.7.1 Frequency stability limits

Assigned frequency MUs	Maximum allowed frequency displacement		
Assigned frequency, MHz	ppm	Hz	
3555.0		NA	
3625.0	NA	NA	
3695.0		NA	

7.7.2 Test procedure

- 7.7.2.1 The EUT was set up as shown in Figure 7.7.1, energized and its proper operation was checked.
- **7.7.2.2** The EUT power was turned off. Temperature within test chamber was set to +30°C and a period of time sufficient to stabilize all of the oscillator circuit components was allowed.
- **7.7.2.3** The EUT was powered on and carrier frequency was measured at start up moment and then every minute until frequency had been stabilized or 10 minutes elapsed whichever reached the last. The EUT was powered off.
- 7.7.2.4 The above procedure was repeated at 0°C and at the lowest test temperature.
- **7.7.2.5** The EUT was powered on and carrier frequency was measured at start up moment and at the end of stabilization period at the rest of test temperatures and voltages. The EUT was powered off.
- 7.7.2.6 Frequency displacement was calculated and compared with the limit as provided in Table 7.7.2.

Figure 7.7.1 Frequency stability test setup

Test specification:	Section 2.1055, Frequency	Section 2.1055, Frequency stability					
Test procedure:	47 CFR, Section 2.1055						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	15-Feb-22	verdict.	FA33				
Temperature: 24.2 °C	Relative Humidity: 48 %	Air Pressure: 1011 hPa	Power: 48 VAC				
Remarks:							

Table 7.7.2 Frequency stability test results

NOMINAI TEMPER POWER SPECTR RESOLU	POWER ATURE S DURING JM ANAL TION BAN ANDWIDT	QUENCY: VOLTAGE TABILIZAT TEMPERA ^T YZER MOI NDWIDTH: TH:	ION PERIC				3550 – 370 63 VDC 20 min Off Counter 100 Hz 1 kHz Unmodulat				
T, ⁰C	Voltage, V				Frequency, MH	z			Max freque	ency drift, Hz	Verdict
	v	Start up	1 st min	2 nd min	3 rd min	4 th min	5 th min	10 th min	Positive	Negative	
Low freque	ncy 3555.0 MI	Iz									
-30	nominal	3.554999779	3.554999779	3.554999779	3.554999779	3.554999778	3.554999779	3.55499978	0	0	Comply
-20	nominal	3.554999779	NA	NA	NA	NA	NA	3.554999778	0	0	Comply
-10	nominal	3.554999779	NA	NA	NA	NA	NA	3.554999778	0	0	Comply
0	nominal	3.554999779	3.554999779	3.554999779	3.554999778	3.554999779	3.554999779	3.55499978	0	0	Comply
10	nominal	3.554999776	NA	NA	NA	NA	NA	3.554999776	0	0	Comply
20	15%	3.554999775	NA	NA	NA	NA	NA	3.554999774	0	0	Comply
20	nominal	3.554999774	NA	NA	NA	NA	NA	3.554999775	0	0	Comply
20	-15%	3.554999775	NA	NA	NA	NA	NA	3.554999775	0	0	Comply
30	nominal	3.554999775	3.554999776	3.554999775	3.554999776	3.554999776	3.554999775	3.554999775	0	0	Comply
40	nominal	3.554999775	NA	NA	NA	NA	NA	3.554999774	0	0	Comply
50	nominal	3.554999774	NA	NA	NA	NA	NA	3.554999774	0	0	Comply
Mid frequen	cy 3625.0 MH	z		•			•				
-30	nominal	3.624999725	3.624999764	3.624999764	3.624999765	3.624999764	3.624999976	3.624999764	0	0	Comply
-20	nominal	3.624999725	NA	NA	NA	NA	NA	3.624999763	0	0	Comply
-10	nominal	3.62499974	NA	NA	NA	NA	NA	3.624999763	0	0	Comply
0	nominal	3.624999764	3.624999764	3.624999764	3.624999764	3.624999764	3.624999976	3.624999734	0	0	Comply
10	nominal	3.624999761	NA	NA	NA	NA	NA	3.624999764	0	0	Comply
20	15%	3.624999725	NA	NA	NA	NA	NA	3.624999976	0	0	Comply
20	nominal	3.62499973	NA	NA	NA	NA	NA	3.624999976	0	0	Comply
20	-15%	3.62499976	NA	NA	NA	NA	NA	3.62499976	0	0	Comply
30	nominal	3.624999726	3.624999726	3.624999726	3.624999726	3.624999759	3.62499976	3.624999759	0	0	Comply
40	nominal	3.624999759	NA	NA	NA	NA	NA	3.62499976	0	0	Comply
50	nominal	3.624999759	NA	NA	NA	NA	NA	3.624999725	0	0	Comply
High freque	ncy 3695.0 M	Hz	-		-	-				-	·····
-30	nominal	3.694999769	3.694999768	3.694999763	3.694999764	3.694999765	3.694999766	3.694999763	0	0	Comply
-20	nominal	3.694999762	NA	NA	NA	NA	NA	3.694999762	0	0	Comply
-10	nominal	3.694999763	NA	NA	NA	NA	NA	3.694999763	0	0	Comply
0	nominal	3.694999763	3.694999763	3.694999763	3.694999763	3.694999763	3.694999763	3.694999764	0	0	Comply
10	nominal	3.69499976	NA	NA	NA	NA	NA	3.694999759	0	0	Comply
20	15%	3.694999758	NA	NA	NA	NA	NA	3.694999759	0	0	Comply
20	nominal	3.69499976	NA	NA	NA	NA	NA	3.69499976	0	0	Comply
20	-15%	3.69499976	NA	NA	NA	NA	NA	3.69499976	0	0	Comply
30	nominal	3.69499976	3.694999758	3.694999758	3.694999758	3.694999758	3.694999759	3.694999759	0	0	Comply
40	nominal	3.69499976	NA	NA	NA	NA	NA	3.69499976	0	0	Comply
50	nominal	3.694999759	NA	NA	NA	NA	NA	3.694999756	0	0	Comply

* - Reference frequency

Reference numbers of test equipment used

_		=	=			
	HL 3286	HL 4355				

Full description is given in Appendix A.

8 APPENDIX A Test equipment and ancillaries used for tests

HL No	Description	Manufacturer	Model	Ser. No.	Last Cal./ Check	Due Cal./ Check
1294	Adapter 35WR42Kf, 18 - 26.5 GHz	Getronics	35WR42KF	1294	09-Nov-21	09-Nov-23
1295	Adapter 35WR28Kf, 26.5-40 GHz	Wiltron	35WR28KF	1295	14-Sep-20	14-Sep-23
3286	Temperature Chamber, (-50 to +170) °C	Thermotron	EL-8-CH-1- 1-CO2	21-9048	12-Dec-21	12-Dec-22
3287	Low pass filter, DC-3.0 GHz	Unknown	NA	3287	15-Jun-21	15-Jun-23
3301	Power Meter, P-series, 50 MHz to 40 GHz	Agilent Technologies	N1911A	MY4510105 7	18-May-21	18-Jun-22
3355	Low Pass Filter, 50 Ohm, DC to 1450 MHz.	Mini-Circuits	VLF-1450+	NA	15-Jun-21	15-Jun-23
3901	Microwave Cable Assembly, 40.0 GHz, 3.5 m, SMA/SMA	Huber-Suhner	SUCOFLE X 102A	1225/2A	06-Apr-21	06-Apr-22
3903	Microwave Cable Assembly, 40.0 GHz, 1.5 m, SMA/SMA	Huber-Suhner	SUCOFLE X 102A	1226/2A	06-Apr-21	06-Apr-22
4355	Signal and Spectrum Analyzer, 9 kHz to 7 GHz	Rohde & Schwarz	FSV 7	101630	20-Sep-21	20-Sep-22
4360	EMI Test Receiver, 20 Hz to 40 GHz.	Rohde & Schwarz	ESU40	100322	13-Jan-22	13-Jan-23
4366	Directional coupler, 1 GHz to 18 GHz, 10 dB, SMA Female	Tiger Micro- Electronics Institute	TGD- A1101-10	01e- JSDE805- 007	03-Jun-20	03-Jun-22
4933	Active Horn Antenna, 1 GHz to 18 GHz	COM-POWER CORPORATION	AHA-118	701046	13-Jan-22	13-Jan-23
4956	Active horn antenna, 18 to 40 GHz	COM-POWER CORPORATION	AHA-840	105004	26-Jan-21	26-Mar-22
5112	RF cable, 40 GHz, 5.5 m, K-type	Huber-Suhner	SF102EA/1 1SK/11SK/ 5500MM	502494/2EA	19-Apr-21	19-Apr-22
5174	Medium Power Fixed Coaxial Attenuator DC to 40 GHz, 10 dB, 5 W	API Weinschel, Inc	75A-10-12	TD854	06-Apr-21	06-Apr-22
5232	WR42 to coaxial Right Angle Adapter. Freq. Range: 18.0 - 26.5 GHz	AINFO(HK)LIMI TED	42WCA3_ Cu	J504063308	18-Jul-21	18-Jul-22
5233	WR28 to coaxial Right Angle Adapter. Freq. Range: 26.5.0 - 40.0 GHz	AINFO(HK)LIMI TED	28WCAK_ Cu	J504063051	24-Jan-21	24-Jan-23
5286	Band Pass Filter, 50 Ohm, 4.4 to 18 GHz, SMA/M-SMA/F	A-INFOMW	WBLB-T- HP-4.4-18- S	J108000003 05	15-Jun-21	15-Jun-23
5288	Trilog Antenna, 25 MHz - 8 GHz, 100W	Frankonia	ALX-8000E	00809	08-Feb-19	08-Mar-22
6143	RF-cable, 40.0 GHz, 2.0m, 2.92mm/2.92mm	Mechanc	CFT360AP 4060S- KMKM-2M	NA	05-Jan-22	05-Jul-22

9 APPENDIX B Test equipment correction factors

Frequency, MHz	Measured antenna factor, dB/m	Frequency, MHz	Measured antenna factor, dB/m
18000	5.1	29500	1.4
18500	3.6	30000	2.9
19000	2.2	30500	2.9
19500	0.7	31000	2.9
20000	0.7	31500	1.2
20500	0.8	32000	0.7
21000	0.5	32500	0.2
21500	-1.3	33000	-1.7
22000	-2.1	33500	-2.2
22500	-2.0	34000	2.3
23000	-1.6	34500	-1.1
23500	-2.9	35000	0.7
24000	-2.3	35500	-1.1
24500	-2.6	36000	0.1
25000	-1.8	36500	1.4
25500	-1.2	37000	3.7
26000	-0.5	37500	5.8
26500	-1.2	38000	6.6
27000	-0.1	38500	7.3
27500	-1.0	39000	6.5
28000	-0.7	39500	7.3
28500	0.5	40000	7.1

HL 4956: Active horn antenna COM-POWER Corp., model: AHA-840, s/n 105004

The antenna factor shall be added to receiver reading in $dB_{\mu}V$ to obtain field strength in $dB_{\mu}V/m$.

Frequency, MHz	Measured antenna factor, dB/m
1000	-16.1
1050	-16.0
1100	-15.1
1150	-16.4
1200	-16.0
1250	-15.6
1300	-15.1
1350	-14.8
1400	-15.1
1450	-15.1
1500	-15.5
1550	-15.2
1600	-14.7
1650	-14.4
1700	-14.4
1750	-14.0
1800	-13.6
1850	-12.7
1900	-11.9
	-11.9
1950	-11.9
2000	
2050	-11.3
2100	-11.3
2150	-11.7
2200	-12.3
2250	-12.3
2300	-12.4
2350	-12.2
2400	-11.7
2450	-11.5
2500	-11.5
2550	-11.5
2600	-11.5
2650	-11.3
2700	-11.3
2750	-11.1
2800	-11.1
2850	-11.3
2900	-11.1
2950	-11.0
	-11.1
3050	
3000	-11.1 -10.9 -10.7
3150	-10.6

HL 4933 Active Horn Antenna, 1 GHz to 18 GHz COM-POWER CORPORATION AHA-118 , s/n 701046 Г

Frequency, MHz	Measured antenna factor, dB/m
3200	-11.2
3250	-10.8
3300	-10.8
3350	-10.7
3400	-10.3
3450	-10.2
3500	-10.1
3550	-10.4
3600	-10.5
3650	-10.4
3700	-10.4
3750	-10.3
3800	-10.1
3850	-10.0
3900	-9.9
3950	-9.8
4000	-9.7
4050	-9.3
4100	-8.6
4150	-8.2
4200	-8.3
4250	-8.5
4300	-8.5
4350	-8.3
4400	-8.0
4450	-7.7
4500	-7.6
4550	-7.4
4600	-7.5
4650	-7.8
4700	-7.6
4750	-6.8
4800	-6.1
4850	-5.7
4900	-5.8
4950	-5.8
5000	-6.0
5050	-5.7
5100	-5.4
5150	-5.1
5200	-4.6
5250	-4.6
5300	-4.8
5350	-5.1
	-0.1