

Element Suwon

(P136) 13, Heungdeok 1-ro, Giheung-gu, Yongin-si, Gyeonggi-do 16954, Korea Tel. +82 31.660.7319 / Fax +82 31.660.7918 http://www.element.com

TEST REPORT PART 96 MEASUREMENT REPORT

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea Date of Testing: 10/01/2024 – 10/18/2024 Test Site/Location: Element Lab., Suwon, Yongin-si, Gyeonggi-do, Korea Test Report Serial No.: 8K24092501-00.A3L

FCC ID:	A3LMT6402-48A		
APPLICANT:	Samsung Electronics Co., Ltd.		
Application Type:	Class III Permissive Change		
Model:	MT6402-48A		
EUT Type:	MMU (MT6402)		
FCC Classification:	Citizens Band Category B Devices (CBD)		
FCC Rule Part(s):	96		
Test Procedure(s):	ANSI C63.26-2015, KDB 971168 D01 v03r01, KDB 940660 D01 v03, KDB 662911 D01 v02r01		

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Prepared by DuJin Kim Test Engineer

Reviewed by Jayden Kwak Technical Manager

FCC ID: A3LMT6402-48A		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 1 of 70
8K24092501-00.A3L	10/01/2024 - 10/18/2024	Page 1 of 78	
© 2024 Element		-	ES-OP-16-09 Rev 04

TABLE OF CONTENTS

1.0	REV	ISION RECORD	4
2.0	INTF	RODUCTION	5
	2.1	Scope	5
	2.2	Element Test Location	5
	2.3	Test Facility / Accreditation	5
3.0	PRC	DUCT INFORMATION	6
	3.1	Equipment Description	6
	3.2	Device Capabilities	6
	3.3	Test Configuration	7
	3.4	EMI Suppression Device(s)/Modifications	7
4.0	DES	CRIPTION OF TESTS	8
	4.1	Measurement Procedure	8
	4.2	Radiated Spurious Emissions	9
	4.3	Measurement Software	9
	4.4	Enviromental Conditions	9
5.0	MEA	SUREMENT UNCERTAINTY	10
6.0	TES	T EQUIPMENT CALIBRATION DATA	11
7.0	SAM	IPLE CALCULATIONS	12
8.0	TES	T RESULTS	13
	8.1	Summary	13
	8.2	Occupied Bandwidth	14
	8.3	Power Spectral Density	17
	8.4	Equivalent Isotropic Radiated Power (EIRP)	28
	8.5	Peak To Average Power Ratio (PAPR)	37
	8.6	Channel Edge Emissions at Antenna Terminal	39
	8.7	Spurious and Harmonic Emissions at Antenna Terminal	52
	8.8	Radiated spurious emission	60
9.0	CON	ICLUSION	70
10.0	APP	ENDIX. A	71
	10.1	Conducted Average Output Power	71

FCC ID: A3LMT6402-48A		Approved by: Technical Manager			
Test Report S/N:	Test Dates:	EUT Type:	Page 2 of 78		
8K24092501-00.A3L	10/01/2024 - 10/18/2024	0/01/2024 – 10/18/2024 MMU (MT6402)			
© 2024 Element	•		ES-QP-16-09 Rev.05		

MEASUREMENT REPORT FCC Rule Part 96

Mode	Total Bandwidth (MHz)	Max. PSD (dBm/1MHz)	Max. EIRP (dBm/10MHz)	Max. EIRP /Entire Band Width (dBm)	Max. EIRP /Entire Band Width (W)	Emission Designator	Modulation
NR_3C_ 20M+20M+20M	60	36.82	46.83	53.61	229.61	58M0G7D	QPSK
	60	36.85	45.93	53.04	201.37	58M1W7D	QAM
NR_3C_ 40M+20M+20M	80	36.43	45.87	54.21	263.63	77M8G7D	QPSK
	00	36.59	45.67	54.12	258.23	78M0W7D	QAM

EUT Overview

FCC ID: A3LMT6402-48A		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 2 of 70
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 3 of 78
© 2024 Element			ES-QP-16-09 Rev.0

1.0 REVISION RECORD

Issue Number	Issued Date	Revision History
8K24092501-00.A3L	10/21/2024	Initial Issue

FCC ID: A3LMT6402-48A		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 4 of 70
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 4 of 78
© 2024 Element	•		ES-QP-16-09 Rev.05

2.0 INTRODUCTION

2.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

2.2 Element Test Location

These measurement tests were conducted at the Element Materials Technology Suwon. Ltd. facility located at (P136) 13, Heungdeok 1-ro, Giheung-gu, Yongin-si, Gyeonggi-do 16954, Korea.

2.3 Test Facility / Accreditation

Measurements were performed at Element Materials Technology Suwon Lab located in Yongin-si, Gyeonggi, Korea.

- Element Materials Technology Suwon is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation(A2LA) with Certificate number 2041.04 for Specific Absorption Rate (SAR), where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- Element Materials Technology Suwon facility is accredited, designated, and recognized in accordance with the provision of Radio Wave Act and International Standard ISO/IEC 17025:2017 under the National Radio Research Agency.
 - Designation Number / CABID: KR0169
 - Test Firm Registration Number of FCC: 417945
 - Test Firm Registration Number of IC: 26168

FCC ID: A3LMT6402-48A		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dege E of 79
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 5 of 78
© 2024 Element			ES-QP-16-09 Rev.05

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without written permission from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

3.0 PRODUCT INFORMATION

3.1 Equipment Description

The Equipment Under Test (EUT) is the **Samsung MMU (MT6402) FCC ID: A3LMT6402-48A.** Per FCC Part 96, this device is evaluated under Citizens Band Category B Devices (CBD). A Class III permissive change on the original filing is being pursued to add NR Multi-carrier operational up to 3CC.

3.2 Device Capabilities

This device supports the following conditional features and filter information:

EUT Type:	MMU (MT6402)					
Model Name:	MT6402-48A					
Test Device Serial No:	S525948436					
Software Version	SVR24B					
Device Capabilities:	5G NR, LTE					
Operating Band/Frequency	Band Tx (Downlink) Rx (Uplink)					
Range:	B48/n48: 3550 MHz to 3700 MHz 3550 MHz to 3700 MHz					
Supported Modulation:	QPSK, 16QAM, 64QAM, 256QAM					
LTE Supported Number of Carriers and Channel Bandwidth:	10,20 MHz bandwidth modes for LTE B48 with up to 3CC aggregated of Max. Bandwidth 60 MHz.					
NR Supported Number of Carriers and Channel Bandwidth:	20, 40 MHz bandwidth modes for NR n48 with up to 3CC aggregated of Max. Bandwidth 80 MHz.					
Supported Configurations:	Single carrier, Multi-carrier					
Maximum Equivalent Isotropic Radiated Power:	46.3 dBm/10MHz per unit					
Antenna Configuration:	SU beam / MU beam / Common beam					
Number of Antenna ports:	64					
Antenna Gain:	SU, MU beam : 23.5dBi Common beam : 14.45dBi (Antenna Gains provided by the client.)					

FCC ID: A3LMT6402-48A		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dana Caf 70
8K24092501-00.A3L	10/01/2024 - 10/18/2024	Page 6 of 78	
© 2024 Element	•		ES-QP-16-09 Rev.05

3.3 Test Configuration

The setup is as follows:

- a) The EUT " MT6402-48A " is powered by a 48VDC power supply.
- b) The EUT is connected to a test laptop via an ethernet cable acting as backhaul.
- c) An RF cable connects the signal analyzer and the EUT Ports for respective measurement.

The EUT was tested per the guidance of ANSI C63.26-2015 and KDB 971168 D01 v03r01. See Section 8.0 of this test report for a description of the radiated and antenna port conducted emissions tests.

Distribution unit (DU) which were used in test, that authorized under the SDoC procedure.

The following information is about configurations of carrier frequency and output power per port declared by the manufacturer.

* Abbreviations:

- 3C: Contiguous 2 carriers in multi-carrier operation
- 3NC: Non-contiguous 2 carriers in multi-carrier operation

Configuration No. of		Total Carrier	Carrier Frequency Configuration (MHz)			Rated Conducted	
Configuration	Carriers	Carriers I	Bandwidth (MHz)	Lowest	Middle	Highest	Power (dBm/path)
NR_3C_ 20M+20M+20M	3	60	3580.0	3625.0	3670.0	20.6 dBm/path	
LTE_3NC_ 20M+20M+20M	5	3 60	3560.0 + 3625.0 + 3690.0			20.0 abii/pati	
LTE_3C_ 40M+20M+20M	3	80	3590.0	3625.0	3660.0	21.9 dPm/path	
LTE_3NC_ 40M+20M+20M	3	80	367	0.0 + 3635.0 + 369	90.0	21.8 dBm/path	

Notes:

- 1. For Class III Permissive Change test, Multi-carrier was tested each RFIC worst antenna port and modulation based on the Single carrier results on original report.
- 2. To add Multi-carrier configuration up to 3CC as described in this test report.

3.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added, and no modifications were made during testing.

FCC ID: A3LMT6402-48A	MEASUREMENT REPORT (Class III Permissive Change)		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 7 of 78	
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)		
© 2024 Element			ES-QP-16-09 Rev.05	

4.0 DESCRIPTION OF TESTS

4.1 Measurement Procedure

The measurement procedures described in the document titled "American National Standard for Compliance Testing of Transmitter Used in Licensed Radio Service" (ANSI C63.26-2015) and the guidance provided in KDB 971168 D01 v03r01, and KDB 662911 D01 v02r01 and KDB 940660 D01 v03 were used in the measurement of the EUT.

Occupied Bandwidth: KDB 971168 D01 v03r01 - Section 4.3 ANSI C63.26-2015 - Section 5.4.4 Modulation Characteristics: ANSI C63.26 - Section 5.3 Conducted Power Measurement and EIRP and PSD KDB 971168 D01 v03r01 - Section 5.3 KDB 971168 D01 v03r01 - Section 5.4 KDB 662911 D01 v02r01 - Section E)1) In-Band Power Measurements ANSI C63.26-2015 - Section 5.2.5 ANSI C63.26-2015 - Section 5.2.4 Peak-to-Average Power Ratio: KDB 971168 D01 v03r01 - Section 5.7 ANSI C63.26-2015 - Section 5.2.3.4 Channel Edge Emissions at Antenna Terminal KDB 971168 D01 v03r01 - Section 6 KDB 662911 D01 v02r01 - Section E)3) Out-of-Band and Spurious Emission Measurements a) Absolute Emission Limits iii) Measure and add 10 log(NANT) dB ANSI C63.26-2015 - Section 5.7 Spurious and Harmonic Emissions at Antenna Terminal KDB 971168 D01 v03r01 - Section 6 KDB 662911 D01 v02r01 - Section E)3) Out-of-Band and Spurious Emission Measurements a) Absolute Emission Limits iii) Measure and add 10 log(NANT) dB ANSI C63.26-2015 - Section 5.7 Radiated unwanted emission KDB 971168 D01 v03r01 - Section 7 ANSI C63.26-2015 - Section 5.8 Frequency Stability / Temperature Variation

Frequency Stability / Temperature Variation KDB 971168 D01 v03r01 – Section 9 ANSI C63.26-2015 – Section 5.6

FCC ID: A3LMT6402-48A	MEASUREMENT REPORT (Class III Permissive Change)		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dega 0 of 70	
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 8 of 78	
© 2024 Element			ES-QP-16-09 Rev.05	

4.2 Radiated Spurious Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi- anechoic chamber which is shielded from any ambient interference.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower. For frequencies above 1GHz, linearly polarized Vivaldi antennas were used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and Vivaldi antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the polarity of the receive antenna to produce the worst-case emissions

4.3 Measurement Software

Test item	Name	Version
Conducted Measurement	Node B automation	1.0

4.4 Enviromental Conditions

The temperature is controlled within the range of 15°C to 35°C. The relative humidity is controlled within the range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: A3LMT6402-48A	MEASUREMENT REPORT (Class III Permissive Change)		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 0 of 70	
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 9 of 78	
© 2024 Element	•		ES-QP-16-09 Rev.05	

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.95
Radiated Disturbance (<1GHz)	4.10
Radiated Disturbance (>1GHz)	4.82
Radiated Disturbance (>18GHz)	4.96

FCC ID: A3LMT6402-48A	MEASUREMENT REPORT (Class III Permissive Change)				Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dego 10 of 79		
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 10 of 78		
© 2024 Element	•		ES-QP-16-09 Rev.0		

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurement antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacture	Model	Description	Cal Date	Cal interval	Cal Due	Serial Number
KEYSIGHT	N9030B	PXA Signal Analyzer	04/08/2024	Annual	04/07/2025	MY57142018
Rohde & Schwarz	ESW	EMI Test Receiver	07/09/2024	Annual	07/08/2025	101761
Rohde & Schwarz	TS-SFUNIT-Rx	Shielded Filter Unit	01/11/2024	Annual	01/10/2025	102151
Schwarzbeck	VULB9162	Broadband TRILOG Antenna	06/01/2023	Biennial	05/31/2025	9162-217
Sunol sciences	DRH-118	Horn Antenna	07/16/2024	Annual	07/15/2025	A102416-1
NARDA	180-442A-KF	Horn Antenna	01/16/2024	Biennial	01/15/2026	T058701-03
RF One	RFHB1810SC10	Attenuator	01/10/2024	Annual	01/09/2025	RFHB0001 to RFHB0034 (33EA)
Qualwave	QFA1820	Attenuator	07/08/2024	Annual	07/07/2025	22265083 to 22265116 (33EA)
K&L Microwave	11SH10- 6200/T18000- O/O	High pass filter	07/10/2024	Annual	07/09/2025	2
CENTRIC RF	C411-20	Attenuator	01/10/2024	Annual	01/09/2025	0003
WAINWRIGHT	WHW13000- 18000-40000- 40CC	High pass filter	04/09/2024	Annual	04/08/2025	2

Table 6-1. Test Equipment

Notes:

- 1. For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.
- 2. All testing was performed before the calibration due date.

FCC ID: A3LMT6402-48A	MEASUREMENT REPORT (Class III Permissive Change)		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 11 of 78	
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)		
© 2024 Element	•		ES-QP-16-09 Rev.05	

7.0 SAMPLE CALCULATIONS

Emission Designator

QPSK Modulation

Emission Designator = 58M0G7D

Occupied Bandwidth = 58.04 MHz G = Phase Modulation 7 = Quantized/Digital Info D = Data transmission, telemetry, telecommand

QAM Modulation

Emission Designator = 58M1W7D

Occupied Bandwidth = 58.14 MHz W = Amplitude/Angle Modulated 7 = Quantized/Digital Info D = Data transmission, telemetry, telecommand

FCC ID: A3LMT6402-48A	MEASUREMENT REPORT (Class III Permissive Change)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 10 of 70
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 12 of 78
© 2024 Element			ES-QP-16-09 Rev.05

8.0 TEST RESULTS

8.1 Summary

Company Name:	SAMSUNG Electronics Co., Ltd.
FCC ID:	A3LMT6402-48A
Type of Radio Equipment:	Citizens Band Category B Devices (CBD)
Mode(s):	<u>LTE, 5G NR</u>

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
2.1049	Occupied Bandwidth	N/A	CONDUCTED	PASS	Section 8.2
2.1046 96.41(a)	Modulation Characteristics	Digital modulation		-	Note 4
2.1046 96.41(b)	Power Spectral Density (PSD)	37 dBm/MHz (PSD)		PASS	Section 8.3
2.1046 96.41(b)	Equivalent Isotropic Radiated Power (EIRP)	47 dBm/10MHz (EIRP)		PASS	Section 8.4
96.41(g)	Peak-Average Ratio	≤ 13 dB		PASS	Section 8.5
2.1051 96.41(e)	Out of Band Emissions	Within 0 MHz to 10 MHz above and below the assigned channel ≤ −13 dBm/MHz Greater than 10 MHz above and below the assigned channel ≤ −25 dBm/MHz Any emission below 3530 MHz and above 3720 MHz ≤ −40 dBm/MHz		PASS	Section 8.6 Section 8.7
2.1055 96.41(e)	Frequency Stability	Fundamental emissions stay within authorized frequency block		-	Note 4
2.1051 96.41(e)	Radiated unwanted emission	< −40dBm/MHz	Radiated	PASS	Section 8.8

Notes:

1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.

Table 8-1. Summary of Test Results

- 2) The analyzer plots were all taken with a correction table loaded into the analyzer.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4) This is a variant report for add Multi-carrier configuration up to 3CC by software without hardware change. The test item does not affect those operations. And it was performed in the original report.

FCC ID: A3LMT6402-48A	MEASUREMENT REPORT (Class III Permissive Change)		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	D 40 (70	
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 13 of 78	
© 2024 Element	•		ES-QP-16-09 Rev.05	

8.2 Occupied Bandwidth

Test Overview

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be. All measured modes of operation were investigated, and the worst case configuration results are reported in this section.

Test Procedure Used

ANSI C63.26 - Section 5.4.4 KDB 971168 D01 v03r01 - Section 4.3

Test Setting

The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The spectrum analyzer settings were as follows:

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within 1 5% of the 99% occupied bandwidth observed in Step 7

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

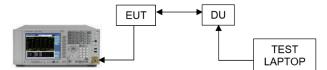


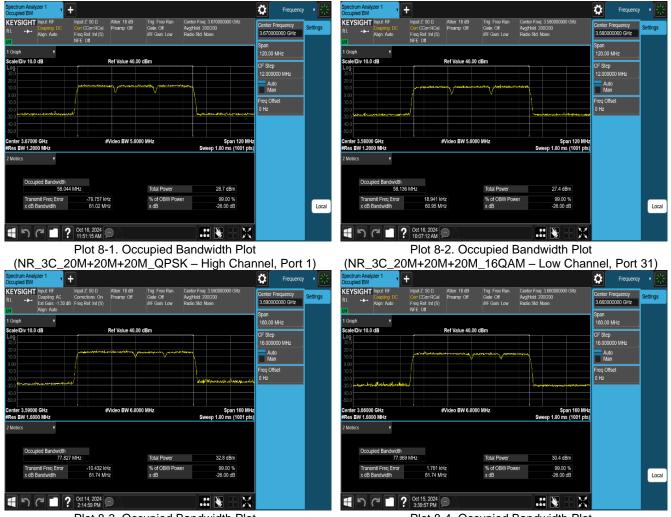
Figure 8-1. Test Instrument & Measurement Setup

<u>Limit</u>

The occupied bandwidth shall not exceed the equipment's channel bandwidth, which is declared by the manufacturer.

FCC ID: A3LMT6402-48A	MEASUREMENT REPORT (Class III Permissive Change)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 14 of 70
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 14 of 78
© 2024 Element	•		ES-QP-16-09 Rev.05

Channel Port		OBW (MHz	:)
Channel	POIL	QPSK	16QAM
	1	57.92	57.99
Low	9	57.96	57.98
Low	31	57.94	58.14
	36	57.99	57.95
	1	57.99	57.88
Mid	4	57.95	57.89
IVIIG	31	57.89	57.95
	43	57.95	58.04
	1	58.04	58.12
High	4	58.04	58.01
riign	31	58.01	58.06
	43	58.04	58.09


 Table 8-2. Occupied Bandwidth Table (NR_3C_20M+20M+20M)

Channel	Dort	OBW (MHz)
Channel	Port	QPSK	16QAM
	1	77.79	77.81
Low	4	77.83	77.73
Low	31	77.70	77.79
	43	77.61	77.55
	4	77.62	77.68
Mid	31	77.69	77.71
Mid	43	77.65	77.80
	48	77.76	77.60
	1	77.81	77.78
LUmb	4	77.75	77.84
High -	31	77.72	77.74
	43	77.65	77.97

Table 8-3. Occupied Bandwidth Table (NR_3C_40M+20M+20M)

FCC ID: A3LMT6402-48A	MEASUREMENT REPORT (Class III Permissive Change)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 15 of 70
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 15 of 78
© 2024 Element	•		ES-QP-16-09 Rev.05

Plot 8-3. Occupied Bandwidth Plot (NR_3C_40M+20M+20M_QPSK – Low Channel, Port 4) Plot 8-4. Occupied Bandwidth Plot (NR_3C_40M+20M+20M_16QAM – High Channel, Port 43)

FCC ID: A3LMT6402-48A	MEASUREMENT REPORT (Class III Permissive Change)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 40 at 70
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 16 of 78
© 2024 Element	•		ES-QP-16-09 Rev.05

8.3 Power Spectral Density

Test Overview

A transmitter port of EUT is connected to the input of a signal analyzer. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

Test Procedure Used

ANSI C63.26 - Section 5.2.4 ANSI C63.26 - Section 5.2.5 KDB 971168 D01 v03r01 - Section 5.3

ANSI C63.26 - Section 6.4.3.2.3 KDB 662911 D01 v02r01 - Section E)2) In-Band Power Spectral Density (PSD) Measurements b) Measure and sum spectral maxima across the outputs.

Test Setting

The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The spectrum analyzer settings were as follows:

The PSD is measured following the same procedures described in 5.2.4.4 of ANSI C63.26 for measuring the total average power, but with the RBW set to the reference bandwidth specified by the applicable regulatory requirement, and by using the marker function to identify the maximum PSD instead of summing the power across the OBW. If the fundamental measurement condition cannot be realized, then one of the alternative procedures in 5.2.4.4.2 or 5.2.4.4.3 should be selected, based on whether the transmitter duty cycle is constant (variations $\leq \pm 2\%$) or non-constant (variations $> \pm 2\%$), respectively.

- 1. Conducted power measurements are performed using the signal analyzer's "SA mode" measurement capability for signals with continuous operation.
- 2. Set span to $2 \times to 3 \times the OBW$.
- 3. Set RBW = 1 MHz (the reference bandwidth)
- 4. Set $VBW \ge 3 \times RBW$.
- 5. Set number of measurement points in sweep $\ge 2 \times \text{span} / \text{RBW}$.
- 6. Sweep time:
 - a) Set \geq auto-couple, and enable trace averaging, or
 - b) Set ≥ [10 × (number of points in sweep) × (transmission symbol period)] and enable a single sweep (automation-compatible) measurement. The sweep time should never be faster than the auto-coupled sweep time.
- 7. Detector = power averaging (rms).
- 8. The trace was allowed to stabilize
- 9. Use the peak marker function to determine the maximum amplitude level. (=P_{Meas})
- 10. The relevant equation for determining the maximum EIRP from the measured RF output power is given in Equation as follows:

 $EIRP = P_{Meas} + G_T$

where

GT: gain of the transmitting antenna, in dBi (EIRP).

FCC ID: A3LMT6402-48A	MEASUREMENT REPORT (Class III Permissive Change)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 17 of 70
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 17 of 78
© 2024 Element			ES-OP-16-09 Rev 05

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

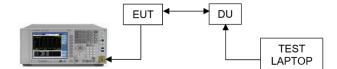


Figure 8-2. Test Instrument & Measurement Setup

Limit

§ 96.41 (b) Category B CBSD : 37 dBm/MHz

Test Notes

- Consider the following factors for MIMO Power Spectral Density: The power spectral density is measured as dBm / MHz, with the resolution bandwidth of 1 MHz PSDs are summed up in linear using the measure-and-sum technique defined in KDB 662911 v02r01 – section E)2.
- 2. Periodic trigger was used with gating ON. Gate sweep time, Gate delay and gate length were set accordingly to capture ON time of the transmission.
- 3. PSD per port (dBm/MHz) is converted to a linear value (mW). A summation of linear powers for all ports gives us the total MIMO conducted Power (mW). We convert this back to logarithmic scale for further PSD calculations.
- 4. Tested for Common beam mode to perform RF testing that can get maximum Tx power setting.
- 5. Applied antenna gain per muliti-carrier as below:

	NR_3C_20M+20M+20M			NR_3C_40M+20M+20M		
Output power per unit	SU	MU	Common	SU	MU	Common
Tx Power Max (dBm)	29.6	26.6	38.7	30.8	27.8	39.9
Tx Power Max (dBm/10MHz)	21.8	18.8	30.9	21.8	18.8	30.9
Tx Power Max (dBm/1MHz)	11.8	8.8	20.9	11.8	8.8	20.9
Max Gain (dBi)	23.5	23.5	14.45	23.5	23.5	14.45
Beam EIRP Sum (dB)	0	3	0	0	3	0
Max EIRP (dBm)	53.1	53.1	53.1	54.3	54.3	54.3
Max EIRP (dBm/10MHz)	45.3	45.3	45.3	45.3	45.3	45.3
Max EIRP (dBm/1MHz)	35.3	35.3	35.3	35.3	35.3	35.3

FCC ID: A3LMT6402-48A	MEASUREMENT REPORT (Class III Permissive Change)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Deg. 10 of 70
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 18 of 78
© 2024 Element	•		ES-QP-16-09 Rev.05

6. Sample Calculation:

Let us assume the following numbers: Total common mode MIMO Conducted PSD for NR_3C_20M+20M+20M = 20.9 dBm/MHz Antenna Gain = 14.45 dBi

	Factors	Value	Unit
Summed MIMO Conducted F	PSD (dBm)	20.9	dBm/MHz
Antenna Gain		14.45	dB
Beam EIRP Sum (dB)		0	dB
e.i.r.p PSD		35.35	dBm/MHz

FCC ID: A3LMT6402-48A	MEASUREMENT REPORT (Class III Permissive Change)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 40 of 70
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 19 of 78
© 2024 Element			ES-QP-16-09 Rev.0

Low Channel	Port	QPSK	16QAM
	0	3.92	4.05
	1	4.83	4.94
	23	<u>4.36</u> 3.90	4.43 3.95
	4	4.86	4.91
	5	4.11	4.23
	6	4.45	4.42
	7	4.00	4.09
	8 9	4.06 4.62	<u>4.11</u> 4.75
	10	4.02	3.98
	11	3.97	4.08
	12	4.20	4.22
	13	4.06	4.02
	14	4.25	4.36
	15 16	<u>3.98</u> 4.15	4.12 4.20
	17	4.15	4.20
	18	4.25	4.31
	19	3.96	4.00
	20	4.29	4.37
	21	4.35	4.39
	22	4.30 4.16	4.29 4.23
	23 24	4.16	4.23
	25	4.30	4.36
	26	4.29	4.31
	27	4.08	4.07
	28	4.25	4.20
	29	4.52	4.48
Conducted	30	4.13	4.18
Power	31 32	<u>4.72</u> 4.01	4.73 4.00
(dBm/MHz)	33	4.66	4.49
	34	4.41	4.35
	35	4.14	4.10
	36	4.88	4.78
	37	4.48	4.47
	38 39	<u>4.16</u> 4.25	4.09 4.27
	40	4.25	4.27
	41	4.34	4.34
	42	4.29	4.33
	43	4.62	4.65
	44	4.26	4.25
	45 46	<u>4.39</u> 4.31	4.40 4.38
	40	4.05	4.13
	48	4.82	4.91
	49	4.57	4.61
	50	4.20	4.25
	51	4.29	4.41
	52 53	4.39 4.26	4.41 4.23
	53 54	4.26	4.23
	55	3.99	4.00
	56	4.40	4.36
	57	4.52	4.56
	58	4.29	4.32
	59 60	4.27	4.32
	60 61	<u>4.57</u> 4.55	4.64 4.58
	62	4.35	4.38
	63	4.11	4.28
MIMO Power (dB	m/MHz)	22.37	22.40
Common Ant. Ga		14.45	14.45
e.i.r.p PSD (dBm		36.82	36.85
e.i.r.p Limit (dBm			00
	, ,		

FCC ID: A3LMT6402-48A	MEASUREMENT REPORT (Class III Permissive Change)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 00 of 70
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 20 of 78
© 2024 Element ES-QP-16-09 Rev			

		QPSK	16QAM
	0	3.47	3.65
	1	4.15	4.37
	2	3.37	3.58
	3 4	3.43 4.33	3.72 4.54
	5	3.50	3.71
	6	3.59	3.80
	7	3.11	3.38
	8	3.08	3.33
	9	3.61	3.84
	10	3.15	3.38
	11 12	<u>3.22</u> 3.72	<u>3.49</u> 3.85
	13	3.15	3.35
	14	3.44	3.55
	15	3.16	3.40
	16	3.21	3.39
	17	3.52	3.67
	18	3.36	3.53
	19 20	3.25 3.57	3.42 3.69
	20	3.14	3.30
	22	3.47	3.64
	23	3.16	3.34
	24	3.45	3.54
	25	3.31	3.40
	26	3.53	3.66
	27 28	3.23 3.37	<u>3.41</u> 3.48
	20	3.65	3.46
Conducted	30	3.38	3.55
	31	3.80	3.94
Power	32	3.27	3.37
(dBm/MHz)	33	3.80	3.84
	34	3.46	3.60
	35 36	3.31 3.93	3.52 4.20
	37	3.68	3.83
	38	3.48	3.68
	39	3.44	3.60
	40	3.40	3.58
	41	3.44	3.58
	42 43	3.54	3.68
	43	3.94 3.73	<u>4.14</u> 3.98
	45	3.50	3.58
	46	3.48	3.58
	47	3.27	3.41
	48	3.77	3.87
	49	3.71	3.79
	50	3.37	3.50
	51 52	<u>3.44</u> 3.83	<u>3.58</u> 4.04
	53	3.08	3.17
	54	3.52	3.62
	55	3.14	3.32
	56	3.62	3.68
	57	3.66	3.60
	58	3.39 3.40	3.54 3.58
	59 60	3.40 3.69	3.58
	61	3.47	3.58
	62	3.40	3.54
	63	3.31	3.28
MIMO Power (dBn		21.54	21.70
Common Ant. Gai	n (dBi)	14.45	14.45
			26.45
e.i.r.p PSD (dBm/ e.i.r.p Limit (dBm/		35.99 37.00	36.15

FCC ID: A3LMT6402-48A	MEASUREMENT REPORT (Class III Permissive Change)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 04 of 70
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 21 of 78
© 2024 Element			ES-QP-16-09 Rev.05

High Channel	Port	QPSK	16QAM
r ngri orianitor	0	3.55	3.48
	1	4.09	3.99
	2	3.36	3.52
	3	<u>3.46</u> 4.19	<u>3.54</u> 4.26
	5	3.39	3.46
	6	3.62	3.61
	7	3.14	3.24
	8	3.53	3.50
	9	3.47	3.69
	10 11	3.34 3.47	<u>3.47</u> 3.57
	12	3.64	3.67
	13	3.21	3.34
	14	3.28	3.41
	15	3.40	3.58
	16 17	3.41	3.55
	17	<u>3.37</u> 3.40	<u>3.55</u> 3.45
	19	3.40	3.44
	20	3.51	3.56
	21	3.29	3.37
	22	3.36	3.44
	23	3.17	3.25
	24 25	3.34 3.24	3.44
	25	3.24 3.57	<u>3.34</u> 3.64
	20	3.33	3.52
	28	3.48	3.69
	29	3.41	3.49
Conducted	30	3.39	3.48
Power	31	3.87	3.96
(dBm/MHz)	32	<u>3.17</u> 3.54	3.26
(4211,1112)	33 34	3.54 3.51	<u>3.86</u> 3.58
	35	3.44	3.57
	36	4.15	4.26
	37	3.64	3.74
	38	3.49	3.66
	39 40	3.39 3.42	<u>3.49</u> 3.50
	40	3.42	3.49
	42	3.53	3.64
	43	3.89	4.05
	44	3.76	3.89
	45	3.33	3.54
	46	3.46	3.68
	47 48	<u>3.29</u> 3.99	<u>3.43</u> 4.13
	40	3.53	3.73
	50	3.37	3.49
	51	3.54	3.69
	52	3.81	4.06
	53	3.17	3.42
	54 55	3.36	3.59 3.35
	56	3.43	3.58
	57	3.43	3.53
	58	3.36	3.46
	59	3.39	3.59
	60	3.70	3.84
	61	3.52	3.65
	62 63	3.44 3.13	3.58 3.28
MIMO Power (dB		21.54	21.66
Common Ant. Ga		14.45	14.45
e.i.r.p PSD (dBm		35.99	36.11
e.i.r.p Limit (dBm		35.55	
	v (VII I∠)	Table 9.4 Dewer Greatial Density Table (ND	20 20M - 20M - 20M)

Table 8-4. Power Spectral Density Table (NR_3C_20M+20M+20M)

FCC ID: A3LMT6402-48A	MEASUREMENT REPORT (Class III Permissive Change)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dara 00 of 70
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 22 of 78
2024 Element ES-QP-16-09 Rev.0			

Low Channel	Port	QPSK	16QAM
	0	3.79	4.01
	1	4.49	4.69
	23	4.06 3.66	<u>4.20</u> 3.70
	4	4.66	4.73
	5	3.94	4.04
	6	4.16	4.22
	7	3.48	3.55
	8	3.68	3.77
	9 10	<u>3.99</u> 3.91	4.10 4.01
	11	3.62	3.72
	12	3.98	4.05
	13	3.76	3.89
	14	4.17	4.39
	15 16	<u>3.64</u> 3.98	3.70 4.08
	17	3.90	4.00
	18	3.62	3.72
	19	3.71	3.80
	20	4.06	4.18
	21	3.85	3.89
	22 23	<u>3.85</u> 3.66	<u>3.94</u> 3.87
	23	4.03	4.14
	25	3.87	3.95
	26	4.20	4.27
	27	3.71	3.90
	28	4.02	4.16
	29	4.12 3.69	4.18 3.96
Conducted	30 31	4.40	4.45
Power	32	3.46	3.85
(dBm/MHz)	33	3.93	4.32
	34	3.43	3.88
	35	3.51	3.85
	36 37	<u>4.23</u> 3.88	<u>4.61</u> 4.18
	38	3.66	3.96
	39	3.55	3.97
	40	3.67	3.77
	41	3.79	3.90
	42	4.06	4.15
	43 44	<u>4.37</u> 4.11	4.56 4.30
	45	3.94	4.14
	46	3.88	3.99
	47	3.56	3.66
	48	4.41	4.49
	49 50	<u>4.11</u> 3.66	4.29
	50	4.06	3.75 4.16
	52	4.01	4.10
	53	3.69	3.76
	54	4.24	4.30
	55	3.72	3.81
	56 57	<u>4.12</u> 4.12	4.18 4.38
	57	3.77	3.94
	59	3.91	4.01
	60	4.37	4.55
	61	3.95	4.18
	62	3.81	4.02
MIMO Power (dBr	63 m/MHz)	3.88	4.04
		21.98	22.14
Common Ant. Ga e.i.r.p PSD (dBm		14.45 36.43	14.45 36.59
e.i.r.p Limit (dBm		36.43 37.	
e.i.i.p Littiit (aBm	1/1VIF1Z)	37.	00

FCC ID: A3LMT6402-48A	MEASUREMENT REPORT (Class III Permissive Change)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 00 of 70
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 23 of 78
© 2024 Element			ES-QP-16-09 Rev.05

Mid Channel	Port	QPSK	16QAM
	0	3.08	3.48
	1 2	<u>3.86</u> 3.40	<u>4.08</u> 3.79
	3	3.51	3.94
	4	4.16	4.67
	5	3.28	3.73
	6 7	<u>3.59</u> 3.27	<u>3.89</u> 3.53
	8	3.11	3.68
	9	3.39	4.02
	10 11	3.26 3.24	3.66 3.68
	12	3.61	4.14
	13	3.14	3.58
	14	3.28	3.61
	15 16	<u>3.41</u> 3.30	<u>3.81</u> 3.68
	17	3.47	3.82
	18	3.39	3.77
	19 20	<u>3.37</u> <u>3.62</u>	3.67 4.00
	20	3.12	3.56
	22	3.41	3.76
	23	3.28	3.53
	24 25	<u>3.48</u> <u>3.27</u>	3.79 3.63
	25	3.56	3.89
	27	3.26	3.62
	28	3.44	3.82
	29 30	<u>3.41</u> 3.50	<u>3.79</u> 3.55
Conducted	31	3.79	4.10
Power	32	3.14	3.64
(dBm/MHz)	33	3.49	4.09
	34 35	<u>3.57</u> <u>3.37</u>	3.93 3.81
	36	3.97	4.50
	37	3.59	4.12
	38 39	3.58 3.43	<u>3.97</u> 3.77
	40	3.34	3.94
	41	3.11	3.80
	42	3.57	3.95
	43 44	<u>4.02</u> 3.69	4.40
	45	3.33	3.83
	46	3.51	3.88
	47 48	<u>3.36</u> 3.86	3.69 4.28
	40	3.59	3.99
	50	3.39	3.83
	51	3.44	3.82
	52 53	<u>3.91</u> 3.19	4.36 3.65
	54	3.50	3.79
	55	3.20	3.52
	56 57	<u>3.59</u> 3.29	<u>3.63</u> 3.46
	57 58	3.29 3.51	3.46 3.39
	59	3.49	3.42
	60	3.74	3.76
	61 62	<u>3.37</u> 3.56	<u>3.47</u> 3.66
	63	3.13	3.18
MIMO Power (dB		21.52	21.88
Common Ant. Ga		14.45	14.45
e.i.r.p PSD (dBm		35.97	36.33
e.i.r.p Limit (dBm			.00
	·/		

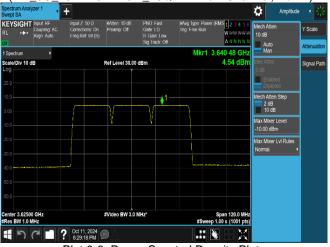
FCC ID: A3LMT6402-48A	MEASUREMENT REPORT (Class III Permissive Change)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 04 of 70
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 24 of 78
© 2024 Element	•		ES-QP-16-09 Rev.05

High Channel	Port	QPSK	16QAM
	0	3.39	3.82
	1	4.03	4.45
	2	3.30	3.69
	3	3.30 4.04	<u>3.61</u> 4.47
	5	3.23	3.65
	6	3.49	3.91
	7	3.03	3.47
	8	3.41	3.76
	9	3.39	3.82
	10	3.23	3.64
	11 12	<u>3.35</u> 3.55	<u>3.81</u> 4.00
	12	3.04	3.49
	14	3.16	3.60
	15	3.30	3.77
	16	3.18	3.66
	17	3.21	3.55
	18	3.23	3.69
	19	3.21	3.69
	20 21	<u>3.38</u> 3.11	<u>3.73</u> 3.58
	22	3.19	3.66
	23	3.06	3.55
	24	3.17	3.60
	25	3.02	3.46
	26	3.40	3.84
	27	3.20	3.68
	28	3.43	3.79
	29 30	<u>3.33</u> 3.22	<u>3.77</u> 3.68
Conducted	30	3.73	4.20
Power	32	3.13	3.46
(dBm/MHz)	33	3.45	3.92
	34	3.37	3.82
	35	3.23	3.71
	36	3.88	4.37
	37 38	<u>3.33</u> 3.33	3.68 3.82
	39	3.20	3.71
	40	3.29	3.72
	41	3.22	3.72
	42	3.37	3.76
	43	3.77	4.18
	44	3.53	4.02
	45	3.13	3.52
	46 47	<u>3.32</u> 3.07	<u>3.83</u> 3.59
	48	3.85	4.27
	49	3.32	3.83
	50	3.17	3.68
	51	3.35	3.84
	52	3.44	3.86
	53	3.03	3.52
	54 55	3.22 3.01	3.72 3.51
	55 56	3.01	3.51
	57	3.19	3.64
	58	3.17	3.51
	59	3.16	3.55
	60	3.35	3.77
	61	3.39	3.64
	62	3.26	3.55
	63	3.44	3.46
MIMO Power (dB		21.39	21.82
Common Ant. Ga		14.45	14.45
e.i.r.p PSD (dBm		35.84	36.27
e.i.r.p Limit (dBm	/MHz)	37.	00

Table 8-5. Power Spectral Density Table (NR_3C_40M+20M+20M)

FCC ID: A3LMT6402-48A	MEASUREMENT REPORT (Class III Permissive Change)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 05 of 70
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 25 of 78
© 2024 Element	•		ES-QP-16-09 Rev.05

Plot 8-5. Power Spectral Density Plot (NR_3C_20M+20M+20M_QPSK - Low Channel, Port 36)


Plot 8-7. Power Spectral Density Plot (NR_3C_20M+20M+20M_QPSK - Mid Channel, Port 4)


(NR_3C_20M+20M+20M_QPSK - High Channel, Port 4)

Plot 8-6. Power Spectral Density Plot (NR_3C_20M+20M+20M_16QAM - Low Channel, Port 1)

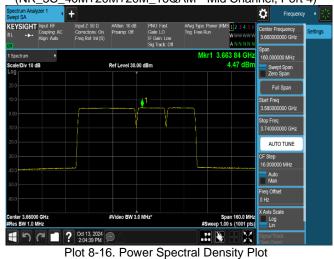
Plot 8-8. Power Spectral Density Plot

(NR_3C_20M+20M+20M_16QAM - High Channel, Port 4)

FCC ID: A3LMT6402-48A	MEASUREMENT REPORT (Class III Permissive Change)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 26 of 79
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 26 of 78
© 2024 Element	ES-0P-16-09 Rev 0		

Plot 8-11. Power Spectral Density Plot (NR_3C_40M+20M+20M_QPSK - Low Channel, Port 4)

Plot 8-13. Power Spectral Density Plot (NR_3C_40M+20M+20M_QPSK - Mid Channel, Port 4)


Plot 8-15. Power Spectral Density Plot (NR_3C_40M+20M+20M_QPSK - High Channel, Port 4)

Plot 8-12. Power Spectral Density Plot

Plot 8-14. Power Spectral Density Plot (NR_3C_40M+20M+20M_16QAM - Mid Channel, Port 4)

(NR_3C_40M+20M+20M_16QAM - High Channel, Port 4)

FCC ID: A3LMT6402-48A	MEASUREMENT REPORT (Class III Permissive Change)		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 07 of 70	
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 27 of 78	
© 2024 Element	•		ES-QP-16-09 Rev.05	

8.4 Equivalent Isotropic Radiated Power (EIRP)

Test Overview

A transmitter port of EUT is connected to the input of a signal analyzer. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

Test Description

KDB 971168 D01 v03r01 – Section 5.4 KDB 662911 D01 v02r01 – Section E)1) In-Band Power Measurements ANSI C63.26-2015 – Section 5.2.4 ANSI C63.26 - Section 5.2.5

The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The spectrum analyzer settings were as follows:

- 1. Conducted power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation.
- 2. IBW = 10 MHz (the reference bandwidth)
- 3. RBW = $1 \sim 5\%$ of the expected OBW
- 4. VBW \geq 3 x RBW
- 5. Span = 2 ~ 3 x OBW
- 6. No. of sweep points > 2 x span / RBW
- 7. Detector = RMS
- 8. Trace mode = Trace-Averaging (RMS) set to average over 100 sweeps
- 9. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

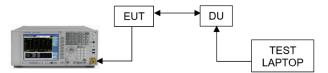


Figure 8-3. Test Instrument & Measurement Setup

<u>Limit</u>

§ 96.41 (b) Category B CBSD: 47dBm/10 MHz

FCC ID: A3LMT6402-48A		MEASUREMENT REPORT (Class III Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 00 of 70
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 28 of 78
© 2024 Element	•		ES-QP-16-09 Rev.0

<u>Note</u>

- 1. Periodic trigger was used with gating ON. Gate sweep time, Gate delay and gate length were set accordingly to capture ON time of the transmission.
- 2. For Multi carriers, conducted power for each carrier is measured to compare the 1st carrier result and the result of 2nd, 3rd carrier. After compared, worst measured value is listed on report.
- MIMO Calculations are done considering output channel power for all ports and respective margins are calculated according to procedures in section 6.4 of ANSI C63.26 and section D of KDB 971168 D01 v03r01.
- 4. Consider the following factors for MIMO Power:
 - c) Conducted power for each port is measured in dBm.
 - d) Powers are summed up in linear using the measure-and-sum technique defined in KDB 971168 D01 v03r01- Section D.
 - e) Conducted power per port (dBm) is converted to a linear value (mW). A summation of linear powers for all ports gives us the total MIMO conducted power in milliWatts (mW).
- 5. Tested for Common beam mode to perform RF testing that can get maximum Tx power setting.
- 6. Applied antenna gain per muliti-carrier as below:

	NR_3C_20M+20M+20M			NR_3C_40M+20M+20M		
Output power per unit	SU	MU	Common	SU	MU	Common
Tx Power Max (dBm)	29.6	26.6	38.7	30.8	27.8	39.9
Tx Power Max (dBm/10MHz)	21.8	18.8	30.9	21.8	18.8	30.9
Tx Power Max (dBm/1MHz)	11.8	8.8	20.9	11.8	8.8	20.9
Max Gain (dBi)	23.5	23.5	14.45	23.5	23.5	14.45
Beam EIRP Sum (dB)	0	3	0	0	3	0
Max EIRP (dBm)	53.1	53.1	53.1	54.3	54.3	54.3
Max EIRP (dBm/10MHz)	45.3	45.3	45.3	45.3	45.3	45.3
Max EIRP (dBm/1MHz)	35.3	35.3	35.3	35.3	35.3	35.3

6. Sample Calculation:

Let us assume the following numbers:

Total common mode MIMO Conducted power for NR_3C_20M+20M+20M = 30.9 dBm/10MHz Antenna Gain = 14.45 dBi

Factors	Value	Unit
Summed MIMO Conducted PSD (dBm)	30.9	dBm/10MHz
Antenna Gain	14.45	dB
Beam EIRP Sum (dB)	0	dB
e.i.r.p PSD	45.35	dBm/10MHz

FCC ID: A3LMT6402-48A	MEASUREMENT REPORT (Class III Permissive Change)		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 79	
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 29 of 78	
© 2024 Element	•		ES-QP-16-09 Rev.05	

Low Channel Port OPSK 160AM 0 1388 1318 1 1489 1409 2 1445 1352 3 1399 13.06 4 1497 13.88 5 1419 13.53 6 1451 13.51 7 1401 13.07 8 1410 13.14 9 1465 13.71 10 14.01 13.20 11 14.06 13.19 12 14.27 13.32 13 14.175 13.17 14 14.34 13.48 15 14.04 13.17 16 14.19 13.22 19 14.01 13.21 20 14.30 13.41 21 14.43 13.32 13 14.19 13.22 14 14.30 13.21 20 14.38 13.41 </th <th></th>	
2 14.45 13.52 3 13.99 13.06 4 14.97 13.98 5 14.19 13.53 6 14.51 13.51 7 14.01 13.07 8 14.10 13.14 9 14.65 13.71 10 14.01 13.20 11 14.06 13.19 12 14.27 13.32 13 14.15 13.17 14 14.34 13.48 15 14.04 13.17 16 14.04 13.17 16 14.03 13.28 17 14.31 13.24 18 14.30 13.24 19 14.01 13.12 20 14.38 13.41 21 14.46 13.43 22 14.36 13.41 23 14.19 13.26 24 14.46 13.32	
3 13.99 13.06 4 14.97 13.98 5 14.19 13.53 6 14.51 13.51 7 14.01 13.07 8 14.10 13.14 9 14.65 13.71 10 14.01 13.20 11 14.06 13.19 12 14.27 13.32 13 14.15 13.17 14 14.34 13.48 15 14.04 13.17 16 14.19 13.28 17 14.33 13.44 20 14.38 13.41 18 14.00 13.12 20 14.38 13.44 21 14.46 13.43 22 14.36 13.44 23 14.19 13.26 24 14.46 13.43 25 14.28 13.37 26 14.33 13.26	
4 14.97 13.88 5 14.19 13.53 6 14.51 13.51 7 14.01 13.07 8 14.10 13.14 9 14.65 13.71 10 14.01 13.20 11 14.06 13.19 12 14.27 13.32 13 14.15 13.17 14 14.34 13.48 15 14.04 13.17 16 14.19 13.28 17 14.31 13.41 18 14.30 13.32 19 14.01 31.2 20 14.38 13.41 21 14.46 13.43 22 14.36 13.41 23 14.19 13.26 24 14.40 13.52 25 14.28 13.37 26 14.34 13.53 27 14.13 13.23	
5 14.19 13.53 7 14.01 13.07 8 14.10 13.07 9 14.65 13.71 10 14.01 13.20 11 14.06 13.19 12 14.27 13.32 13 14.15 13.17 14 14.34 13.48 15 14.04 13.17 14 14.34 13.48 15 14.04 13.17 16 14.19 13.20 17 14.31 13.41 20 14.38 13.44 21 14.46 13.43 22 14.36 13.41 23 14.19 13.22 24 14.40 13.52 25 14.28 13.37 26 14.34 13.52 27 14.13 13.23 28 14.29 13.37 29 14.59 13.56	
6 14.51 13.51 7 14.01 13.07 8 14.10 13.14 9 14.65 13.71 10 14.01 13.20 11 14.06 13.19 12 14.27 13.32 13 14.15 13.17 14 14.34 13.48 15 14.04 13.17 16 14.19 13.28 17 14.31 13.41 18 14.30 13.32 19 14.01 13.12 20 14.38 13.44 21 14.46 13.43 22 14.36 13.41 23 14.19 13.22 24 14.46 13.43 22 14.36 13.41 23 14.19 13.26 24 14.46 13.37 26 14.28 13.37 28 14.29 13.22	
7 14.01 13.07 8 14.10 13.14 9 14.65 13.71 10 14.01 13.20 11 14.06 13.19 12 14.27 13.32 13 14.15 13.17 14 14.34 13.48 15 14.04 13.17 16 14.19 13.28 17 14.31 13.41 18 14.30 13.22 19 14.01 13.12 20 14.38 13.44 21 14.46 13.43 22 14.36 13.41 23 14.19 13.26 24 14.46 13.43 22 14.36 13.41 23 14.19 13.26 24 14.46 13.43 25 14.29 13.32 26 14.34 13.53 27 14.14 13.23 <tr< td=""><td></td></tr<>	
8 14.10 13.14 9 14.65 13.71 10 14.01 13.20 11 14.06 13.19 12 14.27 13.32 13 14.15 13.17 14 14.34 13.48 15 14.04 13.17 16 14.19 13.28 17 14.31 13.41 18 14.30 13.22 19 14.01 13.12 20 14.38 13.41 18 14.30 13.32 21 14.46 13.43 22 14.36 13.41 23 14.19 13.52 24 14.40 13.52 25 14.28 13.37 26 14.34 13.53 27 14.13 13.22 29 14.59 13.66 30 14.14 13.32 29 14.59 13.66 <t< td=""><td></td></t<>	
Int 14.01 13.20 11 14.06 13.19 12 14.27 13.32 13 14.15 13.17 14 14.34 13.48 15 14.04 13.17 16 14.04 13.17 16 14.19 13.28 17 14.31 13.21 20 14.38 13.41 18 14.30 13.32 19 14.01 13.12 20 14.38 13.44 21 14.46 13.43 22 14.36 13.41 23 14.19 13.26 24 14.40 13.52 25 14.28 13.37 26 14.28 13.37 28 14.29 13.32 29 14.59 13.22 29 14.59 13.56 30 14.14 13.32 32 14.08 13.23	
Interpretation Interpretation Interpretation 11 14.06 13.19 12 14.27 13.32 13 14.15 13.17 14 14.34 13.48 15 14.04 13.17 16 14.19 13.28 17 14.31 13.41 18 14.30 13.32 19 14.01 13.12 20 14.38 13.44 21 14.46 13.43 22 14.36 13.41 23 14.19 13.26 24 14.40 13.52 25 14.28 13.37 26 14.34 13.53 27 14.13 13.22 28 14.29 13.32 29 14.59 13.56 30 14.14 13.32 29 14.59 13.56 30 14.14 13.32 20 13.91	
Conducted Power (dBm/10MHz) 12 14.27 13.32 13 14.15 13.17 14 14.34 13.17 14 14.34 13.17 15 14.04 13.17 16 14.19 13.28 17 14.31 13.41 18 14.01 13.12 20 14.38 13.44 21 14.46 13.43 22 14.36 13.41 23 14.19 13.26 24 14.40 13.52 25 14.28 13.37 26 14.34 13.53 27 14.13 13.23 28 14.29 13.32 29 14.59 13.36 30 14.14 13.32 31 14.76 13.81 32 13.91 13.19 33 14.56 13.75 34 14.33 13.45 35 14.	
Conducted Power (dBm/10MHz) 13 14.15 13.17 13 14.15 13.48 14 14.34 13.48 15 14.04 13.17 16 14.19 13.28 17 14.31 13.41 18 14.30 13.32 19 14.01 13.12 20 14.38 13.44 21 14.46 13.43 22 14.36 13.43 23 14.19 13.26 24 14.40 13.52 25 14.28 13.37 26 14.34 13.53 27 14.13 13.22 29 14.59 13.36 30 14.14 13.32 31 14.76 13.81 32 13.91 13.19 38 14.13 13.30 39 14.24 13.33 36 14.79 13.37 38 14.	
Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation	
Conducted Power (dBm/10MHz) 15 14.04 13.17 15 14.04 13.28 17 14.31 13.24 18 14.30 13.32 19 14.01 13.12 20 14.38 13.44 21 14.46 13.43 22 14.36 13.41 23 14.19 13.26 24 14.40 13.52 25 14.28 13.37 26 14.34 13.63 27 14.13 13.22 29 14.59 13.32 29 14.59 13.32 30 14.14 13.32 32 13.91 13.19 33 14.56 13.75 34 14.33 13.45 35 14.08 13.23 38 14.13 13.30 39 14.24 13.33 40 14.04 13.06 41 14.	
Image: Conducted Power (dBm/10MHz) 17 14.31 13.41 17 14.30 13.32 19 14.01 13.12 20 14.38 13.44 21 14.46 13.43 22 14.36 13.41 23 14.19 13.26 24 14.40 13.52 25 14.28 13.37 26 14.34 13.53 27 14.13 13.23 28 14.29 13.32 29 14.59 13.56 30 14.14 13.32 31 14.76 13.31 32 13.91 13.56 33 14.56 13.75 34 14.33 13.45 35 14.08 13.23 36 14.13 13.30 39 14.24 13.33 40 14.04 13.30 39 14.24 13.33 41	
Conducted Power (dBm/10MHz) 18 14.30 13.32 18 14.01 13.32 19 14.01 13.12 20 14.38 13.44 21 14.46 13.43 22 14.36 13.41 23 14.19 13.26 24 14.40 13.52 25 14.28 13.37 26 14.34 13.53 27 14.13 13.23 28 14.29 13.32 29 14.59 13.56 30 14.14 13.32 31 14.56 13.75 34 14.33 13.45 35 14.08 13.23 36 14.79 13.79 37 14.49 13.66 38 14.13 13.30 39 14.24 13.33 40 14.04 13.08 41 14.31 13.46 38 14.	
Instrume Instrume Instrume Instrume 20 14.01 13.12 20 14.38 13.44 21 14.46 13.43 22 14.36 13.41 23 14.19 13.26 24 14.40 13.52 25 14.28 13.37 26 14.34 13.53 27 14.13 13.22 28 14.29 13.32 29 14.59 13.36 29 14.59 13.32 29 14.59 13.32 30 14.14 13.32 31 14.76 13.19 32 13.91 13.19 33 14.56 13.75 34 14.33 13.45 35 14.08 13.23 36 14.79 13.79 37 14.49 13.30 38 14.13 13.30 39 14.24	
20 14.38 13.44 21 14.46 13.43 22 14.36 13.41 23 14.19 13.26 24 14.40 13.52 25 14.28 13.37 26 14.34 13.53 27 14.13 13.23 28 14.29 13.32 29 14.59 13.36 30 14.14 13.32 29 14.59 13.56 30 14.14 13.32 29 14.59 13.56 30 14.14 13.32 31 14.76 13.81 32 13.91 13.19 33 14.56 13.75 34 14.33 13.45 35 14.08 13.23 36 14.79 13.79 37 14.49 13.30 39 14.24 13.33 40 14.04 13.06	
21 14.46 13.43 22 14.36 13.41 23 14.19 13.26 24 14.40 13.52 25 14.28 13.37 26 14.34 13.53 27 14.13 13.23 28 14.29 13.32 29 14.59 13.36 29 14.59 13.36 30 14.14 13.32 30 14.14 13.32 31 14.76 13.81 32 13.91 13.19 33 14.56 13.75 34 14.33 13.45 35 14.08 13.23 36 14.79 13.79 37 14.49 13.30 39 14.24 13.33 40 14.04 13.30 39 14.24 13.33 40 14.04 13.06 41 14.25 13.60	
Conducted Power (dBm/10MHz) 22 14.36 13.41 23 14.19 13.26 24 14.40 13.52 25 14.28 13.37 26 14.34 13.53 27 14.13 13.23 28 14.29 13.32 29 14.59 13.56 30 14.14 13.32 31 14.76 13.81 32 13.91 13.19 33 14.56 13.75 34 14.33 13.45 35 14.08 13.23 36 14.79 13.79 37 14.49 13.65 38 14.13 13.30 39 14.24 13.33 40 14.04 13.08 41 14.24 13.33 42 14.25 13.60 43 14.61 13.75	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
Conducted Power (dBm/10MHz) 24 14.40 13.52 25 14.28 13.37 26 14.34 13.53 27 14.13 13.23 28 14.29 13.32 29 14.59 13.56 30 14.14 13.32 31 14.76 13.81 32 13.91 13.19 33 14.56 13.75 34 14.33 13.45 35 14.08 13.23 36 14.79 13.79 37 14.49 13.30 39 14.24 13.33 40 14.04 13.08 41 14.25 13.60 42 14.25 13.60	
$\begin{array}{c} \mbox{Conducted} \\ \mbox{Power} \\ (dBm/10MHz) \end{array} \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Conducted Power (dBm/10MHz) 27 14.13 13.23 28 14.29 13.32 29 14.59 13.56 30 14.14 13.32 31 14.76 13.81 32 13.91 13.19 33 14.56 13.75 34 14.33 13.45 35 14.08 13.23 36 14.79 13.79 37 14.49 13.30 39 14.24 13.33 40 14.24 13.33 40 14.24 13.36 41 14.25 13.60 43 14.61 13.75	
Conducted Power (dBm/10MHz) 28 14.29 13.32 29 14.59 13.56 30 14.14 13.32 31 14.76 13.81 32 13.91 13.19 33 14.56 13.75 34 14.33 13.45 35 14.08 13.23 36 14.79 13.79 37 14.49 13.30 39 14.24 13.33 40 14.13 13.08 41 14.31 13.40 42 14.25 13.60 43 14.61 13.75	
Conducted Power (dBm/10MHz) 29 14.59 13.56 30 14.14 13.32 31 14.76 13.81 32 13.91 13.19 33 14.56 13.75 34 14.33 13.45 35 14.08 13.23 36 14.79 13.79 37 14.49 13.65 38 14.13 13.30 39 14.24 13.33 40 14.04 13.08 41 14.25 13.60 43 14.61 13.75	
Sourced Power (dBm/10MHz) 30 14.14 13.32 31 14.76 13.81 32 13.91 13.19 33 14.56 13.75 34 14.33 13.45 35 14.08 13.23 36 14.79 13.79 37 14.49 13.65 38 14.13 13.30 39 14.24 13.33 40 14.04 13.08 41 14.25 13.60 43 14.61 13.75	
31 14.76 13.81 Power (dBm/10MHz) 32 13.91 13.19 33 14.56 13.75 34 14.33 13.45 35 14.08 13.23 36 14.79 13.65 38 14.13 13.30 39 14.24 13.33 40 14.04 13.08 41 14.31 13.40 42 14.25 13.60 43 14.61 13.75	
32 13.91 13.19 33 14.56 13.75 34 14.33 13.45 35 14.08 13.23 36 14.79 13.79 37 14.49 13.65 38 14.13 13.30 39 14.24 13.33 40 14.24 13.08 41 14.31 13.40 42 14.25 13.60 43 14.61 13.75	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
38 14.13 13.30 39 14.24 13.33 40 14.04 13.08 41 14.31 13.40 42 14.25 13.60 43 14.61 13.75	
39 14.24 13.33 40 14.04 13.08 41 14.31 13.40 42 14.25 13.60 43 14.61 13.75	
41 14.31 13.40 42 14.25 13.60 43 14.61 13.75	
42 14.25 13.60 43 14.61 13.75	
43 14.61 13.75	
44 14.19 13.41	
44 14.19 13.41 45 14.40 13.38	
46 14.23 13.35	
47 14.06 13.12	
48 14.74 13.90	
49 14.51 13.61	
50 14.18 13.26	
51 14.25 13.45 52 14.29 13.40	
52 14.29 13.40 53 14.19 13.22	
54 14.36 13.49	
55 14.02 13.07	
56 14.32 13.50	
57 14.51 13.59	
58 14.33 13.38 50 14.97 12.97	
59 14.27 13.37 60 14.56 13.57	
60 14.50 13.57 61 14.54 13.57	
61 14.34 13.37 62 14.17 13.20	
63 14.23 13.30	
MIMO Power (dBm/10MHz) 32.38 31.48	
Common Ant. Gain (dBi) 14.45 14.45	
e.i.r.p PSD (dBm/10MHz) 46.83 45.93	
e.i.r.p Limit (dBm/10MHz) 47.00	

FCC ID: A3LMT6402-48A		MEASUREMENT REPORT (Class III Permissive Change)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 00 of 70	
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 30 of 78	
© 2024 Element ES-QP-16-09 Rev.0				

Mid Channel	Port	QPSK	16QAM
	0	13.17	12.97
	1 2	13.85 13.15	<u>13.58</u> 12.97
	3	12.93	13.12
	4	14.06	14.01
	5	13.27	13.15
	6	13.34	13.18
	7 8	12.85	12.81 12.77
	9	12.71 13.32	13.30
	10	12.82	12.84
	11	12.76	12.93
	12	13.32	13.41
	13	12.85	12.80
	14 15	13.10	12.94 12.85
	15	<u>12.84</u> 12.89	12.85
	17	13.21	13.23
	18	13.01	13.03
	19	12.90	12.93
	20	13.18	13.27
	21	12.84	12.86
	22 23	13.11 12.88	13.17 12.85
	23	13.07	12.85
	25	13.00	13.00
	26	13.21	13.23
	27	12.91	12.95
	28	13.08	13.07
	29	13.37	13.27
Conducted	<u>30</u> 31	13.00	13.11
Power	31	13.54 12.88	<u>13.48</u> 12.88
(dBm/10MHz)	33	13.37	13.32
	34	13.08	13.09
	35	12.87	12.99
	36	13.55	13.69
	37	13.16	13.40
	38 39	12.93 12.96	<u>13.17</u> 13.07
	40	12.90	13.07
	41	12.93	13.12
	42	13.19	13.18
	43	13.54	13.63
	44	13.28	13.46
	45	13.11	13.12
	46 47	13.06 12.84	<u> </u>
	48	13.49	13.39
	49	13.17	13.31
	50	12.83	13.04
	51	12.92	13.08
	52	13.26	13.55
	53 54	<u>12.65</u> 13.13	12.76 13.16
	54 55	12.69	12.83
	56	13.21	13.14
	57	13.24	13.18
	58	12.97	13.05
	59	12.99	13.09
	60	13.21	13.29
	61 62	13.08	13.18
	62 63	13.01 12.89	13.06 12.77
MIMO Power (dBm		31.16	31.19
Common Ant. Ga		14.45	14.45
e.i.r.p PSD (dBm/		45.61	45.64
e.i.r.p Limit (dBm/		45.61 47.	
		47.	00

FCC ID: A3LMT6402-48A		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 04 of 70
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 31 of 78
2024 Element ES-QP-16-09 Rev.0			

High Channel	Port	QPSK	16QAM
0	0	12.85	12.97
	1	13.33	13.34
	2	12.90	12.63
	3	13.00 13.82	12.96 13.66
	5	12.92	12.81
	6	13.05	13.06
	7	12.69	12.66
	8	12.71	12.97
	9	13.14	13.10
	10	12.74	12.87
	11 12	12.78 13.20	<u>13.01</u> 12.93
	13	12.65	12.75
	14	12.83	12.83
	15	12.85	12.98
	16	12.77	12.93
	17	12.99	12.79
	18	12.82	12.84
	19 20	12.85 13.19	12.76 12.92
	20	12.73	12.32
	22	12.96	12.81
	23	12.74	12.62
	24	12.93	12.63
	25	12.82	12.69
	26	13.05	13.00
	27	12.88	12.80
	28 29	12.96 12.97	13.02 12.83
O a se al se at a al	30	12.97	12.83
Conducted	31	13.24	13.31
Power	32	12.83	12.53
(dBm/10MHz)	33	13.23	12.81
	34	13.05	12.86
	35	12.93	12.89
	36 37	<u>13.71</u> 13.29	<u>13.58</u> 12.85
	38	13.29	12.85
	39	13.00	12.81
	40	13.07	12.72
	41	12.84	12.80
	42	13.01	12.93
	43	13.51	13.38
	44 45	13.34 12.98	13.16 12.74
	45	13.04	12.74
	47	12.75	12.63
	48	13.16	13.36
	49	13.17	13.01
	50	12.88	12.74
	51	12.99	12.99
	52	13.45	13.02
	53 54	12.69 12.93	12.56 12.85
	55	12.33	12.63
	56	13.09	12.81
	57	12.92	12.82
	58	12.99	12.67
	59	13.05	12.78
	60	13.28	12.96
	61 62	12.95	12.87
	62	12.97 12.64	<u>12.84</u> 12.53
MIMO Power (dBn		31.07	31.07
Common Ant. Ga		14.45	14.45
e.i.r.p PSD (dBm/		45.52	45.52
e.i.r.p Limit (dBm/		45.52 47.	
		47.	00

Table 8-6. Equivalent Isotropic Radiated Power Table (NR_3C_20M+20M+20M)

FCC ID: A3LMT6402-48A		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 00 af 70
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 32 of 78
2024 Element ES-QP-16-09 Rev.0			

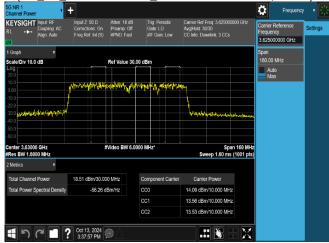
Low Channel	Port	QPSK	16QAM
	0	13.16	12.95
	1	13.91	13.75
	2	13.52 13.09	<u>13.24</u> 12.81
	4	13.09	13.73
	5	13.39	13.13
	6	13.53	13.28
	7	12.88	12.59
	8	13.06	12.79
	9	13.43	13.16
	10	13.30	13.04
	11 12	<u>13.09</u> 13.35	<u>12.82</u> 13.10
	12	13.24	12.98
	14	13.58	13.42
	15	13.12	12.84
	16	13.36	13.10
	17	13.36	13.28
	18	13.06	12.81
	19	13.12	12.87
	20 21	13.37 13.32	<u>13.19</u> 13.06
	22	13.29	13.00
	23	13.11	12.96
	24	13.46	13.18
	25	13.30	12.99
	26	13.57	13.38
	27	13.12	12.96
	28	13.41	13.21
	29	13.59 13.08	<u>13.32</u> 13.11
Conducted	<u>30</u> 31	13.08	13.11
Power	32	13.12	12.86
(dBm/10MHz)	33	13.63	13.47
	34	13.32	13.04
	35	13.15	12.87
	36	13.90	13.66
	37	13.47	13.33
	38 39	13.32 13.15	<u>13.08</u> 13.00
	40	13.09	12.85
	40	13.22	13.00
	42	13.55	13.32
	43	13.63	13.60
	44	13.39	13.24
	45	13.37	13.26
	46	13.33	13.12
	47 48	<u>12.98</u> 13.89	<u>12.76</u> 13.65
	40	13.59	13.40
	50	13.01	12.78
	51	13.42	13.21
	52	13.39	13.18
	53	13.12	12.89
	54	13.57	13.32
	55	13.06	12.85
	56 57	<u>13.52</u> 13.57	<u>13.28</u> 13.52
	57	13.57	13.52
	59	13.37	13.16
	60	13.66	13.54
	61	13.43	13.42
	62	13.15	13.06
	63	13.27	13.13
MIMO Power (dBn		31.42	31.22
Common Ant. Ga		14.45	14.45
e.i.r.p PSD (dBm/		45.87	45.67
e.i.r.p Limit (dBm/	/10MHz)	47.	00

FCC ID: A3LMT6402-48A		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dawa 00 at 70	
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 33 of 78	
2024 Element ES-QP-16-09 Rev.0				

Mid Channel	Port	QPSK	16QAM
	0	12.92	12.62
	1	13.78	13.50
	2	12.99	12.85
	3	13.05 14.09	<u>12.77</u> 13.75
	5	13.14	12.89
	6	13.14	12.93
	7	12.82	12.49
	8	12.78	12.51
	9 10	13.27 12.79	12.95 12.49
	10	12.79	12.49
	12	13.35	13.06
	13	12.78	12.61
	14	12.88	12.68
	15	12.95	12.68
	16 17	12.74 12.94	<u>12.55</u> 12.81
	18	12.84	12.66
	19	12.88	12.60
	20	13.16	12.88
	21	12.63	12.43
	22	12.87	12.77
	23 24	12.77	12.53 12.69
	24	12.97 12.80	12.69
	26	13.06	12.01
	27	12.76	12.53
	28	12.94	12.86
	29	13.08	12.98
Conducted	30	12.96	12.92
Power	31 32	13.38 12.88	13.31 12.59
(dBm/10MHz)	33	11.46	13.03
	34	13.06	12.76
	35	12.86	12.60
	36	13.50	13.31
	37	13.10	12.92
	38 39	13.07 12.98	12.78 12.64
	40	12.83	12.04
	41	12.78	12.63
	42	13.04	12.72
	43	13.52	13.22
	44	13.18	13.14
	45 46	12.88 13.00	12.80 12.70
	40	12.84	12.70
	48	13.33	13.08
	49	13.11	12.77
	50	12.89	12.63
	51	12.96	12.62
	52 53	13.44 12.72	<u>13.13</u> 12.42
	54	12.72	12.42
	55	12.72	12.32
	56	13.08	12.77
	57	12.83	12.78
	58	13.03	12.66
	59	13.00	12.66
	60 61	13.28 12.84	<u>13.00</u> 12.75
	62	12.84	12.75
	63	12.64	12.33
MIMO Power (dBm		31.06	30.85
Common Ant. Gain (dBi)		14.45	14.45
e.i.r.p PSD (dBm/10MHz)		45.51	45.30
e.i.r.p Limit (dBm/		47.	
	,		

FCC ID: A3LMT6402-48A	MEASUREMENT REPORT (Class III Permissive Change)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 04 of 70
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 34 of 78
© 2024 Element			ES-QP-16-09 Rev.05

High Channel	Port	QPSK	16QAM
	0	12.63	12.71
	1	13.31	13.35
	2	12.50	12.66
	3	12.45 13.37	12.58 13.55
	5	12.50	12.66
	6	12.75	12.74
	7	12.29	12.37
	8	12.73	12.67
	9 10	12.71	12.74
	10	12.49 12.66	12.54 12.74
	12	12.91	13.05
	13	12.26	12.46
	14	12.46	12.58
	15	12.62	12.65
	16 17	12.49	12.55
	17	12.53 12.43	12.58 12.57
	19	12.43	12.57
	20	12.68	12.80
	21	12.40	12.44
	22	12.52	12.61
	23	12.37	12.44
	24 25	12.60 12.32	12.76 12.47
	25	12.52	12.47
	27	12.49	12.63
	28	12.64	12.65
	29	12.52	12.68
Conducted	30	12.52	12.62
Power	31	13.01	13.13
(dBm/10MHz)	32 33	12.25 12.60	12.41 12.73
	34	12.59	12.64
	35	12.51	12.55
	36	13.17	13.26
	37	12.62	12.76
	38 39	12.58	12.65
	39 40	12.50 12.39	12.56 12.58
	41	12.40	12.56
	42	12.53	12.58
	43	13.00	13.03
	44	12.83	12.95
	45 46	12.47 12.51	12.54 12.69
	40	12.31	12.03
	48	12.99	13.06
	49	12.63	12.62
	50	12.32	12.60
	51	12.63	12.68
	52 53	12.90 12.21	12.98 12.35
	54	12.21	12.64
	55	12.27	12.36
	56	12.53	12.57
	57	12.42	12.65
	58	12.40	12.55
	59 60	12.45 12.59	12.45 12.74
	61	12.59	12.74
	62	12.53	12.82
	63	12.25	12.26
MIMO Power (dBm/10MHz)		30.64	30.74
Common Ant. Ga	ain (dBi)	14.45	14.45
e.i.r.p PSD (dBm/		45.09	45.19
e.i.r.p Limit (dBm	/10MHz)	47.	.00


Table 8-7. Equivalent Isotropic Radiated Power Table (NR_3C_40M+20M+20M)

FCC ID: A3LMT6402-48A	MEASUREMENT REPORT (Class III Permissive Change)		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 05 at 70	
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 35 of 78	
© 2024 Element			ES-QP-16-09 Rev.0	


Plot 8-17. Equivalent Isotropic Radiated Power Plot (NR_3C_20M+20M+20M_QPSK - Low Channel, Port 4)

Plot 8-19. Equivalent Isotropic Radiated Power Plot (NR_3C_40M+20M+20M_QPSK – Mid Channel, Port 4)

Plot 8-18. Equivalent Isotropic Radiated Power Plot (NR_3C_20M+20M+20M_16QAM - Low Channel, Port 1)

Plot 8-20. Equivalent Isotropic Radiated Power Plot (NR_3C_40M+20M+20M_16QAM - Low Channel, Port 1)

FCC ID: A3LMT6402-48A	MEASUREMENT REPORT (Class III Permissive Change)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 26 of 79
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 36 of 78
© 2024 Element	•		ES-QP-16-09 Rev.05

8.5 Peak To Average Power Ratio (PAPR)

Test Overview

A peak to average ratio measurement is performed at the conducted port of the EUT. The spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The percent of time the signal spends at or above the level defines the probability for that particular power level.

Test Procedure Used

ANSI C63.26 - Section 5.2.3.4. KDB 971168 D01 v03r01 - Section 5.7

Test Setting

The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The spectrum analyzer settings were as follows:

- 1. The signal analyzer's CCDF function is enabled.
- 2. Frequency = carrier center frequency
- 3. Measurement BW ≥ OBW or specified reference bandwidth
- 4. The signal analyzer was set to collect one million samples to generate the CCDF curve
- 5. The measurement interval was set depending on the type of signal analyzed. For continuous signals (>98% duty cycle), the measurement interval was set to 1ms.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

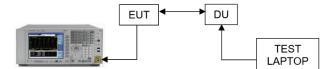


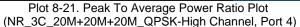
Figure 8-4. Test Instrument & Measurement Setup

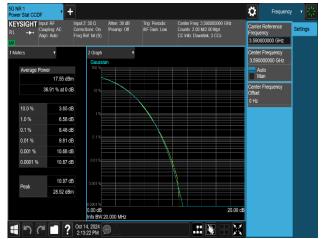
<u>Limit</u>

§ 96.41 (g)

Peak-to-average power ratio (PAPR) limit shall not exceed 13 dB for more than 0.1% of the time.

FCC ID: A3LMT6402-48A		MEASUREMENT REPORT (Class III Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 27 of 70
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 37 of 78
© 2024 Element	•		ES-QP-16-09 Rev.05


Channel	Port	QPSK (dB)	Limit
	1	8.26	
Low	9	8.28	
Low	31	8.49	
	36	8.27	
	1	8.44	
Mid	4 4	8.37	≤ 13
IVIIG	31	8.48	≤ 13
	43	8.32	
	1	8.56	
High	4	8.56	
riign	31	8.47	
	43	8.48	


Table 8-8. Peak To Average Power Ratio Table (NR_3C_20M+20M+20M)

Channel	Port	QPSK (dB)	Limit
	1	8.28	
Low	4	8.28	
Low	31	8.48	
	43	8.27	
	4	8.43	
Mid	31	8.48	(10
IVIIU	43	8.45	≤ 13
	48	8.30	
	1	8.33	
Lliab	4	8.30	
High	31	8.31]
	43	8.43	

Table 8-9. Peak To Average Power Ratio Table (NR_3C_40M+20M+20M)

Plot 8-22. Peak To Average Power Ratio Plot (NR_3C_40M+20M+20M_QPSK-Low Channel, Port 31)

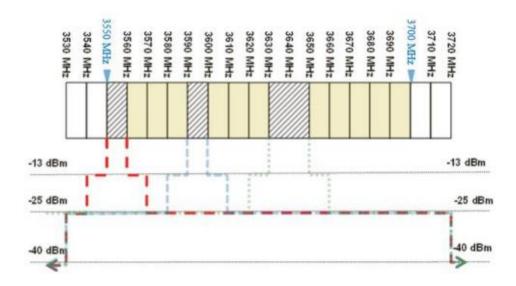
FCC ID: A3LMT6402-48A		MEASUREMENT REPORT (Class III Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 29 of 70
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 38 of 78
© 2024 Element	•		ES-QP-16-09 Rev.05

8.6 Channel Edge Emissions at Antenna Terminal

Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated, and the worst case configuration results are reported in this section.

Test Procedure Used


ANSI C63.26 - Section 5.2.3.4. KDB 971168 D01 v03r01 - Section 5.7 KDB 662911 D01 v02r01 - Section E)3)

Test Setting

- 1. Start and stop frequency were set such that the Channel Edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the Channel Edge
- 3. RBW: 1% of fundamental for measurements within 1 MHz immediately outside the authorized channel 1 MHz for beyond 1 MHz outside the authorized channel.
- 4. VBW > 3 x RBW
- 5. Detector = RMS
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

<u>Limit</u>

§ 96.41 (e)

- Within 0 MHz to 10 MHz above and below the assigned channel ≤ -13 dBm/MHz
- Greater than 10 MHz above and below the assigned channel ≤ -25 dBm/MHz
- Any emission below 3530 MHz and above 3720 MHz ≤ -40 dBm/MHz

FCC ID: A3LMT6402-48A		MEASUREMENT REPORT (Class III Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 20 of 70
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 39 of 78
© 2024 Element			ES-QP-16-09 Rev.05

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

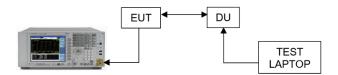


Figure 8-5. Test Instrument & Measurement Setup

Test Notes

- 1. All modes of operation were investigated and the worst configuration result plots are reported.
- 2. When detected Emission, this value has been applied as reference offset in the spectrum analyzer. Duty cycle correction factor was added to spectrum analyzer.
- 3. Per Section 96.41(e)(3)—resolution bandwidth 1% of fundamental for measurements within 1 MHz immediately outside the authorized channel; and 1 MHz for beyond 1 MHz outside the authorized channel.
- 4. The limits were adjusted by a factor of [-10*log (n)] dB to account for the device operation as a n port MIMO transmitter, as per FCC KDB 622911. MIMO Factor calculation as below:
- 5. When the channel edge detect with a margin of under 1dB to Limit, That used to integration method was performed using the spectrum analyzer's band power functions. The spectrum analyzer marker was placed at one-half of the RBW away from the band edge. The integration value was set to a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter.

	Basic Limit	MIMO Factor (dB)	Adjusted limit (dBm)
Frequency range	(dBm/MHz)	64T	64T
0 MHz to 10 MHz above and below the assigned channel	-13.00	18.06	- 31.06
10 MHz above and below the assigned channel	-25.00	18.06	- 43.06
below 3530 MHz and above 3720 MHz	-40.00	18.06	- 58.06
Note: Adjusted limit (dBm/MHz	z) = Basic limit (dBn	n/1MHz) - MIMO Factor	

FCC ID: A3LMT6402-48A		MEASUREMENT REPORT (Class III Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dego 40 of 79
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 40 of 78
© 2024 Element	•		ES-QP-16-09 Rev.0

СН	Port	Measured Range	Max. Value (dBm)	Limit	Margin(dB)
OIT	1 OIL	(GHz)	QPSK	(dBm)	
		3.530 to 3.540	-51.66	-43.06	-8.60
		3.540 to 3.549	-48.57	-31.06	-17.51
	1	3.549 to 3.550	-37.55	-31.06	-6.49
		3.570 to 3.571	-37.69	-31.06	-6.63
		3.571 to 3.580	-42.94	-31.06	-11.88
		3.580 to 3.720	-45.34	-43.06	-2.28
		3.530 to 3.540	-52.03	-43.06	-8.97
		3.540 to 3.549	-49.43	-31.06	-18.37
	9	3.549 to 3.550	-37.92	-31.06	-6.86
	3	3.570 to 3.571	-37.93	-31.06	-6.87
		3.571 to 3.580	-42.56	-31.06	-11.50
Low		3.580 to 3.720	-45.45	-43.06	-2.39
		3.530 to 3.540	-51.90	-43.06	-8.84
		3.540 to 3.549	-49.24	-31.06	-18.18
	24	3.549 to 3.550	-38.10	-31.06	-7.04
	31	3.570 to 3.571	-37.91	-31.06	-6.85
		3.571 to 3.580	-43.01	-31.06	-11.95
		3.580 to 3.720	-45.45	-43.06	-2.39
		3.530 to 3.540	-54.04	-43.06	-10.98
		3.540 to 3.549	-50.74	-31.06	-19.68
		3.549 to 3.550	-41.59	-31.06	-10.53
	36	3.570 to 3.571	-41.31	-31.06	-10.25
	-	3.571 to 3.580	-42.11	-31.06	-11.05
		3.580 to 3.720	-47.21	-43.06	-4.15
011	Dart	Measured Range	Max. Value (dBm)	Limit	
СН	Port	(GHz)	QPSK	(dBm)	Margin(dB)
		3.530 to 3.585	-46.43	-43.06	-3.37
		3.585 to 3.594	-48.78	-31.06	-17.72
		3.594 to 3.595	-35.49	-31.06	-4.43
	1	3.615 to 3.616	-34.54	04.00	-3.48
			01101	-31.06	
		3.616 to 3.625	-47.11	-31.06	-16.05
					-16.05 -2.62
		3.616 to 3.625	-47.11	-31.06	
		3.616 to 3.625 3.625 to 3.720	-47.11 -45.68	-31.06 -43.06	-2.62
		3.616 to 3.625 3.625 to 3.720 3.530 to 3.585	-47.11 -45.68 -48.62	-31.06 -43.06 -43.06	-2.62 -5.56 -17.62
	4	3.616 to 3.625 3.625 to 3.720 3.530 to 3.585 3.585 to 3.594 3.594 to 3.595	-47.11 -45.68 -48.62 -48.68 -38.31	-31.06 -43.06 -43.06 -31.06 -31.06	-2.62 -5.56 -17.62 -7.25
	4	3.616 to 3.625 3.625 to 3.720 3.530 to 3.585 3.585 to 3.594 3.594 to 3.595 3.615 to 3.616	-47.11 -45.68 -48.62 -48.68 -38.31 -36.40	-31.06 -43.06 -43.06 -31.06 -31.06 -31.06	-2.62 -5.56 -17.62 -7.25 -5.34
Mid	4	3.616 to 3.625 3.625 to 3.720 3.530 to 3.585 3.585 to 3.594 3.594 to 3.595 3.615 to 3.616 3.616 to 3.625	-47.11 -45.68 -48.62 -48.68 -38.31 -36.40 -46.37	-31.06 -43.06 -43.06 -31.06 -31.06 -31.06 -31.06	-2.62 -5.56 -17.62 -7.25 -5.34 -15.31
Mid	4	3.616 to 3.625 3.625 to 3.720 3.530 to 3.585 3.585 to 3.594 3.594 to 3.595 3.615 to 3.616 3.616 to 3.625 3.625 to 3.720	-47.11 -45.68 -48.62 -48.68 -38.31 -36.40	-31.06 -43.06 -43.06 -31.06 -31.06 -31.06 -31.06 -31.06 -43.06	-2.62 -5.56 -17.62 -7.25 -5.34 -15.31 -2.09
Mid	4	3.616 to 3.625 3.625 to 3.720 3.530 to 3.585 3.585 to 3.594 3.594 to 3.595 3.615 to 3.616 3.616 to 3.625 3.625 to 3.720 3.530 to 3.585	-47.11 -45.68 -48.62 -48.68 -38.31 -36.40 -46.37 -45.15 -49.39	-31.06 -43.06 -43.06 -31.06 -31.06 -31.06 -31.06 -43.06 -43.06	-2.62 -5.56 -17.62 -7.25 -5.34 -15.31 -2.09 -6.33
Mid		3.616 to 3.625 3.625 to 3.720 3.530 to 3.585 3.585 to 3.594 3.594 to 3.595 3.615 to 3.616 3.625 to 3.720 3.530 to 3.585 3.615 to 3.616 3.625 to 3.720 3.530 to 3.585 3.530 to 3.585	-47.11 -45.68 -48.62 -48.68 -38.31 -36.40 -46.37 -45.15 -49.39 -50.15	-31.06 -43.06 -43.06 -31.06 -31.06 -31.06 -31.06 -43.06 -43.06 -31.06	-2.62 -5.56 -17.62 -7.25 -5.34 -15.31 -2.09 -6.33 -19.09
Mid	4 -	3.616 to 3.625 3.625 to 3.720 3.530 to 3.585 3.585 to 3.594 3.594 to 3.595 3.615 to 3.616 3.616 to 3.625 3.625 to 3.720 3.530 to 3.585 3.530 to 3.585 3.615 to 3.720 3.530 to 3.585 3.530 to 3.585 3.585 to 3.594 3.594 to 3.595	-47.11 -45.68 -48.62 -48.68 -38.31 -36.40 -46.37 -45.15 -49.39 -50.15 -36.84	-31.06 -43.06 -43.06 -31.06 -31.06 -31.06 -31.06 -43.06 -43.06 -31.06 -31.06	-2.62 -5.56 -17.62 -7.25 -5.34 -15.31 -2.09 -6.33 -19.09 -5.78
Mid		3.616 to 3.625 3.625 to 3.720 3.530 to 3.585 3.585 to 3.594 3.594 to 3.595 3.615 to 3.616 3.616 to 3.625 3.625 to 3.720 3.530 to 3.585 3.615 to 3.616 3.615 to 3.625 3.625 to 3.720 3.530 to 3.585 3.585 to 3.594 3.594 to 3.595 3.615 to 3.616	-47.11 -45.68 -48.62 -48.68 -38.31 -36.40 -46.37 -45.15 -49.39 -50.15	-31.06 -43.06 -43.06 -31.06 -31.06 -31.06 -31.06 -43.06 -43.06 -31.06 -31.06 -31.06	-2.62 -5.56 -17.62 -7.25 -5.34 -15.31 -2.09 -6.33 -19.09 -5.78 -5.22
Mid		3.616 to 3.625 3.625 to 3.720 3.530 to 3.585 3.585 to 3.594 3.594 to 3.595 3.615 to 3.616 3.616 to 3.625 3.625 to 3.720 3.530 to 3.585 3.615 to 3.616 3.615 to 3.625 3.530 to 3.585 3.530 to 3.585 3.594 to 3.594 3.594 to 3.594 3.594 to 3.595 3.615 to 3.616 3.616 to 3.625	-47.11 -45.68 -48.62 -48.68 -38.31 -36.40 -46.37 -45.15 -49.39 -50.15 -36.84 -36.28 -47.31	-31.06 -43.06 -43.06 -31.06 -31.06 -31.06 -43.06 -43.06 -43.06 -31.06 -31.06 -31.06 -31.06	-2.62 -5.56 -17.62 -7.25 -5.34 -15.31 -2.09 -6.33 -19.09 -5.78 -5.22 -16.25
Mid		3.616 to 3.625 3.625 to 3.720 3.530 to 3.585 3.585 to 3.594 3.594 to 3.595 3.615 to 3.616 3.616 to 3.625 3.625 to 3.720 3.530 to 3.585 3.616 to 3.625 3.615 to 3.616 3.530 to 3.585 3.530 to 3.585 3.530 to 3.585 3.594 to 3.594 3.594 to 3.594 3.615 to 3.616 3.615 to 3.616 3.615 to 3.616 3.615 to 3.625	-47.11 -45.68 -48.62 -48.68 -38.31 -36.40 -46.37 -45.15 -49.39 -50.15 -36.84 -36.28 -47.31 -46.03	-31.06 -43.06 -43.06 -31.06 -31.06 -31.06 -31.06 -43.06 -43.06 -31.06 -31.06 -31.06 -31.06 -31.06 -31.06 -31.06	-2.62 -5.56 -17.62 -7.25 -5.34 -15.31 -2.09 -6.33 -19.09 -5.78 -5.22 -16.25 -2.97
Mid		3.616 to 3.625 3.625 to 3.720 3.530 to 3.585 3.585 to 3.594 3.594 to 3.595 3.615 to 3.616 3.616 to 3.625 3.625 to 3.720 3.530 to 3.585 3.615 to 3.616 3.615 to 3.720 3.530 to 3.585 3.530 to 3.585 3.594 to 3.594 3.594 to 3.595 3.615 to 3.616 3.616 to 3.625 3.615 to 3.616 3.615 to 3.720 3.530 to 3.585	-47.11 -45.68 -48.62 -48.68 -38.31 -36.40 -46.37 -45.15 -49.39 -50.15 -36.84 -36.28 -47.31 -46.03 -50.74	-31.06 -43.06 -43.06 -31.06 -31.06 -31.06 -31.06 -43.06 -43.06 -31.06 -31.06 -31.06 -31.06 -31.06 -31.06 -31.06 -31.06 -43.06	-2.62 -5.56 -17.62 -7.25 -5.34 -15.31 -2.09 -6.33 -19.09 -5.78 -5.22 -16.25 -5.22 -16.25 -2.97 -7.68
Mid		3.616 to 3.625 3.625 to 3.720 3.530 to 3.585 3.585 to 3.594 3.594 to 3.595 3.615 to 3.616 3.616 to 3.625 3.625 to 3.720 3.530 to 3.585 3.615 to 3.616 3.615 to 3.720 3.530 to 3.585 3.585 to 3.594 3.594 to 3.595 3.615 to 3.616 3.615 to 3.616 3.615 to 3.616 3.625 to 3.720 3.530 to 3.585 3.530 to 3.585 3.530 to 3.585	-47.11 -45.68 -48.62 -48.68 -38.31 -36.40 -46.37 -45.15 -49.39 -50.15 -36.84 -36.28 -47.31 -46.03 -50.74 -51.44	-31.06 -43.06 -43.06 -31.06 -31.06 -31.06 -31.06 -43.06 -43.06 -31.06 -31.06 -31.06 -31.06 -31.06 -31.06 -31.06 -43.06 -43.06 -31.06	-2.62 -5.56 -17.62 -7.25 -5.34 -15.31 -2.09 -6.33 -19.09 -5.78 -5.22 -16.25 -2.97 -7.68 -20.38
Mid		3.616 to 3.625 3.625 to 3.720 3.530 to 3.585 3.585 to 3.594 3.594 to 3.595 3.615 to 3.616 3.616 to 3.625 3.625 to 3.720 3.530 to 3.585 3.615 to 3.616 3.615 to 3.616 3.615 to 3.594 3.530 to 3.585 3.585 to 3.594 3.594 to 3.595 3.615 to 3.616 3.615 to 3.616 3.615 to 3.616 3.625 to 3.720 3.530 to 3.585 3.615 to 3.616 3.615 to 3.616 3.625 to 3.720 3.530 to 3.585 3.585 to 3.594 3.594 to 3.595	$\begin{array}{r} -47.11 \\ -45.68 \\ -48.62 \\ -48.68 \\ -38.31 \\ -36.40 \\ -46.37 \\ -45.15 \\ -49.39 \\ -50.15 \\ -36.84 \\ -36.28 \\ -47.31 \\ -46.03 \\ -50.74 \\ -51.44 \\ -40.96 \\ \end{array}$	-31.06 -43.06 -43.06 -31.06 -31.06 -31.06 -31.06 -43.06 -43.06 -31.06 -31.06 -31.06 -31.06 -31.06 -43.06 -43.06 -43.06 -43.06 -31.06	-2.62 -5.56 -17.62 -7.25 -5.34 -15.31 -2.09 -6.33 -19.09 -5.78 -5.22 -16.25 -2.97 -7.68 -20.38 -9.90
Mid	31	3.616 to 3.625 3.625 to 3.720 3.530 to 3.585 3.585 to 3.594 3.594 to 3.595 3.615 to 3.616 3.616 to 3.625 3.625 to 3.720 3.530 to 3.585 3.615 to 3.616 3.615 to 3.616 3.625 to 3.720 3.530 to 3.585 3.585 to 3.594 3.594 to 3.595 3.615 to 3.616 3.615 to 3.616 3.625 to 3.720 3.530 to 3.585 3.625 to 3.720 3.530 to 3.585 3.585 to 3.594 3.594 to 3.595 3.615 to 3.616 3.585 to 3.594 3.594 to 3.595 3.615 to 3.616	$\begin{array}{r} -47.11 \\ -45.68 \\ -48.62 \\ -48.68 \\ -38.31 \\ -36.40 \\ -46.37 \\ -45.15 \\ -49.39 \\ -50.15 \\ -36.84 \\ -36.28 \\ -47.31 \\ -46.03 \\ -50.74 \\ -51.44 \\ -40.96 \\ -38.07 \\ \end{array}$	-31.06 -43.06 -43.06 -31.06 -31.06 -31.06 -31.06 -43.06 -43.06 -31.06 -31.06 -31.06 -31.06 -31.06 -31.06 -31.06 -31.06 -31.06 -31.06	-2.62 -5.56 -17.62 -7.25 -5.34 -15.31 -2.09 -6.33 -19.09 -5.78 -5.22 -16.25 -2.97 -7.68 -20.38 -9.90 -7.01
Mid	31	3.616 to 3.625 3.625 to 3.720 3.530 to 3.585 3.585 to 3.594 3.594 to 3.595 3.615 to 3.616 3.616 to 3.625 3.625 to 3.720 3.530 to 3.585 3.615 to 3.616 3.615 to 3.616 3.615 to 3.594 3.530 to 3.585 3.585 to 3.594 3.594 to 3.595 3.615 to 3.616 3.615 to 3.616 3.615 to 3.616 3.625 to 3.720 3.530 to 3.585 3.615 to 3.616 3.615 to 3.616 3.625 to 3.720 3.530 to 3.585 3.585 to 3.594 3.594 to 3.595	$\begin{array}{r} -47.11 \\ -45.68 \\ -48.62 \\ -48.68 \\ -38.31 \\ -36.40 \\ -46.37 \\ -45.15 \\ -49.39 \\ -50.15 \\ -36.84 \\ -36.28 \\ -47.31 \\ -46.03 \\ -50.74 \\ -51.44 \\ -40.96 \\ \end{array}$	-31.06 -43.06 -43.06 -31.06 -31.06 -31.06 -31.06 -43.06 -43.06 -31.06 -31.06 -31.06 -31.06 -31.06 -43.06 -43.06 -43.06 -43.06 -31.06	-2.62 -5.56 -17.62 -7.25 -5.34 -15.31 -2.09 -6.33 -19.09 -5.78 -5.22 -16.25 -2.97 -7.68 -20.38 -9.90

FCC ID: A3LMT6402-48A		MEASUREMENT REPORT (Class III Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 41 of 70
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 41 of 78
© 2024 Element			ES OD 16 00 Boy 05

CH	Port	Measured Range	Max. Value (dBm)	Limit	Margin (dD)
СН	Pon	(GHz)	QPSK	(dBm)	Margin(dB)
		3.530 to 3.630	-45.06	-43.06	-2.00
		3.630 to 3.639	-46.55	-31.06	-15.49
	1	3.639 to 3.640	-37.47	-31.06	-6.41
		3.660 to 3.661	-37.91	-31.06	-6.85
		3.661 to 3.670	-46.78	-31.06	-15.72
		3.670 to 3.720	-47.41	-43.06	-4.35
		3.530 to 3.630	-44.52	-43.06	-1.46
		3.630 to 3.639	-45.60	-31.06	-14.54
	4	3.639 to 3.640	-36.77	-31.06	-5.71
	4	3.660 to 3.661	-37.30	-31.06	-6.24
		3.661 to 3.670	-46.29	-31.06	-15.23
High		3.670 to 3.720	-46.88	-43.06	-3.82
-		3.530 to 3.630	-45.49	-43.06	-2.43
		3.630 to 3.639	-46.60	-31.06	-15.54
	31	3.639 to 3.640	-37.86	-31.06	-6.80
	31	3.660 to 3.661	-37.17	-31.06	-6.11
		3.661 to 3.670	-47.16	-31.06	-16.10
		3.670 to 3.720	-47.71	-43.06	-4.65
		3.530 to 3.630	-47.95	-43.06	-4.89
		3.630 to 3.639	-49.06	-31.06	-18.00
	40	3.639 to 3.640	-38.98	-31.06	-7.92
	43	3.660 to 3.661	-40.87	-31.06	-9.81
		3.661 to 3.670	-49.80	-31.06	-18.74
		3.670 to 3.720	-51.61	-43.06	-8.55
		able 8-10 Channel Ed	ne Emission Summary Data (NR 3C	20M+20M+20M	<u>/\</u>

Table 8-10. Channel Edge Emission Summary Data (NR_3C_20M+20M+20M)

FCC ID: A3LMT6402-48A		MEASUREMENT REPORT (Class III Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 42 of 70
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 42 of 78
© 2024 Element	•		ES-QP-16-09 Rev.05

(.H	Dert	Measured Range	Max. Value (dBm)	Limit	
СН	Port	(GHz)	QPSK	(dBm)	Margin(dB)
		3.530 to 3.540	-51.48	-43.06	-8.42
		3.540 to 3.549	-49.38	-31.06	-18.32
		3.549 to 3.550	-36.46	-31.06	-5.40
	1	3.590 to 3.591	-36.84	-31.06	-5.78
		3.591 to 3.600	-39.87	-31.06	-8.81
		3.600 to 3.720	-45.41	-43.06	-2.35
		3.530 to 3.540	-51.17	-43.06	-8.11
		3.540 to 3.549	-49.35	-31.06	-18.29
		3.549 to 3.550	-35.61	-31.06	-4.55
	4	3.590 to 3.591	-35.87	-31.06	-4.81
		3.591 to 3.600	-40.30	-31.06	-9.24
Low		3.600 to 3.720	-44.84	-43.06	-1.78
		3.530 to 3.540	-51.58	-43.06	-8.52
		3.540 to 3.549	-49.38	-31.06	-18.32
		3.549 to 3.550	-36.72	-31.06	-5.66
	31	3.590 to 3.591	-37.02	-31.06	-5.96
		3.591 to 3.600	-45.28	-31.06	-14.22
		3.600 to 3.720	-45.79	-43.06	-2.73
		3.530 to 3.540	-53.41	-43.06	-10.35
		3.540 to 3.549	-51.44	-31.06	-20.38
		3.549 to 3.550	-41.03	-31.06	-9.97
	43	3.590 to 3.591	-41.11	-31.06	-10.05
		3.591 to 3.600	-46.78	-31.06	-15.72
		3.600 to 3.720	-49.14	-43.06	-6.08
011	Dart	Measured Range	Max. Value (dBm)	Limit	
СН	Port	(GHz)	QPSK	(dBm)	Margin(dB)
		3.530 to 3.575	-48.07	-43.06	-5.01
			10.04		40.05
		3.575 to 3.584	-49.31	-31.06	-18.25
		3.575 to 3.584 3.584 to 3.585	-49.31 -36.01	-31.06	-18.25 -4.95
	4				
	4	3.584 to 3.585	-36.01	-31.06	-4.95
	4 -	3.584 to 3.585 3.625 to 3.626	-36.01 -36.53	-31.06 -31.06	-4.95 -5.47
	4 -	3.584 to 3.585 3.625 to 3.626 3.626 to 3.635	-36.01 -36.53 -46.54	-31.06 -31.06 -31.06	-4.95 -5.47 -15.48
	4 -	3.584 to 3.585 3.625 to 3.626 3.626 to 3.635 3.635 to 3.720	-36.01 -36.53 -46.54 -45.09	-31.06 -31.06 -31.06 -43.06	-4.95 -5.47 -15.48 -2.03
		3.584 to 3.585 3.625 to 3.626 3.626 to 3.635 3.635 to 3.720 3.530 to 3.575	-36.01 -36.53 -46.54 -45.09 -47.89	-31.06 -31.06 -31.06 -43.06 -43.06	-4.95 -5.47 -15.48 -2.03 -4.83
	4 -	3.584 to 3.585 3.625 to 3.626 3.626 to 3.635 3.635 to 3.720 3.530 to 3.575 3.575 to 3.584 3.584 to 3.585	-36.01 -36.53 -46.54 -45.09 -47.89 -49.38	-31.06 -31.06 -31.06 -43.06 -43.06 -31.06 -31.06	-4.95 -5.47 -15.48 -2.03 -4.83 -18.32
		3.584 to 3.585 3.625 to 3.626 3.626 to 3.635 3.635 to 3.720 3.530 to 3.575 3.575 to 3.584	-36.01 -36.53 -46.54 -45.09 -47.89 -49.38 -36.85 -37.32	-31.06 -31.06 -31.06 -43.06 -43.06 -31.06 -31.06 -31.06	-4.95 -5.47 -15.48 -2.03 -4.83 -18.32 -5.79
Mid		3.584 to 3.585 3.625 to 3.626 3.626 to 3.635 3.635 to 3.720 3.530 to 3.575 3.575 to 3.584 3.584 to 3.585 3.625 to 3.626	-36.01 -36.53 -46.54 -45.09 -47.89 -49.38 -36.85	-31.06 -31.06 -31.06 -43.06 -43.06 -31.06 -31.06	-4.95 -5.47 -15.48 -2.03 -4.83 -18.32 -5.79 -6.26
Mid		3.584 to 3.585 3.625 to 3.626 3.626 to 3.635 3.635 to 3.720 3.530 to 3.575 3.575 to 3.584 3.584 to 3.585 3.625 to 3.626 3.626 to 3.635	-36.01 -36.53 -46.54 -45.09 -47.89 -49.38 -36.85 -37.32 -47.45	-31.06 -31.06 -31.06 -43.06 -43.06 -31.06 -31.06 -31.06 -31.06	-4.95 -5.47 -15.48 -2.03 -4.83 -18.32 -5.79 -6.26 -16.39
Mid		3.584 to 3.585 3.625 to 3.626 3.626 to 3.635 3.635 to 3.720 3.530 to 3.575 3.575 to 3.584 3.584 to 3.585 3.625 to 3.626 3.625 to 3.626 3.635 to 3.720	-36.01 -36.53 -46.54 -45.09 -47.89 -49.38 -36.85 -37.32 -47.45 -46.22	-31.06 -31.06 -31.06 -43.06 -43.06 -31.06 -31.06 -31.06 -31.06 -31.06 -31.06	-4.95 -5.47 -15.48 -2.03 -4.83 -18.32 -5.79 -6.26 -16.39 -3.16
Mid	31 -	3.584 to 3.585 3.625 to 3.626 3.626 to 3.635 3.635 to 3.720 3.530 to 3.575 3.575 to 3.584 3.584 to 3.585 3.625 to 3.626 3.625 to 3.626 3.625 to 3.635 3.635 to 3.720 3.575 to 3.584 3.584 to 3.585 3.625 to 3.626 3.635 to 3.720 3.530 to 3.575 3.530 to 3.575 3.575 to 3.584	-36.01 -36.53 -46.54 -45.09 -47.89 -49.38 -36.85 -37.32 -47.45 -46.22 -47.78	-31.06 -31.06 -31.06 -43.06 -43.06 -31.06 -31.06 -31.06 -31.06 -43.06 -43.06 -31.06	-4.95 -5.47 -15.48 -2.03 -4.83 -18.32 -5.79 -6.26 -16.39 -3.16 -4.72 -19.01
Mid		3.584 to 3.585 3.625 to 3.626 3.626 to 3.635 3.635 to 3.720 3.530 to 3.575 3.575 to 3.584 3.584 to 3.585 3.625 to 3.626 3.626 to 3.635 3.625 to 3.720	-36.01 -36.53 -46.54 -45.09 -47.89 -49.38 -36.85 -37.32 -47.45 -46.22 -47.78 -50.07	-31.06 -31.06 -31.06 -43.06 -43.06 -31.06 -31.06 -31.06 -31.06 -43.06 -43.06	-4.95 -5.47 -15.48 -2.03 -4.83 -18.32 -5.79 -6.26 -16.39 -3.16 -4.72
Mid	31 -	3.584 to 3.585 3.625 to 3.626 3.626 to 3.635 3.635 to 3.720 3.530 to 3.575 3.575 to 3.584 3.584 to 3.585 3.625 to 3.626 3.626 to 3.635 3.625 to 3.626 3.625 to 3.720 3.530 to 3.575 3.575 to 3.584 3.525 to 3.626 3.625 to 3.626 3.635 to 3.720 3.530 to 3.575 3.575 to 3.584 3.584 to 3.585	-36.01 -36.53 -46.54 -45.09 -47.89 -49.38 -36.85 -37.32 -47.45 -46.22 -47.78 -50.07 -41.19	-31.06 -31.06 -31.06 -43.06 -43.06 -31.06 -31.06 -31.06 -31.06 -43.06 -43.06 -31.06 -31.06 -31.06	-4.95 -5.47 -15.48 -2.03 -4.83 -18.32 -5.79 -6.26 -16.39 -3.16 -4.72 -19.01 -10.13
Mid	31 -	3.584 to 3.585 3.625 to 3.626 3.626 to 3.635 3.635 to 3.720 3.530 to 3.575 3.575 to 3.584 3.584 to 3.585 3.625 to 3.626 3.626 to 3.635 3.625 to 3.720 3.584 to 3.585 3.625 to 3.626 3.635 to 3.720 3.530 to 3.575 3.535 to 3.584 3.635 to 3.720 3.530 to 3.575 3.575 to 3.584 3.584 to 3.585 3.625 to 3.626	-36.01 -36.53 -46.54 -45.09 -47.89 -49.38 -36.85 -37.32 -47.45 -46.22 -47.78 -50.07 -41.19 -42.05	-31.06 -31.06 -31.06 -43.06 -43.06 -31.06 -31.06 -31.06 -31.06 -43.06 -43.06 -31.06 -31.06 -31.06 -31.06	-4.95 -5.47 -15.48 -2.03 -4.83 -18.32 -5.79 -6.26 -16.39 -3.16 -4.72 -19.01 -10.13 -10.99
Mid	31 -	3.584 to 3.585 3.625 to 3.626 3.626 to 3.635 3.635 to 3.720 3.530 to 3.575 3.575 to 3.584 3.584 to 3.585 3.625 to 3.626 3.625 to 3.626 3.625 to 3.626 3.635 to 3.720 3.530 to 3.575 3.575 to 3.584 3.625 to 3.626 3.635 to 3.720 3.530 to 3.575 3.575 to 3.584 3.584 to 3.585 3.625 to 3.626	-36.01 -36.53 -46.54 -45.09 -47.89 -49.38 -36.85 -37.32 -47.45 -46.22 -47.78 -50.07 -41.19 -42.05 -49.60 -49.50	-31.06 -31.06 -31.06 -43.06 -43.06 -31.06 -31.06 -31.06 -31.06 -43.06 -43.06 -31.06 -31.06 -31.06 -31.06 -31.06	-4.95 -5.47 -15.48 -2.03 -4.83 -18.32 -5.79 -6.26 -16.39 -3.16 -4.72 -19.01 -10.13 -10.99 -18.54 -6.44
Mid	31 -	3.584 to 3.585 3.625 to 3.626 3.626 to 3.635 3.635 to 3.720 3.530 to 3.575 3.575 to 3.584 3.584 to 3.585 3.626 to 3.626 3.626 to 3.635 3.626 to 3.635 3.626 to 3.635 3.635 to 3.720 3.530 to 3.575 3.575 to 3.584 3.626 to 3.635 3.635 to 3.720 3.575 to 3.584 3.584 to 3.585 3.625 to 3.626 3.626 to 3.635 3.625 to 3.626 3.626 to 3.635 3.625 to 3.626 3.625 to 3.626 3.626 to 3.635 3.635 to 3.720 3.530 to 3.575	-36.01 -36.53 -46.54 -45.09 -47.89 -49.38 -36.85 -37.32 -47.45 -46.22 -47.78 -50.07 -41.19 -42.05 -49.60 -49.50 -50.25	-31.06 -31.06 -31.06 -43.06 -43.06 -31.06 -31.06 -31.06 -31.06 -43.06 -43.06 -31.06 -31.06 -31.06 -31.06 -31.06 -31.06 -31.06 -31.06 -31.06 -31.06 -31.06 -31.06 -31.06	-4.95 -5.47 -15.48 -2.03 -4.83 -18.32 -5.79 -6.26 -16.39 -3.16 -4.72 -19.01 -10.13 -10.99 -18.54 -6.44 -7.19
Mid	31 -	3.584 to 3.585 3.625 to 3.626 3.626 to 3.635 3.635 to 3.720 3.530 to 3.575 3.575 to 3.584 3.584 to 3.585 3.626 to 3.635 3.626 to 3.635 3.626 to 3.635 3.626 to 3.635 3.635 to 3.720 3.530 to 3.575 3.575 to 3.584 3.626 to 3.635 3.635 to 3.720 3.530 to 3.575 3.575 to 3.584 3.625 to 3.626 3.625 to 3.626 3.625 to 3.626 3.635 to 3.720 3.530 to 3.575 3.575 to 3.584 3.635 to 3.720 3.530 to 3.575 3.530 to 3.575 3.530 to 3.575	-36.01 -36.53 -46.54 -45.09 -47.89 -49.38 -36.85 -37.32 -47.45 -46.22 -47.78 -50.07 -41.19 -42.05 -49.60 -49.50 -50.25 -51.57	-31.06 -31.06 -31.06 -43.06 -43.06 -31.06 -31.06 -31.06 -31.06 -43.06 -31.06 -31.06 -31.06 -31.06 -31.06 -31.06 -31.06 -31.06 -31.06 -31.06	-4.95 -5.47 -15.48 -2.03 -4.83 -18.32 -5.79 -6.26 -16.39 -3.16 -4.72 -19.01 -10.13 -10.99 -18.54 -6.44 -7.19 -20.51
Mid	31 -	3.584 to 3.585 3.625 to 3.626 3.626 to 3.635 3.635 to 3.720 3.530 to 3.575 3.575 to 3.584 3.584 to 3.585 3.625 to 3.626 3.625 to 3.626 3.625 to 3.626 3.625 to 3.626 3.635 to 3.720 3.530 to 3.575 3.530 to 3.575 3.535 to 3.720 3.530 to 3.575 3.575 to 3.584 3.584 to 3.585 3.625 to 3.626 3.635 to 3.720 3.530 to 3.575 3.530 to 3.575 3.530 to 3.575 3.530 to 3.575 3.534 to 3.584 3.584 to 3.585	-36.01 -36.53 -46.54 -45.09 -47.89 -47.89 -49.38 -36.85 -37.32 -47.45 -46.22 -47.78 -50.07 -41.19 -42.05 -49.60 -49.50 -50.25 -51.57 -42.07	-31.06 -31.06 -31.06 -43.06 -43.06 -31.06 -31.06 -31.06 -31.06 -43.06 -31.06 -31.06 -31.06 -31.06 -31.06 -31.06 -43.06 -43.06 -43.06 -31.06	-4.95 -5.47 -15.48 -2.03 -4.83 -18.32 -5.79 -6.26 -16.39 -3.16 -4.72 -19.01 -10.13 -10.99 -18.54 -6.44 -7.19 -20.51 -11.01
Mid	31 -	3.584 to 3.585 3.625 to 3.626 3.626 to 3.635 3.635 to 3.720 3.530 to 3.575 3.575 to 3.584 3.584 to 3.585 3.626 to 3.635 3.626 to 3.635 3.626 to 3.635 3.626 to 3.635 3.635 to 3.720 3.530 to 3.575 3.575 to 3.584 3.626 to 3.635 3.635 to 3.720 3.530 to 3.575 3.575 to 3.584 3.625 to 3.626 3.625 to 3.626 3.625 to 3.626 3.635 to 3.720 3.530 to 3.575 3.575 to 3.584 3.635 to 3.720 3.530 to 3.575 3.530 to 3.575 3.530 to 3.575	-36.01 -36.53 -46.54 -45.09 -47.89 -49.38 -36.85 -37.32 -47.45 -46.22 -47.78 -50.07 -41.19 -42.05 -49.60 -49.50 -50.25 -51.57	-31.06 -31.06 -31.06 -43.06 -43.06 -31.06 -31.06 -31.06 -31.06 -43.06 -31.06 -31.06 -31.06 -31.06 -31.06 -31.06 -31.06 -31.06 -31.06 -31.06	-4.95 -5.47 -15.48 -2.03 -4.83 -18.32 -5.79 -6.26 -16.39 -3.16 -4.72 -19.01 -10.13 -10.99 -18.54 -6.44 -7.19 -20.51

FCC ID: A3LMT6402-48A	MEASUREMENT REPORT (Class III Permissive Change)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 42 of 70
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 43 of 78
© 2024 Element		•	ES OD 16 00 Boy 05

СН	Port	Measured Range	Max. Value (dBm)	Limit	Margin (dD)
Сп	Pon	(GHz)	QPSK	(dBm)	Margin(dB)
		3.530 to 3.610	-45.13	-43.06	-2.07
		3.610 to 3.619	-43.40	-31.06	-12.34
	1	3.619 to 3.620	-36.67	-31.06	-5.61
	'	3.660 to 3.661	-36.98	-31.06	-5.92
		3.661 to 3.670	-46.97	-31.06	-15.91
		3.670 to 3.720	-47.50	-43.06	-4.44
		3.530 to 3.610	-44.65	-43.06	-1.59
	Γ	3.610 to 3.619	-45.81	-31.06	-14.75
		3.619 to 3.620	-35.96	-31.06	-4.90
	4	3.660 to 3.661	-36.65	-31.06	-5.59
	Γ	3.661 to 3.670	-46.27	-31.06	-15.21
High	Γ	3.670 to 3.720	-46.73	-43.06	-3.67
-		3.530 to 3.610	-45.13	-43.06	-2.07
		3.610 to 3.619	-45.47	-31.06	-14.41
	31	3.619 to 3.620	-36.74	-31.06	-5.68
	31	3.660 to 3.661	-37.49	-31.06	-6.43
	Γ	3.661 to 3.670	-46.94	-31.06	-15.88
	Γ	3.670 to 3.720	-47.69	-43.06	-4.63
		3.530 to 3.610	-48.28	-43.06	-5.22
	Γ	3.610 to 3.619	-46.89	-31.06	-15.83
	42	3.619 to 3.620	-41.02	-31.06	-9.96
	43	3.660 to 3.661	-41.60	-31.06	-10.54
		3.661 to 3.670	-49.41	-31.06	-18.35
		3.670 to 3.720	-51.74	-43.06	-8.68

Table 8-11. Channel Edge Emission Summary Data (NR_3C_40M+20M+20M)

FCC ID: A3LMT6402-48A	MEASUREMENT REPORT (Class III Permissive Change)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 11 of 70
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 44 of 78
© 2024 Element	•		ES-QP-16-09 Rev.05

СН	Port	Measured Range	Max. Value (dBm)	Limit	Morgin (dD)
Сн	Port	(GHz)	QPSK	(dBm)	Margin(dB)
	1	3.530 to 3.540	-47.26	-43.06	-4.20
		3.540 to 3.549	-46.26	-31.06	-15.20
		3.549 to 3.550	-44.41	-31.06	-13.35
		3.570 to 3.571	-43.67	-31.06	-12.61
		3.571 to 3.580	-45.82	-31.06	-14.76
		3.580 to 3.605	-47.25	-43.06	-4.19
		3.605 to 3.614	-46.60	-31.06	-15.54
		3.614 to 3.615	-44.54	-31.06	-13.48
	1 -	3.635 to 3.636	-43.88	-31.06	-12.82
		3.636 to 3.645	-44.14	-31.06	-13.08
		3.645 to 3.670	-46.77	-43.06	-3.71
		3.670 to 3.679	-46.32	-31.06	-15.26
		3.679 to 3.680	-45.58	-31.06	-14.52
		3.700 to 3.701	-44.55	-31.06	-13.49
		3.701 to 3.710	-46.41	-31.06	-15.35
		3.710 to 3.720	-47.09	-43.06	-4.03
		3.530 to 3.540	-46.35	-43.06	-3.29
		3.540 to 3.549	-45.39	-31.06	-14.33
		3.549 to 3.550	-43.80	-31.06	-12.73
		3.570 to 3.571	-43.51	-31.06	-12.45
		3.571 to 3.580	-45.35	-31.06	-14.29
		3.580 to 3.605	-46.93	-43.06	-3.87
		3.605 to 3.614	-45.07	-31.06	-14.01
		3.614 to 3.615	-45.07	-31.06	-14.01
	4	3.635 to 3.636	-44.64	-31.06	-13.58
		3.636 to 3.645	-44.17	-31.06	-13.11
Mid		3.645 to 3.670	-46.28	-43.06	-3.22
		3.670 to 3.679	-45.42	-31.06	-14.36
		3.679 to 3.680	-43.69	-31.06	-12.62
		3.700 to 3.701	-43.07	-31.06	-12.01
		3.701 to 3.710	-45.56	-31.06	-14.50
		3.710 to 3.720	-46.84	-43.06	-3.78
		3.530 to 3.540	-47.29	-43.06	-4.23
		3.540 to 3.549	-45.27	-31.06	-14.21
		3.549 to 3.550	-44.68	-31.06	-13.62
		3.570 to 3.571	-44.68	-31.06	-13.62
		3.571 to 3.580	-45.80	-31.06	-14.74
		3.580 to 3.605	-47.90	-43.06	-4.84
		3.605 to 3.614	-47.00	-31.06	-15.94
		3.614 to 3.615	-45.05	-31.06	-13.98
	31 -	3.635 to 3.636	-43.75	-31.06	-12.69
		3.636 to 3.645	-45.61	-31.06	-14.55
		3.645 to 3.670	-47.08	-43.06	-4.02
		3.670 to 3.679	-46.01	-31.06	-14.95
		3.679 to 3.680	-44.88	-31.06	-13.82
		3.700 to 3.701	-45.37	-31.06	-14.31
		3.701 to 3.710	-45.75	-31.06	-14.69
		3.710 to 3.720	-47.34	-43.06	-4.28
		3.530 to 3.540	-50.62	-43.06	-7.56
		3.540 to 3.549	-47.18	-31.06	-16.12
	43	3.549 to 3.550	-48.71	-31.06	-17.65
		3.570 to 3.571	-48.42	-31.06	-17.35
	1 –	3.571 to 3.580	-47.40	-31.06	-16.34

FCC ID: A3LMT6402-48A	MEASUREMENT REPORT (Class III Permissive Change)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 45 of 70
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 45 of 78
© 2024 Element			ES_OR_16_00 Roy 05

3.580 to 3.605	-50.27	-43.06	-7.21
3.605 to 3.614	-46.56	-31.06	-15.50
3.614 to 3.615	-50.34	-31.06	-19.28
3.635 to 3.636	-48.64	-31.06	-17.58
3.636 to 3.645	-44.98	-31.06	-13.92
3.645 to 3.670	-50.04	-43.06	-6.98
3.670 to 3.679	-48.40	-31.06	-17.34
3.679 to 3.680	-48.92	-31.06	-17.86
3.700 to 3.701	-48.74	-31.06	-17.68
3.701 to 3.710	-48.52	-31.06	-17.46
3.710 to 3.720	-51.74	-43.06	-8.68

Table 8-12. Channel Edge Emission Summary Data (NR_3NC_20M+20M+20M)

FCC ID: A3LMT6402-48A	MEASUREMENT REPORT (Class III Permissive Change)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 46 of 70
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 46 of 78
© 2024 Element			ES-QP-16-09 Rev.05

СН	Dort	Measured Range	Max. Value (dBm)	Limit	Margin(dP)
Сн	Port	(GHz)	QPSK	(dBm)	Margin(dB)
		3.530 to 3.540	-46.13	-43.06	-3.07
		3.540 to 3.549	-45.15	-31.06	-14.09
		3.549 to 3.550	-40.69	-31.06	-9.63
		3.590 to 3.591	-40.19	-31.06	-9.12
		3.591 to 3.600	-44.40	-31.06	-13.34
		3.600 to 3.615	-45.70	-43.06	-2.64
		3.615 to 3.624	-44.83	-31.06	-13.77
	4	3.624 to 3.625	-44.82	-31.06	-13.76
	7	3.645 to 3.646	-42.81	-31.06	-11.74
		3.646 to 3.655	-43.76	-31.06	-12.70
		3.645 to 3.670	-45.46	-43.06	-2.40
		3.670 to 3.679	-45.19	-31.06	-14.13
		3.679 to 3.680	-44.22	-31.06	-13.15
		3.700 to 3.701	-42.97	-31.06	-11.91
		3.701 to 3.710	-45.09	-31.06	-14.03
		3.710 to 3.720	-46.27	-43.06	-3.21
		3.530 to 3.540	-47.33	-43.06	-4.27
		3.540 to 3.549	-46.00	-31.06	-14.94
		3.549 to 3.550	-41.52	-31.06	-10.45
		3.590 to 3.591	-40.49	-31.06	-9.43
		3.591 to 3.600	-45.55	-31.06	-14.49
		3.600 to 3.615	-47.01	-43.06	-3.95
Mid		3.615 to 3.624	-46.34	-31.06	-15.28
	31	3.624 to 3.625	-44.32	-31.06	-13.26
	51	3.645 to 3.646	-44.77	-31.06	-13.71
		3.646 to 3.655	-46.09	-31.06	-15.03
		3.645 to 3.670	-46.86	-43.06	-3.80
		3.670 to 3.679	-45.80	-31.06	-14.74
		3.679 to 3.680	-43.95	-31.06	-12.89
		3.700 to 3.701	-44.43	-31.06	-13.37
		3.701 to 3.710	-46.25	-31.06	-15.19
		3.710 to 3.720	-47.50	-43.06	-4.44
		3.530 to 3.540	-50.37	-43.06	-7.31
		3.540 to 3.549	-48.56	-31.06	-17.50
		3.549 to 3.550	-45.72	-31.06	-14.66
		3.590 to 3.591	-44.84	-31.06	-13.78
		3.591 to 3.600	-48.43	-31.06	-17.37
		3.600 to 3.615	-49.37	-43.06	-6.31
	43	3.615 to 3.624	-47.40	-31.06	-16.34
	43	3.624 to 3.625	-48.74	-31.06	-17.68
		3.645 to 3.646	-47.83	-31.06	-16.76
		3.646 to 3.655	-46.74	-31.06	-15.68
		3.645 to 3.670	-49.00	-43.06	-5.94
		3.670 to 3.679	-49.15	-31.06	-18.09
		3.679 to 3.680	-49.06	-31.06	-18.00
	Ι Γ	3.700 to 3.701	-48.10	-31.06	-17.04

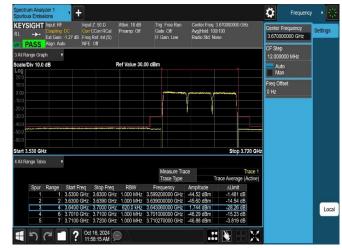
FCC ID: A3LMT6402-48A	MEASUREMENT REPORT (Class III Permissive Change)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 47 of 70
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 47 of 78
© 2024 Element			ES OD 16 00 Boy 05



	3.701 to 3.710	-48.23	-31.06	-17.17
	3.710 to 3.720	-51.18	-43.06	-8.12
	3.530 to 3.540	-51.20	-43.06	-8.14
	3.540 to 3.549	-48.86	-31.06	-17.80
	3.549 to 3.550	-46.93	-31.06	-15.87
	3.590 to 3.591	-45.69	-31.06	-14.63
	3.591 to 3.600	-47.50	-31.06	-16.44
	3.600 to 3.615	-50.07	-43.06	-7.01
	3.615 to 3.624	-47.80	-31.06	-16.74
48	3.624 to 3.625	-50.21	-31.06	-19.15
40	3.645 to 3.646	-49.78	-31.06	-18.72
	3.646 to 3.655	-47.70	-31.06	-16.64
	3.645 to 3.670	-50.36	-43.06	-7.30
	3.670 to 3.679	-48.00	-31.06	-16.94
	3.679 to 3.680	-48.76	-31.06	-17.70
	3.700 to 3.701	-49.46	-31.06	-18.40
	3.701 to 3.710	-48.79	-31.06	-17.73
	3.710 to 3.720	-51.75	-43.06	-8.69


Table 8-13. Channel Edge Emission Summary Data (NR_3NC_40M+20M+20M)

FCC ID: A3LMT6402-48A	MEASUREMENT REPORT (Class III Permissive Change)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 49 of 79
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 48 of 78
© 2024 Element	•		ES-QP-16-09 Rev.05



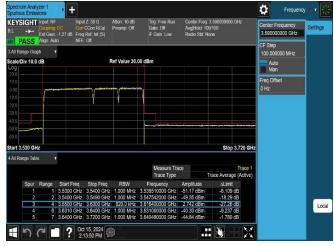
Plot 8-23. Channel Edge Emission Plot (NR_3C_20M+20M-20M_QPSK– Low Channel, Port 1)

Plot 8-25. Channel Edge Emission Plot (NR_3C_20M+20M_20M_QPSK- Mid Channel, Port 4)

Plot 8-27. Channel Edge Emission Plot (NR_3C_20M+20M+20M_QPSK- High Channel, Port 4)

Plot 8-24. Channel Edge Emission Plot (RBW 1% of fundamental for measurements within 1 MHz band power) (NR_3C_20M+20M+20M_QPSK– Low Channel, Port 1)

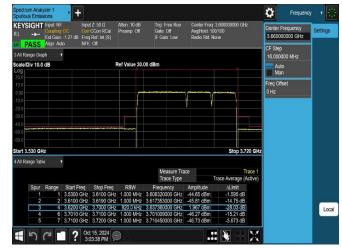
Plot 8-26. Channel Edge Emission Plot (RBW 1% of fundamental for measurements within 1 MHz band power) (NR 3C 20M+20M+20M QPSK– Mid Channel, Port 4)



Plot 8-28. Channel Edge Emission Plot

(RBW 1% of fundamental for measurements within 1 MHz band power) (NR_3C_20M+20M+20M_QPSK- High Channel, Port 4)

FCC ID: A3LMT6402-48A	MEASUREMENT REPORT (Class III Permissive Change)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 40 of 79
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 49 of 78
© 2024 Element	•		ES-QP-16-09 Rev.05



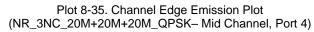
Plot 8-29. Channel Edge Emission Plot (NR_3C_40M+20M-20M_QPSK– Low Channel, Port 4)

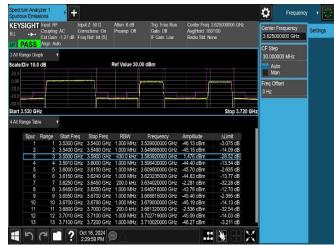
Plot 8-31. Channel Edge Emission Plot (NR_3C_40M+20M_20M_QPSK- Mid Channel, Port 4)

Plot 8-33. Channel Edge Emission Plot (NR_3C_40M+20M+20M_QPSK- High Channel, Port 4)

Plot 8-30. Channel Edge Emission Plot (RBW 1% of fundamental for measurements within 1 MHz band power) (NR_3C_40M+20M+20M_QPSK– Low Channel, Port 4)

Plot 8-32. Channel Edge Emission Plot (RBW 1% of fundamental for measurements within 1 MHz band power) (NR 3C 40M+20M+20M QPSK– Mid Channel, Port 4)


Plot 8-34. Channel Edge Emission Plot


(RBW 1% of fundamental for measurements within 1 MHz band power) (NR_3C_40M+20M+20M_QPSK- High Channel, Port 4)

FCC ID: A3LMT6402-48A		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dage 50 of 70	
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 50 of 78	
© 2024 Element ES-OP-16-				

	Coupling Ext Gain	AC Con -1.27 dB Fre	ut Z: 50 Ω rrections: On iq Ref: Int (S)	Atten: 6 dB Preamp: Off	Trig: Free Run Gate: Off IF Gain: Low	Center Freq: 3 Avg[Hold: 100 Radio Std: No		Center Free 3.6250000		Setting
PASS Range Gra e/Div 10.0	aph y			Ref Value 30.	.00 dBm			CF Step 30.000000 Auto Man	MHz	
						ļ		Freq Offset 0 Hz		
t 3.530 GI	Hz						Stop 3.720 G	Hz		
Range Tak										
		• Start Freq	Stop Freq	RBW	Frequency	Amplitude	∆Limit			
Range Tak	ble ' Range	Start Freq			Frequency 3.539160000 GHz	Amplitude -46.35 dBm	∆Limit -3.294 dB			
Range Tak	ble v Range 1 2	Start Freq 3.5300 GHz 3.5400 GHz	3.5400 GHz 3.5490 GHz	1.000 MHz 1.000 MHz	3.539160000 GHz 3.548856000 GHz		-3.294 dB -14.33 dB			
Range Tak Spur 1	ble v Range 1 2	Start Freq 3.5300 GHz 3.5400 GHz	3.5400 GHz 3.5490 GHz	1.000 MHz 1.000 MHz	3.539160000 GHz	-46.35 dBm	-3.294 dB			
Range Tab Spur 1 2	ble Range 1 2 3 4	Start Freq 3.5300 GHz 3.5400 GHz 3.5500 GHz 3.5710 GHz	3.5400 GHz 3.5490 GHz 3.5700 GHz 3.5800 GHz	1.000 MHz 1.000 MHz 200.0 kHz 1.000 MHz	3.539160000 GHz 3.548856000 GHz 3.563620000 GHz 3.571045000 GHz	-46.35 dBm -45.39 dBm -1.114 dBm -45.35 dBm	-3.294 dB -14.33 dB -31.11 dB -14.29 dB			
Range Tat Spur 1 2 3 4 5	ble Range 1 2 3 4 5	Start Freq 3.5300 GHz 3.5400 GHz 3.5500 GHz 3.5710 GHz 3.5800 GHz	3.5400 GHz 3.5490 GHz 3.5700 GHz 3.5800 GHz 3.6050 GHz	1.000 MHz 1.000 MHz 200.0 kHz 1.000 MHz 1.000 MHz	3.539160000 GHz 3.548856000 GHz 3.563620000 GHz 3.571045000 GHz 3.602900000 GHz	-46.35 dBm -45.39 dBm -1.114 dBm -45.35 dBm -46.93 dBm	-3.294 dB -14.33 dB -31.11 dB -14.29 dB -3.873 dB			
Range Tak Spur 1 2 3 4 5 6	ble Range 1 2 3 4 5 6	Start Freq 3.5300 GHz 3.5400 GHz 3.5500 GHz 3.5710 GHz 3.5800 GHz 3.6050 GHz	3.5400 GHz 3.5490 GHz 3.5700 GHz 3.5800 GHz 3.6050 GHz 3.6140 GHz	1.000 MHz 1.000 MHz 200.0 kHz 1.000 MHz 1.000 MHz 1.000 MHz	3.539160000 GHz 3.548856000 GHz 3.563620000 GHz 3.571045000 GHz 3.602900000 GHz 3.613973000 GHz	-46.35 dBm -45.39 dBm -1.114 dBm -45.35 dBm -46.93 dBm -45.07 dBm	-3.294 dB -14.33 dB -31.11 dB -14.29 dB -3.873 dB -14.01 dB			
Range Tak Spur 1 2 3 4 5 6 7	ble Range 1 2 3 4 5 6 7	Start Freq 3.5300 GHz 3.5400 GHz 3.5500 GHz 3.5710 GHz 3.5800 GHz 3.6050 GHz 3.6150 GHz	3.5400 GHz 3.5490 GHz 3.5700 GHz 3.5800 GHz 3.6050 GHz 3.6140 GHz 3.6350 GHz	1.000 MHz 1.000 MHz 200.0 kHz 1.000 MHz 1.000 MHz 1.000 MHz 200.0 kHz	3.539160000 GHz 3.548856000 GHz 3.563620000 GHz 3.571045000 GHz 3.602900000 GHz 3.613973000 GHz 3.629180000 GHz	-46.35 dBm -45.39 dBm -1.114 dBm -45.35 dBm -46.93 dBm -45.07 dBm -1.660 dBm	-3.294 dB -14.33 dB -31.11 dB -14.29 dB -3.873 dB -14.01 dB -31.66 dB			
Range Tak Spur 1 2 3 4 5 6 7 8	ble 7 Range 1 2 3 4 5 6 7 8	Start Freq 3.5300 GHz 3.5400 GHz 3.5500 GHz 3.5710 GHz 3.5800 GHz 3.6050 GHz 3.6150 GHz 3.6360 GHz	3.5400 GHz 3.5490 GHz 3.5700 GHz 3.6050 GHz 3.6050 GHz 3.6140 GHz 3.6350 GHz 3.6450 GHz	1.000 MHz 1.000 MHz 200.0 kHz 1.000 MHz 1.000 MHz 1.000 MHz 200.0 kHz 1.000 MHz	3.539160000 GHz 3.548856000 GHz 3.571045000 GHz 3.602900000 GHz 3.613973000 GHz 3.629180000 GHz 3.636000000 GHz	46.35 dBm 45.39 dBm -1.114 dBm 45.35 dBm -46.93 dBm -45.07 dBm -1.660 dBm -44.17 dBm	-3.294 dB -14.33 dB -31.11 dB -14.29 dB -34.01 dB -31.66 dB -31.66 dB -13.11 dB			
Range Tat Spur 1 2 3 4 5 6 7 8 9	Range 1 2 3 4 5 6 7 8 9	Start Freq 3.5300 GHz 3.5400 GHz 3.5500 GHz 3.5710 GHz 3.6050 GHz 3.6050 GHz 3.6150 GHz 3.6360 GHz 3.6450 GHz	3.5400 GHz 3.5490 GHz 3.5700 GHz 3.6050 GHz 3.6140 GHz 3.6350 GHz 3.6450 GHz 3.6700 GHz	1.000 MHz 1.000 MHz 200.0 kHz 1.000 MHz 1.000 MHz 1.000 MHz 200.0 kHz 1.000 MHz 1.000 MHz	3.539160000 GHz 3.548856000 GHz 3.563620000 GHz 3.603900000 GHz 3.613973000 GHz 3.629180000 GHz 3.636000000 GHz 3.6362850000 GHz	46.35 dBm 45.39 dBm -1.114 dBm 45.35 dBm -46.93 dBm -45.07 dBm -1.660 dBm -44.17 dBm -46.28 dBm	-3.294 dB -14.33 dB -31.11 dB -14.29 dB -3.873 dB -14.01 dB -31.66 dB -13.11 dB -3.222 dB			
Range Tat Spur 1 2 3 4 5 6 7 8 9 10	bie 7 Range 1 2 3 4 5 5 5 7 7 8 9 10	Start Freq 3.5300 GHz 3.5400 GHz 3.5500 GHz 3.5500 GHz 3.6050 GHz 3.6150 GHz 3.6360 GHz 3.6360 GHz 3.6450 GHz 3.6450 GHz	3.5400 GHz 3.5490 GHz 3.5700 GHz 3.5800 GHz 3.6050 GHz 3.6140 GHz 3.6350 GHz 3.6450 GHz 3.6700 GHz	1.000 MHz 1.000 MHz 200.0 KHz 1.000 MHz 1.000 MHz 200.0 KHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz	3.539160000 GHz 3.548856000 GHz 3.571045000 GHz 3.571045000 GHz 3.602900000 GHz 3.613973000 GHz 3.638000000 GHz 3.652850000 GHz 3.652850000 GHz 3.652890000 GHz	-46.35 dBm -45.39 dBm -1.114 dBm -45.35 dBm -46.93 dBm -45.07 dBm -1.660 dBm -44.17 dBm -46.28 dBm -45.42 dBm	-3.294 dB -14.33 dB -3.111 dB -14.29 dB -3.873 dB -14.01 dB -31.66 dB -3.12 dB -3.222 dB -3.222 dB -14.36 dB			
Range Tat Spur 1 2 3 4 5 6 7 7 8 9 10 11	ble 7 Range 1 2 3 4 5 6 7 8 9 10 11	Start Freq 3.5300 GHz 3.5400 GHz 3.5500 GHz 3.5710 GHz 3.6050 GHz 3.6050 GHz 3.6450 GHz 3.6450 GHz 3.6700 GHz 3.6700 GHz	3.5400 GHz 3.5490 GHz 3.5700 GHz 3.6050 GHz 3.6140 GHz 3.6350 GHz 3.6450 GHz 3.6700 GHz 3.6700 GHz 3.7000 GHz	1.000 MHz 1.000 MHz 200.0 KHz 1.000 MHz 1.000 MHz 200.0 KHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 200.0 KHz	3.539160000 GHz 3.548856000 GHz 3.571045000 GHz 3.571045000 GHz 3.602900000 GHz 3.613973000 GHz 3.6391800000 GHz 3.652850000 GHz 3.652850000 GHz 3.678991000 GHz 3.6789200000 GHz	46.35 dBm 45.39 dBm 45.35 dBm 45.35 dBm 46.93 dBm 45.07 dBm 4.17 dBm 44.17 dBm 45.42 dBm 45.42 dBm -2.350 dBm	-3.294 dB -14.33 dB -31.11 dB -14.29 dB -3.873 dB -14.01 dB -31.66 dB -13.11 dB -3.222 dB -14.36 dB -32.35 dB			
Range Tat Spur 1 2 3 4 5 6 7 8 9 10	bie Range 2 3 4 5 6 7 8 9 9 10 11	Start Freq 3.5300 GHz 3.5400 GHz 3.5500 GHz 3.5500 GHz 3.6050 GHz 3.6050 GHz 3.6450 GHz 3.6450 GHz 3.6450 GHz 3.6400 GHz 3.6000 GHz 3.6000 GHz	3.5400 GHz 3.5490 GHz 3.5700 GHz 3.6000 GHz 3.6650 GHz 3.6140 GHz 3.6450 GHz 3.6450 GHz 3.6700 GHz 3.7000 GHz 3.7100 GHz	1.000 MHz 1.000 MHz 200.0 kHz 1.000 MHz 1.000 MHz 200.0 kHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 200.0 kHz 1.000 MHz	3.539160000 GHz 3.548856000 GHz 3.571045000 GHz 3.571045000 GHz 3.602900000 GHz 3.613973000 GHz 3.638000000 GHz 3.652850000 GHz 3.652850000 GHz 3.652890000 GHz	-46.35 dBm -45.39 dBm -1.114 dBm -45.35 dBm -45.35 dBm -46.93 dBm -45.07 dBm -1.660 dBm -46.12 dBm -45.42 dBm -2.350 dBm -45.56 dBm	-3.294 dB -14.33 dB -3.111 dB -14.29 dB -3.873 dB -14.01 dB -31.66 dB -3.12 dB -3.222 dB -3.222 dB -14.36 dB			

Plot 8-37. Channel Edge Emission Plot (NR_3NC_40M+20M+20M_QPSK- Mid Channel, Port 4)

Plot 8-36. Channel Edge Emission Plot (RBW 1% of fundamental for measurements within 1 MHz band power)

(NR_3NC_20M+20M+20M_QPSK- Mid Channel, Port 4)

Plot 8-38. Channel Edge Emission Plot (RBW 1% of fundamental for measurements within 1 MHz band power) (NR_3NC_40M+20M+20M_QPSK- Mid Channel, Port 4)

FCC ID: A3LMT6402-48A	MEASUREMENT REPORT (Class III Permissive Change)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 51 of 79
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 51 of 78
© 2024 Element	•		ES-QP-16-09 Rev.05

8.7 Spurious and Harmonic Emissions at Antenna Terminal

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Procedure Used

ANSI C63.26 - Section 5.2.3.4. KDB 971168 D01 v03r01 - Section 6 KDB 662911 D01 v02r01 - Section E)3)

Test Setting

- 1. Start frequency was set to 30 MHz and stop frequency was set to at least 10 * the fundamental frequency excluding the frequency range of the Channel Edge measurement.
- 2. RBW: 1 MHz
- 3. VBW \geq 3 x RBW
- 4. Detector = RMS
- 5. Number of sweep points $\ge 2 \times \text{Span/RBW}$
- 6. Trace mode = trace average
- 7. Sweep time = auto couple
- 8. The trace was allowed to stabilize

Limit

§ 96.41 (e)

• Any emission below 3530 MHz and above 3720 MHz \leq -40 dBm/MHz

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

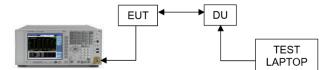


Figure 8-6. Test Instrument & Measurement Setup

FCC ID: A3LMT6402-48A	MEASUREMENT REPORT (Class III Permissive Change)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 52 of 70
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 52 of 78
© 2024 Element	•		ES-QP-16-09 Rev.05

Test Notes

- 1. All modes of operation were investigated and the worst configuration result plots are reported.
- 2. When detected Emission, this value has been applied as reference offset in the spectrum analyzer. Duty cycle correction factor was added to spectrum analyzer.
- 3. The limits were adjusted by a factor of [-10*log (n)] dB to account for the device operation as a n port MIMO transmitter, as per FCC KDB 622911. MIMO Factor calculation as below:
- 4. When the channel edge detect with a margin of under 1dB to Limit, That used to integration method was performed using the spectrum analyzer's band power functions. The spectrum analyzer marker was placed at one-half of the RBW away from the band edge. The integration value was set to a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter.

Eroguopov rongo	Basic Limit MIMO Factor (dB)		Adjusted limit (dBm)			
Frequency range	(dBm/MHz)	64T	64T			
below 3530 MHz and above 3720 MHz	-40.00	18.06	- 58.06			
Note: Adjusted limit (dBm/MHz) = Basic limit (dBm/1MHz) - MIMO Factor						

FCC ID: A3LMT6402-48A		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 50 of 70
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 53 of 78
© 2024 Element	•		ES-QP-16-09 Rev.0

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without written permission from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact critinfo@element.com.

Channel	Port	Measurement Range	Level (dBm)	Limit	Margin
Channel	FOIL	Measurement Mange	QPSK	(dBm)	(dB)
		30 MHz to 3530 MHz	-62.75	-58.06	-4.69
	1	3.72 GHz to 6.2 GHz	-62.83	-58.06	-4.77
		6.2 GHz to 18 GHz	-72.19	-58.06	-14.13
		18 GHz to 40 GHz	-64.80	-58.06	-6.74
		30 MHz to 3530 MHz	-61.88	-58.06	-3.82
	9	3.72 GHz to 6.2 GHz	-62.88	-58.06	-4.82
	3	6.2 GHz to 18 GHz	-72.36	-58.06	-14.30
Low		18 GHz to 40 GHz	-64.94	-58.06	-6.88
LOW		30 MHz to 3530 MHz	-62.76	-58.06	-4.70
	31	3.72 GHz to 6.2 GHz	-62.35	-58.06	-4.29
	51	6.2 GHz to 18 GHz	-72.45	-58.06	-14.39
		18 GHz to 40 GHz	-64.92	-58.06	-6.86
		30 MHz to 3530 MHz	-62.36	-58.06	-4.30
	36	3.72 GHz to 6.2 GHz	-62.91	-58.06	-4.85
	50	6.2 GHz to 18 GHz	-72.39	-58.06	-14.33
		18 GHz to 40 GHz	-64.90	-58.06	-6.84
		30 MHz to 3530 MHz	-63.05	-58.06	-4.99
	1	3.72 GHz to 6.2 GHz	-63.08	-58.06	-5.02
	1	6.2 GHz to 18 GHz	-72.38	-58.06	-14.32
		18 GHz to 40 GHz	-64.75	-58.06	-6.69
		30 MHz to 3530 MHz	-62.78	-58.06	-4.72
	4	3.72 GHz to 6.2 GHz	-62.63	-58.06	-4.57
	4	6.2 GHz to 18 GHz	-72.37	-58.06	-14.31
Mid		18 GHz to 40 GHz	-64.98	-58.06	-6.92
IVIIU		30 MHz to 3530 MHz	-63.30	-58.06	-5.24
	31	3.72 GHz to 6.2 GHz	-62.55	-58.06	-4.49
	51	6.2 GHz to 18 GHz	-72.48	-58.06	-14.42
		18 GHz to 40 GHz	-64.58	-58.06	-6.52
		30 MHz to 3530 MHz	-63.11	-58.06	-5.05
	43	3.72 GHz to 6.2 GHz	-62.77	-58.06	-4.71
	43	6.2 GHz to 18 GHz	-72.48	-58.06	-14.42
		18 GHz to 40 GHz	-65.05	-58.06	-6.99
		30 MHz to 3530 MHz	-63.01	-58.06	-4.95
	1	3.72 GHz to 6.2 GHz	-63.02	-58.06	-4.96
	1	6.2 GHz to 18 GHz	-72.41	-58.06	-14.35
		18 GHz to 40 GHz	-65.17	-58.06	-7.11
		30 MHz to 3530 MHz	-63.21	-58.06	-5.15
	4	3.72 GHz to 6.2 GHz	-63.13	-58.06	-5.07
	4	6.2 GHz to 18 GHz	-72.47	-58.06	-14.41
High		18 GHz to 40 GHz	-64.74	-58.06	-6.68
High		30 MHz to 3530 MHz	-63.06	-58.06	-5.00
	31	3.72 GHz to 6.2 GHz	-63.11	-58.06	-5.05
	51	6.2 GHz to 18 GHz	-72.25	-58.06	-14.19
		18 GHz to 40 GHz	-64.99	-58.06	-6.93
		30 MHz to 3530 MHz	-63.06	-58.06	-5.00
	40	3.72 GHz to 6.2 GHz	-62.88	-58.06	-4.82
	43	6.2 GHz to 18 GHz	-72.62	-58.06	-14.56
		18 GHz to 40 GHz	-64.99	-58.06	-6.93

Table 8-14. Conducted Spurious Emission Summary Data (NR_3C_20M+20M+20M)

FCC ID: A3LMT6402-48A	MEASUREMENT REPORT (Class III Permissive Change)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 54 of 79
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 54 of 78
© 2024 Element	•		ES-QP-16-09 Rev.05

Channel	Port	Measurement Range	Level (dBm) QPSK	Limit (dBm)	Margin (dB)
		20 MUz to 2520 MUz	-60.76		-2.70
1		30 MHz to 3530 MHz 3.72 GHz to 6.2 GHz	-60.76	-58.06 -58.06	-2.70
	1	6.2 GHz to 18 GHz	-62.97 -72.97	-58.06	-4.91
		18 GHz to 40 GHz	-12.97 -64.63	-58.06	-14.91
		30 MHz to 3530 MHz	-60.81	-58.06	-0.57
		3.72 GHz to 6.2 GHz	-62.84	-58.06	-2.75
	4	6.2 GHz to 18 GHz	-72.45	-58.06	-14.39
Low 4		18 GHz to 40 GHz	-64.68	-58.06	-6.62
		30 MHz to 3530 MHz	-60.03	-58.06	-0.02 -1.97
		3.72 GHz to 6.2 GHz	-62.89	-58.06	-4.83
	31	6.2 GHz to 18 GHz	-72.25	-58.06	-14.19
		18 GHz to 40 GHz	-65.00	-58.06	-6.94
		30 MHz to 3530 MHz	-60.12	-58.06	-0.94
		3.72 GHz to 6.2 GHz	-62.93	-58.06	-4.87
	43	6.2 GHz to 18 GHz	-02.95	-58.06	-4.87
		18 GHz to 40 GHz	-72.30	-58.06	-14.30
		30 MHz to 3530 MHz	-63.01	-58.06	-4.95
		3.72 GHz to 6.2 GHz	-63.19	-58.06	-5.13
	4	6.2 GHz to 18 GHz	-72.32	-58.06	-14.26
		18 GHz to 40 GHz	-64.63	-58.06	-6.57
		30 MHz to 3530 MHz	-63.19	-58.06	-5.13
		3.72 GHz to 6.2 GHz	-63.20	-58.06	-5.14
	31	6.2 GHz to 18 GHz	-72.53	-58.06	-14.47
		18 GHz to 40 GHz	-64.79	-58.06	-6.73
Mid		30 MHz to 3530 MHz	-63.45	-58.06	-5.39
		3.72 GHz to 6.2 GHz	-62.91	-58.06	-4.85
	43	6.2 GHz to 18 GHz	-72.53	-58.06	-14.47
		18 GHz to 40 GHz	-64.94	-58.06	-6.88
		30 MHz to 3530 MHz	-63.39	-58.06	-5.33
		3.72 GHz to 6.2 GHz	-62.71	-58.06	-4.65
	48	6.2 GHz to 18 GHz	-72.51	-58.06	-14.45
		18 GHz to 40 GHz	-64.72	-58.06	-6.66
		30 MHz to 3530 MHz	-63.27	-58.06	-5.21
		3.72 GHz to 6.2 GHz	-62.92	-58.06	-4.86
	1	6.2 GHz to 18 GHz	-72.37	-58.06	-14.31
		18 GHz to 40 GHz	-64.41	-58.06	-6.35
		30 MHz to 3530 MHz	-62.80	-58.06	-4.74
		3.72 GHz to 6.2 GHz	-62.86	-58.06	-4.80
	4	6.2 GHz to 18 GHz	-72.67	-58.06	-14.61
		18 GHz to 40 GHz	-64.72	-58.06	-6.66
High		30 MHz to 3530 MHz	-63.20	-58.06	-5.14
		3.72 GHz to 6.2 GHz	-63.20	-58.06	-5.14
	31	6.2 GHz to 18 GHz	-72.59	-58.06	-14.53
		18 GHz to 40 GHz	-64.49	-58.06	-6.43
		30 MHz to 3530 MHz	-63.26	-58.06	-5.20
		3.72 GHz to 6.2 GHz	-63.28	-58.06	-5.22
	43	6.2 GHz to 18 GHz	-72.87	-58.06	-14.81
		18 GHz to 40 GHz	-64.97	-58.06	-6.91

Table 8-15. Conducted Spurious Emission Summary Data (NR_3C_40M+20M+20M)

FCC ID: A3LMT6402-48A	MEASUREMENT REPORT (Class III Permissive Change)				Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege EE of 79		
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	Page 55 of 78		
© 2024 Element			ES-QP-16-09 Rev.05		

Channel	D Port	Port Measurement Range -	Level (dBm)	Limit	Margin
Channel For	FOIL		QPSK	(dBm)	(dB)
		30 MHz to 3530 MHz	-63.05	-58.06	-4.99
	1	3.72 GHz to 6.2 GHz	-63.00	-58.06	-4.94
	1	6.2 GHz to 18 GHz	-72.45	-58.06	-14.39
		18 GHz to 40 GHz	-64.50	-58.06	-6.44
		30 MHz to 3530 MHz	-63.10	-58.06	-5.04
	4	3.72 GHz to 6.2 GHz	-63.18	-58.06	-5.12
	4	6.2 GHz to 18 GHz	-72.32	-58.06	-14.26
Mid		18 GHz to 40 GHz	-64.76	-58.06	-6.70
IVIIG		30 MHz to 3530 MHz	-63.19	-58.06	-5.13
	31	3.72 GHz to 6.2 GHz	-62.75	-58.06	-4.69
	51	6.2 GHz to 18 GHz	-72.55	-58.06	-14.49
		18 GHz to 40 GHz	-65.01	-58.06	-6.95
		30 MHz to 3530 MHz	-63.10	-58.06	-5.04
	43	3.72 GHz to 6.2 GHz	-63.02	-58.06	-4.96
	40	6.2 GHz to 18 GHz	-72.28	-58.06	-14.22
		18 GHz to 40 GHz	-64.12	-58.06	-6.06

Table 8-16. Conducted Spurious Emission Summary Data (NR_3NC_20M+20M+20M)

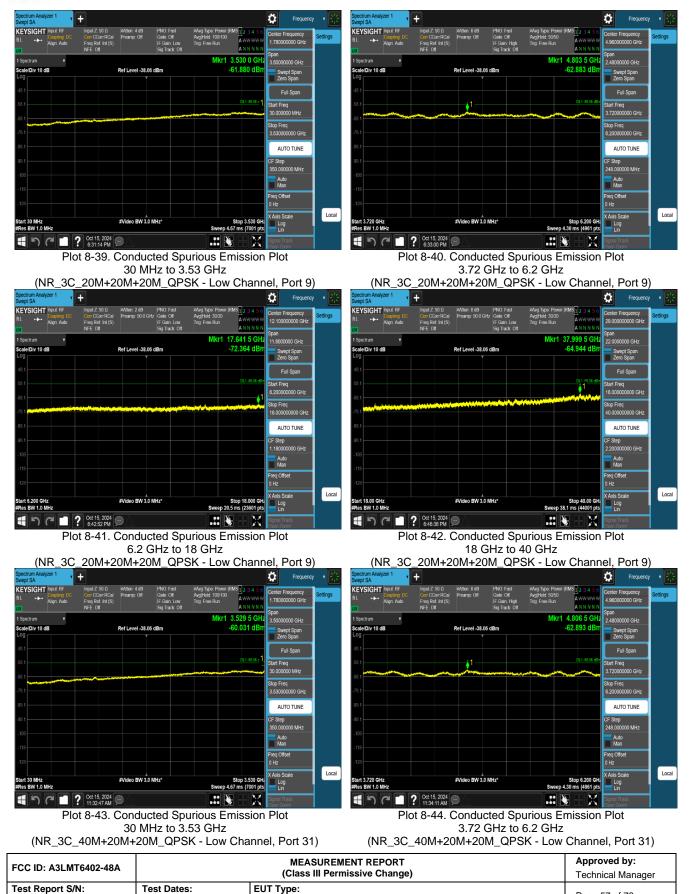

Channel	Port	Measurement Range	Level (dBm) QPSK	Limit (dBm)	Margin (dB)
		30 MHz to 3530 MHz	-63.20	-58.06	-5.14
	4	3.72 GHz to 6.2 GHz	-63.07	-58.06	-5.01
	4	6.2 GHz to 18 GHz	-72.40	-58.06	-14.34
		18 GHz to 40 GHz	-64.82	-58.06	-6.76
		30 MHz to 3530 MHz	-62.87	-58.06	-4.81
	31	3.72 GHz to 6.2 GHz	-62.87	-58.06	-4.81
	31	6.2 GHz to 18 GHz	-72.45	-58.06	-14.39
Mid		18 GHz to 40 GHz	-65.05	-58.06	-6.99
Mid		30 MHz to 3530 MHz	-62.91	-58.06	-4.85
	43	3.72 GHz to 6.2 GHz	-62.78	-58.06	-4.72
	43	6.2 GHz to 18 GHz	-72.51	-58.06	-14.45
		18 GHz to 40 GHz	-65.05	-58.06	-6.99
		30 MHz to 3530 MHz	-62.47	-58.06	-4.41
	48	3.72 GHz to 6.2 GHz	-62.83	-58.06	-4.77
	48	6.2 GHz to 18 GHz	-71.92	-58.06	-13.86
		18 GHz to 40 GHz	-64.85	-58.06	-6.79

Table 8-17. Conducted Spurious Emission Summary Data (NR_3C_40M+20M+20M)

FCC ID: A3LMT6402-48A	MEASUREMENT REPORT (Class III Permissive Change)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 56 of 78
8K24092501-00.A3L	10/01/2024 - 10/18/2024	MMU (MT6402)	
© 2024 Element			ES-QP-16-09 Rev.05

8K24092501-00.A3L

© 2024 Element ES-QP-16-09 Rev.05 Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without written permission from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

10/01/2024 - 10/18/2024 MMU (MT6402)

Page 57 of 78