

TESTING CENTRE TEC						
	TEST REPO	RT				
FCC ID:	2AVYW-REMOTE					
Test Report No::	TCT240402E904	CT240402E904				
Date of issue::	Apr. 15, 2024					
Testing laboratory:	SHENZHEN TONGCE TEST	TING LAB				
Testing location/ address:		ctory, Renshan Industrial Zone, strict, Shenzhen, Guangdong, f China				
Applicant's name::	TOPDON TECHNOLOGY Co	o., Ltd.				
Address::	Unit 2005 20/F, Qianhai Shin kong Cooperation Zone, She	nao Tower, Qianhai Shenzhen-Hong enzhen 518052, China				
Manufacturer's name:	TOPDON TECHNOLOGY Co	o., Ltd.				
Address::	kong Cooperation Zone, She	·				
Standard(s):	FCC CFR Title 47 Part 15 Subpart E Section 15.407 KDB 789033 D02 General U-NII Test Procedures New Rules v02r01					
Test item description:	Smart Automotive Diagnostic	System				
Trade Mark:	TOPDON					
Model/Type reference:	Phoenix XLink					
Rating(s):	Adapter Information: MODEL: PSYB0502500 INPUT: AC 100-240V, 50/60/ OUTPUT: DC 5.0V, 2.5A, 12 Rechargeable Li-ion Battery	2.5W				
Date of receipt of test item:	Apr. 02, 2024					
Date (s) of performance of test:	Apr. 02, 2024 ~ Apr. 15, 2024	4				
Tested by (+signature):	Aaron Mo	Amon ALONGCE				
Check by (+signature):	Beryl Zhao	Roy(METET TET)				
Approved by (+signature):	Tomsin	Tomsm 45 &				

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

1.	General Product Information	 3
	1.1. EUT description	 3
	1.2. Model(s) list	
	1.3. Test Frequency	4
2.	Test Result Summary	
3.	General Information	6
	3.1. Test environment and mode	6
	3.2. Description of Support Units	 7
4.	Facilities and Accreditations	8
	4.1. Facilities	8
	4.2. Location	_
	4.3. Measurement Uncertainty	 8
5.	Test Results and Measurement Data	9
	5.1. Antenna requirement	 9
	5.2. Unwanted Emission	 10
Αp	ppendix B: Photographs of Test Setup	
Αp	pendix C: Photographs of EUT	
ζ \ .		

1. General Product Information

Report No.: TCT240402E904

1.1. EUT description

Test item description:	Smart Automotive Diagnostic System
Model/Type reference:	Phoenix XLink
Sample Number:	TCT240402E903-0101
Operation Frequency:	Band 1: 5150 MHz -5250 MHz Band 3: 5725 MHz -5850 MHz
Channel Bandwidth:	802.11a: 20MHz 802.11n: 20MHz, 40MHz 802.11ac: 20MHz, 40MHz, 80MHz
Modulation Technology:	Orthogonal Frequency Division Multiplexing(OFDM)
Modulation Type:	256QAM, 64QAM, 16QAM, BPSK, QPSK
Antenna Type:	Internal Antenna
Antenna Gain:	1dBi
Rating(s)::	Adapter Information: MODEL: PSYB0502500 INPUT: AC 100-240V, 50/60Hz, 0.6A Max OUTPUT: DC 5.0V, 2.5A, 12.5W Rechargeable Li-ion Battery DC 3.8V

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

None.

Page 3 of 22

1.3. Test Frequency

Band 1

20N	20MHz		40MHz		MHz
Channel	Frequency	Channel Frequency C		Channel	Frequency
36	5180	38	5190	42	5210
40	5200	46	5230		(.c [^])
48	5240				

Band 3

_					
20M	20MHz		40MHz		MHz
Channel	Frequency	Channel	Frequency	Channel	Frequency
149	5745	151	5755	155	5775
157	5785	159	5795		
165	5825	(C.)	('0')		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203	PASS
AC Power Line Conducted Emission	§15.207	PASS
Maximum Conducted Output Power	§15.407(a)	PASS
6dB Emission Bandwidth	§15.407(e)	PASS
26dB Emission Bandwidth& 99% Occupied Bandwidth	§15.407(a)	PASS
Power Spectral Density	§15.407(a)	PASS
Restricted Bands around fundamental frequency	§15.407(b)	PASS
Radiated Emission	§15.407(b)	PASS
Frequency Stability	§15.407(g)	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.
- 5. For the band 5.15-5.25GHz, EUT meet the requirements of 15.407(a)(ii).
- 6. Those test results (Conducted Emission, Maximum Conducted Output Power, 6dB Emission Bandwidth, 26dB Emission Bandwidth&99% Occupied Bandwidth, Power Spectral Density, Band edge, Frequency Stability) was based on FCC ID: 2AVYW-REMOTE; Change shell material of EUT.

Page 5 of 22

Report No.: TCT240402E904

3. General Information

3.1. Test environment and mode

Operating Environment:	
Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
Test Mode:	
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations

The sample was placed 0.8m/1.5m for blow/above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

1100 1101010001	
Mode	Data rate
802.11a	6 Mbps
802.11n(HT20)	6.5 Mbps
802.11n(HT40)	13.5 Mbps
802.11ac(VHT20)	6.5 Mbps
802.11ac(VHT40)	13.5 Mbps
802.11ac(VHT80)	29.3 Mbps


3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
/	1	/	1	I

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

Page 7 of 22

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A-1

SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory, Renshan Industrial Zone, Fuhai Subdistrict,

Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China

TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

5.1. Antenna requirement

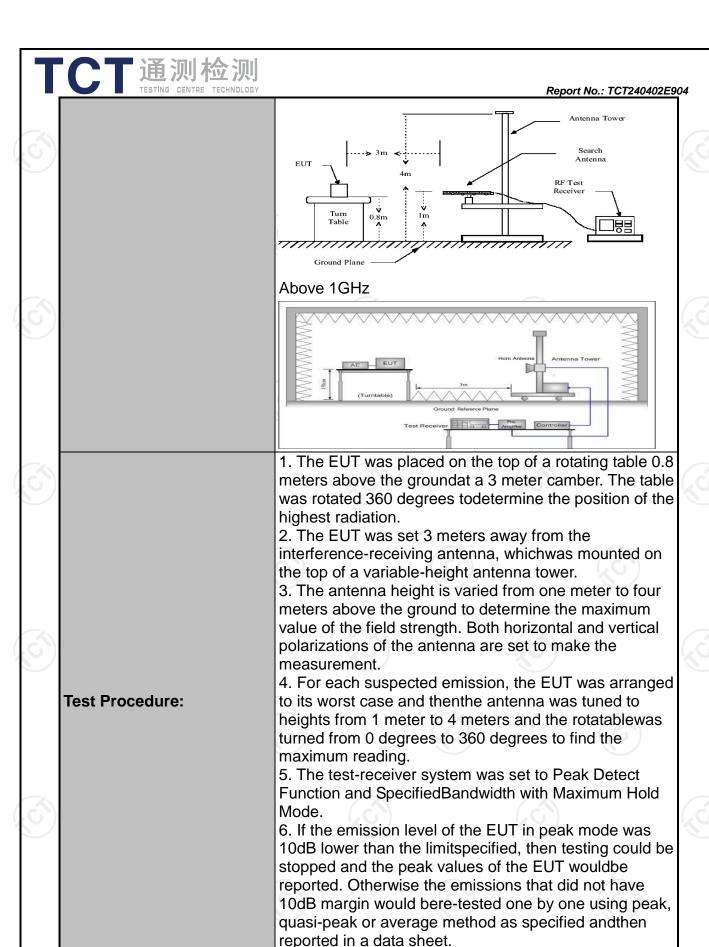
Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The WIFI antenna is internal antenna which permanently attached, and the best case gain of the antenna is 1dBi.


Page 9 of 22

5.2. Unwanted Emission

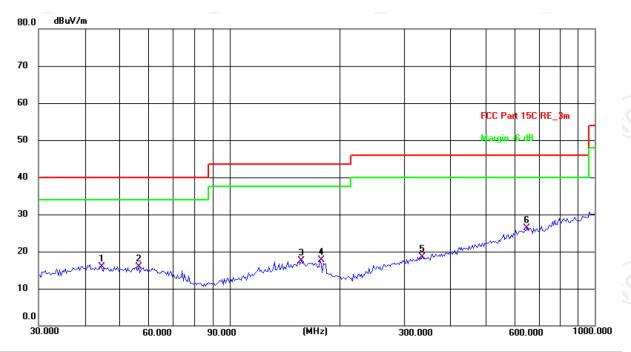
5.2.1. Test Specification

Test Requirement:	FCC CFR47	FCC CFR47 Part 15 Section 15.407 & 15.209 & 15.205				
Test Method:	KDB 789033	KDB 789033 D02 v02r01				
Frequency Range:	9kHz to 40G	9kHz to 40GHz				
Measurement Distance:	3 m					
Antenna Polarization:	Horizontal &	Vertical				
Operation mode:	Transmitting	mode wit	h modulat	ion		
Receiver Setup:	Frequency 9kHz- 150kHz 150kHz- 30MHz 30MHz Above 1GHz	Detector Quasi-peak Quasi-peak Peak Peak	9kHz	VBW 1kHz 30kHz 300KHz 3MHz 10Hz	Remark Quasi-peak Value Quasi-peak Value Quasi-peak Value Peak Value Average Value	
	per FCC Par	t15.205 s I strength	hall compl	ly with the t forth i	restricted bands ne in § 15.209 as Measurement Distance (meters)	
Limit:	0.009-0.490 0.490-1.705 1.705-30 30-88 88-216		2400/F(KHz) 24000/F(KHz) 30 100 150		300 30 30 3 3	
	216-960 Above 960 Frequency Above 1G		200 500 Limit (dBuV/m @3m) 74.0		3 3 Detector	
Test setup:	For radiated emissions below 30MHz Distance = 3m Computer Pre-Amplifier Receiver 30MHz to 1GHz				Computer	

PASS

Test results:

5.2.2. Test Instruments

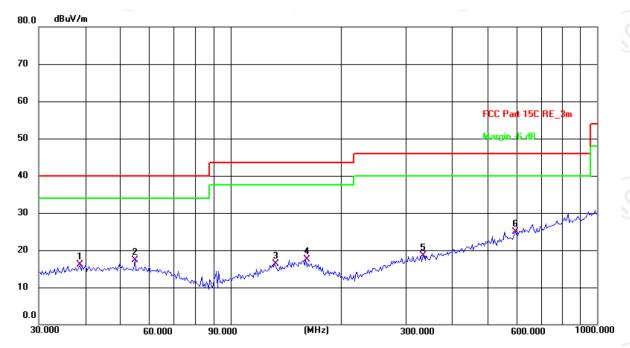

	Radiated Er	mission Test Sit	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESIB7	100197	Jun. 29, 2024
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 29, 2024
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jan. 31, 2025
Pre-amplifier	SKET	LNPA_0118G- 45	SK202101210 2	Jan. 31, 2025
Pre-amplifier	SKET	LNPA_1840G- 50	SK202109203 500	Jun. 27, 2024
Pre-amplifier	HP	8447D	2727A05017	Jul. 02, 2024
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jul. 01, 2024
Broadband Antenna	Schwarzbeck	VULB9163	340	Jul. 01, 2024
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jul. 01, 2024
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 02, 2025
Coaxial cable	SKET	RC-18G-N-M) 1	Jan. 31, 2025
Coaxial cable	SKET	RC_40G-K-M	/	Jan. 31, 2025
Antenna Mast	Keleto	CC-A-4M	1 (6)	/
EMI Test Software	Shurple Technology	EZ-EMC	1	1

5.2.3. Test Data

Please refer to following diagram for individual Below 1GHz

Horizontal:

Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 25.3(C) Humidity: 45 %


Power: AC 120 V/60 Hz

Limit: FCC Part 15C RE_3m

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	44.4308	28.53	-12.57	15.96	40.00	-24.04	QP	Р	
2	56.3947	28.81	-12.85	15.96	40.00	-24.04	QP	Р	
3	157.0072	28.50	-11.02	17.48	43.50	-26.02	QP	Р	
4	176.8878	30.26	-12.49	17.77	43.50	-25.73	QP	Р	
5	337.2155	27.89	-9.46	18.43	46.00	-27.57	QP	Р	
6 *	651.9415	29.53	-3.26	26.27	46.00	-19.73	QP	Р	

Vertical:

Temperature: 25.3(C) Humidity: 45 % Site: 3m Anechoic Chamber Polarization: Vertical

Ļ	.imit: F	FCC Part 15C F	RE_3m				Power:	AC 120	V/60	Hz
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
	1	38.8877	28.58	-12.44	16.14	40.00	-23.86	QP	Р	
	2	54.8348	30.16	-12.95	17.21	40.00	-22.79	QP	Р	
	3	131.7574	28.58	-12.37	16.21	43.50	-27.29	QP	Р	
	4	160.3456	28.53	-11.09	17.44	43.50	-26.06	QP	Р	
	5	334.8586	28.03	-9.50	18.53	46.00	-27.47	QP	Р	
۱	6 *	599.3211	29.23	-4.26	24.97	46.00	-21.03	QP	Р	

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

- 2. Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11a, 802.11n(HT20), 802.11n(HT40), 802.11ac(VHT20), 802.11ac(VHT40), 802.11ac(VHT80), and the worst case Mode (Highest channel and 802.11ac(VHT40)) was submitted only.
- 3.Measurement (dBµV) = Reading level + Correction Factor , correction Factor= Antenna Factor + Cable loss -Pre-amplifier.

TCT通测检测
TESTING CENTRE TECHNOLOGY

			N		ype: Band	1			
					: 5180MHz				
Frequency	Ant. Pol.	Peak	AV reading	Correction		n Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBuV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10360	Н	38.22		8.02	46.24		74	54	-7.76
15540	H	40.10		9.87	49.97		74	54	-4.03
	H								
	(0)					(0)			
10360	V	38.03		8.02	46.05		74	54	-7.95
15540	V	39.63		9.87	49.50		74	54	-4.50
	V								
	-			11a CH40	: 5200MHz				
	Ant Dol	Peak	A)/roading	Correction	Emissio	n Level	Dook limit	A\/ limit	Morain
Frequency		reading	AV reading	Factor	Peak	AV	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10400	Н	40.95		7.97	48.92		74	54	-5.08
15600	Н	38.47	-/- (\)	9.83	48.30		74	54	-5.70
(GH		1 C		((C+		420,	
10400	V	40.28		7.97	48.25		74	54	-5.75
15600	V	39.35		9.83	49.18		74	54	-4.82
	V								
					5240MHz				
requency	Ant. Pol.	Peak	AV reading	Correction		n Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10480	Н	39.41		7.97	47.38		74	54	-6.62
15720	Н	39.12	N	9.83	48.95		74	54	-5.05
	KO H		140			(0.1)		760	
10480	V	40.03		7.97	48.00		74	54	-6.00
15720	V	37.25		9.83	47.08		74	54	-6.92
(\	V								/
			11n	(HT20) C	H36: 5180N	ЛНz			
requency	Ant. Pol.	Peak	AV reading	Correction	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)		(dBµV/m)	(dB)
10360	H	40.74		8.02	48.76		74	54	-5.24
15540	H	38.95	c S	9.87	48.82	277	74	54	-5.18
.00.0	Й		-40			6 - <i>J</i>		1/4	
		•							
10360	V	40.02		8.02	48.04		74	54	-5.96
1	V	40.02 37.58		8.02 9.87	48.04 47.45		74 74	54 54	-5.96 -6.55
10360									
10360 15540	V	37.58		9.87 n(HT20) CH	47.45 140: 5200M	 Hz	74	54	-6.55
10360 15540	V V	37.58 Peak		9.87 n(HT20) Ch Correction	47.45 140: 5200M Emissio		74	54	-6.55
10360 15540	V	37.58		9.87 n(HT20) CH	47.45 140: 5200M Emissic Peak	 Hz on Level	74	54	-6.55
10360 15540 	V V Ant. Pol.	37.58 Peak reading	 11ı AV reading	9.87 n(HT20) CH Correction Factor	47.45 140: 5200M Emissio	 Hz on Level	74 Peak limit	54 AV limit	-6.55 Margin
10360 15540 Frequency (MHz) 10400	V V Ant. Pol. H/V	Peak reading (dBµV) 38.65	 11ı AV reading (dBµV)	9.87 n(HT20) CH Correction Factor (dB/m) 7.97	47.45 140: 5200M Emissio Peak (dBµV/m) 46.62	Hz on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	-6.55 Margir (dB) -7.38
10360 15540 Frequency (MHz)	V V Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	9.87 n(HT20) CH Correction Factor (dB/m)	47.45 140: 5200M Emissic Peak (dBµV/m)	Hz on Level AV (dBµV/m)	74 Peak limit (dBµV/m)	AV limit (dBµV/m)	-6.55 Margin (dB)
10360 15540 -requency (MHz) 10400 15600	V V Ant. Pol. H/V H	37.58 Peak reading (dBµV) 38.65 39.43	AV reading (dBµV)	9.87 n(HT20) CH Correction Factor (dB/m) 7.97 9.83	47.45 140: 5200M Emissic Peak (dBµV/m) 46.62 49.26	Hz on Level AV (dBµV/m)	74 Peak limit (dBµV/m) 74 74	54 AV limit (dBµV/m) 54 54	-6.55 Margin (dB) -7.38 -4.74
10360 15540 Frequency (MHz) 10400 15600 	V V Ant. Pol. H/V H H	37.58 Peak reading (dBµV) 38.65 39.43 40.35	AV reading (dBµV)	9.87 n(HT20) Ch Correction Factor (dB/m) 7.97 9.83 7.97	47.45 140: 5200M Emissic Peak (dBµV/m) 46.62 49.26 	Hz on Level AV (dBµV/m)	74 Peak limit (dBµV/m) 74 74 	54 AV limit (dBµV/m) 54 54	-6.55 Margir (dB) -7.38 -4.74
10360 15540 Frequency (MHz) 10400 15600	V V Ant. Pol. H/V H H	37.58 Peak reading (dBµV) 38.65 39.43	AV reading (dBµV)	9.87 n(HT20) CH Correction Factor (dB/m) 7.97 9.83	47.45 140: 5200M Emissic Peak (dBμV/m) 46.62 49.26	Hz on Level AV (dBµV/m)	74 Peak limit (dBµV/m) 74 74 	54 AV limit (dBµV/m) 54 54 	-6.55 Margir (dB) -7.38 -4.74

「通测检测

Report No.: TCT240402E904 Peak Correction **Emission Level** AV reading Peak limit Frequency Ant. Pol. **AV** limit Margin reading Factor Peak AV (MHz) H/V (dBµV) (dBµV/m) (dBµV/m) (dB)(dBµV) (dB/m) (dBµV/m) (dBµV/m) 7.97 10480 38.21 46.18 74 54 -7.82 Н 15720 Н 37.03 9.83 46.86 74 54 -7.14 Η ٧ 10480 7.97 47.15 74 39.18 ------54 -6.8515720 V 38.59 *ֈ*--, 48.42 4 74 -5.58 9.83 54 V 11n(HT40)CH38: 5190MHz Peak Correction **Emission Level** Ant. Pol. **AV** reading Frequency Peak limit **AV** limit Margin reading Factor Peak AV (MHz) H/V (dBµV) (dBµV/m) (dBµV/m) (dB) (dB/m) (dBµV) dBµV/m) (dBµV/m) 10380 Н 40.42 7.75 48.17 74 54 -5.83 15570 Н 38.88 9.87 48.75 74 54 -5.25 Н ------------------------10380 V 40.71 7.75 48.46 4 74 54 -5.54 V 15570 38.30 <u>___</u> 9.87 48.17 4-74 54 -5.83 ٧ ------11n(HT40)CH46: 5230MHz **Emission Level** Peak Correction Ant. Pol. AV reading Peak limit **AV** limit Frequency Margin reading Factor Peak (MHz) H/V (dBµV) (dBµV/m) (dBµV/m) (dB) $(dB\mu V)$ (dB/m) (dBµV/m) (dBµV/m) 10460 Η 41.87 7.97 49.84 74 54 -4.16 38.65 48.48 74 -5.52 15690 Н 9.83 54 Η ------10460 41.34 7.97 49.31 74 54 -4.6915690 38.12 9.83 47.95 74 54 -6.05

	V								
			11a	c(VHT20) C	H36: 5180	MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
10360	Η	40.01		8.02	48.03		74	54	-5.97
15540	Η	38.23		9.87	48.10		74	54	-5.90
	Н								
10360	V	38.97		8.02	46.99	-/-	74	54	-7.01
15540	V	39.52		9.87	49.39		74	54	-4.61
	V								
			11a	C(VHT20) C	H40: 5200	MHz			

7.					_/.				
	V								
15600	V	38.99		9.83	48.82		74	54	-5.18
10400	V	39.78		7.97	47.75		74	54	-6.25
l,	(0)		120)		(O)		NO.)
/	Н		-/- _()						
15600	Н	38.36		9.83	48.19		74	54	-5.81
10400	Н	40.14		7.97	48.11		74	54	-5.89

Emission Level

 $(dB\mu V/m) \mid (dB\mu V/m)$

ΑV

Peak

Correction

Factor

(dB/m)

Peak

reading

(dBµV)

Frequency

(MHz)

Ant. Pol.

H/V

AV reading

(dBµV)

AV limit

 $(dB\mu V/m)$

Peak limit

 $(dB\mu V/m)$

Margin

(dB)

			11a	c(VHT20) C	H48: 5240I	MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading (dBµV)	Facioi	Peak	n Level	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
10100	- 11	(dBµV)		(dB/m)	(dBµV/m)	(dBµV/m)	74	` '	` '
10480	<u>H</u>	39.12		7.97	47.09		74	54	-6.91
15720	<u>H</u>	38.88		9.83	48.71		74	54	-5.29
	H								
40400		00.74		7.07	47.00		7.4	F40	0.00
10480	V	39.71		7.97	47.68		74	54	-6.32
15720	V	38.66		9.83	48.49		74	54	-5.51
	V								
			11a	c(VHT40) C	:H38: 5190l	MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
10380	Н	41.01		7.75	48.76		74	54	-5.24
15570	H	38.32		9.87	48.19		74	54	-5.81
	Н								
10380	V	39.82	1 -5-	7.75	47.57	7-	74	54	-6.43
15570	V	39.19		9.87	49.06		74	54	-4.94
	V								
	-		11a	c(VHT40) C	H46· 5230I	MHz			
		Peak		Correction		n Level		П	
Frequency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
10460	Н	39.20		7.97	47.17		74	54	-6.83
15690	Н	39.37		9.83	49.20		74	54	-4.80
/	Н		/ /\)		/			<i>/</i>	
	(0)		(20)			(0)		(20)	
10460	V	40.21		7.97	48.18		74	54	-5.82
15690	V	37.82		9.83	47.65		74	54	-6.35
	V								
	,			1ac(VHT80) CH42·521	0		l l	
		Peak		Correction					
Frequency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
10420	Н	40.35		7.96	48.31		74	54	-5.69
15630	Н	38.41		9.84	48.25		74	54	-5.75
(H		(C)			.62		4-26	
				/					
10420	V	40.87		7.96	48.83		74	54	-5.17
15630	V	38.09		9.84	47.93		74	54	-6.07
	V	22.00	+	0.0.				~ '	

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. $Margin (dB) = Emission Level (Peak) (dB\mu V/m)-Average limit (dB\mu V/m)$
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Page 17 of 22

	Modulation Type: Band 3												
	11a(HT20) CH149: 5745MHz												
Frequenc (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)				
11490	Н	39.38		8.09	47.47		74	54	-6.53				
17235	Н	37.66		9.67	47.33	-	74	54	-6.67				
	Н		<i>f</i>		(<i>f c</i> \					
			KO)										
11490	V	41.10		8.09	49.19		74	54	-4.81				
17235	V	37.55		9.67	47.22		74	54	-6.78				
	V												

			11a	(HT20) CH	157: 5785N	ИHz					
ency Iz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)		
70	H	40.48		8.10	48.58		74	54	-5.42		
55	, C H	37.30	(- 6)	9.65	46.95	(C) 2-}	74	54	-7.05		
-	Н							-2-			
70	V	38.99		8.10	47.09		74	54	-6.91		
55	V	36.58		9.65	46.23		74	54	-7.77		
•	V			(, c					(, (
	70 55 70 55 70	70 H 70 H 55 H 70 V 55 V	reading (dBµV) 70 H 40.48 55 H 37.30 H 70 V 38.99 55 V 36.58	Peak reading (dBμV) 70 H 40.48 55 H 37.30 H 70 V 38.99 55 V 36.58	Peak reading (dBμV) (dBμV) (dBμν) (d	Ant. Pol. Peak reading (dBμV) AV reading (dBμV) Factor (dBμV) Peak (dBμV) Peak (dBμV/m) Peak (d	Factor (dBμV) Factor (dBμV) Peak (dBμV/m) AV (dBμV/m) 70 H 40.48 8.10 48.58 55 H 37.30 9.65 46.95 H 55 V 38.99 8.10 47.09 55 V 36.58 9.65 46.23	Pency (dBμV) Ant. Pol. (dBμV) Peak reading (dBμV) AV reading (dBμV) Correction Factor (dB/m) Emission Level Peak (dBμV/m) Peak (dBμV/m) AV (dBμV/m)	Peak reading (dBμV) Peak (dBμV/m) (dBμV/m) (dBμV/m) (dBμV/m) Peak (dBμV/m) (dBμV/m) (dBμV/m) (dBμV/m) Peak (dBμV/m) (dBμV/m) (dBμV/m) (dBμV/m) Peak limit (dBμV/m) (dBμV/m) (dBμV/m) Peak limit (dBμV/m) (dBμV/m) (dBμV/m) Peak limit (dBμV/m) Pe		

	11a(HT20) CH165: 5825MHz												
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)				
11650	CO H	39.64	70	8.12	47.76	KO- -J	74	54	-6.24				
17475	H	38.20	-22	9.62	47.82		74	54	-6.18				
	Н												
11650	V	40.60		8.12	48.72		74	54	-5.28				
17475	V	37.89		9.62	47.51		74	54	-6.49				
/	V				J		<u></u>						

	11n(HT20) CH149: 5745MHz												
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)				
11490	H	40.44		8.09	48.53	1	74	54	-5.47				
17235	Η	37.80		9.67	47.47		74	54	-6.53				
	H	-											
11490	V	39.92		8.09	48.01		74	54	-5.99				
17235	V	37.43		9.67	47.10		74	54	-6.90				
	V												

	11n(HT20) CH157: 5785MHz											
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)		Margin (dB)			
11570	Н	40.88		8.10	48.98		74	54	-5.02			
17355	Н	37.02		9.65	46.67		74	54	-7.33			
	Н					-						
11570	V	39.63		8.10	47.73	-7-	74	54	-6.27			
17355	V	35.99		9.65	45.64	1	74	54	-8.36			
	V											

			11n	(HT20) CH	165: 5825N				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11650	Н	39.44		8.12	47.56		74	54	-6.44
17475	H	37.12	-7- A	9.62	46.74	/	74	54	-7.26
()	, C H		1-C.)	((C-)		4-0	
*				7	·				
11650	V	40.32		8.12	48.44		74	54	-5.56
17475	V	37.01		9.62	46.63		74	54	-7.37
Z	V				Z		//		/
		(.C)							

	V								
		(.G)		(,0			(.G)		
			11r	(HT40) CH	151: 5755N	1Hz			
Frequency	Ant. Pol.	Peak	AV reading	Correction		n Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11510	Н	41.94	<i>f</i>	8.09	50.03		74	54	-3.97
17265	K H	38.25	140	9.67	47.92	7	74	54	-6.08
	Н					<u></u>			
11510	V	41.10		8.09	49.19		74	54	-4.81
17265	V	37.77		9.67	47.44		74	54	-6.56
)	V			(, ((` ر				/2

	11n(HT40) CH159: 5795MHz											
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)			
11590	Н	40.46	-4-	8.10	48.56		74	54	-5.44			
17385	Н	37.98		9.65	47.63		74	54	-6.37			
	Н											
					-,							
11590	V	40.19		8.10	48.29		74	54	-5.71			
17385	V	36.75		9.65	46.40		74	54	-7.60			
	V)										

	11ac(VHT20) CH149: 5745MHz										
F	requency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)	
	11490	Η	40.11		8.09	48.20		74	54	-5.80	
	17235	Ι	38.95		9.67	48.62		74	54	-5.38	
		Н									
					\						
Γ	11490	V	40.44		8.09	48.53	-/-	74	54	-5.47	
	17235	\	37.07		9.67	46.74	1	74	54	-7.26	
Γ		V									

11ac(VHT20) CH157: 5785MHz									
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11570	Н	39.43		8.10	47.53		74	54	-6.47
17355	H	37.02	-7- A	9.65	46.67	X	74	54	-7.33
(Η		1-O.		(, C -)		(-, C)	
									7
11570	V	38.92		8.10	47.02		74	54	-6.98
17355	V	35.51		9.65	45.16		74	54	-8.84
Z	V				Z\				
		(.G)		(.0		•	(.C)		
			4.4	() (I ITOO) O					

	11ac(VHT20) CH165: 5825MHz											
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)			
11650	H	40.53	<i>f</i>	8.12	48.65		74	54	-5.35			
17475	Эн	37.79	LAO ,	9.62	47.41	() -	74	54	-6.59			
	H					<u></u>						
11650	V	40.20		8.12	48.32		74	54	-5.68			
17475	V	35.58		9.62	45.20		74	54	-8.80			
)	V			(2)) `)		J		/2			

	11ac(VHT40) CH151: 5755MHz										
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)		
11510	Н	39.40	-4-	8.09	47.49		74	54	-6.51		
17265	Н	37.99		9.67	47.66		74	54	-6.34		
	Н										
					-,						
11510	V	40.95		8.09	49.04		74	54	-4.96		
17265	V	38.63		9.67	48.3		74	54	-5.7		
	V										

11ac(VHT40) CH159: 5795MHz									
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBμV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11590	Η	39.14		8.10	47.24		74	54	-6.76
17385	Н	36.19		9.65	45.84		74	54	-8.16
	Н								
11590	V	40.81		8.10	48.91	-/-	74	54	-5.09
17385	V	38.83		9.65	48.48	1	74	54	-5.52
	V								

	11ac(VHT80) CH155: 5775MHz									
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)		Margin (dB)	
11550	Η	40.07		8.09	48.16		74	54	-5.84	
17325	H	35.58	-7-	9.66	45.24		74	54	-8.76	
(H		1-C'		((2 0)		
					*					
11550	V	41.40		8.09	49.49		74	54	-4.51	
17325	V	37.68		9.66	47.34		74	54	-6.66	
	V				X					

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. $Margin (dB) = Emission Level (Peak) (dB\mu V/m)-Average limit (dB\mu V/m)$
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Appendix B: Photographs of Test Setup

Refer to the test report No. TCT240402E903

Appendix C: Photographs of EUT

Refer to the test report No. TCT240402E903

*****END OF REPORT*****

