TCT通测检						
	TEST REPORT					
FCC ID:	2ALNA-BTS56					
Test Report No:	TCT240712E043					
Date of issue:	Jul. 26, 2024					
Testing laboratory:	SHENZHEN TONGCE TESTING LAB					
Testing location/ address:	2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China					
Applicant's name::	Shenzhen Thousandshores Technology Co., Ltd.					
Address:	Room 1101, Building B, Lotus Plaza, No. 3186 Nanshan Avenue, Majialong Community, Nantou Street, Nanshan District, Shenzhen, China					
Manufacturer's name :	Shenzhen Thousandshores Technology Co., Ltd.					
Address:	Room 1101, Building B, Lotus Plaza, No. 3186 Nanshan Avenue, Majialong Community, Nantou Street, Nanshan District, Shenzhen, China					
Standard(s) :	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013					
Product Name::	Wireless Party Speaker					
Trade Mark:	Tribit					
Model/Type reference :	BTS56					
Rating(s):	Rechargeable Li-ion Battery DC 10.8V					
Date of receipt of test item	Jul. 12, 2024					
Date (s) of performance of test:	Jul. 12, 2024 ~ Jul. 26, 2024					
Tested by (+signature) :	Onnado YE					
Check by (+signature) :	Beryl ZHAO					
Approved by (+signature):	Tomsin					

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

TCT 通测检测 TESTING CENTRE TECHNOLOGY

1. General Product Information	
1.1. EUT description	
1.2. Model(s) list	3
1.3. Operation Frequency	3
2. Test Result Summary	4
3. General Information	
3.1. Test environment and mode	
3.2. Description of Support Units	
4. Facilities and Accreditations	
4.1. Facilities	
4.2. Location	
4.3. Measurement Uncertainty	
5. Test Results and Measurement Data	
5.1. Antenna requirement	
5.2. Conducted Emission	
5.3. Conducted Output Power	
5.4. 20dB Occupy Bandwidth	13
5.5. Carrier Frequencies Separation	
5.6. Hopping Channel Number	
5.7. Dwell Time	
5.8. Pseudorandom Frequency Hopping Sequence	17
5.9. Conducted Band Edge Measurement	
5.10.Conducted Spurious Emission Measurement	
5.11.Radiated Spurious Emission Measurement	
Appendix A: Test Result of Conducted Test	
Appendix B: Photographs of Test Setup	
Appendix C: Photographs of EUT	

1. General Product Information

1.1. EUT description

Product Name:	Wireless Party Speaker	
Model/Type reference:	BTS56	
Sample Number	TCT240712E043-0101	
Bluetooth Version:	V5.4 (This report is for BDR+EDR)	
Operation Frequency:	2402MHz~2480MHz	
Transfer Rate:	1/2/3 Mbits/s	
Number of Channel:	79	
Modulation Type:	GFSK, π/4-DQPSK, 8DPSK	
Modulation Technology:	FHSS	
Antenna Type:	FPC Antenna	
Antenna Gain:	3.14dBi	
Rating(s):	Rechargeable Li-ion Battery DC 10.8V	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

1.3. Operation Frequency

Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
2421MHz	39	2441MHz	59	2461MHz		
	2402MHz 2403MHz 2412MHz 2413MHz 2420MHz	2402MHz 20 2403MHz 21 2412MHz 30 2413MHz 31 2420MHz 38	2402MHz 20 2422MHz 2403MHz 21 2423MHz 2412MHz 30 2432MHz 2413MHz 31 2433MHz 2413MHz 31 2433MHz 2420MHz 38 2440MHz	2402MHz 20 2422MHz 40 2403MHz 21 2423MHz 41 2412MHz 30 2432MHz 50 2413MHz 31 2433MHz 51 2420MHz 38 2440MHz 58	2402MHz 20 2422MHz 40 2442MHz 2403MHz 21 2423MHz 41 2443MHz 2403MHz 21 2423MHz 41 2443MHz 2412MHz 30 2432MHz 50 2452MHz 2413MHz 31 2433MHz 51 2453MHz 2420MHz 38 2440MHz 58 2460MHz	2403MHz 21 2423MHz 41 2443MHz 61 2412MHz 30 2432MHz 50 2452MHz 70 2413MHz 31 2433MHz 51 2453MHz 71 2413MHz 31 2433MHz 51 2453MHz 71 2420MHz 38 2440MHz 58 2460MHz 78

Remark: Channel 0, 39 & 78 have been tested for GFSK, π /4-DQPSK, 8DPSK modulation mode.

2. Test Result Summary

Requirement	Requirement CFR 47 Section			
Antenna Requirement	§15.203/§15.247 (c)	PASS		
AC Power Line Conducted Emission	§15.207	PASS		
Conducted Peak Output Power	§15.247 (b)(1)	PASS		
20dB Occupied Bandwidth	§15.247 (a)(1)	PASS		
Carrier Frequencies Separation	§15.247 (a)(1)	PASS		
Hopping Channel Number	§15.247 (a)(1)	PASS		
Dwell Time	§15.247 (a)(1)	PASS		
Radiated Emission	§15.205/§15.209	PASS		
Band Edge	§15.247(d)	PASS		

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

5. After pre-testing the two earbuds, the two earphones are left and right ears respectively; we found that the right earbud is the worst case, so the results are recorded in this report.

3. General Information

Engineering mode:

3.1. Test environment and mode

Operating Environment:							
Condition	Conducted Emission	Radiated Emission					
Temperature:	22.7 °C	25.1 °C					
Humidity:	52 % RH	53 % RH					
Atmospheric Pressure:	1010 mbar	1010 mbar					
Test Software:							
Software Information:	BT FCC Tool V2.24						
Power Level:	6						
Test Mode:	•						
Engineering mode:	Keep the EUT in continuous	s transmitting by select					

Channel and modulations with Fully-charged battery. The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case (Z axis) are shown in Test Results of the following pages.

DH1 DH3 DH5 all have been tested, only worse case DH1 is reported.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
1	/	1	/	/

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A-1
 - SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory, Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

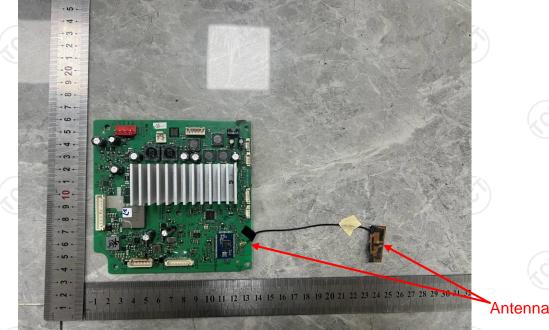
No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)) ± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB
7	Occupied Bandwidth	± 57.74kHz

5. Test Results and Measurement Data

5.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

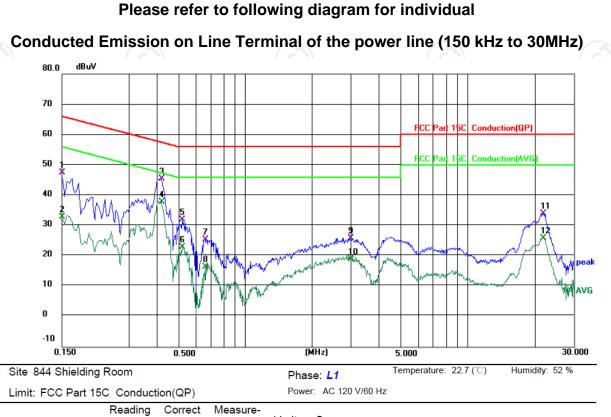
E.U.T Antenna:

The Bluetooth antenna is FPC antenna which permanently attached, and the best case gain of the antenna is 3.14dBi.

5.2. Conducted Emission

5.2.1. Test Specification

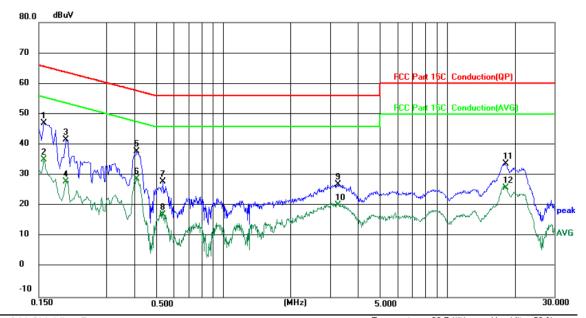
Test Requirement:	FCC Part15 C Section	15,207					
Teet Methed.							
Test Method:	ANSI C63.10:2013						
Frequency Range:	150 kHz to 30 MHz						
Receiver setup:	RBW=9 kHz, VBW=30	RBW=9 kHz, VBW=30 kHz, Sweep time=auto					
	Frequency range	Limit (dBuV)				
	(MHz)	Quasi-peak	Average				
Limits:	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	3-30	00					
	Referenc	Reference Plane					
Test Setup: Test Mode:	40cm E.U.T AC powe Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization No Test table height=0.8m Charging + Transmittin	EMI Receiver	r]— AC power				
Test Procedure:	 The E.U.T is connerimpedance stabilizy provides a 500hm/5 measuring equipmer The peripheral device power through a LI coupling impedance refer to the block photographs). Both sides of A.C. conducted interferent emission, the relative the interface cables ANSI C63.10:2013 conducted interface 	acted to an adapted ation network 50uH coupling im nt. ces are also connect SN that provides with 50ohm tern diagram of the line are checked nce. In order to fin e positions of equi must be changed	(L.I.S.N.). This pedance for the ected to the mains a 50ohm/50uh nination. (Please test setup and ed for maximum nd the maximum ipment and all o l according to				
Test Result:	PASS						


5.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)									
Manufacturer	Model	Serial Number	Calibration Due						
EMI Test Receiver R&S		100898	Jun. 26, 2025						
LISN Schwarzbeck		8126453	Jan. 31, 2025						
N/A	10dB	164080	Jun. 26, 2025						
тст	CE-05	/	Jun. 26, 2025						
EZ_EMC	EMEC-3A1	1.1.4.2	1						
	Manufacturer R&S Schwarzbeck N/A TCT	ManufacturerModelR&SESCI3SchwarzbeckNSLK 8126N/A10dBTCTCE-05	ManufacturerModelSerial NumberR&SESCI3100898SchwarzbeckNSLK 81268126453N/A10dB164080TCTCE-05/						

Page 9 of 86

5.2.3. Test data



No. N	Vlk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	37.79	9.67	47.46	66.00	-18.54	QP	
2		0.1500	23.29	9.67	32.96	56.00	-23.04	AVG	
3		0.4179	35.43	10.07	45.50	57.49	-11.99	QP	
4 *	*	0.4179	27.69	10.07	37.76	47.49	-9.73	AVG	
5		0.5220	21.67	10.19	31.86	56.00	-24.14	QP	
6		0.5220	12.84	10.19	23.03	46.00	-22.97	AVG	
7		0.6620	15.06	10.35	25.41	56.00	-30.59	QP	
8		0.6620	6.03	10.35	16.38	46.00	-29.62	AVG	
9		2.9900	15.82	9.97	25.79	56.00	-30.21	QP	
10		2.9900	9.00	9.97	18.97	46.00	-27.03	AVG	
11	2	21.8819	23.60	10.43	34.03	60.00	-25.97	QP	
12	2	21.8819	15.47	10.43	25.90	50.00	-24.10	AVG	

Note:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room	Phase: N	Temperature: 22.7 (C)	Humidity: 52 %
Limit: FCC Part 15C Conduction(QP)	Power: AC 120 V/60 Hz		

No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1 *	0.1580	37.33	9.65	46.98	65.57	-18.59	peak	
2	0.1580	25.55	9.65	35.20	55.57	-20.37	AVG	
3	0.1980	31.92	9.63	41.55	63.69	-22.14	peak	
4	0.1980	18.24	9.63	27.87	53.69	-25.82	AVG	
5	0.4100	27.76	10.04	37.80	57.65	-19.85	peak	
6	0.4100	18.67	10.04	28.71	47.65	-18.94	AVG	
7	0.5380	17.77	10.19	27.96	56.00	-28.04	peak	
8	0.5380	6.98	10.19	17.17	46.00	-28.83	AVG	
9	3.2540	17.17	9.92	27.09	56.00	-28.91	peak	
10	3.2540	10.34	9.92	20.26	46.00	-25.74	AVG	
11	18.1939	23.57	10.24	33.81	60.00	-26.19	peak	
12	18.1939	15.56	10.24	25.80	50.00	-24.20	AVG	

Note1:

TCT通测检测 TEGTING CENTRE TECHNOLOGY

> Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2:

Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (Highest channel and 8DPSK) was submitted only.

Page 11 of 86

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.2	47 (b)(1)
Test Method:	KDB 558074 D01 v05r02	
Limit:	power of the intentional rad	hopping systems operating nd employing at least 75 nannels, and all frequency 5-5850 MHz band: 1 watt. ping systems in the
Test Setup:	Spectrum Analyzer	EUT
Test Mode:	Transmitting mode with mode	dulation
Test Procedure:	centered on a hopping char RBW > the 20 dB bandwidt measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize.	imes the 20 dB bandwidth, nnel
Test Result:	PASS	

5.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020B	MY50030427	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	9 1	

5.4. 20dB Occupy Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)			
Test Method:	KDB 558074 D01 v05r02			
Limit:	N/A			
Test Setup:	Spectrum Analyzer EUT			
Test Mode:	Transmitting mode with modulation			
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 			
Test Result:	PASS			

5.4.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020B	MY50030427	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	/	/

5.5. Carrier Frequencies Separation

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz of the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
Test Result:	PASS

5.5.2. Test Instruments

5.5.2. Test Instru	ments			
Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020B	MY50030427	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	/	1

Page 14 of 86

5.6. Hopping Channel Number

5.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data in report.
Test Result:	PASS

5.6.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020B	MY50030427	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	/	/

5.7. Dwell Time

5.7.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Test Result:	PASS

5.7.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020B	MY50030427	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB		

5.8. Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones; i.e. the shift register is initialized with nine ones.

Number of shift register stages: 9

- Length of pseudo-random sequence: $2^9 1 = 511$ bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence An example of Pseudorandom Frequency Hopping Sequence as follow: 0 2 4 6 62 64 78 1 73 75 77 Each frequency used equally on the average by each transmitter. The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

Page 17 of 86

5.9. Conducted Band Edge Measurement

5.9.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fal in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report.
Test Result:	PASS

5.9.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020B	MY50030427	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	/	/

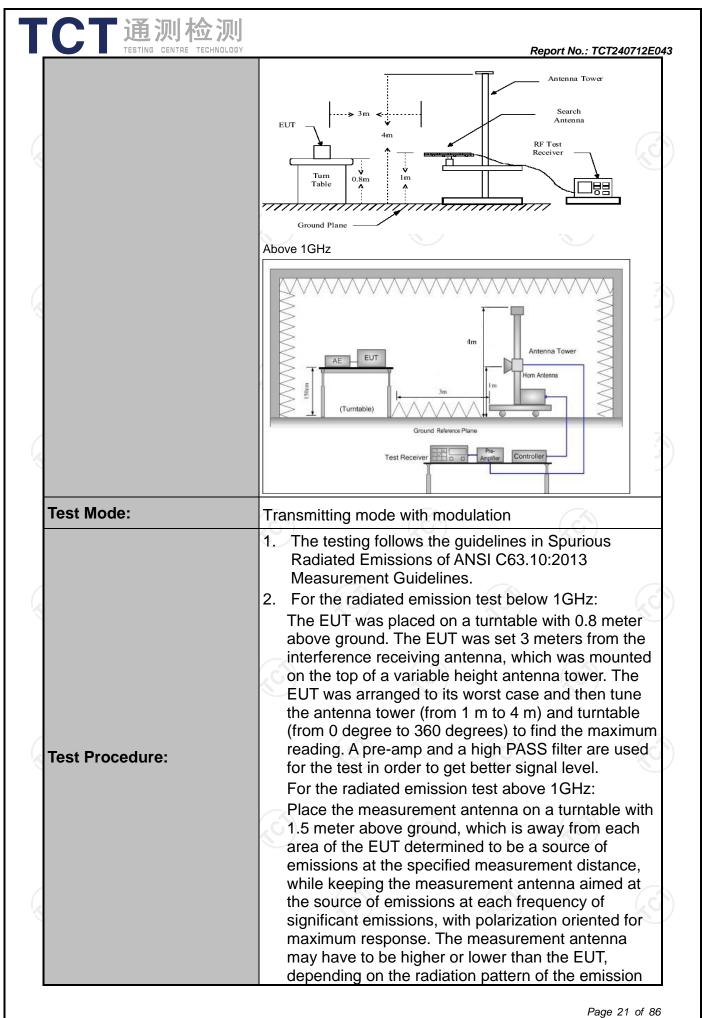
5.10. Conducted Spurious Emission Measurement

5.10.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS

5.10.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020B	MY50030427	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB		



5.11. Radiated Spurious Emission Measurement

5.11.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

FCC Part15 C Section 15.209							
ANSI C63.10	0:2013						
9 kHz to 25 (GHz	Z					
3 m	No.	9		R			
Horizontal &	Vertical						
Frequency	Detector	RBW	VBW		Remark		
9kHz- 150kHz			1kHz		si-peak Value		
150kHz- 30MHz	Quasi-peak	k 9kHz	30kHz	Quas	si-peak Value		
			300KHz		i-peak Value		
Above 1GHz	Peak				eak Value		
	Peak	1MHz	10Hz	Ave	erage Value		
Eroquen		Field Str	ength		asurement		
				Dista	nce (meters)		
				300			
			KHZ)		30		
)	30			
				3			
				3			
			3				
Freduency		-					
	stance = 3m						
A.C.	5)	(
	9 kHz to 25 0 3 m Horizontal & Frequency 9kHz-150kHz 150kHz- 30MHz 30MHz-1GHz Above 1GHz Frequency 0.009-0.4 0	Horizontal & Vertical Frequency Detector 9kHz-150kHz Quasi-peak 30MHz-1GHz Quasi-peak 30MHz-1GHz Quasi-peak Above 1GHz Peak Peak Peak 0.009-0.490 0.490-1.705 1.705-30 30-88 88-216 216-960 Above 1GHz Fiel Frequency Fiel Above 1GHz Fiel For radiated emissions below Distance = 3m Image: Comparison of the system	9 kHz to 25 GHz 3 m Horizontal & Vertical	9 kHz to 25 GHz 3 m Horizontal & Vertical Frequency Detector RBW VBW 9kHz-150kHz Quasi-peak 200Hz 1kHz 150kHz- Quasi-peak 9kHz 30kHz 30MHz-1GHz Quasi-peak 120KHz 300KHz 30MHz-1GHz Quasi-peak 120KHz 300KHz Above 1GHz Peak 1MHz 10Hz Frequency Field Strength (microvolts/meter) 0.009-0.490 2400/F(KHz) 0.009-0.490 2400/F(KHz) 1.705-30 30 30-88 100 88-216 150 216-960 200 200 Above 960 500 Above 960 500 3 3 Frequency Field Strength (microvolts/meter) Distance Above 1GHz 500 3 3 For radiated emissions below 30MHz 3 3 Distance = 3m Output Upt Upt Upt Output Solop Distance = 3m <td>9 kHz to 25 GHz 3 m Horizontal & Vertical Frequency Detector RBW VBW 9kHz-150kHz Quasi-peak 200Hz 1kHz Quasi- 30kHz 30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi- 300KHz 30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi- 300KHz 30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi- 300KHz Above 1GHz Peak 1MHz 30Hz- 100 Ave Frequency Field Strength (microvolts/meter) Measurement Distance 0.009-0.490 2400/F(KHz) - 0.490-1.705 24000/F(KHz) - 1.705-30 30 - 30-88 100 - 88-216 150 - 216-960 200 - Above 960 500 3 Frequency Field Strength (microvolts/meter) Measurement Distance (meters) Above 1GHz 500 3 5000 3 - - Above 1GHz 500 3 - for radiated emissions below 30MHz Im</td>	9 kHz to 25 GHz 3 m Horizontal & Vertical Frequency Detector RBW VBW 9kHz-150kHz Quasi-peak 200Hz 1kHz Quasi- 30kHz 30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi- 300KHz 30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi- 300KHz 30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi- 300KHz Above 1GHz Peak 1MHz 30Hz- 100 Ave Frequency Field Strength (microvolts/meter) Measurement Distance 0.009-0.490 2400/F(KHz) - 0.490-1.705 24000/F(KHz) - 1.705-30 30 - 30-88 100 - 88-216 150 - 216-960 200 - Above 960 500 3 Frequency Field Strength (microvolts/meter) Measurement Distance (meters) Above 1GHz 500 3 5000 3 - - Above 1GHz 500 3 - for radiated emissions below 30MHz Im		

-

	rece mea max ante restr abov 3. Set EUT 4. Use (1) (2)	= max ho For avera correction	aximum si antenna ele emissions. on for may ange of he nd or refer kimum pov continuous ng spectru wide enou eeing meas 120 kHz fo z ; VBW≥R auto; Dete ld for peak	emission s gnal. The evation sha The meas kimum emi eights of fro ence grou wer setting ly. um analyze ugh to fully sured; or f < 1 GH BW; ector function rement: us thod per	final all be that surement issions sha om 1 m to nd plane. g and enal er settings: capture the lz, RBW=1 on = peak se duty cyce (100 millise	whicl all be 4 m ble th : he IMHz ; Trac
	Ś	On time =N Where N length of t Average R Level + 20 Corrected	l is numbe type 1 puls Emission L 0*log(Duty Reading: <i>A</i>	er of type 1 ses, etc. .evel = Pea cycle) Antenna Fa	pulses, L ak Emissic actor + Ca	⊦Nn*l 1 is on ble
est results:	Ś	On time =N Where N length of t Average R Level + 20	l is numbe type 1 puls Emission L 0*log(Duty Reading: <i>A</i>	er of type 1 ses, etc. .evel = Pea cycle) Antenna Fa	pulses, L ak Emissic actor + Ca	⊦Nn*L 1 is on ble
est results:	S	On time =N Where N length of t Average R Level + 20 Corrected	l is numbe type 1 puls Emission L 0*log(Duty Reading: <i>A</i>	er of type 1 ses, etc. .evel = Pea cycle) Antenna Fa	pulses, L ak Emissic actor + Ca	⊦Nn*l 1 is on ble
est results:	S	On time =N Where N length of t Average R Level + 20 Corrected	l is numbe type 1 puls Emission L 0*log(Duty Reading: <i>A</i>	er of type 1 ses, etc. .evel = Pea cycle) Antenna Fa	pulses, L ak Emissic actor + Ca	⊦Nn*l 1 is on ble
est results:	S	On time =N Where N length of t Average R Level + 20 Corrected	l is numbe type 1 puls Emission L 0*log(Duty Reading: <i>A</i>	er of type 1 ses, etc. .evel = Pea cycle) Antenna Fa	pulses, L ak Emissic actor + Ca	⊦Nn*l 1 is on ble

5.11.2. Test Instruments

Radiated Emission Test Site (966)										
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due						
EMI Test Receiver	R&S	ESCI7	100529	Jan. 31, 2025						
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 26, 2025						
Pre-amplifier	HP	8447D	2727A05017	Jun. 26, 2025						
Pre-amplifier	SKET	LNPA_0118G- 45	SK202101210 2	Jan. 31, 2025						
Pre-amplifier	SKET	LNPA_1840G- 50	SK202109203 500	Jan. 31, 2025						
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 26, 2025						
Broadband Antenna	Schwarzbeck	VULB9163	340	Jun. 28, 2025						
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jun. 28, 2025						
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 02, 2025						
Coaxial cable	SKET	RE-03-D	/	Jun. 26, 2025						
Coaxial cable	SKET	RE-03-M	1	Jun. 26, 2025						
Coaxial cable	SKET	RE-03-L	/	Jun. 26, 2025						
Coaxial cable	SKET	RE-04-D		Jun. 26, 2025						
Coaxial cable	SKET	RE-04-M	1	Jun. 26, 2025						
Coaxial cable	SKET	RE-04-L	< / /	Jun. 26, 2025						
Antenna Mast	Keleto	RE-AM	21							
EMI Test Software	EZ_EMC	FA-03A2 RE+	1.1.4.2	/						
c)		(\mathbf{c})		(,ć						

Page 23 of 86

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

5.11.3. Test Data

TCT通测检测 TCT通测检测

Please refer to following diagram for individual

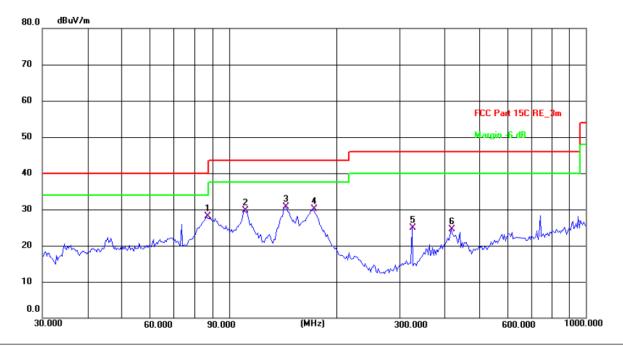
Site: 3m Anechoic Chamber1

. . _ _ _ _ _

_ _ _ _

Polarization: Horizontal

_ _ _


Temperature: 25.1(C) Humidity: 53 %

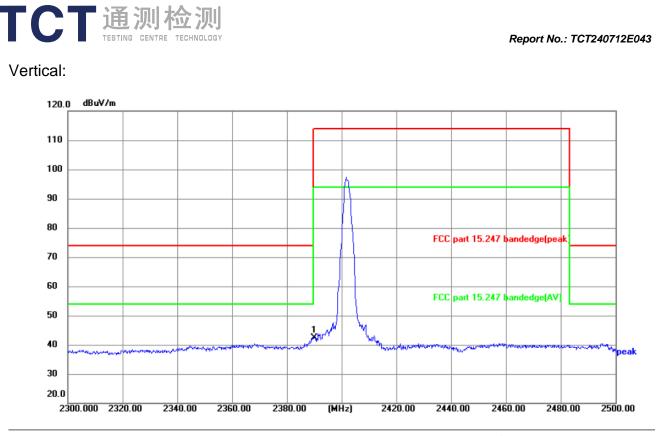
Limit: F	FCC Part 15C R	E_3m		P	ower: D	C 10.8 V			
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	46.0164	33.75	-12.20	21.55	40.00	-18.45	QP	Ρ	
2	57.9993	35.58	-12.61	22.97	40.00	-17.03	QP	Ρ	
3	88.3421	44.15	-16.67	27.48	43.50	-16.02	QP	Ρ	
4 *	147.4036	40.38	-11.70	28.68	43.50	-14.82	QP	Ρ	
5	359.1860	38.41	-10.05	28.36	46.00	-17.64	QP	Ρ	
6	603.5392	34.16	-4.90	29.26	46.00	-16.74	QP	Ρ	

Page 24 of 86

Vertical:

TCT通测检测 TCT通测检测

Site: 3m Anechoic Chamber1	Polarization: Vertical	Temperature: 25.1(C) Humidity: 53 %


Limit: F	FCC Part 15C R	E_3m			P	ower: D	wer: DC 10.8 V			
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark	
1 *	86.5029	44.73	-16.55	28.18	40.00	-11.82	QP	Р		
2	110.5687	44.35	-14.64	29.71	43.50	-13.79	QP	Р		
3	143.3261	42.57	-11.96	30.61	43.50	-12.89	QP	Ρ		
4	171.9946	41.82	-11.80	30.02	43.50	-13.48	QP	Ρ		
5	325.5958	35.14	-10.28	24.86	46.00	-21.14	QP	Ρ		
6	419.1081	33.26	-8.66	24.60	46.00	-21.40	QP	Ρ		

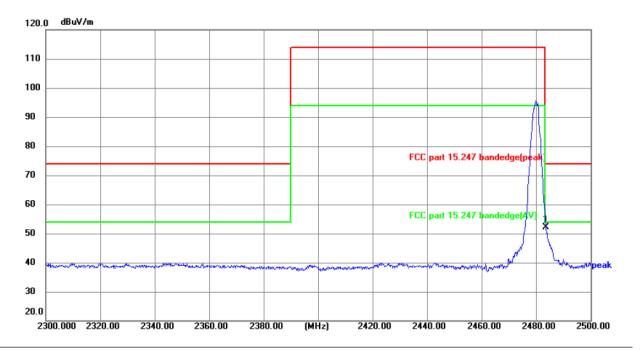
Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

- 2. Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK) and the worst case Mode (Highest channel and 8DPSK) was submitted only.
- 3. Freq. = Emission frequency in MHz
- Measurement ($dB\mu V/m$) = Reading level ($dB\mu V$) + Corr. Factor (dB) Correction Factor= Antenna Factor + Cable loss – Pre-amplifier Limit ($dB\mu V/m$) = Limit stated in standard
- $Over (dB) = Measurement (dB\mu V/m) Limits (dB\mu V/m)$
- * is meaning the worst frequency has been tested in the test frequency range.

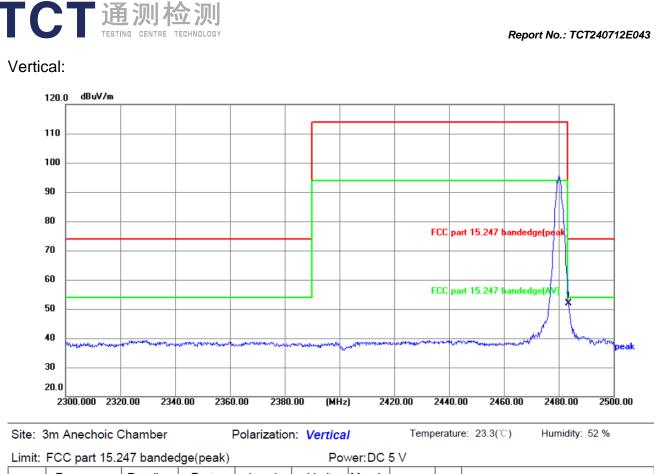
Page 25 of 86

Report No.: TCT240712E043 Test Result of Radiated Spurious at Band edges Lowest channel 2402: Horizontal: 120.0 dBuV/m 110 100 90 80 FCC part 15.247 bandedge(peal 70 60 FCC part 15.247 bandedge(AV) 50 1 X-/ 40 Adam peak moheret 30 20.0 2300.000 2320.00 2340.00 2360.00 2380.00 2420.00 2440.00 2460.00 2480.00 2500.00 (MHz) Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 23.3(°C) Humidity: 52 % Limit: FCC part 15.247 bandedge(peak) Power: DC 5 V Frequency Reading Factor Level Limit Margin P/F No. Detector Remark (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 1 * 2390.000 58.87 -16.53 42.34 74.00 -31.66 Ρ peak Page 26 of 86

 Site: 3m Anechoic Chamber
 Polarization:
 Vertical
 Temperature:
 23.3(°C)
 Humidity:
 52 %


 Limit: FCC part 15.247 bandedge(peak)
 Power:DC 5 V

E	r oo pare ro		ige(peak)		10		••		
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1 *	2390.000	59.01	-16.53	42.48	74.00	-31.52	peak	Ρ	


Highest channel 2480:

Horizontal:

Site: 3m Anechoic Chamber			Polarization: Horizontal Temperature: 23.3(°C)					Humidity: 52 %		
Limit:	FCC part 15.2		• • • •			ver:DC				
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark	

No.	Frequency (MHz)			Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1 *	2483.500	68.37	-16.43	51.94	74.00	-22.06	peak	Ρ	

Note: Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (8DPSK) was submitted only.

Above 1GHz

Modulation	Iodulation Type: 8DPSK											
Low chann	w channel: 2402 MHz											
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	A \ /	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)			
4804	Н	45.12		0.66	45.78		74	54	-8.22			
7206	Н	34.51		9.50	44.01		74	54	-9.99			
	H					~~						
(C		J.J) 		· C`)		(\mathcal{O})				
4804	V	43.53		0.66	44.19		74	54	-9.81			
7206	V	34.16		9.50	43.66		74	54	-10.34			
	V											

Middle cha	ddle channel: 2441 MHz								
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Level Peak AV (dBµV/m) (dBµV/m)		Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4882	Н	45.19		0.99	46.18	×	74	54	-7.82
7323	ζOĤ	33.67	-140	9.87	43.54	01	74	54	-10.46
	Ĥ					<u> </u>			
4882	V	43.64		0.99	44.63		74	54	-9.37
7323	V	32.75		9.87	42.62		74	54	-11.38
	V			🚫					

High channel: 2480 MHz

CT通测检测 TESTING CENTRE TECHNOLOGY

Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Level		Poak limit	A\/ limit	Margin	
					AV			(dB)	
									Н
Н	34.76		10.22	44.98		74	54	-9.02	
Н									
V	43.50		1.33 🔪	44.83		74	54	-9.17	
V	33.43		10.22	43.65		74	54	-10.35	
V									
	H/V H H	Ant. Pol. H/V reading (dBµV) H 44.07 H 34.76 H V 43.50 V 33.43	Ant. Pol. reading (dBμV) reading (dBμV) H 44.07 H 34.76 H V 43.50 V 33.43	Ant. Pol. H/V reading (dBµV) reading (dBµV) Factor (dB/m) H 44.07 1.33 H 34.76 10.22 H 10.22 H 1.33 V 43.50 1.33 V 33.43 10.22	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ant. Pol. H/V reading (dBμV) reading (dBμV) Factor (dB/m) Peak (dBμV/m) AV (dBμV/m) H 44.07 1.33 45.40 H 34.76 10.22 44.98 H V 43.50 1.33 44.83 V 33.43 10.22 43.65	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

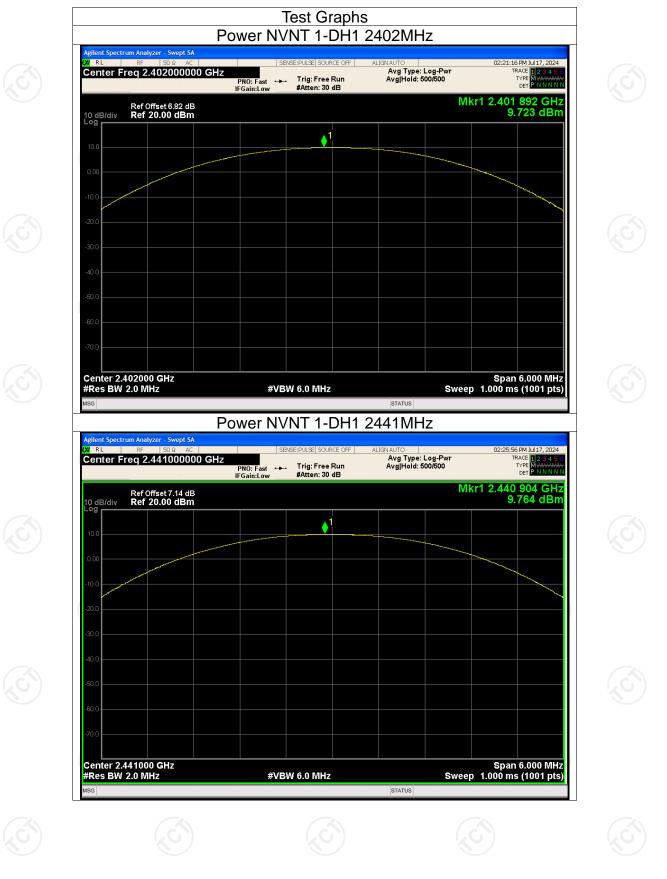
5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

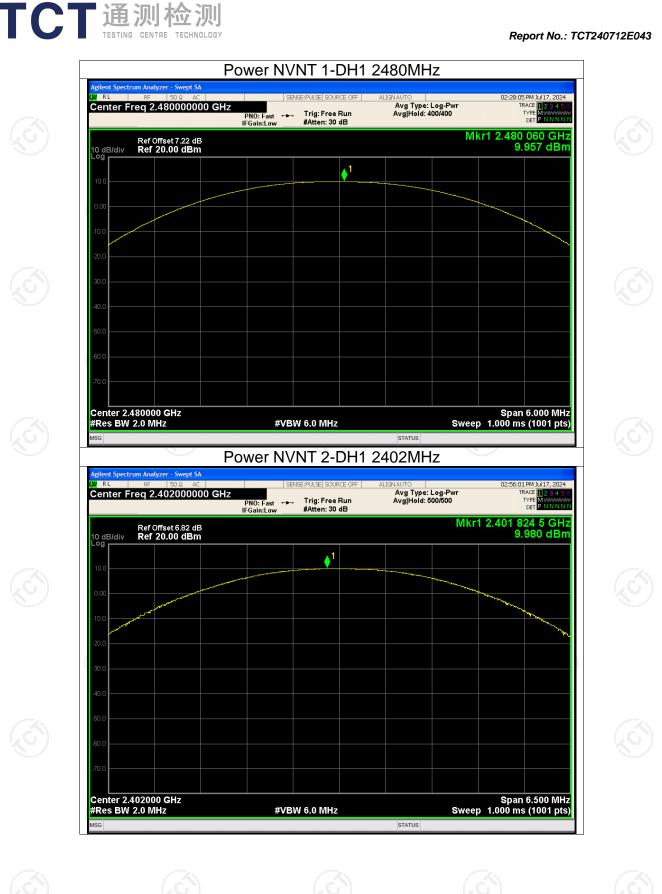
6. Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (8DPSK) was submitted only.

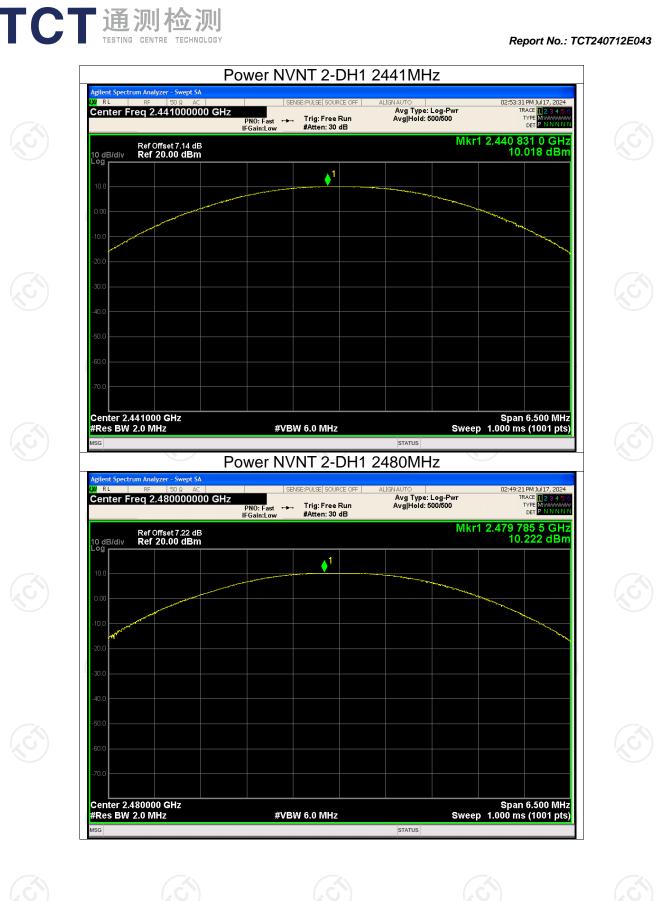
7. All the restriction bands are compliance with the limit of 15.209.

Appendix A: Test Result of Conducted Test

Maximum Conducted Output Power										
Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict					
NVNT	1-DH1	2402	9.72	30	Pass					
NVNT	1-DH1	2441	9.76	30	Pass					
NVNT	1-DH1	2480	9.96	30	Pass					
NVNT	2-DH1	2402	9.98	21	Pass					
NVNT	2-DH1	2441	10.02	21	Pass					
NVNT 🖔	2-DH1	2480	10.22	21	Pass					
NVNT	3-DH1	2402	10.15	21	Pass					
NVNT	3-DH1	2441	10.19	21	Pass					
NVNT	3-DH1	2480	10.41	21	Pass					
KU /		KU /	KU /		K					

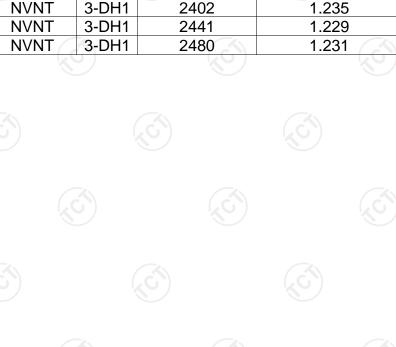




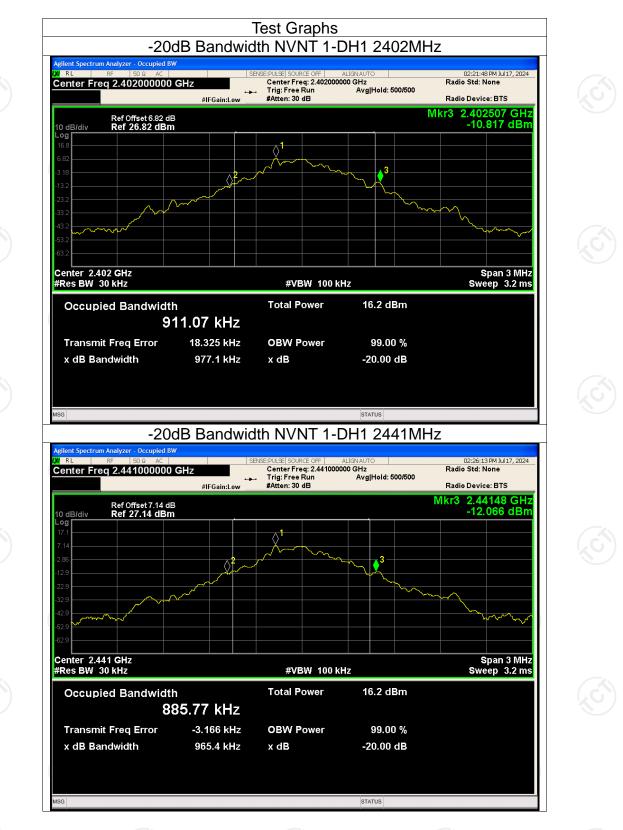

Page 31 of 86

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

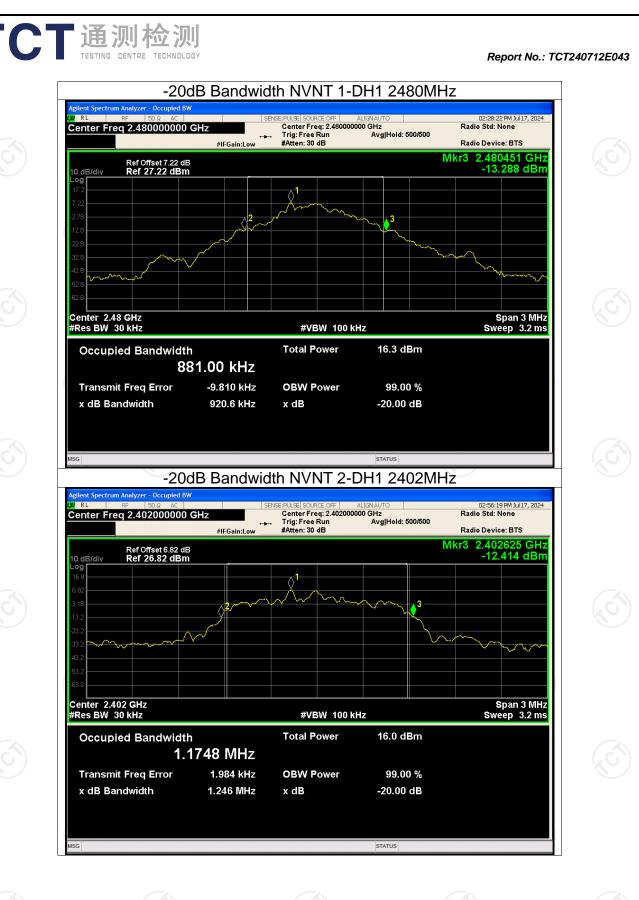


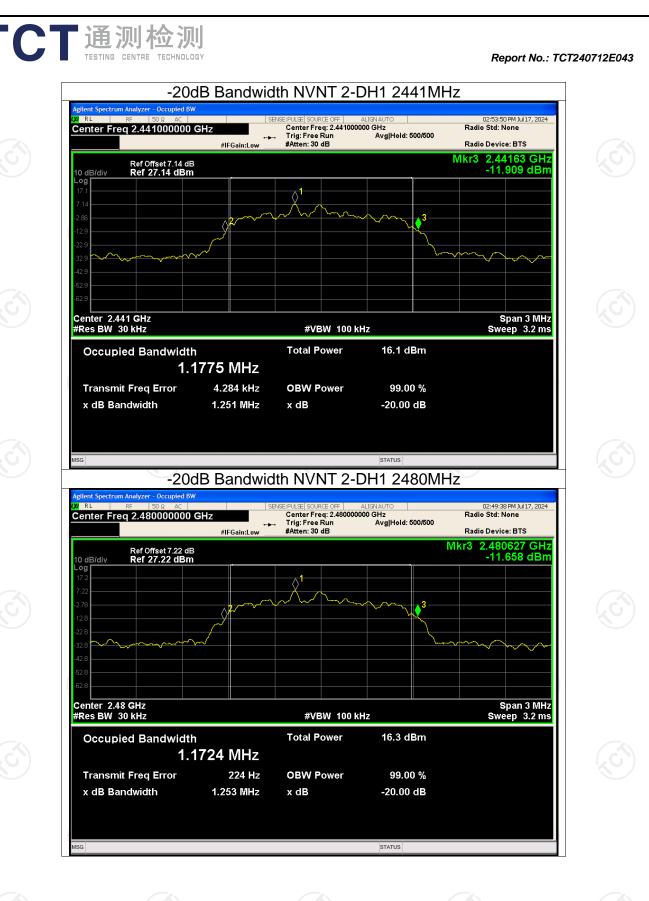

Page 33 of 86

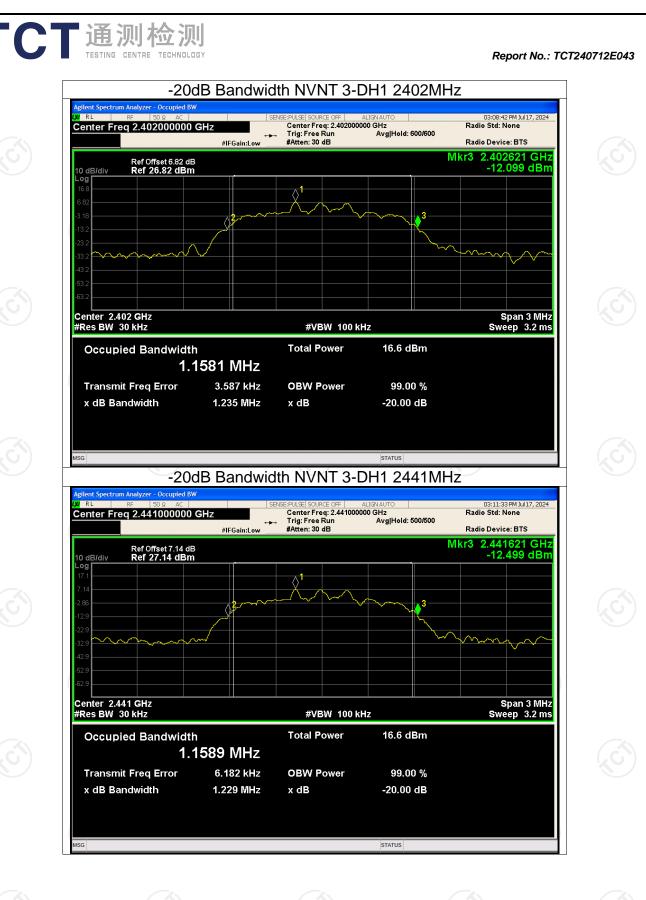
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


-20dB Bandwidth

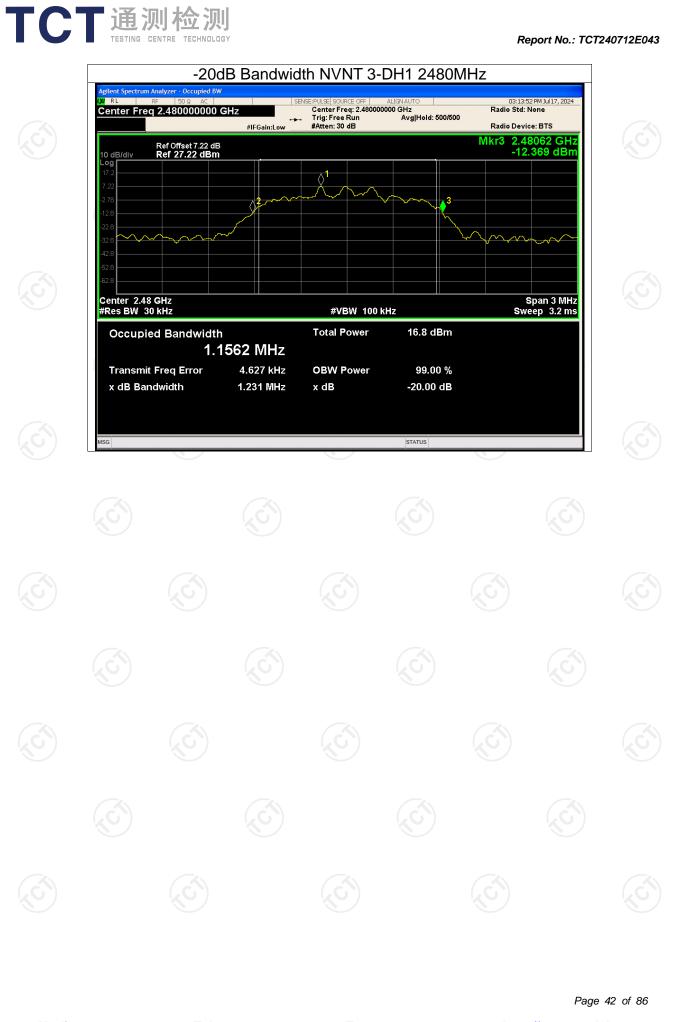
Condition	Mode	Frequency (MHz)	-20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH1	2402	0.977	Pass
NVNT 🚫	1-DH1	2441	0.965	Pass
NVNT	1-DH1	2480	0.921	Pass
NVNT	2-DH1	2402	1.246	Pass
NVNT	2-DH1	2441	1.251	Pass
NVNT	2-DH1	2480	1.253	Pass
NVNT	3-DH1	2402	1.235	Pass
NVNT	3-DH1	2441	1.229	Pass
NVNT	3-DH1	2480	1.231	Pass
X)		KO)	


Report No.: TCT240712E043




CT通测检测 TESTING CENTRE TECHNOLOGY

Page 38 of 86



Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Report No.: TCT240712E043

			quelle esparat	••••		
Condition	Mode	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	1-DH1	2401.83	2402.834	1.004	0.977	Pass
NVNT	1-DH1	2440.83	2441.832	1.002	0.977	Pass
NVNT	1-DH1	2478.842	2479.830	0.988	0.977	Pass
NVNT	2-DH1	2401.83	2402.830	1	0.835	Pass
NVNT 🐇	2-DH1	2440.83	2441.834	1.004	0.835	Pass
NVNT	2-DH1	2478.832	2479.832	1	0.835	Pass
NVNT	3-DH1	2402.164	2403.168	1.004	0.823	Pass
NVNT	3-DH1	2441.16	2442.164	1.004	0.823	Pass
NVNT	3-DH1	2479.166	2480.162	0.996	0.823	Pass

Carrier Frequencies Separation

Page 43 of 86

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

YEW 300 kHz Function width Function value 2.401 830 GHz 9.373 dBm 9.358 dBm 9.358 dBm

Test Graphs CFS NVNT 1-DH1 2402MHz

PULSE SOURCE OFF

PNO: Wide Trig: Free Run IFGain:Low #Atten: 30 dB Avg Type: Log-Pwi Avg|Hold>100/100

∆2

CFS NVNT 1-DH1 2441MHz

Agilent Spect											
LXI RL	RF	50 Ω AC		SE	NSE:PULSE SOU	IRCE OFF	ALIGN AUTC				M Jul 17, 2024
Center F	req 2.4	4150000	PI	NO: Wide 🖵 Gain:Low	Trig: Free #Atten: 30			Type: Log-Pw lold:>100/100	r	TY	CE 123456 (PE M W W W W W W DET P N N N N N
10 dB/div		fset 7.14 dE 0.00 dBm							Mkr1	2.440 8 9.4	330 GHz 52 dBm
Log 10.0		(1						<u> </u>			
0.00										~~~~	
-10.0	~~~~~				· man	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
-20.0											
-30.0											
-40.0											
-50.0											
-60.0											
-70.0											
Center 2. #Res BW				#VB	W 300 kH;	z		s	weep 1.	Span 2 000 ms (2.000 MHz (1001 pts)
MKR MODE T		>		Y		NCTION	FUNCTION WIDT	н	FUNCTIO	ON VALUE	^
	1 f 1 f		40 830 GHz 41 832 GHz	9.452 9.463							
3											
5											
7											
9											
10											~
MSG							STAT	US			
								_			

Report No.: TCT240712E043

07 PM Jul 17, TRACE 12 TYPE MW DET P N

Mkr1 2.401 830 GHz 9.373 dBm

(IRL

10 ci 1.0g ectrum Analyzer - Swept SA

Center Freq 2.402500000 GHz

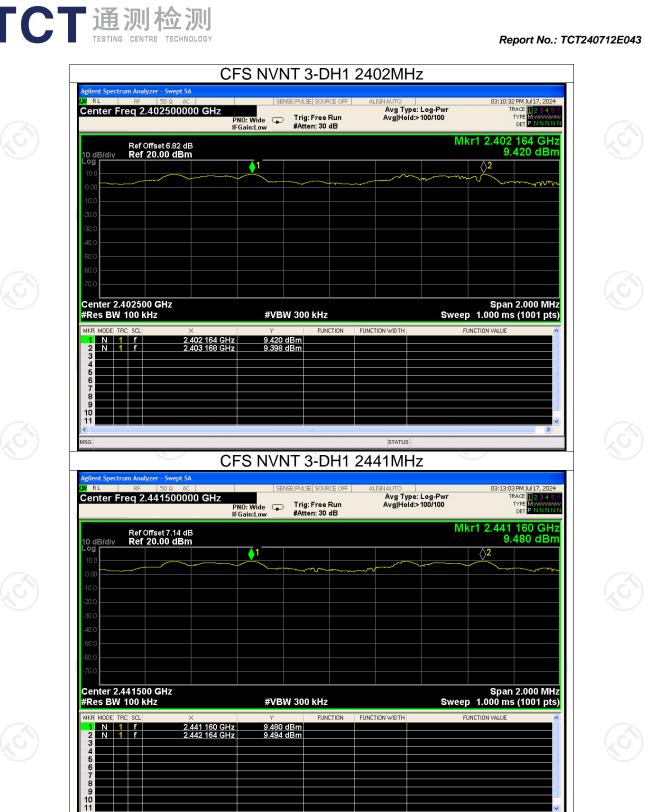
Center 2.402500 GHz #Res BW 100 kHz

> N 1 f N 1 f

234

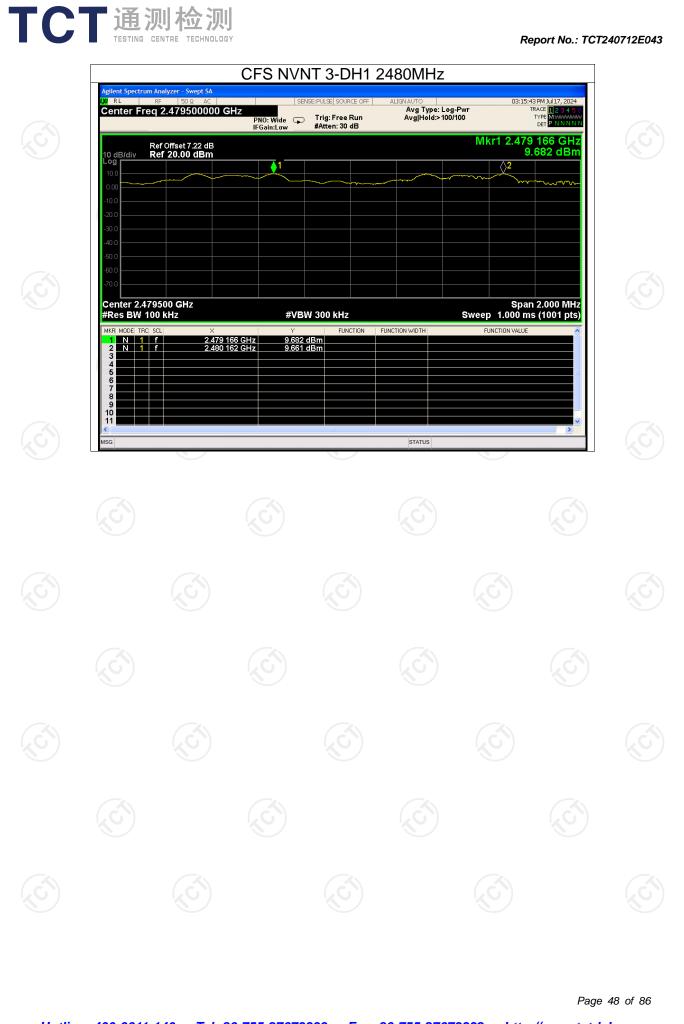
Ref Offset 6.82 dB Ref 20.00 dBm

1



Page 45 of 86

Page 46 of 86



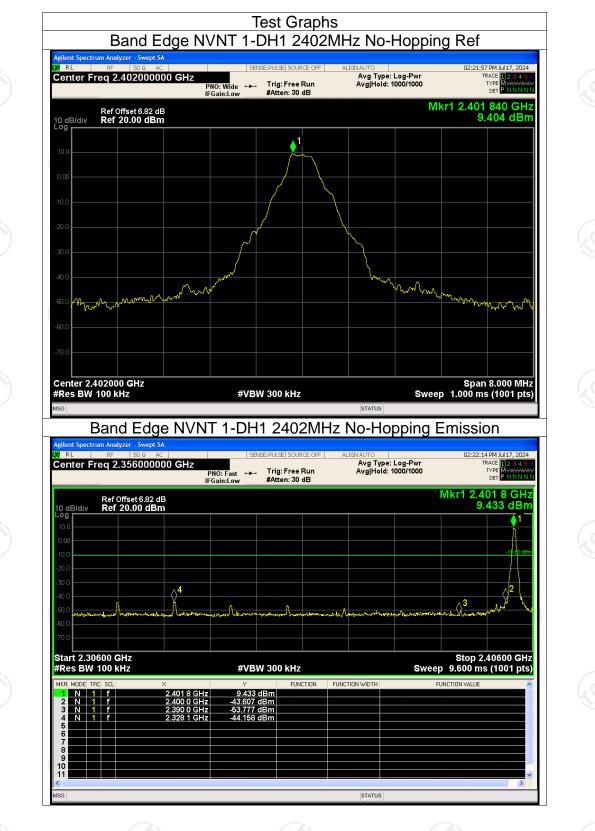
Page 47 of 86

STATUS

Report No.: TCT240712E043

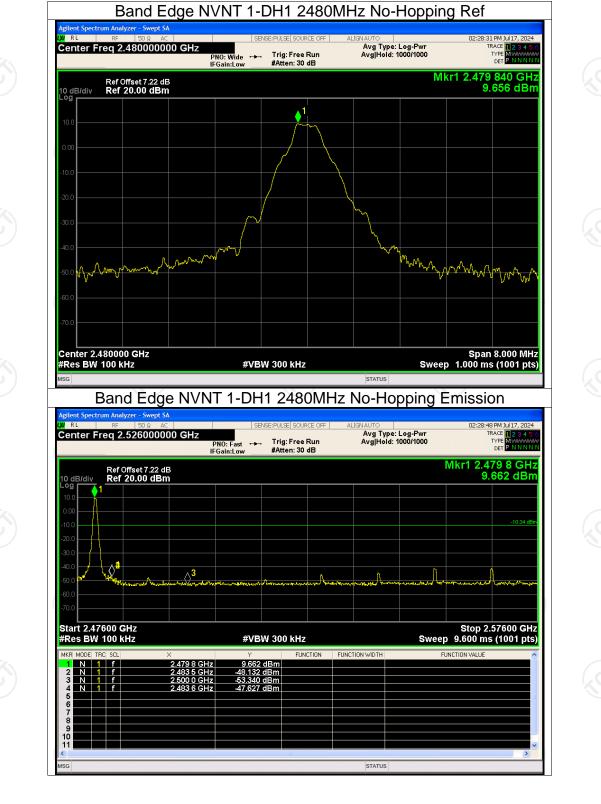
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Condition	Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH1	2402	No-Hopping	-53.55	-20	Pass
NVNT	1-DH1	2480	No-Hopping	-57.28	-20	Pass
NVNT	2-DH1	2402	No-Hopping	-53.78	-20	Pass
NVNT	2-DH1	2480	No-Hopping	-56.46	-20	Pass
NVNT	3-DH1	2402	No-Hopping	-53.74	-20	Pass
NVNT 🔇	3-DH1	2480	No-Hopping	-56.71	-20	Pass


Band Edge

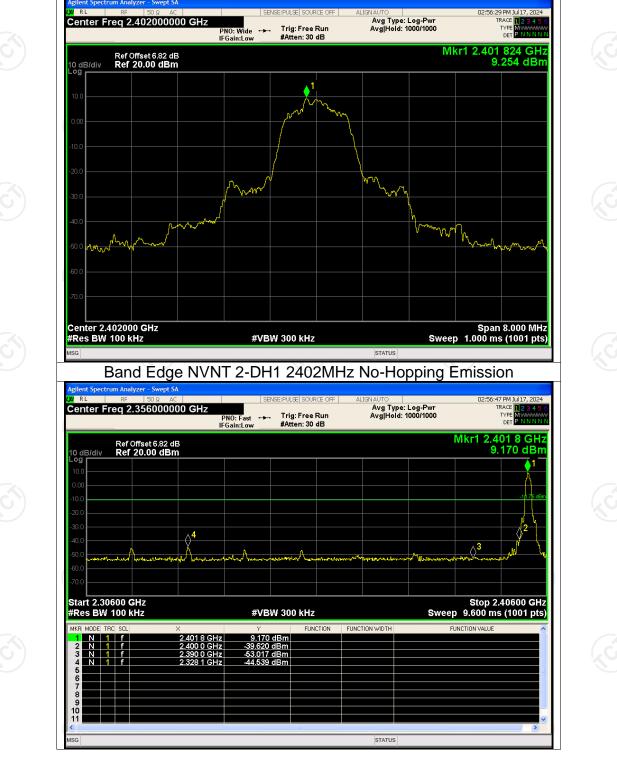
Page 49 of 86

Report No.: TCT240712E043



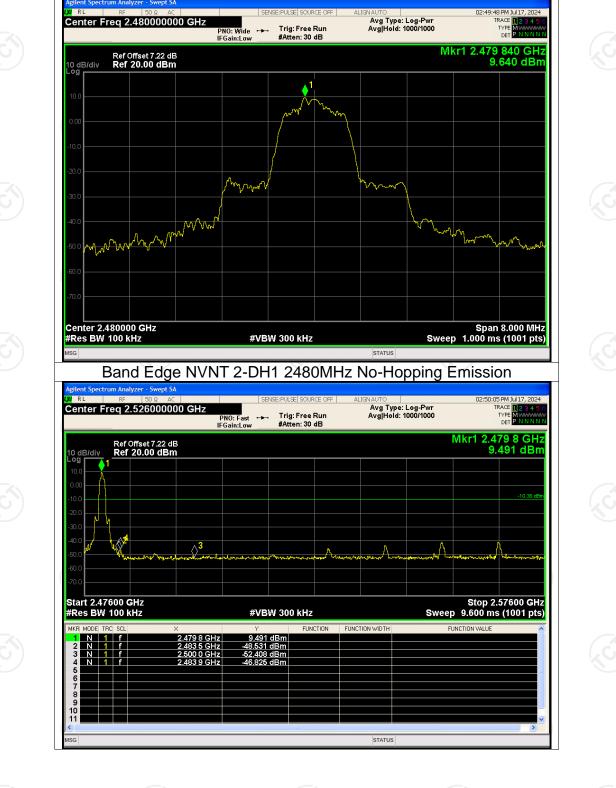
[C] 通测检测

TESTING CENTRE TECHNOLOGY


Report No.: TCT240712E043

Page 50 of 86

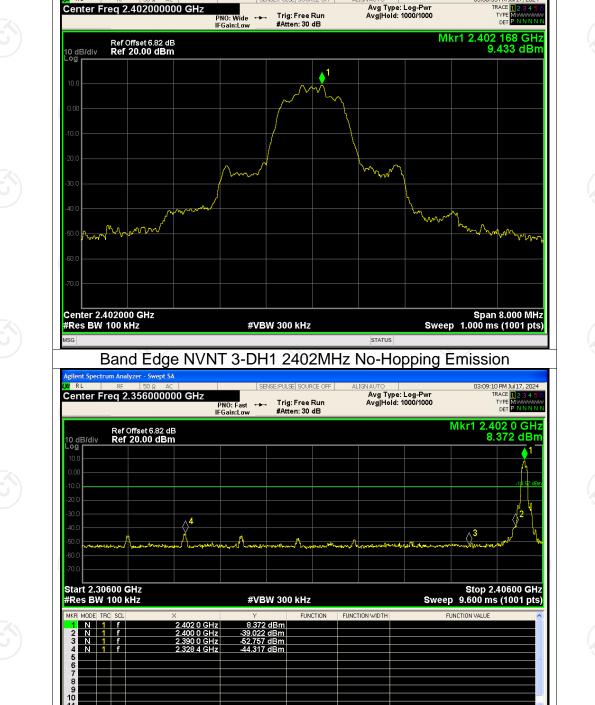
Report No.: TCT240712E043


Page 51 of 86

Band Edge NVNT 2-DH1 2402MHz No-Hopping Ref

Report No.: TCT240712E043

Page 52 of 86



Band Edge NVNT 2-DH1 2480MHz No-Hopping Ref

Report No.: TCT240712E043

Page 53 of 86

STATUS

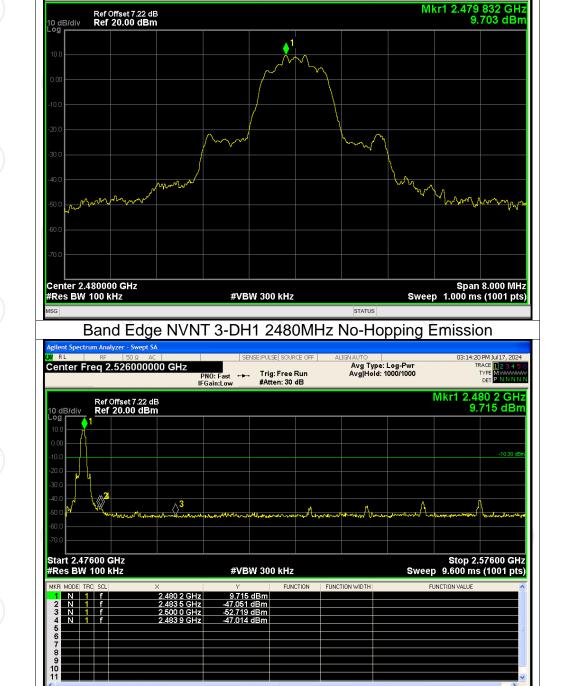
Band Edge NVNT 3-DH1 2402MHz No-Hopping Ref

SENSE:PULSE SOURCE OFF

RL

Center Freg 2.402000000 GHz

Report No.: TCT240712E043


Page 54 of 86

03:08:53 PM Jul 17, 20:

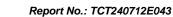
TRACE

STATUS

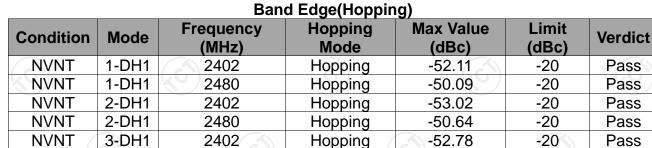
Page 55 of 86

Band Edge NVNT 3-DH1 2480MHz No-Hopping Ref

SENSE: PULSE SOURCE OFF


PNO: Wide +++ Trig: Free Run IFGain:Low #Atten: 30 dB

Avg Type: Log-Pwr Avg|Hold: 1000/1000


a RL

Center Freg 2.480000000 GHz

03:14:03 PM Jul 17, 2024

TYPE MWWWWW DET P N N N N

Hopping

-50.78

2480

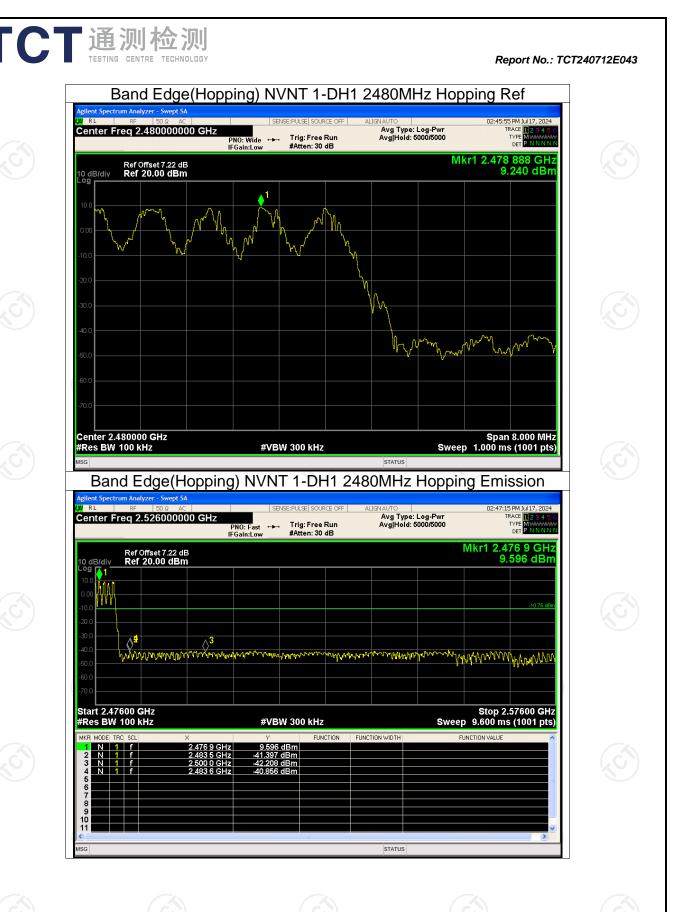
Page 56 of 86

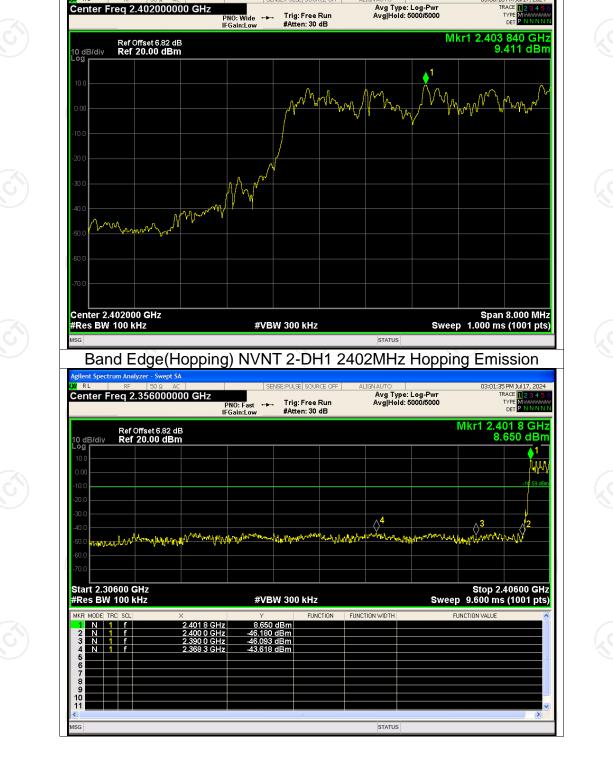
3-DH1

NVNT

Report No.: TCT240712E043

-20


Pass


CT通测检测

TESTING CENTRE TECHNOLOGY

Report No.: TCT240712E043

Page 58 of 86

Band Edge(Hopping) NVNT 2-DH1 2402MHz Hopping Ref

SENSE:PULSE SOURCE OFF

a RL


Report No.: TCT240712E043

03:00:16 PM Jul 17, 20;

Page 60 of 86

Band Edge(Hopping) NVNT 3-DH1 2402MHz Hopping Ref

Report No.: TCT240712E043

Page 61 of 86

Page 62 of 86

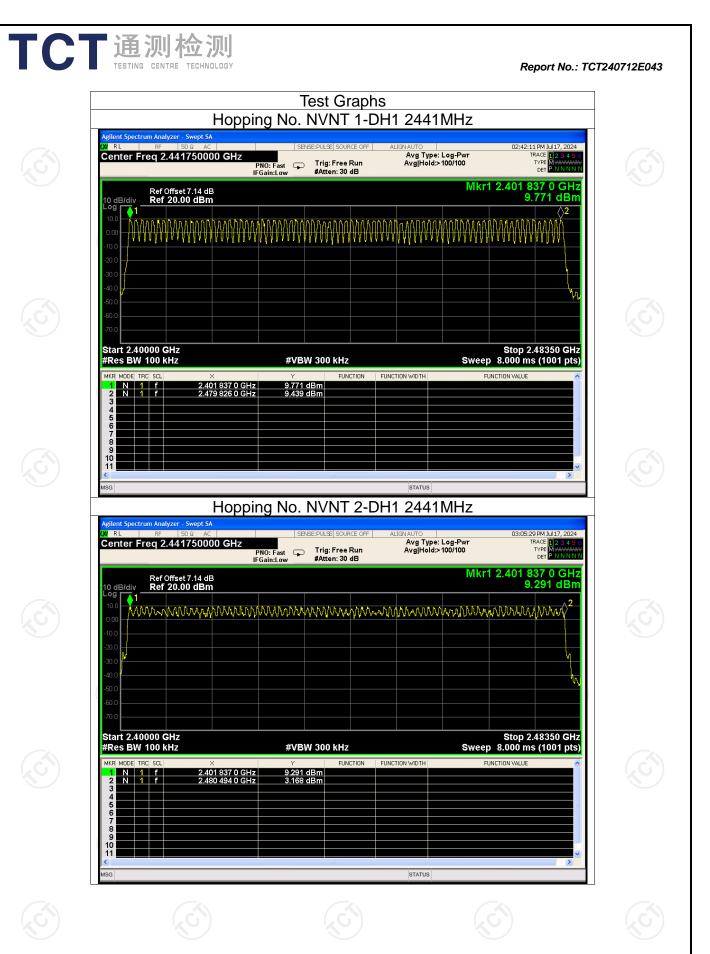
Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict		
NVNT	1-DH1	2402	-48.82	-20	Pass		
NVNT	1-DH1	2441	-49.03	-20	Pass		
NVNT	1-DH1	2480	-49.36	-20	Pass		
NVNT	2-DH1	2402	-49.83	-20	Pass		
NVNT	2-DH1	2441	-52.40	-20	Pass		
NVNT	2-DH1	2480	-49.65	-20	Pass		
NVNT 🚫	3-DH1	2402	-48.97	-20	Pass		
NVNT	3-DH1	2441	-49.33	-20	Pass		
NVNT	3-DH1	2480	-49.48	-20	Pass		
Ś		<u>3</u>	5)	C)	Ś		

Report No.: TCT240712E043

Page 65 of 86

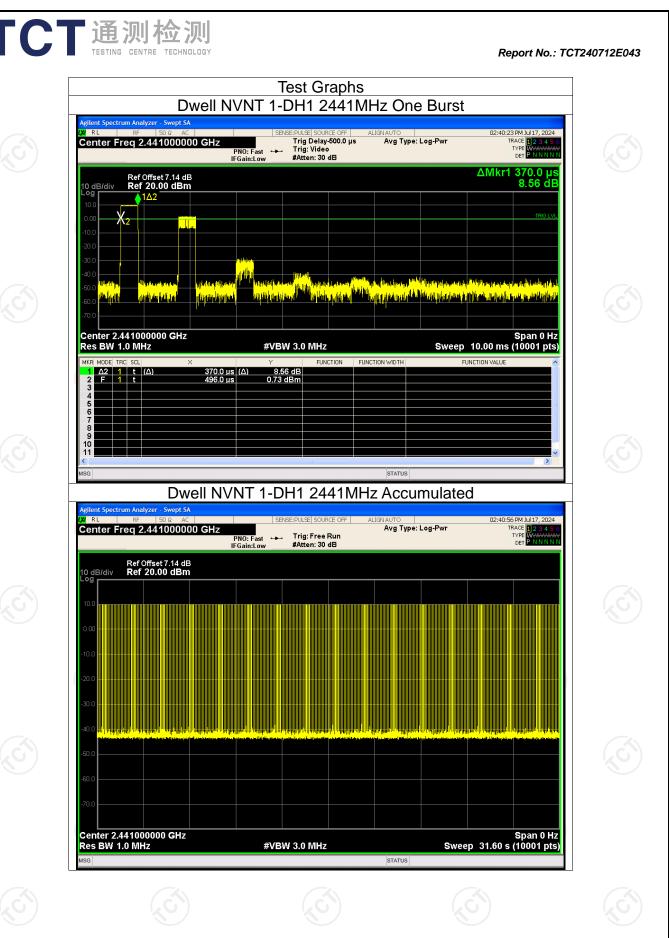
Page 66 of 86

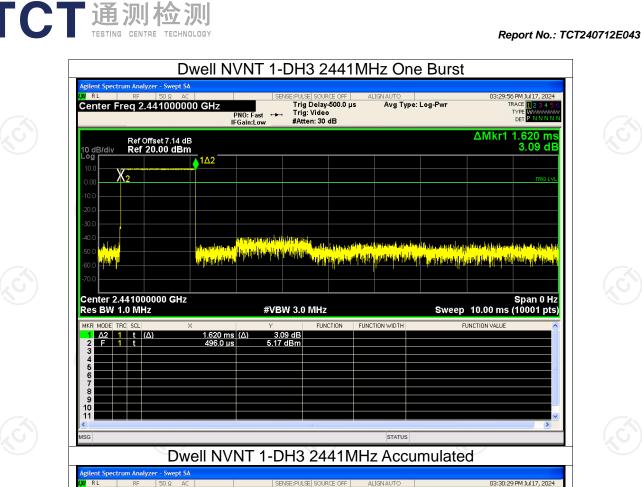
Page 68 of 86

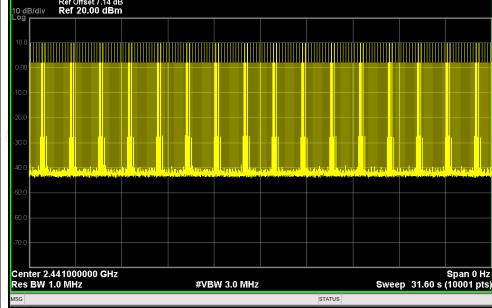

Page 69 of 86

SS SS	Verd Pas Pas Pas	Limit 15 15 15	mber of Hopping Channel Hopping Number 79 79 79 79 79			Hopping Number Lim 79 15 79 15		• F	NumberConditionModeNVNT1-DH1NVNT2-DH1NVNT3-DH1		

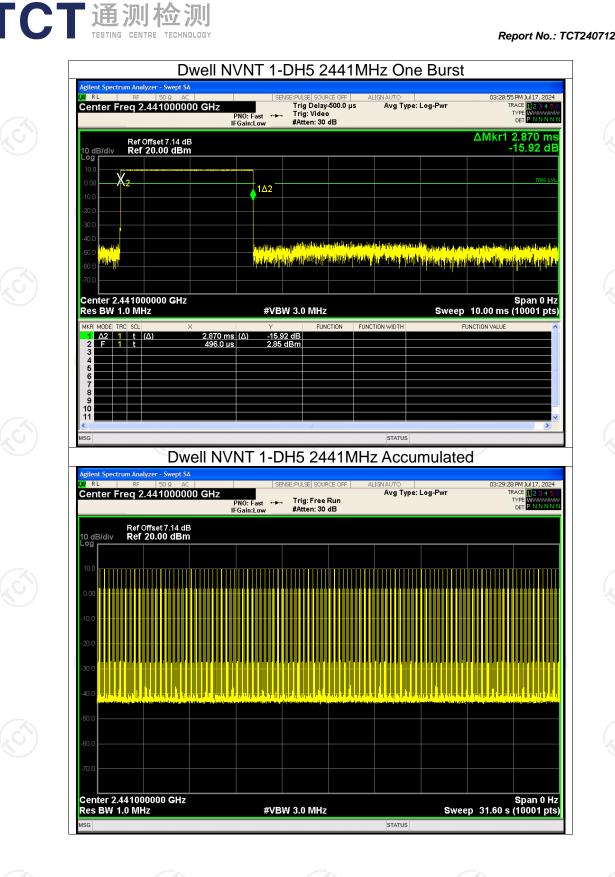
.840 dBm	03:20:4 Pwr 1100 Mkr1 2.401 8	H1 2441M	NSE:PULSE SOURCE OFF	HZ PNO: Fast IFGain:Low	Analyzer - Swept SA RF 50 Ω AC 2.441750000 G ef Offset 7.14 dB ef 20.00 dBm	Center Free 10 dB/div	
48350 GHz s (1001 pts)	Stop 2 Sweep 8.000 m FUNCTION VALUE		dBm	Y 7 0 GHz 9.840	0 kHz al × f 2.401 83	-30 0 -40 0 -60 0 -70 0 Start 2.4000 #Res BW 10 MKR MODE TRC 1 N 1 2 N 1 3 1 3 4 4 5 6 6 7 7 9	
×		STATUS				9 10 11 MSG	

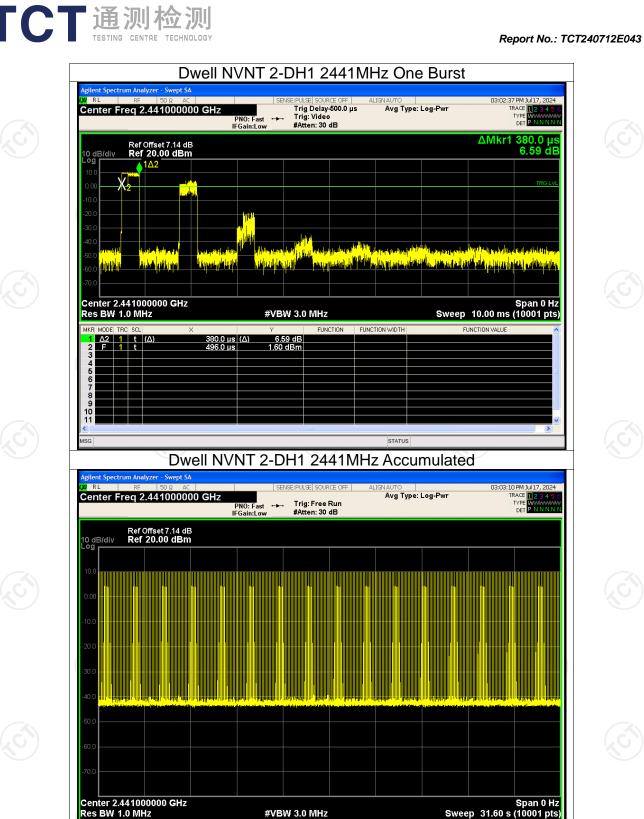

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


TCT通测检测 TESTING CENTRE TECHNOLOGY Report No.: TCT240712E04												
Dwell Time												
Condition	Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict				
NVNT	1-DH1	2441	0.37	118.03	319	31600	400	Pass				
NVNT	1-DH3	2441	1.62	259.20	160	31600	400	Pass				
NVNT	1-DH5	2441	2.87	304.22	106	31600	400	Pass				
NVNT	2-DH1	2441	0.38	121.22	319	31600	400	Pass				
NVNT	2-DH3	2441	1.63	259.17	159	31600	400	Pass				
NVNT	2-DH5	2441	2.88	305.28	106	31600	400	Pass				
NVNT	3-DH1	2441	0.38	121.60	320	31600	400	Pass				
NVNT	3-DH3	2441	1.63	259.17	159	31600	400	Pass				
NVNT	3-DH5	2441	2.88	308.16	107	31600	400	Pass				


Page 76 of 86

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

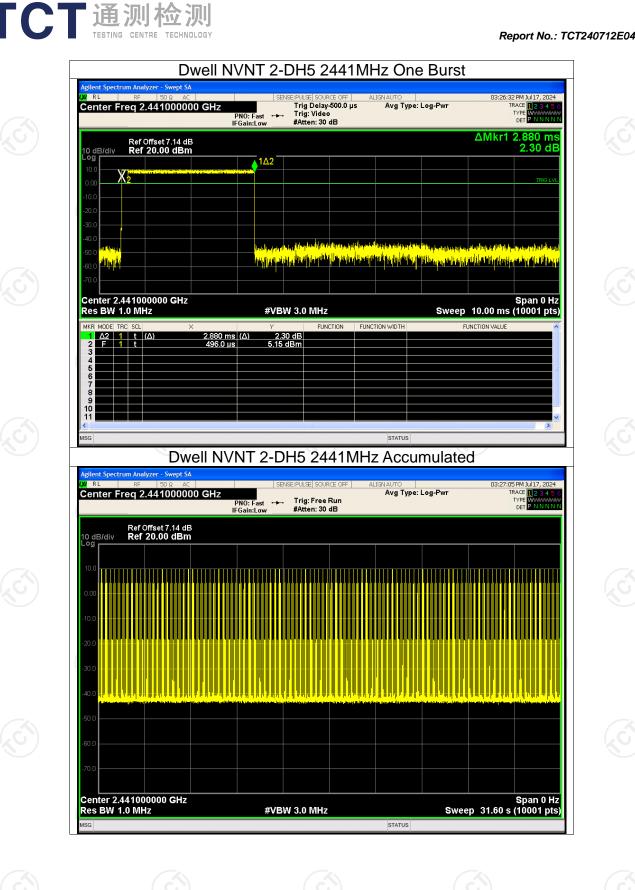


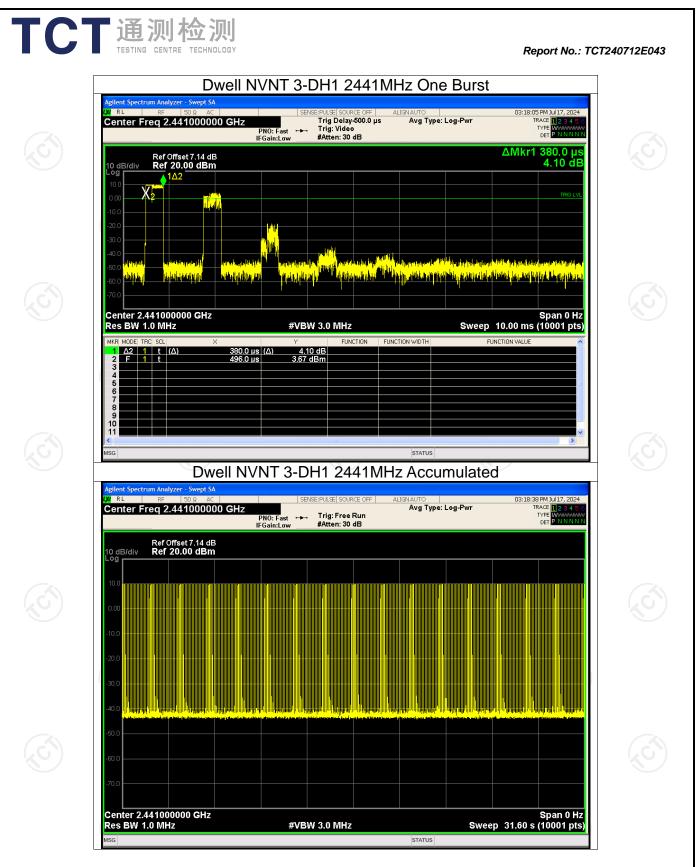


Agtient Spectrum Analyzer - Swept SA DM RL RF 50 Ω AC SENSE:PULSE SOURCE OFF ALIGN AUTO 03:30:29 PM 3ul 17, 2024 Center Freq 2.441000000 GHz PN0: Fast IFGain:Low Ref Offset 7.14 dB 10 dB/div Ref 20.00 dBm

Page 80 of 86

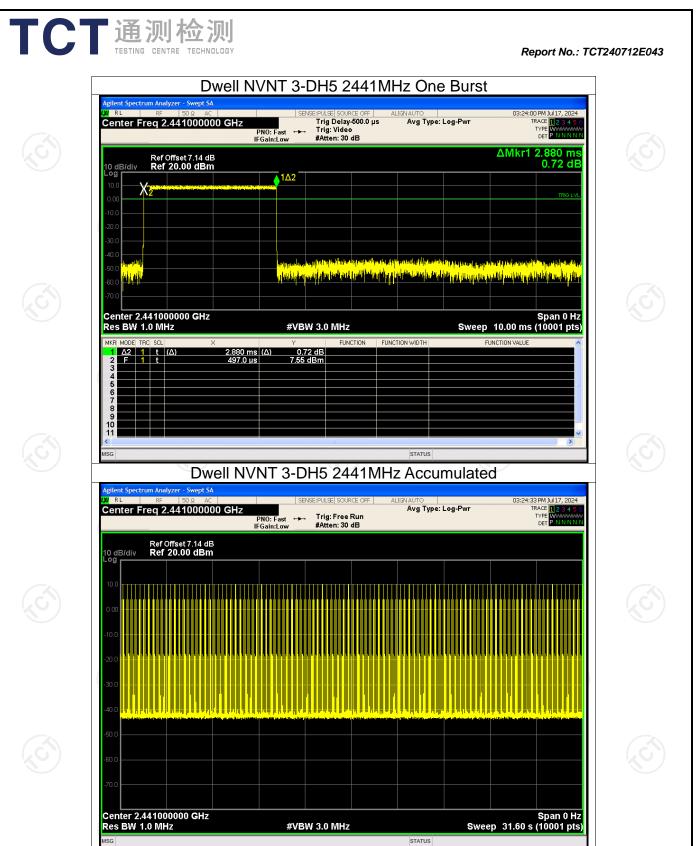
STATUS

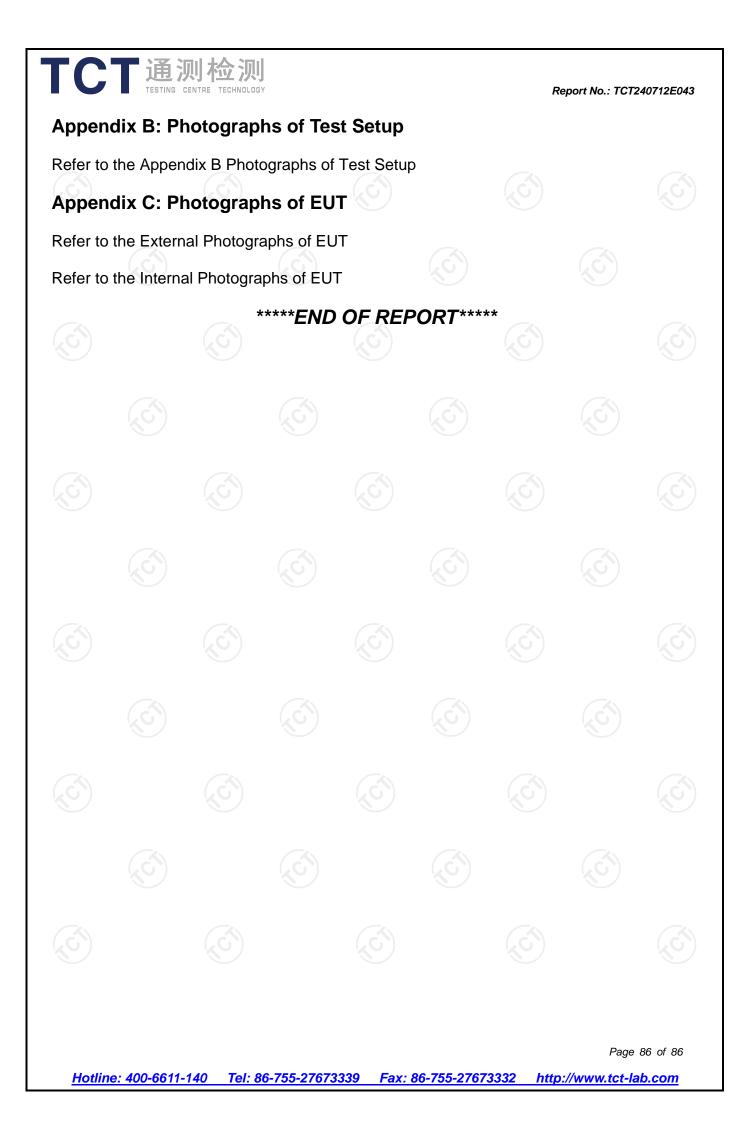




Page 81 of 86

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com





Page 83 of 86

