Test Report 2023-092

Version C Issued 4 June 2024

Project GCL-0296 Model Identifier: A03996 Primary Test Standard(s) CFR 47, FCC Part 15.247 RSS-247 Issue 3

Garmin Compliance Lab

Garmin International 1200 E 151st Street Olathe Kansas 66062 USA

Client-supplied Information FCC ID: IPH-03996 IC ID: 1792A-03996

See section 6 of this report regarding the presence or absence of accreditation logos or marks on this cover page.

1. Summary

The equipment or product described in section 5 of this report was tested at the Garmin Compliance Lab according to standards listed in section 6. This report focuses on the 2.4 GHz transceiver(s). The WiFi and BLE radios are treated as DTS devices in this report. The ANT radio is addressed in separate report but within this report may include data for the ANT transmitter. The results are as follows.

Parameter	Description	Key Performance Values	Result	Data starts at page
Hopping Channels	The radio manages it use of channels appropriately. [15.247(a)(1); RSS-247 at 5.1]	N/A	N/A	N/A
DTS Bandwidth	The nature of the radio signal is broadband, being at least 500 kHz wide. [15.247(a)(2); RSS-247 at 5.2(a)]	The 6dB bandwidth of the DTS radios is 706.0 kHz or greater.	PASS	12
Other Bandwidths	Regulatory agencies also require the reporting of signal bandwidths using alternate processes. [2.202; RSS-GEN at 6.7]	These values are reported for all radios but have no actual performance requirements.	Reported	16
Transmit Power	The peak transmit power presented to the antenna is no greater that 1 Watt or 30 dBm. The effective radiated power is limited to 4 Watts or 36 dBm EIRP. [15.247(b); RSS-247 at 5.4(d)]	The maximum transmit power for all radios is 17.14 dBm or 51.76 mW.	PASS	22
Antenna Gain	The radio should not focus too much energy in any direction. Unless additional rules are applied, the antenna gain is no greater than 6 dBi. [15.247(b)(4) and (c)]	NT. The client stated that the antenna gain was 3.22 dBi for BLE and ANT radios and 2.36 dBi for WiFi.	NT	NT
Unwanted Emissions (Conducted Spurious)	The radio should not provide too much radio energy to the antenna at frequencies beyond its intended frequency band. [15.247(d); RSS-247 at 5.5]	Emissions outside the band must be reduced at least 20 dB from in- band levels. The measured reduction was at least 51.70 dB for all radios.	PASS	26
Restricted Bands	The radio must not emit in certain designated restricted frequency bands above a set of limit values. [15.247(d) and 15.205; RSS- 247 at 3.3]	Emissions in the restricted bands were at least 1.84 dB below the applicable limits for all radios.	PASS	34
Power Spectral Density	The radio must not focus too much radio energy in a narrow frequency band. [15.247(e); RSS-247 at 5.2(b)]	The limit is 8 dBm in a 3 kHz band. The strongest emission level for any DTS radio was 6.36 dBm in a band of at least 3 kHz.	PASS	45

Page 2 of 75 GCL Test Report 2023-092		Version C		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

Hybrid Systems	A radio that is both frequency hopping and digitally modulated should satisfy a combination of system rules. [15.247(f); RSS-247 at 5.3]	N/A. The radios described in this report are not subjected to the Hybrid System rules.	N/A	N/A
Frequency Hopping Rules	Frequency hopping systems have additional functional requirements. [15.247(g) and (h); RSS-247 at 5.1]	The frequency hopping rules of 15.247(g) and (h) are not testable requirements.	NT	NT
Radio Safety	The radio emissions must meet public health & safety guidelines related to human exposure. [15.247(i) and 1.1307; RSS- Gen at 3.4]	NT. Client will report radio energy safety results separately.	NT	ΝΤ
Frequency Stability	The radio tuning must be robust over a range of temperature and supply voltage conditions. [RSS-Gen at 6.11]	Radio emissions for all radios remained within the allowed radio band under all environmental conditions tested.	PASS	51
Unintended Radiated Emissions	Radio emissions that this device may generate via its structures and connected cables that are not necessary for its operation and that may affect other radio communication	5.5 dB of margin for all radios. Appropriate for use in homes, offices, and industrial facilities. [Class B]	PASS	57
AC Mains Conducted Emissions	Radio emissions that this device may generate via its ac power network connections that are not necessary for its operation and that may affect radio communication.	5.13 dB of margin for all radios. Appropriate for use in homes, offices, and industrial facilities. [Class B]	PASS	69

NT (Not Tested) means the requirement may or may not be applicable, but the relevant

measurement or test was not performed as part of this test project.

N/A (Not Applicable) means the lab judged that the test sample is exempt from the requirement.

Table 1: Summary of results

Report Organization

For convenience of the reader, this report is organized as follows:

- 1. Summary
- 2. Test Background
- 3. Report History and Approval
- 4. Test Sample Modifications and Special Conditions
- 5. Description of Equipment Tested
- 6. Test Standards Applied
- 7. Measurement Instrumentation Uncertainty
- 8. Selected Examples of Calculations
- 9. Environmental Conditions During Test
- 10. Immunity Performance Criteria

Annex: Test records are provided for each type of test, following the order and page numbering stated in the summary table. Concluding notes appear on the final page of this report.

Due to confidentiality, certain material (such as test setup photographs) has been removed from this report and placed in GCL Test Report 2023-094. That report is treated as a part of this document by way of this reference.

Page 3 of 75	Version C			
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

2. Test Background

2.1 The test lab

The testing reported here was performed at the Garmin Compliance Lab, an organization within Garmin International, located at 1200 E 151st St, Olathe Kansas, USA. The contact telephone number is +1.913.397.8200.

2.2 The client

The testing was performed on behalf of the Garmin design group, a separate organization located at 1200 E 151_{st} St, Olathe Kansas, USA. Witnesses from the business group included: None.

2.3 Other information

Test Sample received:	22 May 2023
Test Start Date:	21 Aug 2023
Test End Date:	08 Dec 2023

The data in this test report apply only to the specific samples tested. Upon receipt all test samples were believed to be properly assembled and ready for testing.

3. Report History and Approval

This report was written by Majid Farah and initially issued on 12 Jan 2024 as Version A. Majid Farah created version B on 24 May 2024 updating the version of RSS-247 and the product description. This report was written by Majid Farah and issued on 4 June 2024 as Version C with update on section 2.

Report Technical Review:

David Arnett Technical Lead EMC Engineer

Report Approval:

Shruti Kohli Manager Test and Measurement (EMC, Reliability and Calibration)

4. Test Sample Modifications and Special Conditions

The following special conditions or usage attributes were judged during test to be necessary to achieve compliance with one or more of the standards listed in section 6 of this report: None

The following modifications to the test sample(s) were made, and are judged necessary to achieve compliance with one or more of the standards listed in section 6 of this report:

Modification 1: Firmware version changed from V0.78 to V7.78

Detailed Description: A Software upgrade applied to address required compliance test modes and to develop a GUI application (S1 compliance test tool) to be used by the compliance test engineers. Date applied: 9/18/2023

Page 4 of 75	Version C			
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

Reason for this modification: The new software provides access to required modes/radio channels of EUT when it is using during various compliance tests which may need EUT to be connected to a companion device.

The following tests were performed without this modification being present, and the presence or absence of the modification is judged by the lab and client to have no significant effect on these specific tests: Transmit Power Modification 2: Firmware version changed from V7.78 to V7.79 Detailed Description: Power adjusted to a lower level for IEEE 802.11 b mode only Date applied: 12/08/23

Reason for this modification: Measured power spectral density for IEEE 802.11 b mode was over the ETSI EN 300 328 limit.

The following tests were performed without this modification being present, and the presence or absence of the modification is judged by the lab and client to have no significant effect on the compliance results of these specific tests: RF Bandwidth, Power Spectral Density, Voltage & Temperature stability, Rx spurious emissions, or any tests related to other radio services other than IEEE 802.11 b.

Page 5 of 75	Version C			
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

5. Description of the Equipment Tested

5.1 Unique Identification	
Product Model	A03996
Serial Numbers Tested	443220641, 443220748

This product tested is a Transceiver/AP for multiple types of diving purposes.

The client affirmed that the test samples will be representative of production in all relevant aspects.

5 Vdc 2A, Internal battery 3.7 Vdc
USB
IEEE 802.11 b/g/n, Bluetooth Low Energy, ANT
GPS L1, GLONASS
Subwave
Data collection and communication
Portable in multiple orientations or on floor
2.484 GHz
V0.78, V7.78, V7.79 (See section 4)

5.3 Operating modes

During test, the EUT was operated in one or more of the following modes.

- Mode 1: M1 (BleT). Bluetooth Low Energy radio transmitting consistently on a selected channel at 1 Mbps or 2 Mbps
- Mode 2: M2 (BleL). Bluetooth Low Energy radio is paired to a companion device, transmitting and receiving data on various channels in accordance with the protocol, and maintaining the paired relationship.

Mode 3: M3 (AntT). ANT radio transmitting consistently on a selected channel.

- Mode 4: M4 (AntL). ANT radio is paired to a companion device, transmitting and receiving data in accordance with the protocol, and maintaining the paired relationship.
- Mode 6: M6 (Gnss). The Global Navigation Satellite System receiver is monitoring the GNSS bands, attempting to detect a constellation and determine location. Unless otherwise noted, the EUT was provided simulated GNSS signals representing one of more constellation types. In addition, the EUT may have been reporting signal levels and satellite data to an attached computer to monitor link health.

Mode 7: M7 (All Tx off). This means all radio transmitters turned off.

- Mode 8: M8 (WifiT). The IEEE 802.11 b/g/n radio was transmitting consistently on a selected channel, with a specified modulation type, and data rate.
- Mode 9: M9 (WifiL). The IEEE 802.11 b/g/n radio is paired to a companion device, transmitting and receiving data on a selected channel in accordance with the protocol, and maintaining the paired relationship.

Mode 12: M12 (All Tx on). This means the radio was tested in modes M1, M3, M8 and M14 if applicable.

- Mode 13: M13 (All Rx on). This means the radio was tested in Receiver mode only if applicable.
- Mode 14: M14 (Subwave L). The EUT was linked to a companion device thru Subwave.

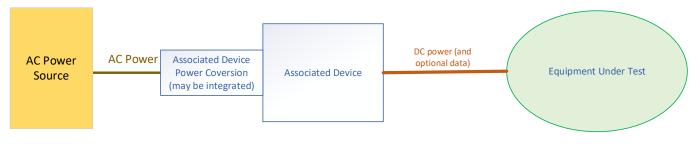
Mode 15: M15 (Normal). The EUT was working in normal operational mode with charging cable attached or not.

Mode 16: M16 (WifiSub). The EUT was working in normal operational mode and linked or connected to companion devices thru Subwave and IEEE 802.11 b/g/n radio.

Page 6 of 75 GCL Test Report 2023-092		Version C		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

5.4 EUT Arrangement

During test, the EUT components and associated support equipment were selected including the following arrangement sets. Associated support equipment cand be a laptop or a power adaptor.


Arrangement 1: A1 (Standalone). The test sample operates from its battery and no external physical connections. No block diagram is needed for this arrangement.

Arrangement 2: A2 (laptop). The test sample is attached to a laptop that provides dc power to the sample over a cable may it used or not used for data transfer.

Arrangement 3: A3 (GNSS). The test sample is attached to a laptop that provides dc power to the sample over a cable. The laptop using a software to collect received data from the test sample.

Arrangement 4: A4 (PwrSupply). The test sample is attached to a variable dc power supply over a cable.

Arrangement 5: A5 (PwrA). The test sample is attached to a dc power adaptor with USB A port over a cable.

This interconnect drawing is not to scale. It does not indicate the placement of devices.

Figure 1: Block diagram of equipment for arrangements A2, A3, A4, A5

5.5 Associated Equipment (AE) used

Description	Manufacturer	Model	Serial Number
Laptop Computer	Dell	Latitude 5410	5VSPFB3
Laptop Power Supply	Dell	HA65NM191	None
AC/DC Power adaptor	Phihong technology	PSAF10R-050Q	P183100844A1
ANT companion device	Garmin	T1	28811
Subwave companion device	Garmin	T1	10162
nRF52840 USB dongle	Nordic	400250	PCA10059

 Table 2: List of associated equipment that may have been used during test

5.6 Cables used

Description	From	То	Length	EMC Treatment
USB Clip	Power and/or Data source	EUT	114 cm	None

Table 3: List of cables that may have been used during test

Page 7 of 75	GCL Test Report 2023-092	Version C	
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.			
Garmin			

6 Test Standards Applied

6.1. Accredited Standards

The following test or measurement standards were applied and are within the scope of the lab's accreditation. All results in this report that cite these standards are presented as Accredited results consistent with ISO/IEC 17025.

AS/NZS 4268: 2017 CFR 47, FCC Part 15.247 ANSI C63.10: 2013 and ANSI C63.10: 2020 RSS-GEN Issue 5 Amd 2 RSS-247 Issue 3

6.2. Non-accredited Standards

The following test or measurement standards were applied and are either outside the scope of the lab's accreditation, or were performed in such a way that results are not presented as being fully accredited. None.

6.3 Variances

The following variances were applied to standards cited in this section.

Where different test standards cover the same test parameter or phenomenon, and the standards have compatible differences, the stricter of the requirements is typically applied. For example, a consolidated limit may be applied to emission tests selecting the strictest of the limits at each frequency. Likewise, if one standard requires a vertical antenna sweep with boresighting and another does not, swept motion with boresighting will typically be used as it is the more stringent requirement.

6.4 Laboratory Accreditation

The Garmin Compliance Lab, an organization within Garmin International, is registered with the US Federal Communication Commission as US1311. The lab is recognized by the Canada Department of Innovation, Science, and Economic Development (ISED) under CAB identifier US0233.

The Garmin Compliance Lab, an organization within Garmin International, is accredited by A2LA, Certificate No. 6162.01. The presence of the A2LA logo on the cover of this report indicates this is an accredited ISO/IEC 17025 test report. If the logo is absent, this report is not issued as an accredited report. Other marks and symbols adjacent to the A2LA logo are accreditation co-operations of which A2LA is a member under a mutual recognition agreement, and to which the Garmin Compliance Lab has been sublicensed.

Page 8 of 75	Version C			
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

7 Measurement Instrumentation Uncertainty

The lab has analyzed the sources of measurement instrumentation uncertainty. The analysis concludes that the actual measurement values cited in this report are accurate within the U_{LAB} intervals shown below with approximately 95% statistical confidence. Where the report shows a judgment that a test sample passes a test against a published limit based on these measured values, that judgment has a statistical confidence of 97.5% or greater. Measurement Instrumentation Uncertainty is one component of over-all measurement uncertainty, and other uncertainty components are not considered as part of this analysis.

The primary benchmark for measurement instrumentation uncertainty (MIU) in an electromagnetic compatibility (EMC) test lab is the set of U_{CISPR} values published in CISPR 16-4-2. In all cases where a U_{CISPR} value is published by CISPR, the analysis shows that U_{LAB} – this lab's estimated MIU – is better than the U_{CISPR} benchmark.

The secondary benchmark for MIU in an EMC lab performing radio transceiver tests is a set of uncertainty limit values published in various ETSI standards. In this report, U_{ETSI} is the most restrictive of the values found in the ETSI EN standards listed in section 5 of this report. The analysis principles are described in the ETSI TR documents listed there. In most cases U_{LAB} is better than the U_{ETSI} benchmark. Where U_{LAB} exceeds the U_{ETSI} benchmark cited here, that entry is preceded by an asterisk. When required by the ETSI EN standards, excess uncertainty will be added to the measurand before comparison to a limit. In an individual test report, staff may reevaluate that excess uncertainty based on the uncertainty of the method used and the uncertainty limits of the actual ETSI EN standard being applied, and the revised uncertainty values will be shown in the test report.

Some measurement uncertainties analyzed and reported here are not addressed in CISPR 16-4-2 or the ETSI standards, as indicated by the entry 'None.'

Test Type		U _{LAB}		UETSI
Conducted DC voltage		0.09% + 2 x LSDPV	None	1%
Conducted AC voltage be	low 500 Hz	1.0% + 3 x LSDPV	None	2%
Conducted Emissions, Ma	ains Voltage	0.10% + 10 mV	None	None
Conducted Emissions, Mains Current		0.10% + 3 mA	None	None
Conducted Emissions, Ma	ains Power	0.15% + 100 mW	None	None
Conducted Emissions, Po	wer Mains, 9 kHz to 150 kHz	1.49 dB	3.8 dB	None
Conducted Emissions, Po	wer Mains, 150 kHz to 30 MHz	1.40 dB	3.4 dB	None
Conducted Emissions, Ca	at 6 LCL, 150 kHz to 30 MHz	2.80dB	5 dB	None
Conducted Emissions, Ca	at 5 LCL, 150 kHz to 30 MHz	3.21 dB	5 dB	None
Conducted Emissions, Ca	at 3 LCL, 150 kHz to 30 MHz	4.24 dB	5 dB	None
Radiated Emissions, belo	w 30 MHz	0.88 dB	None	6 dB
Radiated Emissions, 30 M	1Hz to 1000 MHz	2.77 dB	6.3 dB	6 dB
Radiated Emissions, 1 GH	Iz to 18 GHz	2.60 dB	5.2 & 5.5 dB	6 dB
Radiated Emissions, 18 G	Hz to 26.5 GHz	2.73 dB	None	6 dB
*Radio Signal Frequency	Accuracy	*1.55 x 10^-7	None	1.0 x 10^-7
Radio Signal Occupied Ba	andwidth	0.95%	None	5%
Radio Power or Power Sp	ectral Density	0.98 dB	None	1 dB
Temperature	·	0.38 °C	None	1 °C
Barometric Pressure		0.38 kPA	None	None
Relative Humidity		2.85% RH	None	±5% RH
Signal Timing	The greater of these three	0.63 usec	None	None
0 0	C C	0.01% of value		
		0.5 x LSDPV		

Note: LSDPV stands for the Least Significant Digit Place Value reported. In the value 1470 msec, the least significant digit is the 7. It has a 10 msec place value. The LSDPV is thus 10 msec and the maximum error due to roundoff would be 5 msec. If the time value were reported as 1470 msec, the underscore indicates that the 0 is a significant figure and the error due to roundoff would be 0.5 msec. All digits provided to the right of a decimal point radix are significant.

Page 9 of 75	GCL Test Report 2023-092	Version C		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

8 Selected Example Calculations

Certain regulators require samples of the calculations that lead from the raw measurement to the final result for AC Mains conducted and unintended radiated emissions. The assumption is that the lab performs raw measurements, then adds, subtracts, multiplies, or divides based on transducer factors, amplifier gains, and losses in the signal transmission path. In this lab, our CISPR 16 Receiver does not work that way. The calibration factors and losses and gains are provided to the receiver as detailed data files. These factors are applied in the RF measurement path prior to the detector. But as a step in the lab measurement process, staff frequently verify that these factors are applied correctly. They make a measurement with the factors applied inside the receiver, then they disable the factors and remeasure the result manually adding in the various relevant factors.

The transmission loss is measured including the combined losses and gains of preamplifiers, cables, and any band-selective filters. In many cases above 1 GHz it is a negative value, indicating that the preamplifier gain is greater than these other losses.

Here are examples of these calculations. The data in these examples was not taken as part of this project:

<u>8.1 AC Mains conducted emissions at 22 MHz</u> (Raw measurement) + (AMN factor) + (transmission loss) = Result

(7.145 dBuV) + (9.812 dB) + (0.216 dB) = 17.173 dBuV

<u>8.2 Radiated Emissions at 630 MHz</u> (Raw measurement) + (Antenna factor) + (transmission loss) = Result

(2.25 dBuV) + (27.80 dB/m) + (2.89 dB) = 32.94 dBuV/m

<u>8.3 Radiated Emissions at 2.7 GHz</u> (Raw measurement) + (Antenna factor) + (transmission loss) = Result

(43.72 dBuV) + (32.22 dB/m) + (-36.09 dB) = 39.85 dBuV/m

9 Environmental Conditions During Test

Environmental conditions in the test lab were monitored during the test period. Temperature and humidity are controlled by an air handling system. As information to the reader, the conditions were observed at the values or within the ranges noted below. For any tests where environmental conditions are critical to test results and require further constraints or details, the test records in the annex may provide more specific information.

Temperature: Relative Humidity: Barometric Pressure 20.5 to 24.8 °C 19.9% to 55.7% (non-condensing) 96.3 to 99.5 kPa

Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
Barometer	Traceable	6453	221702700	3-Aug-2022	1-Aug-2024
T I I I I I I I I I I					

 Table 4: Environmental monitoring device

Page 10 of 75	Version C			
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

10 Immunity Performance Criteria

If this report includes immunity tests then results have been categorized as Performance Criteria A, B, C, or D. The standards that the lab applied will define the details for A, B, and C, as well as which criterion is required for each type of test. They will also define the electrical stresses that were applied during each test. In a very general sense the observed criteria noted in this report are as follows:

<u>Criterion A.</u> The stress applied did not alter product operation. This criterion is generally used for 'continuous' stresses that can be present for a long time in the places the product will be used, or that can appear often, even though they may come and go over time.

<u>Criterion B.</u> The stress applied altered product operation, but the product self-recovered so that the user would not have to try to figure out how to restore it to full operation. This criterion is generally used for 'transient' stresses that appear briefly and occasionally, but are usually not present in the places the product will be used.

<u>Criterion C.</u> The stress applied altered product operation, but the user could restore it to full operation, for example by power cycling the product. This criterion is generally used for 'transient' stresses that appear briefly and only rarely in the places the product will be used.

<u>Criterion D.</u> This is not an official criterion in the standards, because it would be a failure of the requirements. This indication in a test record means the product was affected in a way that the user might not be able to correct. The effect could include some degree of hardware damage, or it could include loss of program files or data files necessary for operation.

Repeatability is an issue in all EMC immunity work. When the product operation changes unexpectedly during a test, and the change would fail the requirements of the standard, this is an anomaly. The test operator needs to determine whether the anomaly was a result of the applied electrical stress. The investigation is done by repeating the section of the test where the anomaly occurred three times. If the same or a similar anomaly occurs in any of the three repeat trials, it is confirmed as a response to the stress. If not, the anomaly is judged unreproducible and is not considered when judging the A, B, or C observed performance. Since there is usually no ability to confirm a Criterion D anomaly, these are usually treated as Criterion D upon a single occurrence.

Tests that require Criterion B performance will be judged to Pass if criteria A or B is observed. Similarly, tests that require Criterion C performance will be judged to Pass if criteria A, B, or C is observed.

ANNEX

The remainder of this report is an Annex containing individual test data records. These records are the basis for the judgments summarized in section 1 of this report. The Annex ends with a set of concluding notes regarding use of the report.

Page 11 of 75 GCL Test Report 2023-092		Version C		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

Test Record Transmitter Bandwidth Tests Test ID TR02 Project GCL-0296

Test Date(s)	2-3 Nov 2023
Test Personnel	Jim Solum
Product Model	A03996
Serial Number tested	443220748
Operating Mode	M12 (All Tx on)
Arrangement	A2 (laptop)
Input Power	5Vdc
Test Standards:	FCC Part 15, ANSI C63.10, RSS-GEN (as noted in Section 6 of the report).
Radio Protocol	Bluetooth Low Energy (BLE), IEEE 802.11b/g/n
Radio Band	2400 to 2483.5 MHz
Pass/Fail Judgment:	PASS
Test record created by:	Jim Solum
Date of this record:	20 Nov 2023

Original record, Version A.

Test Equipment Used

Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
PXE Receiver 44GHz	Keysight	N9048B	MY62220146	3-Jun-2023	3-Jun-2024

Table TR02.1: List of test equipment used

Test Software Used: Keysight PXE firmware A.35.06

Test Method

During this test the transmitter output is fed directly, or through RF attenuators, to the spectrum analyzer. The analyzer has a built-in capability to identify the minimum bandwidth that contains a specified portion of the total power observed, and also identify parameters such as the edge frequencies for that bandwidth and the center frequency error. The spectrum is scanned many times so that the varied effects of modulation are appropriately assessed. Since the focus is on the relative distribution of energy across a range of frequencies, the absolute amplitudes recorded during this test are not relevant and may not include cable losses or attenuation factors.

For BLE operating at 2 Mbps, the lowest operating frequency was 2404 MHz, and the highest operating frequency was 2478 MHz. For all other non-WiFi radios reported here, the lowest operating frequency was 2402 MHz, and the highest operating frequency was 2480 MHz.

Test Setup

This block diagram shows the test equipment setup.

Page 12 of 75	GCL Test Report 2023-092	Version C		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

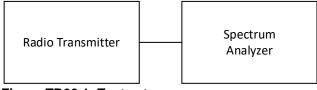
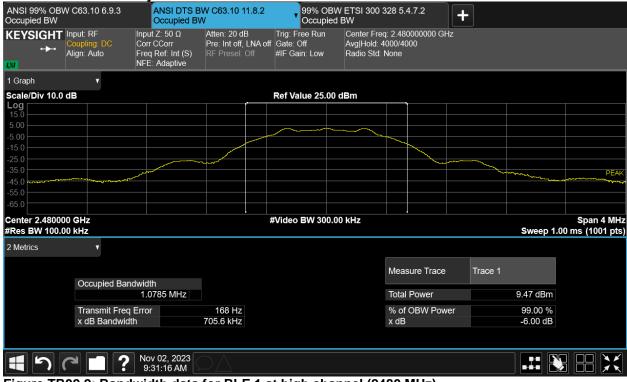


Figure TR02.1: Test setup

Test Data

The data for each test is summarized below, followed by the spectral data for each case highlighted in yellow.


The DTS Bandwidth is measured using a spectrum analyzer operating with a defined resolution bandwidth. The analysis finds the smallest continuous range of frequencies containing all emissions within 6 dB of the highest value. The requirement is that the DTS Bandwidth be greater than 500 kHz. As such the lowest measured bandwidth is worst case. All radios reported here are judged to have met this requirement.

	2402 (04)	2440	2480 (78)
BLE 1 Mbps	0.709	0.714	0.706
BLE 2 Mbps	1.178	1.177	1.179

Table TR02.2: Summary of bandwidth data in MHz for BLE modes

	Ch1	Ch6	Ch11
B1	9.083	9.082	9.084
B2	8.137	8.232	8.511
B5.5	8.489	8.378	7.921
B11	8.183	8.332	8.814
G6	15.700	15.840	16.060
G9	15.670	16.050	15.940
G12	16.030	15.790	15.990
G18	15.990	16.280	15.990
G24	16.450	16.450	16.460
G36	16.350	16.400	16.390
G48	16.140	16.420	16.400
G54	16.400	16.360	16.400
NMCS0	16.870	17.050	16.320
NMCS1	16.640	16.970	16.970
NMCS2	16.640	16.990	16.350
NMCS3	17.640	17.670	17.630
NMCS4	17.610	17.690	17.660
NMCS5	17.630	17.600	17.610
NMCS6	17.260	17.580	17.320
NMCS7	17.280	17.370	17.230

Page 13 of 75	Version C				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

Table TR02.3: Summary of bandwidth data in MHz for IEEE 802.11 WiFi modes

Figure TR02.2: Bandwidth data for BLE 1 at high channel (2480 MHz)

Figure TR02.3: Bandwidth data for 802.11b 5.5 Mbps at channel 11

Page 14 of 75	Version C				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

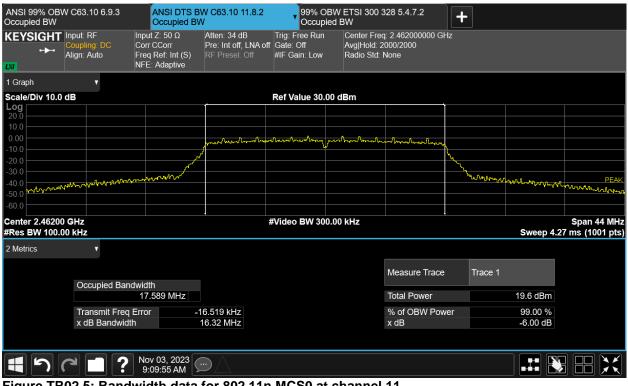


Figure TR02.5: Bandwidth data for 802.11n MCS0 at channel 11

This line is the end of the test record.

Page 15 of 75	Version C					
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.						
Garmin						

Test Record Transmitter Bandwidth Tests Test IDs TR03 Project GCL-0296

Test Date(s)	2-3 Nov 2023
Test Personnel	Jim Solum
Product Model	A03996
Serial Number tested	443220748
Operating Mode	M12 (All Tx on)
Arrangement	A2 (laptop)
Input Power	5Vdc
Test Standards:	FCC Part 2.202, FCC Part 15, ANSI C63.10, TRC-43, RSS-GEN (as noted in Section 6 of the report).
Radio Protocol	Bluetooth Low Energy (BLE), ANT, IEEE 802.11b/g/n
Radio Band	2400 to 2483.5 MHz
Pass/Fail Judgment:	Reported
Test record created by:	Jim Solum
Date of this record:	20 Nov 2023

Original record, Version A.

Test Equipment Used

Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
PXE Receiver 44GHz	Keysight	N9048B	MY62220146	3-Jun-2023	3-Jun-2024

Table TR03.1: List of test equipment used

Test Software Used: Keysight PXE firmware A.35.06

Test Method

During this test the transmitter output is fed directly, or through RF attenuators, to the spectrum analyzer. The analyzer has a built-in capability to identify the minimum bandwidth that contains a specified portion of the total power observed, and also identify parameters such as the edge frequencies for that bandwidth and the center frequency error. The spectrum is scanned many times so that the varied effects of modulation are appropriately assessed. Since the focus is on the relative distribution of energy across a range of frequencies, the absolute amplitudes recorded during this test are not relevant and may not include cable losses or attenuation factors.

For BLE operating at 2 Mbps, the lowest operating frequency was 2404 MHz, and the highest operating frequency was 2478 MHz. For all other non-WiFi radios reported here, the lowest operating frequency was 2402 MHz, and the highest operating frequency was 2480 MHz.

Test Setup

This block diagram shows the test equipment setup.

Page 16 of 75	Version C				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

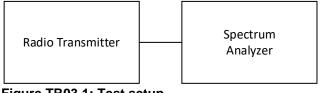


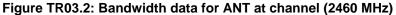
Figure TR03.1: Test setup

Test Data

The data for each test is summarized below, followed by the spectral data for each case highlighted in yellow.

The analysis threshold for the Occupied Bandwidth test was the bandwidth containing 99% of the observed power. The standards cited do not limit the Occupied Bandwidth (OBW) for all transmitter types. In such cases an OBW limit stated below may be inapplicable. Instead, the distance from the edge of the occupied band to the edge of the allocated frequency band may be more pertinent.

	2402 (04)	2440	2480 (78)
BLE 1 Mbps	1.053	1.056	1.055
BLE 2 Mbps	2.060	2.063	2.071
ANT 2460 (Ch 60)		0.988	


Table TR03.2: Summary of bandwidth data in MHz for BLE and ANT modes

	Ch1	Ch6	Ch11
B1	13.503	13.664	13.543
B2	13.512	13.628	13.529
B5.5	13.091	13.162	13.089
B11	13.320	13.389	13.315
G6	17.277	17.522	17.279
G9	17.266	17.496	17.277
G12	16.963	17.069	16.948
G18	16.927	17.080	16.963
G24	16.901	16.969	16.955
G36	16.859	16.901	16.843
G48	16.839	16.878	16.862
G54	16.857	16.879	16.854
NMCS0	18.163	18.341	18.175
NMCS1	17.937	18.065	17.967
NMCS2	17.975	18.060	17.942
NMCS3	17.959	18.028	17.974
NMCS4	17.985	17.990	17.970
NMCS5	17.904	17.911	17.910
NMCS6	17.904	17.931	17.869
NMCS7	17.881	17.914	17.881

Table TR03.3: Summary of bandwidth data in MHz for IEEE 802.11 WiFi modes

Page 17 of 75	GCL Test Report 2023-092	Version C			
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

Page 18 of 75	Version C				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

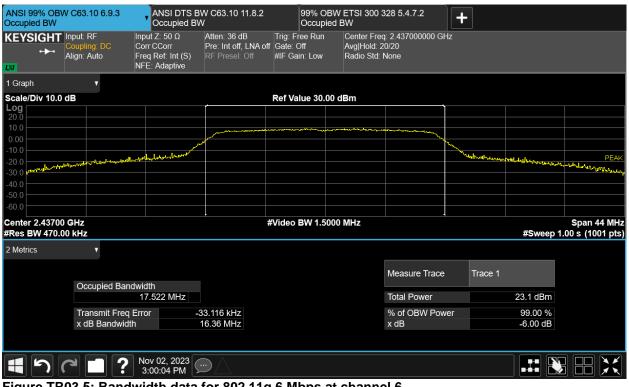


Figure TR03.5: Bandwidth data for 802.11g 6 Mbps at channel 6

Page 19 of 75	Page 19 of 75 GCL Test Report 2023-092				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

	N C63.10 6.9.3		W C62 10 11 9 2		3W ETSI 300 :	200 5 4 7 0			
Occupied BW	// 003.10 0.9.5	Occupied BV	W C63.10 11.8.2 V	Occupi		526 5.4.7.2	+		
KEYSIGHT	Input: RF Coupling: DC Align: Auto	Input Ζ: 50 Ω Corr CCorr Freq Ref: Int (S) NFE: Adaptive	Atten: 34 dB Pre: Int off, LNA off RF Presel: Off	Trig: Free Run Gate: Off #IF Gain: Low	Center Free Avg Hold: 2 Radio Std:		2		
1 Graph	•								
Scale/Div 10.0	dB			Ref Value 30.0	0 dBm				
20.0									
10.0				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		-			
0.00							Non Non		
-20.0	and a contraction of the second second second	Augustry and the stranger and a					and a formation	لمكالم وي المحمود والحمور المعادية	PEAK
-30.0									
-50.0									
-60.0									
Center 2.43700 #Res BW 470.0			#	Video BW 1.50	000 MHz			#Sweep 1	Span 44 MHz .00 s (1001 pts)
2 Metrics	•								
	Occupied Ba	ndwidth				Measure Trace	Trace 1		
	Coccipied Ba	18.341 MHz				Total Power		22.9 dBm	
	Transmit Fre	q Error	288 Hz			% of OBW Powe	۲	99.00 %	
	x dB Bandwie	dth	18.05 MHz			x dB		-8.00 dB	
15		Nov 03, 2023 9:02:45 AM							

Figure TR03.6: Bandwidth data for 802.11n MCS0 at channel 6

Necessary Bandwidth Calculations

The Necessary Bandwidth is a theoretical value based on the specifications for a communication protocol, rather than the hardware implementation and a subsequent lab measurement. The analysis methods in FCC Part 2.202 and TRC-43 are the same for Bluetooth, ANT, and IEEE 802.11b WiFi. However, they differ for IEEE 802.11g and 11n systems because the Canadian TRC-43 standard provides different analysis methods for Orthogonal Frequency Division Multiplexing systems (OFDM). The tables below will show the analysis for most of the radios signals as a combined approach, then separately analyze the results for IEEE 802.11g and n systems. The tables below may include radio protocols that are not part of the product being evaluated.

The radio modulation schemes for Ant, for the various Bluetooth protocols, and for IEEE 802.11 b WiFi are a mix of Phase Shift Key (PSK) and Quadrature Amplitude Modulation (QAM) techniques. The Necessary Bandwidth calculations use the equations from 47CFR Part 2.202(g) table section 6. We have set the variable K=1, which leaves the equation for both PSK and QAM as:

 $B_N = 2R / Log_2(S)$

where B_N is the Necessary Bandwidth, R is the bit rate, and S is the number of signaling states.

Radio Type	R Mbps	К	S	LogBase2 of (S)	BN (MHz)
ANT / ANT+	1	1	2	1	2

Table TR03.101: Necessary Bandwidth for ANT and ANT+ Radio Protocols (FCC and TRC-43)

Radio Type	Sub-type	Method	R Mbps	К	S	LogBase2 of (S)	BN (MHz)
Bluetooth	BR	GFSK	1	1	2	1	2
	EDR2	Pi/4 DPSK	2	1	4	2	2
	EDR3	8DPSK	3	1	8	3	2
BLE	1Mbps	GFSK	1	1	2	1	2
	2Mbps	DQPSK	2	1	4	2	2

Table TR03.102: Necessary Bandwidth for Bluetooth Radio Protocols (FCC and TRC-43)

Page 20 of 75	GCL Test Report 2023-092	Version C			
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin					

Radio Type	Sub-type	R Mbps	К	S	LogBase2 of (S)	BN (MHz)
802.11 b	1	1	1	2	1	2
	2	2	1	4	2	2
	5.5	5.5	1	4	2	5.5
	11	11	1	4	2	11

Table TR03.103: Necessary Bandwidth for IEEE 802.11 b Radio Protocol (FCC and TRC-43)

Radio Type	Sub-type	R Mbps	К	S	LogBase2 of (S)	BN (MHz)
802.11 g	6	6	1	2	1	12
	9	9	1	2	1	18
	12	12	1	4	2	12
	18	18	1	4	2	18
	24	24	1	16	4	12
	36	36	1	16	4	18
	48	48	1	64	6	16
	54	54	1	64	6	18
802.11 n	MCS0	7.2	1	2	1	14.4
	MCS1	14.4	1	4	2	14.4
	MCS2	21.7	1	4	2	21.7
	MCS3	28.9	1	16	4	14.5
	MCS4	43.3	1	16	4	21.7
	MCS5	57.8	1	64	6	19.3
	MCS6	65	1	64	6	21.7
	MCS7	72.2	1	64	6	24.1

Table TR03.104: Necessary Bandwidth for IEEE 802.11 g and n 20 MHz Radio Protocols (FCC)

As a note, the bit rate for IEEE 802.11 n WiFi is calculated based on the IEEE standard's short guard interval of 400 nsec. If only the long guard interval of 800 nsec were implemented, the bit rate for MCS7would decrease to 65 Mbps for a Necessary Bandwidth of 21.7 MHz.

The TRC-43 method for OFDM signals simply multiplies the number of subcarriers, K, and the subcarrier spacing, N_s . In both cases, Ns is 312.5 kHz. The count of subcarriers includes nulls. So for example, 802.11 n uses 4 pilot subcarriers, 52 data subcarriers, and one null suppressed subcarrier in the middle for 57 total subcarrier channels.

 $B_N = N_S * K$

Radio Type	Ns (MHz)	К	BN (MHz)
802.11g	0.3125	53	16.6
802.11n	0.3125	57	17.8

Table TR03.105: Necessary Bandwidth for IEEE 802.11 g and n 20 MHz Radio Protocols (TRC-43)

This line is the end of the test record.

Page 21 of 75	GCL Test Report 2023-092	Version C			
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin					

Test Record Transmitter Power Test IDs TR01 Project GCL-0296

Test Date(s) Test Personnel	21-23 Aug, 16 Nov, 05, 08 Dec 2023 Jim Solum supervised by Majid Farah
Product Model Serial Number tested	A03996 443220748
Operating Mode Arrangement Input Power	M12 (All Tx on) A2 (Laptop) 5Vdc
Test Standards:	FCC Part 15, ANSI C63.10, ETSI EN 300 328, RSS-210, RSS-247 (as noted in Section 6 of the report).
Antenna Gain	3.22 dBi, BLE and ANT as reported by the client 2.36 dBi, IEEE 802.11b/g/n as reported by the client
Radio Protocol	Bluetooth Low Energy, ANT and IEEE 802.11b/g/n
Pass/Fail Judgment:	PASS
Test record created by:	Jim Solum

Date of this record: 12 Jan 2024

Original record, Version A published 13 2024. Rev B on 12 Jan 2024 more fully explains the relevance of the firmware changes mentioned in section 4 of the report.

Test Equipment Used

Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
PXE Receiver 44GHz	Keysight	N9048B	MY62220139	30-Jan-2023	1-Feb-2024
Thermometer	Thermco	ACCD370P	220608121	26-Aug-2022	1-Sep-2024
DMM Multimeter	FLUKE	79 III	71740743	5-Apr-2023	1-Apr-2024
Programmable DC power source	Keithley	2260B-30-72 720 W	1411917	21-Apr-2023	15-Apr-2024
Thermal Chamber	Tenney	T2RC	31244	Calibration	Not Required
RF Power Sensor	Rohde&Schwarz	NRP8S	109927	7-Jul-2023	1-Jul-2024
RF Power Sensor	Rohde&Schwarz	NRP8S	109124	18-Jul-2023	15-Jul-2025

Table TR01.1: List of test equipment used

Software used: Rohde & Schwarz Power Viewer V11.3, TimePowerAnalysisSpreadsheetv10.xls, PXE Software Revision A.33.03

Test Method

The basic test standards provide options for the time evaluation test method. The following test methods were applied.

ETSI EN 300 328:	5.4.2.2.1.3
ANSI C63.10:	11.9.1.3

The parameters of duty cycle, transmitter timing, or medium utilization are typically not required for adaptive transceivers or transceivers emitting at 10 dBm EIRP or less, so those results will be omitted from the data set.

Page 22 of 75	^{22 of 75} GCL Test Report 2023-092				
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin					

Transmit Power and Timing Data

There are two separate analyses performed on the data set from the broadband fast diode power sensor. Under the ANSI method, the analysis reports the peak value of power observed, in dBm units. Under the ETSI method, each transmission burst is analyzed to find the burst with the highest average power, antenna gain is added, and the resulting unit is dBm EIRP. Both analyses will be reported, even though the report in which this record appears may not need each of these methods.

Each measurement is made conducted from the antenna port with the transmitter on a specified channel and in a selected transmission protocol. The data record length is 100 msec for the Bluetooth-like protocols and 1 second for WiFi. Where standards cited here apply harmonized test methods and different limits, the more strict limit has applied. The results are shown below.

The results are shown below. Yellow highlighted cells indicate the highest power value for each radio protocol. Bluetooth Low Energy at the 2 Mbps data has its lowest and highest channel frequencies set at 2404 MHz and 2478 MHz. The lowest and highest operating channel frequencies for Bluetooth Low Energy at the 1 Mbps and ANT are 2402 MHz and 2480 MHz. Grey 'NT' entries indicate channels or speeds that were not selected for measurement per the design of the experiment.

Frequency	(MHz)	2402	2404	2440	2460	2478	2480
BT Low Energy	1 Mbps	4.49	NT	4.29	NT	NT	4.05
BT Low Energy	2 Mbps	NT	4.48	4.30	NT	4.06	NT
ANT Ch 60		NT	NT	NT	4.00	NT	NT

Table TR01.2: BLE and ANT Transmit Power Summary in dBm with ANSI C63.10 analytical methods

Mode	Speed	1	2	3	4	5	6	7	8	9	10	11
В	1	16.83	NT	NT	NT	NT	16.88	NT	NT	NT	NT	17.03
В	2	16.78	NT	NT	NT	NT	16.90	NT	NT	NT	NT	17.03
В	5.5	16.90	NT	NT	NT	NT	17.06	NT	NT	NT	NT	17.14
В	11	16.78	NT	NT	NT	NT	16.80	NT	NT	NT	NT	16.90
G	6	13.77	NT	NT	NT	NT	16.75	NT	NT	NT	NT	14.03
G	9	13.91	NT	NT	NT	NT	16.87	NT	NT	NT	NT	14.08
G	12	13.76	NT	NT	NT	NT	16.84	NT	NT	NT	NT	14.11
G	18	13.87	NT	NT	NT	NT	16.69	NT	NT	NT	NT	14.15
G	24	13.74	NT	NT	NT	NT	14.82	NT	NT	NT	NT	13.91
G	36	12.54	NT	NT	NT	NT	13.70	NT	NT	NT	NT	12.74
G	48	12.50	NT	NT	NT	NT	12.71	NT	NT	NT	NT	12.71
G	54	12.55	NT	NT	NT	NT	12.66	NT	NT	NT	NT	12.74
Ν	MCS0	13.70	NT	NT	NT	NT	16.76	NT	NT	NT	NT	14.00
Ν	MCS1	13.76	NT	NT	NT	NT	16.62	NT	NT	NT	NT	14.04
Ν	MCS2	12.29	NT	NT	NT	NT	15.35	NT	NT	NT	NT	12.56
Ν	MCS3	12.39	NT	NT	NT	NT	13.50	NT	NT	NT	NT	12.63
Ν	MCS4	12.42	NT	NT	NT	NT	13.43	NT	NT	NT	NT	12.50
Ν	MCS5	12.11	NT	NT	NT	NT	13.27	NT	NT	NT	NT	12.34
Ν	MCS6	11.80	NT	NT	NT	NT	11.91	NT	NT	NT	NT	12.04
Ν	MCS7	11.48	NT	NT	NT	NT	11.65	NT	NT	NT	NT	11.70

Table TR01.3: WiFi Transmit Power Summary in dBm with ANSI C63.10 analytical methods

Mode	Speed	1	2	3	4	5	6	7	8	9	10	11
В	1	16.87	NT	NT	NT	NT	16.82	NT	NT	NT	NT	16.98
В	2	16.86	NT	NT	NT	NT	16.83	NT	NT	NT	NT	16.97
В	5.5	16.87	NT	NT	NT	NT	16.82	NT	NT	NT	NT	16.95
В	11	16.72	NT	NT	NT	NT	16.91	NT	NT	NT	NT	17.03

Table TR01.4: WiFi Mode B Transmit Power Summary in dBm with ANSI C63.10 analytical methods after firmware change. (See Report section 4)

Page 23 of 75	^{23 of 75} GCL Test Report 2023-092						
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.							
Garmin							

Frequency ((MHz)	2402	2404	2440	2460	2478	2480
BT Low Energy 1	1 Mbps	7.62	NT	7.44	NT	NT	7.19
BT Low Energy 2	2 Mbps	NT	7.59	7.41	NT	7.19	NT
ANT Ch 60 -		NT	NT	NT	7.22	NT	NT

Table TR01.5: BLE and ANT Transmit Power Summary in dBm EIRP with ETSI analytical methods

Mode	Speed	1	2	3	4	5	6	7	8	9	10	11
В	1	18.96	NT	NT	NT	NT	19.01	NT	NT	NT	NT	19.16
В	2	18.75	NT	NT	NT	NT	18.87	NT	NT	NT	NT	18.98
В	5.5	18.43	NT	NT	NT	NT	18.35	NT	NT	NT	NT	18.46
В	11	18.60	NT	NT	NT	NT	18.61	NT	NT	NT	NT	18.72
G	6	15.92	NT	NT	NT	NT	18.89	NT	NT	NT	NT	16.12
G	9	15.77	NT	NT	NT	NT	18.75	NT	NT	NT	NT	16.01
G	12	15.54	NT	NT	NT	NT	18.58	NT	NT	NT	NT	15.71
G	18	15.21	NT	NT	NT	NT	18.23	NT	NT	NT	NT	15.42
G	24	15.02	NT	NT	NT	NT	16.09	NT	NT	NT	NT	15.21
G	36	14.64	NT	NT	NT	NT	15.86	NT	NT	NT	NT	14.91
G	48	14.38	NT	NT	NT	NT	14.41	NT	NT	NT	NT	14.48
G	54	14.22	NT	NT	NT	NT	14.29	NT	NT	NT	NT	14.38
Ν	MCS0	15.45	NT	NT	NT	NT	18.45	NT	NT	NT	NT	15.59
Ν	MCS1	14.92	NT	NT	NT	NT	17.95	NT	NT	NT	NT	15.11
Ν	MCS2	14.57	NT	NT	NT	NT	17.65	NT	NT	NT	NT	14.82
Ν	MCS3	14.34	NT	NT	NT	NT	15.35	NT	NT	NT	NT	14.43
Ν	MCS4	13.75	NT	NT	NT	NT	14.82	NT	NT	NT	NT	13.94
Ν	MCS5	13.43	NT	NT	NT	NT	14.54	NT	NT	NT	NT	13.66
Ν	MCS6	13.27	NT	NT	NT	NT	13.40	NT	NT	NT	NT	13.51
Ν	MCS7	13.14	NT	NT	NT	NT	13.28	NT	NT	NT	NT	13.38

Table TR01.6: WiFi Transmit Power Summary in dBm EIRP with ETSI analytical methods

Mode	Speed	1	2	3	4	5	6	7	8	9	10	11
В	1	18.97	NT	NT	NT	NT	18.96	NT	NT	NT	NT	19.11
В	2	18.80	NT	NT	NT	NT	18.81	NT	NT	NT	NT	18.94
В	5.5	18.39	NT	NT	NT	NT	18.36	NT	NT	NT	NT	18.47
В	11	18.54	NT	NT	NT	NT	18.72	NT	NT	NT	NT	18.86

Table TR01.7: WiFi Mode B Transmit Power Summary in dBm EIRP with ETSI analytical methods after firmware change. (See Report section 4)

The table below shows Blue Tooth Low Energy 1 Mbps transmit (2402 MHz) power vs temperature at nominal and hot and cold temperature extremes.

Voltage	°C	Power, dBm EIRP	Limit, dBm EIRP	Result
Nominal	20	7.62	20	Pass
Hot	60	7.16	20	Pass
Cold	-20	8.70	20	Pass

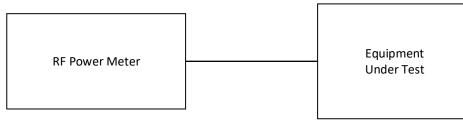
Table TR01.8: BLE 1 2402 MHz Transmit Power Summary in dBm EIRP with ETSI analytical methods

Page 24 of 75	GCL Test Report 2023-092	Version C					
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.							
Garmin							

The table below shows Mode B1 transmit (Ch 11) power vs temperature at nominal and hot and cold temperature extremes. The firmware change (see section 4) lowered transmit power, so these values were judged worst-case.

Voltage	°C	Power, dBm EIRP	Limit, dBm EIRP	Result
Nominal	20	19.16	20	Pass
Hot	60	18.72	20	Pass
Cold	-20	19.02	20	Pass

Table TR01.9: Mode B1 Ch 11 Transmit Power Summary in dBm EIRP with ETSI analytical methods before firmware change


This table is a summary of the highest power readings and limits for each type of radio.

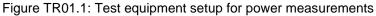

Radio	ANSI Power	Ansi Limit	ANSI Power	ETSI Power	ETSI Limit
Туре	(dBm)	(dBm)	(Watt)	(dBm EIRP)	(dBm EIRP)
BLE	5.6	21	0.0036	8.7	20
ANT	4	21	0.0110	7.22	20
WiFi b	17.14	30	0.0517	19.16	20
WiFi g	16.87	30	0.0486	18.89	20
WiFi n	16.76	30	0.0475	18.45	20

Table TR01.10: Transmit Power and Results Summary

Setup Diagram

The following block diagrams show how the EUT and test equipment is arranged for test.

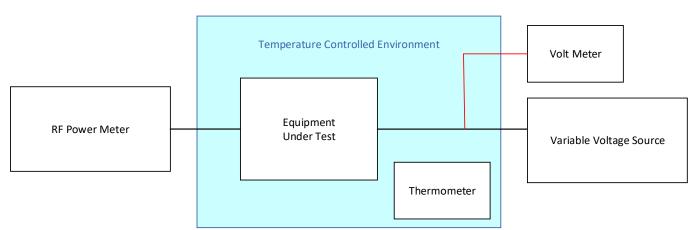


Figure TR01.2: Test equipment setup for transmit power measurements at 60°C and -20°C

This line is the end of the test record.

Page 25 of 75	ge 25 of 75 GCL Test Report 2023-092						
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.							
Garmin							

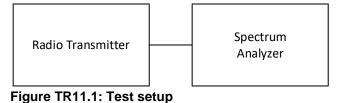
Test Record Conducted Spurious Emissions Test ID TR11 Project GCL-0296

Test Date(s)	11 Oct 2023
Test Personnel	Majid Farah
Product Model	A03996
Serial Number tested	443220748
Operating Mode	M8 (WifiT)
Arrangement	A2 (laptop)
Input Power	5 Vdc
Test Standards:	FCC Part 15, ANSI C63.10, RSS-GEN, RSS-247 (as noted in Section 6 of the report).
Pass/Fail Judgment:	PASS
Test record created by:	Jim Solum
Date of this test record:	20 Dec 2023

Original record, Version A.

Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
PXE Receiver 26 GHz	Keysight	N9048B	MY59290135	27-Sep-2023	1-Oct-2024
					-

Table TR11.1: Test equipment used


Software used: Keysight PXE software A.32.06

Test Method

The basic test standards provide options for the test method. The following test methods were applied. ANSI C63.10: 11.11.2 and 11.11.3

Test Setup

This block diagram shows the test equipment setup.

Page 26 of 75 GCL Test Report 2023-092		Version C		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

Test Data

The conducted spurious emission test measures the strength of intentional and unintentional radio signals conducted from the transmitter to the antenna across a wide range of frequencies. It does not evaluate whether intentional signals meet specific limits. Rather, it ensures that magnitudes unintentional signals are sufficiently reduced relative to the intentional signal to satisfy the requirements of the relevant standards.

This measurement requires that a coaxial feed line from the transmitter is available as a connector exterior to the test sample. This feed line and connector may be a part of the shipping product, or it may be a special modification to the product for testing purposes. The connector is attached via laboratory cables to the measurement instrument. The results have been adjusted to account for the losses in the laboratory cables. Where feasible, the losses of any added feed lines are also included in that adjustment.

Data is collected using the required detector function(s) across the frequency range. The instrument uses a 100 kHz bandwidth detector.

The data table below shows the final measurement data which may be at harmonics of the carrier, or at frequencies that represent one of the highest data points measured.

The peak level of the fundamental is also identified. The harmonics or spurious emissions must be reduced from this fundamental level by 20 dBc. This harmonic limit is calculated and used to determine compliance. A reduction from the carrier that is greater that 20 is a passing result. The minimum margin from the peak level for each mode are highlighted in yellow.

Data plots are provided for the worst-case data sets. One plot shows the spectrum at the carrier, and another shows the spectrum across the band. On this second plot, a green reference line is at approximately the 20 dBc maximum spurious emission level.

		Channel No.			
Mode	a rate (Mb	1	6	11	
В	1	60.08	59.07	58.59	
G	9	53.89	57.13	53.50	
N	MCS2	53.79	57.06	54.36	

Table TR11.2: Results Summary

Page 27 of 75	GCL Test Report 2023-092	Version C	
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.			
Garmin			

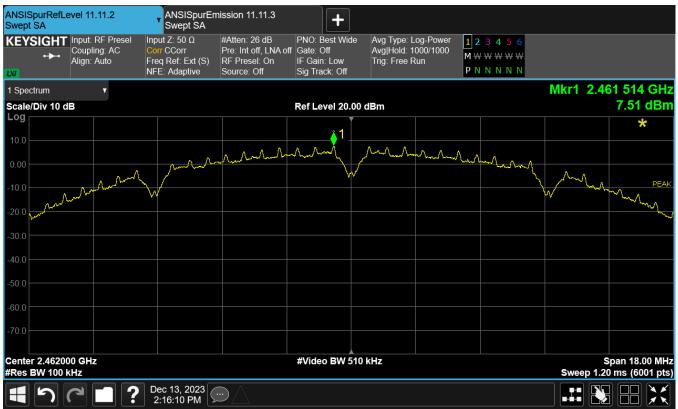


Figure TR11.2: Reference level measurement for IEEE 802.11 B 1 Mbps on Ch.11

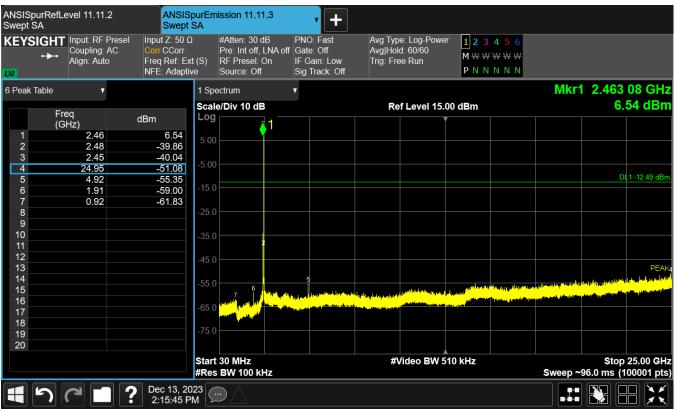


Figure TR11.3: Spectral data for IEEE 802.11 B 1 Mbps on Ch.11

Page 28 of 75 GCL Test Report 2023-092		Version C	
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.			
Garmin			

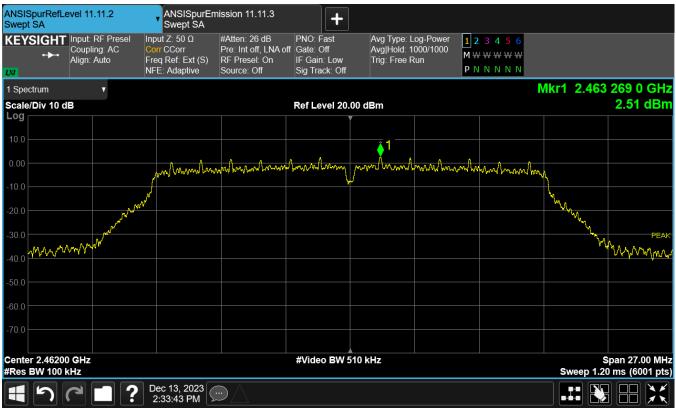


Figure TR11.4: Reference level measurement for IEEE 802.11 G 9 Mbps on Ch.11

Figure TR11.5 Spectral data for IEEE 802.11 G 9 Mbps on Ch.11

Page 29 of 75 GCL Test Report 2023-092		Version C	
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.			
Garmin			

Figure TR11.6: Reference level measurement for IEEE 802.11 N MCS2 on Ch.1

Figure TR11.7 Spectral data for IEEE 802.11 N MCS2 on Ch.1

This line is the end of the test record.

Page 30 of 75 GCL Test Report 2023-092		Version C		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

Test Record Conducted Spurious Emissions Test IDs TR13 Project GCL-0458

Test Date(s)	30 Nov 2023
Test Personnel	Jim Solum
Product Model	A03996
Serial Number tested	443220748
Operating Mode	M1 (Ble Tx)
Arrangement	A2 (laptop)
Input Power	5 Vdc
Test Standards:	FCC Part 15, ANSI C63.10, RSS-GEN, RSS-247 (as noted in Section 6 of the report).
Pass/Fail Judgment:	PASS
Test record created by:	Jim Solum
Date of this test record:	04 Dec 2023

Original record, Version A.

Test Equipment

Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
PXE Receiver 44GHz	Keysight	N9048B	MY62220139	30-Jan-2023	1-Feb-2024

Table TR13.1: Test equipment used

Software used: Keysight PXE software. A.33.03

Test Method

The basic test standards provide options for the test method. The following test methods were applied. ANSI C63.10: 11.11.2 and 11.11.3

Test Setup

This block diagram shows the test equipment setup.

Figure TR13.1: Test setup

Test Data

The conducted spurious emission test measures the strength of intentional and unintentional radio signals conducted from the transmitter to the antenna across a wide range of frequencies. It does not evaluate whether intentional signals meet specific limits. Rather, it ensures that magnitudes unintentional signals are sufficiently reduced relative to the intentional signal to satisfy the requirements of the relevant standards.

Page 31 of 75 GCL Test Report 2023-092		Version C	
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.			
Garmin			

This measurement requires that a coaxial feed line from the transmitter is available as a connector exterior to the test sample. This feed line and connector may be a part of the shipping product, or it may be a special modification to the product for testing purposes. The connector is attached via laboratory cables to the measurement instrument. The results have been adjusted to account for the losses in the laboratory cables. Where feasible, the losses of any added feed lines are also included in that adjustment.

Data is collected using the required detector function(s) across the frequency range. The instrument uses a 100 kHz bandwidth detector.

The data table below shows the final measurement data which may be at harmonics of the carrier, or at frequencies that represent one of the highest data points measured.

The peak level of the fundamental is also identified. The harmonics or spurious emissions must be reduced from this fundamental level by 20 dBc. This harmonic limit is calculated and used to determine compliance. A reduction from the carrier that is greater that 20 is a passing result. The minimum margin from the peak level for each mode are highlighted in yellow.

For BLE operating at 2 Mbps, the lowest operating frequency was 2404 MHz, and the highest operating frequency was 2478 MHz. For all other Bluetooth, BLE, and ANT radios reported here, the lowest operating frequency was 2402 MHz, and the highest operating frequency was 2480 MHz.

Data plots are provided for the worst-case data sets. One plot shows the spectrum at the carrier, and another shows the spectrum across the band. On this second plot, a green reference line is at approximately the 20 dBc maximum spurious emission level.

		2402 (04)	2440	2480 (78)
BLE	1 Mb	52.51	52.61	51.70
	2 Mb	52.94	52.80	52.71

Table TR13.2: Results Summary

Page 32 of 75 GCL Test Report 2023-092		Version C		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

Figure TR13.2: Reference level measurement for Bluetooth BLE 1 Mbps at 2480 MHz

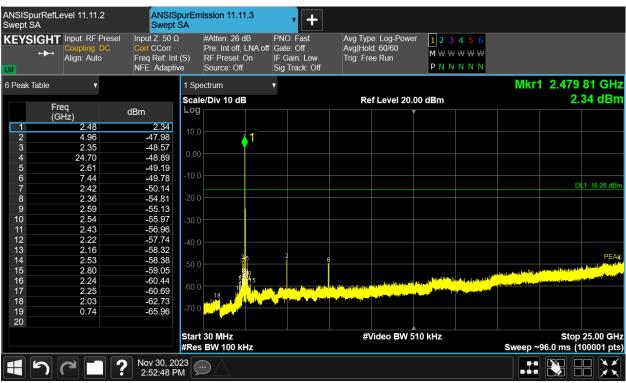


Figure TR13.3: Spectral data for Bluetooth BLE 1 Mbps at 2480 MHz

This line is the end of the test record.

Page 33 of 75	Page 33 of 75 GCL Test Report 2023-092							
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.							
	Garmin							

Test Record Radiated Emission Test RE01 Project GCL0296

Test Date(s) Test Personnel	31 Oct 2023 David Kerr
Product Model Serial Number tested	A03996 443220641
Operating Mode Arrangement Input Power	M8 (WifiT) A1 (Standalone) Battery 5 Vdc
Test Standards:	FCC Part 15, ANSI C63.10 (as noted in Section 6 of the report)
Frequency Range:	Restricted Bands (2200-2300 MHz, 2310-2390 MHz, 2483.5-2500 MHz)
Pass/Fail Judgment:	PASS
Test record created by: Date of this record: Original record, Version A.	David A Kerr 01 Nov 2023

Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
PXE Receiver 26 GHz	Keysight	N9048B	MY59290135	27-Sep-2023	1-Oct-2024
Antenna, Horn, 1-18 GHz	ETS Lindgren	3117	259208	7-Jun-2023	1-Jun-2024
FSOATS 3m, above 1 GHz	Frankonia	SAC3	F199004	16-Nov-2022	16-Nov-2025
Tape measure, 1" x 33'	Lufkin	PHV1410CMEN	10720	16-Jan-2023	15-Jan-2026
Preamplifier, 500 MHz 18 GHz	Com-Power	PAM-118A	18040133	Calibration	Not Required
Wifi Filter	K&L	8NSL26-2437/E82.2-0/0	1	Calibration	Not Required

Table RE01.1: Test Equipment Used

Software Used

N9048B Keysight PXE firmware version A.33.03 RE Signal Maximization Tool v2023Jul14.xlsx FCC Restricted Band 2p4GHz Template v1b 2023Jun20.xlsx

Page 34 of 75	Page 34 of 75 GCL Test Report 2023-092							
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.							
	Garmin							

Test Data

This restricted band investigation began with a benchtop setup wherein the emissions in the restricted bands were observed from a modified test sample with an RF output cable replacing the onboard antenna. The actual emission levels within restricted bands in many of the test sample's available transmission modes are too low to be reliably measured in the radiated environment. By applying the required peak and average detectors and bandwidths to the signals direct from the transmitter, lab staff identified the worst-case operational modes. These were then measured using an unmodified unit in the required radiated environment.

The radiated emission test began with a preliminary scan in each restricted band at multiple turntable angles, antenna heights, and both antenna polarizations. For test standards that require reorienting the test sample, further preliminary scans were taken in those alternate orientations typically described as X, Y, and Z. Subsequent testing was done using on the orientation(s) producing the highest result relative to the test limit. Final field strength measurements were taken in that set of positions.

Restricted band measurements in the lower band were made while the transmitter was tuned to its lowest frequency of 2412 MHz for the B5.5, G36 and N0 mode data rate. Measurements in the upper band were made while the transmitter was tuned to its highest frequency of 2462 MHz for the B5.5, G36 and N0 data rates.

At azimuth angle 0° the 'front' reference mark of the turntable is pointed Southward. At 90° the reference mark points West. At -90° it points East. At -7° the turntable reference mark is pointed directly at the antenna. The designation of the X, Y, and Z orientations of the test sample are sample dependent, so these are reported by use of photographs.

The tables show the selected final measurement data between the FCC restricted bands. It includes a the strongest emissions observed relative to the test limit, along with other data points of interest. Where a data point is highlighted is yellow, this is an aid to indicate the data point(s) with the least margin to the test limit. A positive margin value indicates that the emission was below the test limit. The test limit is the FCC restricted band Class B Limit at 3m.

Frequency	Avg Limit	Pk Limit	Avg Level	Pk Level	Av Margin	Pk Margin	Azimuth	Height	Polarity
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(degree)	(mm)	
2390	54	74	34.859	71.685	19.141	2.315	59	2285	VERT
2390	54	74	34.871	72.162	19.129	<mark>1.838</mark>	59	2285	VERT

Table RE01.2: FCC restricted bands from 2200 to 2390 MHz (Mode B5.5)

Frequency	Avg Limit	Pk Limit	Avg Level	Pk Level	Av Margin	Pk Margin	Azimuth	Height	Polarity
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(degree)	(mm)	
2485	54	74	35.077	49.547	18.923	24.453	25	2213	VERT
2483.5	54	74	35.32	50.229	<mark>18.68</mark>	23.771	25	2213	VERT

Table RE01.3: FCC restricted band from 2483.5 to 2500 MHz (Mode B5.5)

Frequency	Avg Limit	Pk Limit	Avg Level	Pk Level	Av Margin	Pk Margin	Azimuth	Height	Polarity
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(degree)	(mm)	
2390	54	74	42.672	63.405	11.328	10.595	51	2276	VERT
2390	54	74	42.822	64.051	11.178	<mark>9.949</mark>	51	2276	VERT

Table RE01.4: FCC restricted bands from 2200 to 2390 MHz (Mode G36)

Page 35 of 75	Page 35 of 75 GCL Test Report 2023-092							
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.							
	Garmin							

Frequency	Avg Limit	Pk Limit	Avg Level	Pk Level	Av Margin	Pk Margin	Azimuth	Height	Polarity
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(degree)	(mm)	
2486.8	54	74	34.917	49.382	19.083	24.618	60	2173	VERT
2483.5	54	74	35.35	50.213	<mark>18.65</mark>	23.787	60	2173	VERT

Table RE01.5: FCC restricted band from 2483.5 to 2500 MHz (Mode G36)

Frequency	Avg Limit	Pk Limit	Avg Level	Pk Level	Av Margin	Pk Margin	Azimuth	Height	Polarity
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(degree)	(mm)	
2390	54	74	45.164	70.152	8.836	<mark>3.848</mark>	66	2322	VERT
2390	54	74	45.037	69.926	8.963	4.074	66	2322	VERT

Table RE01.6: FCC restricted bands from 2200 to 2390 MHz (Mode N0)

Frequency	Avg Limit	Pk Limit	Avg Level	Pk Level	Av Margin	Pk Margin	Azimuth	Height	Polarity
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(degree)	(mm)	
2483.5	54	74	44.903	70.631	9.097	3.369	54	2338	VERT
2483.5	54	74	45.045	70.811	8.955	<mark>3.189</mark>	54	2338	VERT

Table RE01.7: FCC restricted band from 2483.5 to 2500 MHz (Mode N0)

The graphs below show the background spectrum observed during pre-scan, as well as the final data points from the table above.

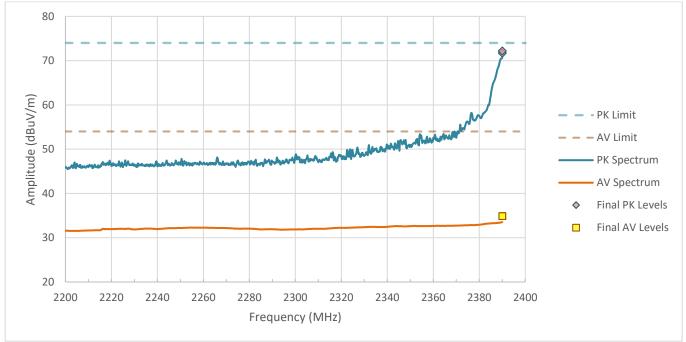


Figure RE01.1: FCC restricted band spectral data from 2200 to 2390 MHz (Mode B5.5)

Page 36 of 75	Page 36 of 75 GCL Test Report 2023-092							
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.							
	Garmin							

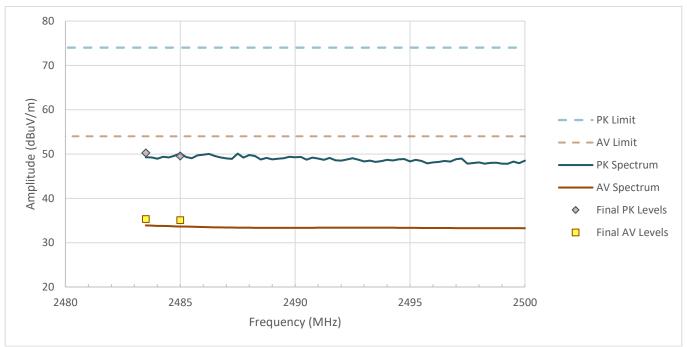


Figure RE01.2: FCC restricted band spectral data from 2483.5 to 2500 MHz (Mode B5.5)

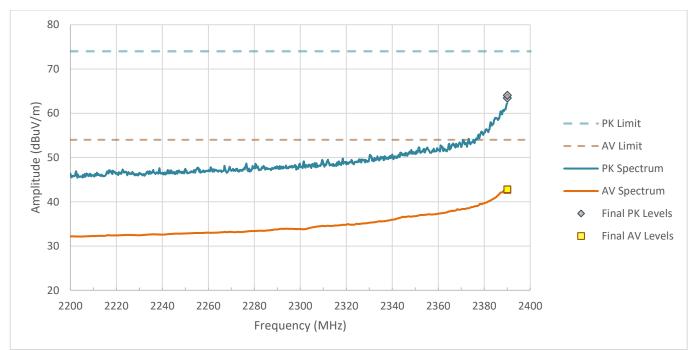


Figure RE01.3: FCC restricted band spectral data from 2200 to 2390 MHz (Mode G36)

Page 37 of 75	^{7 of 75} GCL Test Report 2023-092			
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

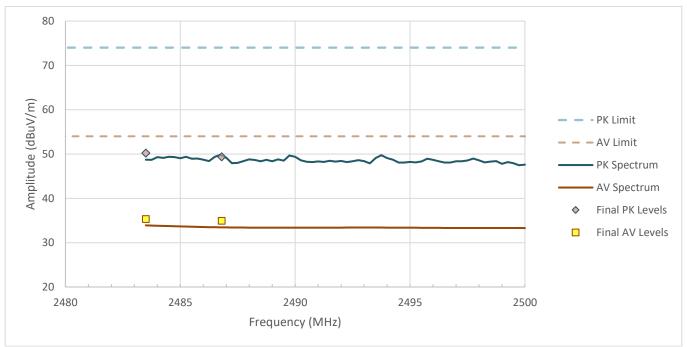


Figure RE01.4: FCC restricted band spectral data from 2483.5 to 2500 MHz (Mode G36)

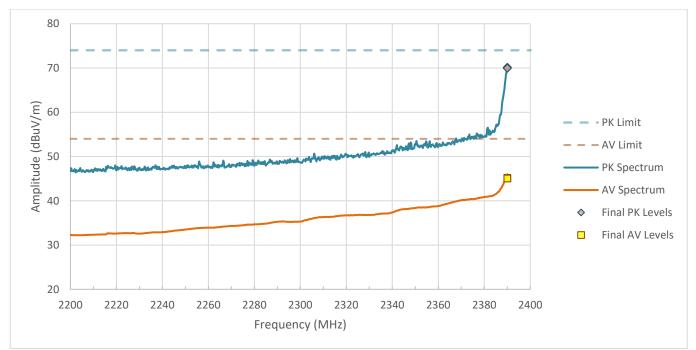


Figure RE01.5: FCC restricted band spectral data from 2200 to 2390 MHz (Mode N0)

Page 38 of 75	Page 38 of 75 GCL Test Report 2023-092				
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin					

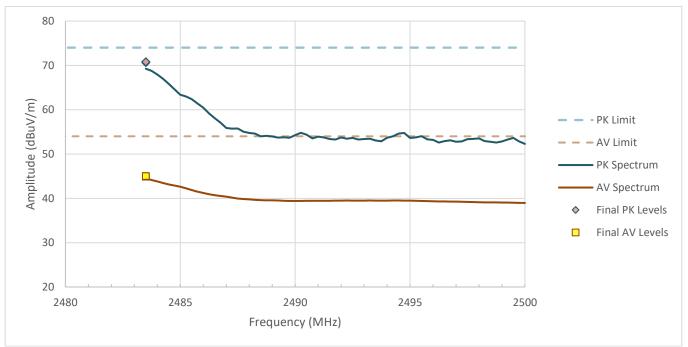


Figure RE01.6: FCC restricted band spectral data from 2483.5 to 2500 MHz (Mode N0)

Setup Photographs

The following photographs show the EUT configured and arranged in the manner in which it was measured.

Figure RE01.7: EUT test setup, primary view

Page 39 of 75	GCL Test Report 2023-092	Version C			
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

Image removed for client confidentiality. See section 1 of this report to identify the report where the photos may be viewed.

Figure RE01.8: EUT test setup, reverse view

Page 40 of 75	GCL Test Report 2023-092	Version C		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

Test Record Radiated Emission Test RE02 Project GCL0296

Test Date(s) Test Personnel	31 Oct 2023 David Kerr
Product Model Serial Number tested	A03996 443220641
Operating Mode Arrangement Input Power	M1 (BleT) A1 (Standalone) Battery 5 Vdc
Test Standards:	FCC Part 15, ANSI C63.10 (as noted in Section 6 of the report)
Frequency Range:	Restricted Bands (2200-2300 MHz, 2310-2390 MHz, 2483.5-2500 MHz)
Pass/Fail Judgment:	PASS
Test record created by: Date of this record: Original record, Version A.	David A Kerr 01 Nov 2023

Make	Model #	Serial #	Last Cal/Ver	Next Due
Keysight	N9048B	MY59290135	27-Sep-2023	1-Oct-2024
ETS Lindgren	3117	259208	7-Jun-2023	1-Jun-2024
Frankonia	SAC3	F199004	16-Nov-2022	16-Nov-2025
Lufkin	PHV1410CMEN	10720	16-Jan-2023	15-Jan-2026
Com-Power	PAM-118A	18040133	Calibration	Not Required
K&L	8NSL26-2437/E82.2-0/0	1	Calibration	Not Required
	Keysight ETS Lindgren Frankonia Lufkin Com-Power	KeysightN9048BETS Lindgren3117FrankoniaSAC3LufkinPHV1410CMENCom-PowerPAM-118A	Keysight N9048B MY59290135 ETS Lindgren 3117 259208 Frankonia SAC3 F199004 Lufkin PHV1410CMEN 10720 Com-Power PAM-118A 18040133	Keysight N9048B MY59290135 27-Sep-2023 ETS Lindgren 3117 259208 7-Jun-2023 Frankonia SAC3 F199004 16-Nov-2022 Lufkin PHV1410CMEN 10720 16-Jan-2023 Com-Power PAM-118A 18040133 Calibration

Table RE02.1: Test Equipment Used

Software Used

N9048B Keysight PXE firmware version A.33.03 RE Signal Maximization Tool v2023Jul14.xlsx FCC Restricted Band 2p4GHz Template v1b 2023Jun20.xlsx

Page 41 of 75	GCL Test Report 2023-092	Version C			
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

Test Data

This restricted band investigation began with a benchtop setup wherein the emissions in the restricted bands were observed from a modified test sample with an RF output cable replacing the onboard antenna. The actual emission levels within restricted bands in many of the test sample's available transmission modes are too low to be reliably measured in the radiated environment. By applying the required peak and average detectors and bandwidths to the signals direct from the transmitter, lab staff identified the worst-case operational modes. These were then measured using an unmodified unit in the required radiated environment.

The radiated emission test began with a preliminary scan in each restricted band at multiple turntable angles, antenna heights, and both antenna polarizations. For test standards that require reorienting the test sample, further preliminary scans were taken in those alternate orientations typically described as X, Y, and Z. Subsequent testing was done using on the orientation(s) producing the highest result relative to the test limit. Final field strength measurements were taken in that set of positions.

Restricted band measurements in the lower band were made while the transmitter was tuned to its lowest frequency of 2402 MHz for the 1 Mbps data rate. Measurements in the upper band were made while the transmitter was tuned to its highest frequency of 2480 MHz for the 1 Mbps data rate. At azimuth angle 0° the 'front' reference mark of the turntable is pointed Southward. At 90° the reference mark points West. At -90° it points East. At -7° the turntable reference mark is pointed directly at the antenna. The designation of the X, Y, and Z orientations of the test sample are sample dependent, so these are reported by use of photographs.

The tables show the selected final measurement data between the FCC restricted bands. It includes a the strongest emissions observed relative to the test limit, along with other data points of interest. Where a data point is highlighted is yellow, this is an aid to indicate the data point(s) with the least margin to the test limit. A positive margin value indicates that the emission was below the test limit. The test limit is the FCC restricted band Class B Limit at 3m.

					Av	Pk			
Frequency	Avg Limit	Pk Limit	Avg Level	Pk Level	Margin	Margin	Azimuth	Height	Polarity
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(degree)	(mm)	
2389.8	54	74	35.366	62.233	18.634	<mark>11.767</mark>	73	2648	HORZ
2274	54	74	41.194	56.649	12.806	17.351	73	2648	HORZ

Table RE02.2: FCC restricted bands from 2200 to 2390 MHz (Ble 1Mb)

Frequency	Avg Limit	Pk Limit	Avg Level	Pk Level	Av Margin	Pk Margin	Azimuth	Height	Polarity
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(degree)	(mm)	
2483.5	54	74	39.647	69.835	14.353	<mark>4.165</mark>	75	2347	HORZ
2483.5	54	74	39.588	69.703	14.412	4.297	75	2347	HORZ

Table RE02.3: FCC restricted band from 2483.5 to 2500 MHz (Ble 1Mb)

The graphs below show the background spectrum observed during pre-scan, as well as the final data points from the table above.

Page 42 of 75	GCL Test Report 2023-092	Version C		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

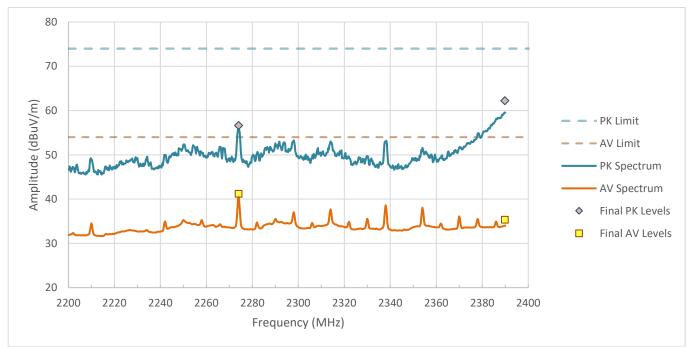


Figure RE02.1: FCC restricted band spectral data from 2200 to 2390 MHz ()

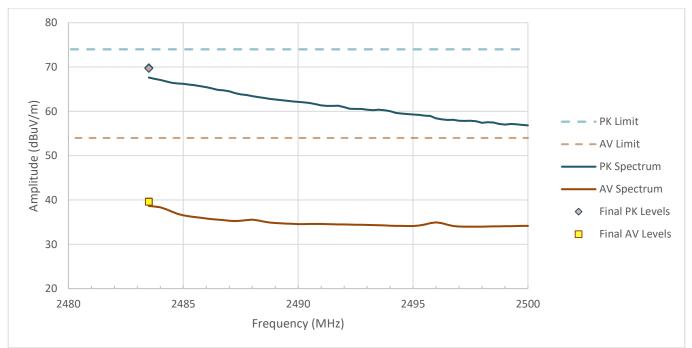


Figure RE02.2: FCC restricted band spectral data from 2483.5 to 2500 MHz ()

Setup Photographs

The following photographs show the EUT configured and arranged in the manner in which it was measured.

Page 43 of 75	Page 43 of 75 GCL Test Report 2023-092			
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

Image removed for client confidentiality.

See section 1 of this report to identify the report where the photos may be viewed.

Figure RE02.3: EUT test setup, primary view

Figure RE02.3: EUT test setup, reverse view

Page 44 of 75	Page 44 of 75 GCL Test Report 2023-092				
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin					

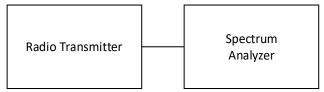
Test Record Transmitter Power Spectral Density Test ID TR05 Project GCL-0296

Test Date(s)	27-28 Nov 2023
Test Personnel	Jim Solum
Product Model	A03996
Serial Number tested	443220748
Operating Mode	M8 (WifiT)
Arrangement	A2 (Laptop)
Input Power	5Vdc
Test Standards:	FCC Part 15, ANSI C63.10, AS/NZS 4268, RSS-GEN, RSS-210, RSS-247 (as noted in Section 6 of the report).
Antenna Gain	2.36 dBi, as reported by the client
Radio Protocol	IEEE 802.11 b/g/n (WiFi)
Pass/Fail Judgment:	PASS
Test record created by: Date of this record: Original record, Version A.	Jim Solum 12 Dec 2023

Test Equipment Used

Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
PXE Receiver 44GHz	Keysight	N9048B	MY62220139	30-Jan-2023	1-Feb-2024

Table TR05.1: Test equipment used


Software Used: Keysight PXE software A.33.03

Test Method

The basic test standards provide options for the test method. The following test methods were applied. ANSI C63.10: PKPSD (11.10.2)

Test Setup

This block diagram shows the test equipment setup.

Figure TR05.1: Test setup

Test Data

Each measurement is made conducted from the antenna port with the transmitter on a specified channel and in a selected transmission protocol. The results include the effects of any measurement cable losses. Results reported are in units of dBm/Bandwidth and do not include the effect of antenna gain. The standard limit is 8 dBm / 3 kHz,

Page 45 of 75	GCL Test Report 2023-092	Version C
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.		
Garmin		

and meeting the limit with higher resolution bandwidths is permitted. All data met the limit using a 3 kHz resolution bandwidth.

The highest PSD levels for each mode are highlighted in yellow, and graphical results are provided for those cases.

	Ch1	Ch6	Ch11
B1	6.36	5.93	2.16
G9	-9.22	-5.47	-9.50
NMCS2	-10.68	-6.64	-10.62

Table TR05.2: Summary of results

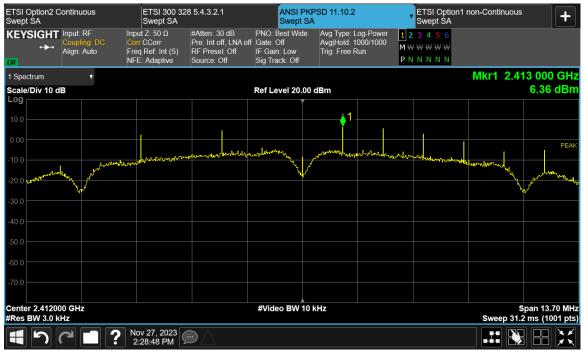
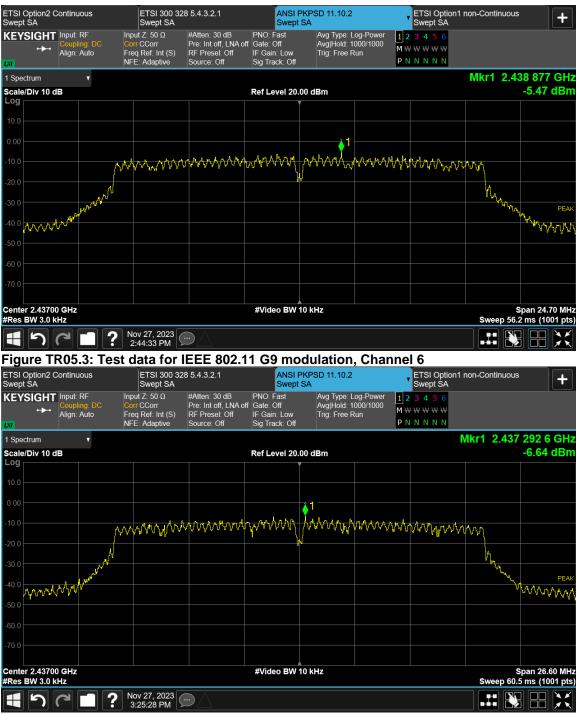



Figure TR05.2: Test data for IEEE 802.11 B1 modulation, channel 1

Page 46 of 75	GCL Test Report 2023-092	Version C	
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.			
Garmin			

Page 47 of 75	GCL Test Report 2023-092	Version C	
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.			
Garmin			

Test Record Transmitter Power Spectral Density Test IDs TR07 Project GCL-0296

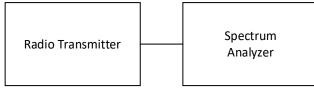
Test Date(s)	27 Nov 2023
Test Personnel	Jim Solum
Product Model	A03996
Serial Number tested	443220748
Operating Mode	M1 (BleT)
Arrangement	A2 (Laptop)
Input Power	5Vdc
Test Standards:	FCC Part 15, ANSI C63.10, AS/NZS 4268, RSS-GEN, RSS-247 (as noted in Section 6 of the report).
Antenna Gain	3.22 dBi, as reported by the client
Radio Protocol	Bluetooth Low Energy (BLE)
Pass/Fail Judgment:	PASS
Test record created by:	Jim Solum
Date of this record:	30 Nov 2023

Original record, Version A.

Test Equipment Used

Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
PXE Receiver 44GHz	Keysight	N9048B	MY62220139	30-Jan-2023	1-Feb-2024

Table TR07.1: Test equipment used


Software Used: Keysight PXE software A.33.03

Test Method

The basic test standards provide options for the test method. The following test methods were applied. ANSI C63.10: PKPSD (11.10.2)

Test Setup

This block diagram shows the test equipment setup.

Figure TR07.1: Test setup

Test Data

Each measurement is made conducted from the antenna port with the transmitter on a specified channel and in a selected transmission protocol. The results include the effects of any measurement cable losses. Results reported

Page 48 of 75	GCL Test Report 2023-092	Version C
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.		
Garmin		

are in units of dBm/Bandwidth and do not include the effect of antenna gain. The standard limit is 8 dBm / 3 kHz, and meeting the limit with higher resolution bandwidths is permitted. All data met the limit using a 3 kHz resolution bandwidth.

For BLE operating at 2 Mbps, the lowest operating frequency was 2404 MHz, and the highest operating frequency was 2478 MHz. For all other Bluetooth, BLE, and ANT radios reported here, the lowest operating frequency was 2402 MHz, and the highest operating frequency was 2480 MHz.

The highest PSD levels for each mode are highlighted in yellow, and graphical results are provided for those cases.

	2402 (04)	2440	2480 (78)
BLE 1 Mbps	-10.96	-11.29	-11.43
BLE 2 Mbps	-13.51	-13.73	-13.99

Table TR07.2: Summary of results

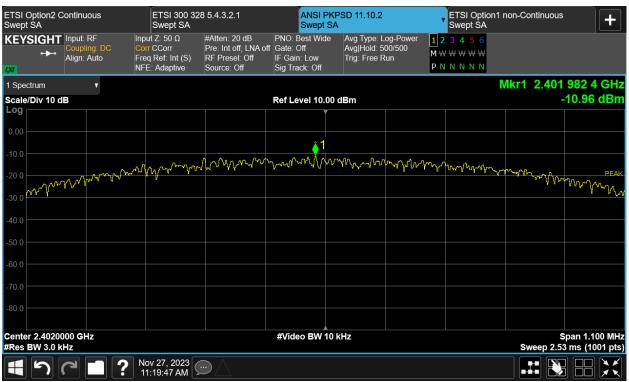
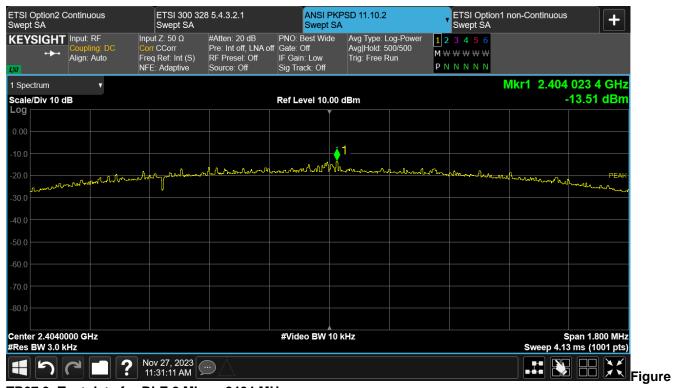



Figure TR07.2: Test data for BLE 1 Mbps, 2402 MHz.

Page 49 of 75	GCL Test Report 2023-092	Version C	
This re	port may be reproduced in whole. Reproduction of parts or excerpts requires lab management a	pproval.	
Garmin			

TR07.3: Test data for BLE 2 Mbps, 2404 MHz.

Page 50 of 75	GCL Test Report 2023-092	Version C		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

Test Record Transmitter Stability in Extreme Conditions Test IDs TR24 Project GCL-0296

Test Date(s)	05 Dec 2023
Test Personnel	Jim Solum
Product Model	A03996
Serial Number tested	443220748
Operating Mode	M8 (WifiT)
Arrangement	A2 (Laptop)
Nominal Input Power	5 Vdc
Test Standards:	FCC part 15, RSS-GEN, ANSI C63.10 (as noted in Section 6 of the report)
Radio Protocol	WiFi (IEEE 802.11 b/g/n)
Pass/Fail Judgment:	PASS
Test record created by:	Jim Solum
Date this record:	12 Dec 2023

Original record, Version A.

Test Equipment

Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
PXE Receiver 44GHz	Keysight	N9048B	MY62220139	30-Jan-2023	1-Feb-2024
Thermometer	Thermco	ACCD370P	220608121	26-Aug-2022	1-Sep-2024
Barometer	Traceable	6453	221702700	3-Aug-2022	1-Aug-2024
DMM Multimeter	FLUKE	79 III	71740743	5-Apr-2023	1-Apr-2024
Programmable DC power source	Keithley	2260B-30-72 720 W	1411917	21-Apr-2023	15-Apr-2024
Thermal Chamber	Tenney	T2RC	32774-02	Calibration	Not Required

Table TR24.1: Equipment used

Software Used: PXE Software Revision A.33.03, FrequencyStabilityAnalysistemplateV1.xlsx

Test Method

The standards cited require observation of the stability for transmission frequency and/or power at certain environmental extremes. The reference is performance on nominal input voltage and a temperature of 20 °C. Where the standards cited here impose different limits or conditions, the most stringent limits and conditions have been applied.

The acceptance criterion is that the 6 dBc Occupied Bandwidth of the modulated signal should remain within the 2400-2483.5 MHz radio band.

The modes utilized include those that showed emissions closest to the band edge during prior bandwidth testing.

Test Data

The test sample(s) were subjected to extreme conditions and performed as shown below. Yellow highlights indicate the highest level for a protocol, for which an image of the spectrum is also provided. In the spectral plots, the data sets have been combined to present the low and high channel results side by side. Orange diamond markers indicate the spectral peak, which the black square markers are at the 2400 MHz or 2483.5 MHz band edge.

Page 51 of 75	ge 51 of 75 GCL Test Report 2023-092			
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

Tx Mode	Temp	Volts	Ch. 1	Ch. 11
WiFi	°C	Vdc	dBc	dBc
N MCSO	50	5	31.7	43.3
N MCSO	40	5	30.3	45
N MCS0	30	5	31.4	44.5
N MCSO	20	5	32.2	46.1
N MCSO	10	5	32.1	46.3
N MCSO	0	5	33.2	45.3
N MCSO	-10	5	33.3	46.1
N MCS0	-20	5	33.7	42.3

Table TR24.2 Difference between peak and band edge levels for IEEE 802.11 n MCS0 transmissions during temperature variations

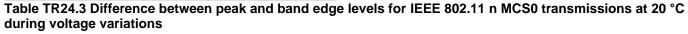



Figure TR24.1: Spectral data for IEEE 802.11 n MCS0 at 40 °C which represent Ch1 and Ch11

Tx Mode	Temp	Volts	Ch. 1	Ch. 11
WiFi	°C	Vdc	dBc	dBc
N MCSO	20	4.25	31.5	46.6
N MCSO	20	5	32.2	46.1
N MCSO	20	5.75	31.1	43.4

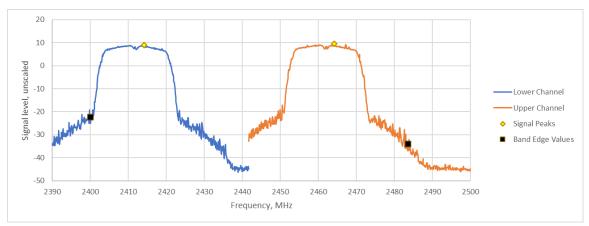


Figure TR24.2 Spectral data for IEEE 802.11 n MCS0 at 20 °C and 5.75 Vdc which represent Ch1 and Ch11

Page 52 of 75	GCL Test Report 2023-092	Version C			
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin					

Setup Block Diagram

The following block diagrams show the EUT configured and arranged in the manner which it was measured.

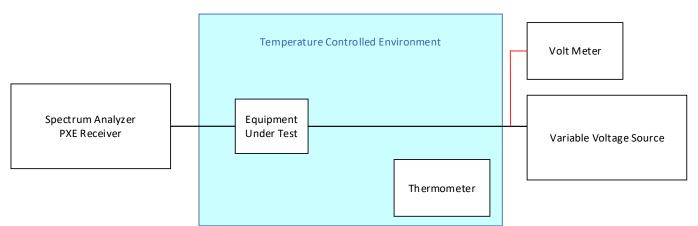


Figure TR24.3: Schematic drawing of the test equipment setup

Page 53 of 75	GCL Test Report 2023-092	Version C		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

Test Record Transmitter Stability in Extreme Conditions Test IDs TR25 Project GCL-0296

Test Date(s)	05 Dec 2023
Test Personnel	Jim Solum
Product Model	A03996
Serial Number tested	443220748
Operating Mode	M1 (BleT)
Arrangement	A2 (laptop)
Nominal Input Power	5 Vdc
Test Standards:	FCC part 15, RSS-GEN, ANSI C63.10 (as noted in Section 6 of the report)
Radio Protocol	BLE (Bluetooth Low Energy)
Pass/Fail Judgment:	PASS
Test record created by:	Jim Solum
Date this record:	12 Dec 2023

Original record, Version A.

Test Equipment

Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
PXE Receiver 44GHz	Keysight	N9048B	MY62220139	30-Jan-2023	1-Feb-2024
Thermometer	Thermco	ACCD370P	220608121	26-Aug-2022	1-Sep-2024
Barometer	Traceable	6453	221702700	3-Aug-2022	1-Aug-2024
DMM Multimeter	FLUKE	79 III	71740743	5-Apr-2023	1-Apr-2024
Programmable DC power source	Keithley	2260B-30-72 720 W	1411917	21-Apr-2023	15-Apr-2024
Thermal Chamber	Tenney	T2RC	32774-02	Calibration	Not Required

Table TR25.1: Equipment used

Software Used: PXE Software Revision A.33.03, FrequencyStabilityAnalysistemplateV1.xlsx

Test Method

The standards cited require observation of the stability for transmission frequency and/or power at certain environmental extremes. The reference is performance on nominal input voltage and a temperature of 20 °C. Where the standards cited here impose different limits or conditions, the most stringent limits and conditions have been applied.

The acceptance criterion is that the 6 dBc Occupied Bandwidth of the modulated signal should remain within the 2400-2483.5 MHz radio band.

The modes utilized include those that showed emissions closest to the band edge during prior bandwidth testing.

Test Data

The test sample(s) were subjected to extreme conditions and performed as shown below. Yellow highlights indicate the highest level for a protocol, for which an image of the spectrum is also provided. In the spectral plots, the data

Page 54 of 75	GCL Test Report 2023-092			
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

sets have been combined to present the low and high channel results side by side. Orange diamond markers indicate the spectral peak, which the black square markers are at the 2400 MHz or 2483.5 MHz band edge.

Tx Mode	Temp	Volts	Low Ch.	High Ch.
Bluetooth	°C	Vdc	dBc	dBc
BLE 1 Mbps	50	5	29.3	35.4
BLE 1 Mbps	40	5	30.8	38.6
BLE 1 Mbps	30	5	31.2	33.5
BLE 1 Mbps	20	5	29.0	32.1
BLE 1 Mbps	10	5	32.4	41.1
BLE 1 Mbps	0	5	32.3	30.8
BLE 1 Mbps	-10	5	28.0	30.4
BLE 1 Mbps	-20	5	32.7	29.1

Table TR25.2 Difference between peak and band edge levels for BLE 1 transmissions during temperature variations

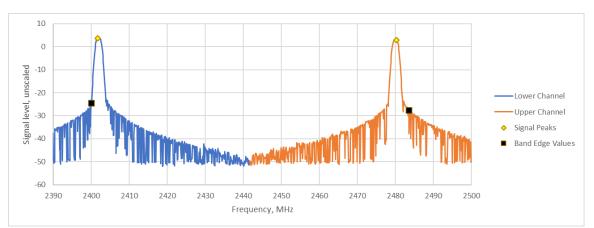
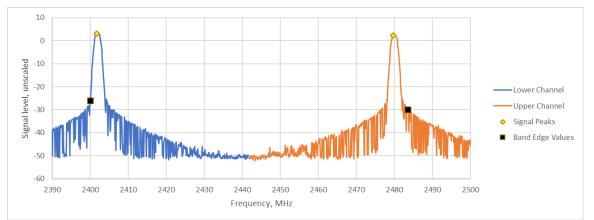



Figure TR27.1: Spectral data for BLE 1 at -10°C which represent low and high channel

Tx Mode	Temp	Volts	Low Ch.	High Ch.
Bluetooth	°C	Vdc	dBc	dBc
BLE 1 Mbps	20	4.25	29.6	46.1
BLE 1 Mbps	20	5	29	32.1
BLE 1 Mbps	20	5.75	29.4	32.7

Table TR25.3 Difference between peak and band edge levels for BLE 1 transmissions at 20°C during voltage variations

Page 55 of 75	Page 55 of 75 GCL Test Report 2023-092							
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.							
Garmin								

Figure TR25.2: Spectral data for BLE 1 at 20 °C and 5 Vdc which represent low and high channel

Setup Block Diagram

The following block diagrams show the EUT configured and arranged in the manner which it was measured.

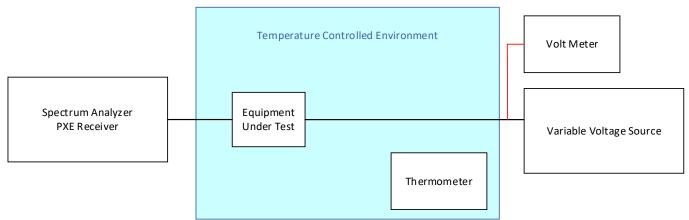


Figure TR25.3: Schematic drawing of the test equipment setup

Page 56 of 75	Version C						
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.						
Garmin							

Test Record Radiated Emission Test RE06 Project GCL0296

Test record created by:	David A Kerr
Date of this record:	31-Oct-2023
Frequency Range:	1000 MHz to 2200 MHz
Pass/Fail Judgment:	PASS
Test Standards:	FCC Part 15, ANSI C63.10 (as noted in Section 6 of the report).
Operating Mode	M8 (WifiT)
Arrangement	A1 (Standalone)
Input Power	Battery 5 Vdc
Product Model	A03996
Serial Number tested	443220641
Test Date(s)	31 Oct 2023
Test Personnel	David Kerr

Original record, Version A.

Test Equipment

Test Equipment					
Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
PXE Receiver 26 GHz	Keysight	N9048B	MY59290135	27-Sep-2023	1-Oct-2024
Antenna, Horn, 1-18 GHz	ETS Lindgren	3117	00259208	7-Jun-2023	1-Jun-2024
FSOATS 3m, above 1 GHz	Frankonia	SAC3	F199004	16-Nov-2022	16-Nov-2025
Tape measure, 1° x 33'	Lufkin	PHV1410CMEN	10720	16-Jan-2023	15-Jan-2026
Preamplifier, 500 MHz 18 GHz	Com-Power	PAM-118A	18040133	Calibration	Not Required
Wifi Filter	K&L	8NSL26-2437/E8	1	Calibration	Not Required

Table RE06.1: Test Equipment Used

Software Used: N9048B Keysight PXE firmware version A.33.03 EPX/RE automation software ver. 2023.01.001

Page 57 of 75	Version C						
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.						
Garmin							

Test Data

The radiated emission test process began with a preliminary scan at multiple turntable angles, antenna heights, and both antenna polarizations. For test standards that require reorienting the test sample, further preliminary scans were taken in those alternate orientations typically described as X, Y, and Z. Subsequent testing was done using on the orientation(s) producing the highest result relative to the test limit. Where the test standard requires cable manipulation, this was done at one of more likely worst case frequencies selected by the test personnel while observing the receiver display. At each of the frequencies selected for final measurements, the turntable angle, antenna height, and antenna polarization were explored to find the worst-case settings. Final field strength measurements were taken in that set of positions. Full maximization was not performed at frequencies that are noise floor measurements included per the test standard requirements.

At azimuth angle 180° the 'front' reference mark of the turntable is pointed Southward. At 270° the reference mark points West. At 90° it points East. At 173° the turntable reference mark is pointed directly at the antenna. The designation of the X, Y, and Z orientations of the test sample are sample dependent, so these are reported by use of photographs.

The table shows the selected final measurement data between 1000 MHz and 2.2 GHz. It includes at least the six strongest emissions observed relative to the test limit, along with other data points of interest. Where a data point is highlighted is yellow, this is an aid to indicate the data point(s) with the least margin to the test limit. A positive margin value indicates that the emission was below the test limit. The test limit is the FCC Class B Limit at 3m.

Frequency	Pol.	Read	ding	Factor	Lev	vel	Lin	nit	Mar	gin	Height	Angle
MHz		dB(j	μV)	dB(1/m)	dB(μ\	//m)	dB(µ'	//m) dB		3	cm	deg
		CAV	PK		CAV	PK	AV	PK	CAV	РК		
2150.500	Н	32.6	46.3	-1.2	31.4	45.1	54.0	74.0	<mark>22.6</mark>	28.9	178.2	15.0
2150.250	Н	32.6	46.3	-1.2	31.4	45.1	54.0	74.0	<mark>22.6</mark>	28.9	244.5	326.0

Table RE06.2: Emission summary (Mode B5.5 ch 1)

Frequency	Pol.	Read	ding	Factor	Lev	el	Lin	nit	Mar	gin	Height	Angle		
MHz		dB(μV)	dB(1/m)	dB(μ\	//m)	dB(µV/m)		n) dB		dB		cm	deg
		CAV	PK		CAV	PK	AV	PK	CAV	PK				
2020.750	Н	32.5	45.9	-1.6	30.9	44.3	54.0	74.0	23.1	29.7	361.1	124.0		
1497.750	Н	32.1	46.7	-3.5	28.6	43.2	54.0	74.0	25.4	30.8	325.5	87.0		

Table RE06.3: Emission summary (Mode B5.5 ch 6)

Frequency	Pol.	Read	ling	Factor	Lev	/el	Lin	nit	Mar	gin	Height	Angle		
MHz		dB(j	μV)	dB(1/m)	dB(μ\	√/m)	dB(µV/m)		dB(µV/m) dl		dB		cm	deg
		CAV	PK		CAV	PK	AV	PK	CAV	PK				
2161.750	V	32.6	46.3	-1.2	31.4	45.1	54.0	74.0	<mark>22.6</mark>	28.9	365.2	78.0		
1997.000	Н	32.5	46.6	-1.6	30.9	45.0	54.0	74.0	23.1	29.0	275.0	217.0		

Table RE064: Emission summary (Mode B5.5 ch 11)

The graph below shows the background spectrum observed during pre-scan, as well as the final data points from the table above.

Page 58 of 75	Version C						
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.						
Garmin							

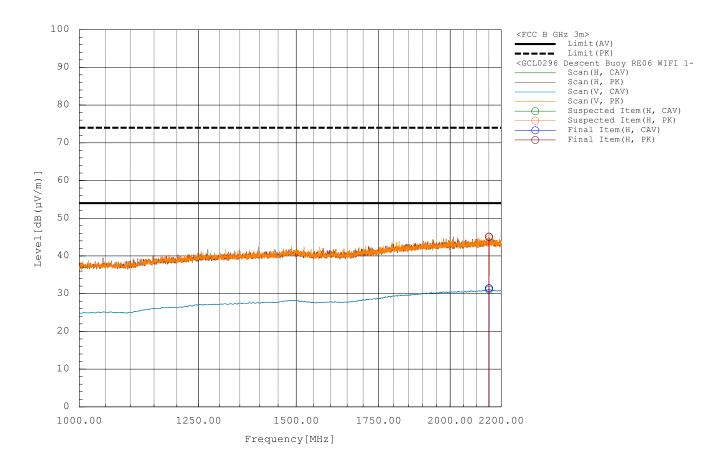


Figure RE06.1: Spectral data (Mode B5.5 ch 1)

Page 59 of 75	Version C							
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.							
Garmin								

Figure RE06.2: Spectral data (Mode B5.5 ch 6)

Page 60 of 75	Version C						
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.						
Garmin							

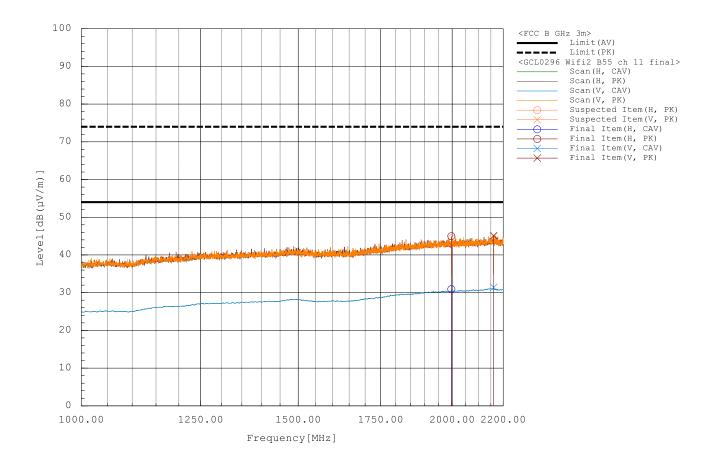


Figure RE06.3: Spectral data (Mode B5.5 ch 11)

Setup Photographs

The following photographs show the EUT configured and arranged in the manner in which it was measured.

Page 61 of 75	Version C							
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.							
Garmin								

Image removed for client confidentiality.

See section 1 of this report to identify the report where the photos may be viewed.

Figure RE06.4: EUT test setup, front view

Image removed for client confidentiality. See section 1 of this report to identify the report where the photos may be viewed.

Figure RE06.5: EUT test setup, reverse view

Page 62 of 75	62 of 75 GCL Test Report 2023-092				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

Test Record Radiated Emission Test RE07 Project GCL0296

Test record created by:	David A Kerr
Date of this record:	22 Nov 2023
Frequency Range:	30 MHz to 1000 MHz
Pass/Fail Judgment:	Pass
Test Standards:	FCC Part 15, (as noted in Section 6 of the report).
Operating Mode	M8 (WifiT)
Arrangement	A1 (Standalone)
Input Power	Battery 5 Vdc
Product Model	A03996
Serial Number tested	443220641
Test Date(s)	22 Nov 2023
Test Personnel	David Kerr

Date of this record: Original record, Version A.

Test Equipment

Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
PXE Receiver 26 GHz	Keysight	N9048B	MY59290135	27-Sep-2023	1-Oct-2024
Antenna, Biconilog, 30M-6 GHz	ETS Lindgren	3142E	233204	7-Nov-2023	1-Nov-2025
SAC 3m, below 1 GHz	Frankonia	SAC3	F199004	7-Nov-2022	7-Nov-2025
Tape measure, 1° x 33'	Lufkin	PHV1410CMEN	10720	16-Jan-2023	15-Jan-2026

Table RE07.1: Test Equipment Used

Software Used: Keysight PXE software A.32.06, EPX test software Version 2023.01.001

Page 63 of 75	GCL Test Report 2023-092	Version C				
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin						

Test Data

The radiated emission test process began with a preliminary scan at multiple turntable angles, antenna heights, and both antenna polarizations. For test standards that require reorienting the test sample, further preliminary scans were taken in those alternate orientations typically described as X, Y, and Z. Subsequent testing was done using on the orientation(s) producing the highest result relative to the test limit. Where the test standard requires cable manipulation, this was done at one of more likely worst case frequencies selected by the test personnel while observing the receiver display. At each of the frequencies selected for final measurements, the turntable angle, antenna height, and antenna polarization were explored to find the worst-case settings. Final field strength measurements were taken in that set of positions. Full maximization was not performed at frequencies that are noise floor measurements included per the test standard requirements.

At azimuth angle 180° the 'front' reference mark of the turntable is pointed Southward. At 270° the reference mark points West. At 90° it points East. At 173° the turntable reference mark is pointed directly at the antenna. The designation of the X, Y, 4nd Z orientations of the test sample are sample dependent, so these are reported by use of photographs.

The table shows the selected final measurement data between 30 MHz and 1 GHz for Wifi channels 1,6 and 11 at the B5.5 data rate. It includes at least the six strongest emissions observed relative to the test limit, along with other data points of interest. Where a data point is highlighted is yellow, this is an aid to indicate the data point(s) with the least margin to the test limit. A positive margin value indicates that the emission was below the test limit. The test limit is the FCC Class B Limit at 3m. Any unintentional radio emission limits are not applied to intentional radio signals.

Frequency	Pol.	Reading	Factor	Level	Limit	Margin	Height	Angle
MHz		dB(μV)	dB(1/m)	dB(µV/m)	dB(µV/m)	dB	cm	deg
		QP		QP	QP	QP		
293.100	Н	18.9	21.5	40.4	46.0	<mark>5.6</mark>	100.0	96.0
45.000	V	3.8	15.3	19.1	40.0	20.9	129.6	103.0
430.230	V	7.5	26.8	34.3	46.0	11.7	118.0	159.0
504.000	V	5.9	28.8	34.7	46.0	11.3	100.0	120.0
705.600	V	4.4	33.4	37.8	46.0	8.2	162.4	36.0
944.940	V	1.3	36.6	37.9	46.0	8.1	100.0	64.0

Table RE07.2: Emission summary (WiFI ch 1 B5.5)

Frequency	Pol.	Reading	Factor	Level	Limit	Margin	Height	Angle
MHz		dB(μV)	dB(1/m)	dB(µV/m)	dB(µV/m)	dB	cm	deg
		QP		QP	QP	QP		
293.010	Н	17.9	21.5	39.4	46.0	<mark>6.6</mark>	100.0	94.0
201.600	Н	6.2	18.9	25.1	43.5	18.4	148.9	223.0
44.940	Н	3.8	15.3	19.1	40.0	20.9	239.5	160.0
427.680	V	5.6	26.9	32.5	46.0	13.5	116.1	167.0
504.000	V	5.7	28.8	34.5	46.0	11.5	100.0	105.0
705.600	V	4.5	33.4	37.9	46.0	8.1	160.7	347.0

Table RE07.3: Emission summary (WiFI ch 6 B5.5)

Frequency	Pol.	Reading	Factor	Level	Limit	Margin	Height	Angle
MHz		dB(µV)	dB(1/m)	dB(µV/m)	dB(µV/m)	dB	cm	deg
		QP		QP	QP	QP		
293.100	н	19.0	21.5	40.5	46.0	<mark>5.5</mark>	100.0	103.0
786.390	н	5.5	33.8	39.3	46.0	6.7	309.3	358.0

Page 64 of 75	GCL Test Report 2023-092	Version C		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

75.000	V	2.8	14.6	17.4	40.0	22.6	317.4	37.0
432.510	V	8.8	26.8	35.6	46.0	10.4	112.7	186.0
504.000	V	5.7	28.8	34.5	46.0	11.5	106.5	94.0
705.600	V	4.6	33.4	38.0	46.0	8.0	165.0	356.0

Table RE07.3: Emission summary (WiFI ch 11 B5.5)

The graph below shows the background spectrum observed during pre-scan, as well as the final data points from the table above.

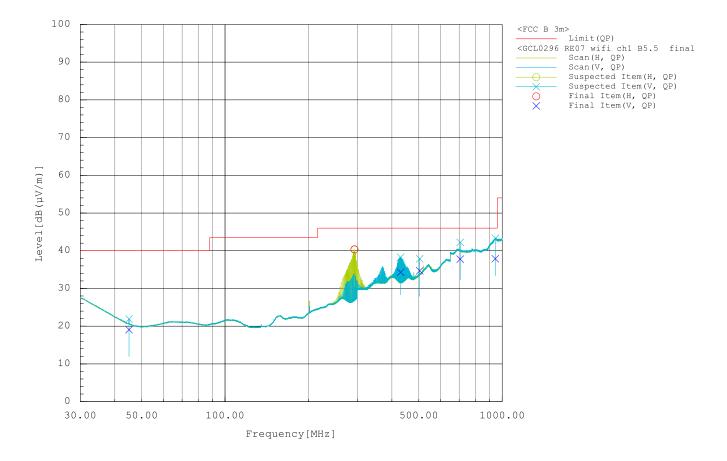


Figure RE07.1: Spectral data (WiFl ch 1 B5.5)

Page 65 of 75	GCL Test Report 2023-092	Version C			
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin					

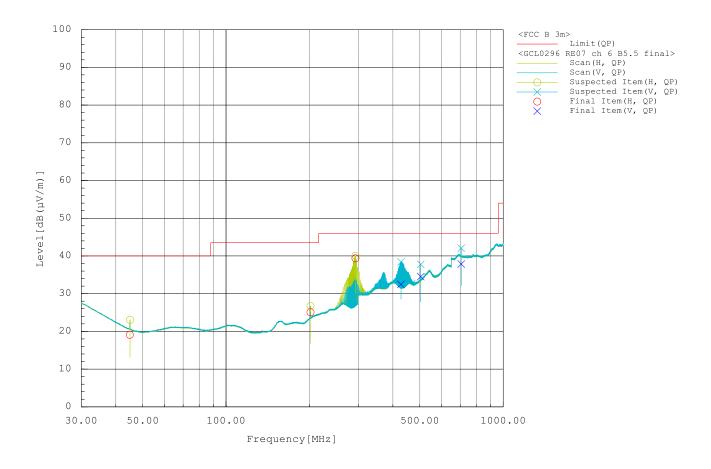


Figure RE07.2: Spectral data (WiFI ch 6 B5.5)

Page 66 of 75	Page 66 of 75 GCL Test Report 2023-092				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

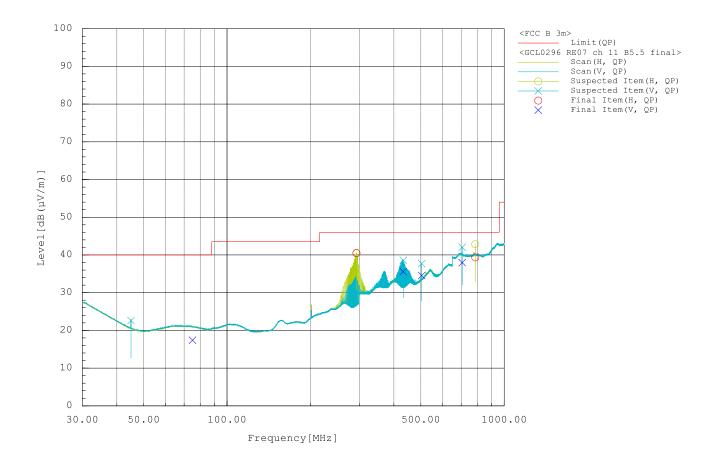


Figure RE07.3: Spectral data (WiFl ch 11 B5.5)

Setup Photographs

The following photographs show the EUT configured and arranged in the manner in which it was measured.

Page 67 of 75	GCL Test Report 2023-092	Version C			
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

Image removed for client confidentiality.

See section 1 of this report to identify the report where the photos may be viewed.

Figure RE07.4: EUT test setup, front view

Image removed for client confidentiality. See section 1 of this report to identify the report where the photos may be viewed.

Figure RE07.5: EUT test setup, reverse view

Page 68 of 75	Page 68 of 75 GCL Test Report 2023-092					
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.						
Garmin						

Test Record **Conducted Emissions Mains Test CE01** Project GCL0296

Test record created by:	Aditya Prakash
Date of this record:	10 Oct 2023
Frequency Range:	150 kHz to 30 MHz
Pass/Fail Judgment:	PASS
Test Standards:	FCC Part 15 (as noted in Section 6 of the report).
Operating Mode	M8 (WifiT)
Arrangement	A5 (PwrA)
Input Power	115 V/ 60 Hz
Product Model	A03996
Serial Number tested	443220641
Test Date(s)	09 Oct 2023
Test Personnel	David Kerr

10 Oct 2023

Original record, Version A.

Test Equipment

			1	1	1
Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
PXE Receiver 44GHz	Keysight	N9048B	MY62220139	30-Jan-23	1-Feb-24
Tape measure, 1″ x 33′	Lufkin	PHV1410CMEN	10721	30-Aug-23	1-Sep-26
DMM Multimeter	FLUKE	79 III	71740743	5-Apr-23	1-Apr-24
LISN multiline; 20A 50uH	Com-Power	LIN-120C	20160005	10-Feb-23	15-Feb-24

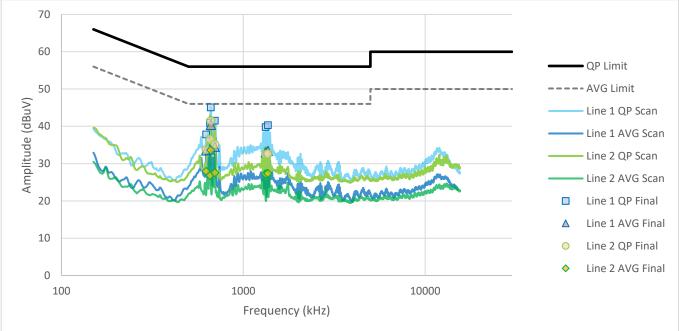
Table CE01.1: Test Equipment Used

Software Used

Keysight PXE software A.33.03; CE Mains 150k to 30M Data Analysis V2 2021Jun10.xlsx

Test Data

The conducted emission test process began with a set of preliminary scans on both power conductors using both Quasi-Peak and Average detectors across the frequency range. Where the test standard requires cable manipulation, one or more likely worst case frequencies selected by the test personnel. Cables were manipulated to find the maximal signal strength while observing the receiver levels at those selected frequencies. At each of the frequencies selected for final measurements, Quasi-peak and Average detector readings were taken on each conductor.


The table shows the selected final measurement data. It includes at least the six strongest emissions observed relative to the limit lines, along with other data points of interest. The yellow highlight indicate the data points with the least margin to the guasi-peak detector limit and the Average detector limit. A positive margin value indicates that the emission was below the test limit. The test limit is the FCC Class B.

Page 69 of 75	Version C					
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.						
Garmin						

Frequency	QP Limit	AV Limit	L1 QP	L2 QP	L1 AV	L2 AV	QP Margin	AV Margin
(kHz)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)
625	56.00	46.00	37.82	33.81	33.52	27.91	18.18	12.48
656	56.00	46.00	40.90	36.56	33.85	26.81	15.10	12.15
663	56.00	46.00	45.10	41.54	40.42	33.64	10.90	5.58
697	56.00	46.00	41.51	35.23	34.53	27.57	14.49	11.47
1327	56.00	46.00	39.82	32.49	33.04	27.19	16.18	12.96
1365	56.00	46.00	40.30	32.64	33.40	27.37	15.70	12.6

Table CE01.2: Emission summary

The graph below shows preliminary scan data as continuous curves. Superimposed are the final measurement data points reported in the table above.

Figure CE01.1: Spectral data

Setup Photographs

The following photographs show the EUT configured and arranged in the manner in which it was measured.

Page 70 of 75	Version C					
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.						
Garmin						

Image removed for client confidentiality.

See section 1 of this report to identify the report where the photos may be viewed.

Figure CE01.2: Test setup, front view



Figure CE01.3: Test setup, side view

Page 71 of 75	Page 71 of 75 GCL Test Report 2023-092					
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin						

Test Record **Conducted Emissions Mains Test CE03** Project GCL0296

Test record created by:	Aditya Prakash
Date of this record:	10 Oct 2023
Frequency Range:	150 kHz to 30 MHz
Pass/Fail Judgment:	PASS
Test Standards:	FCC Part 15 (as noted in Section 6 of the report).
Operating Mode	M6 (GNSS)
Arrangement	A5 (PwrA)
Input Power	115 V/ 60 Hz
Product Model	A03996
Serial Number tested	443220641
Test Date(s)	09 Oct 2023
Test Personnel	David Kerr

10 Oct 2023

Original record, Version A.

Test Equipment

Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
PXE Receiver 44GHz	Keysight	N9048B	MY62220139	30-Jan-23	1-Feb-24
Tape measure, 1" x 33'	Lufkin	PHV1410CMEN	10721	30-Aug-23	1-Sep-26
DMM Multimeter	FLUKE	79 III	71740743	5-Apr-23	1-Apr-24
LISN multiline; 20A 50uH	Com-Power	LIN-120C	20160005	10-Feb-23	15-Feb-24

Table CE03.1: Test Equipment Used

Software Used

Keysight PXE software A.33.03; CE Mains 150k to 30M Data Analysis V2 2021Jun10.xlsx

Test Data

The conducted emission test process began with a set of preliminary scans on both power conductors using both Quasi-Peak and Average detectors across the frequency range. Where the test standard requires cable manipulation, one or more likely worst case frequencies selected by the test personnel. Cables were manipulated to find the maximal signal strength while observing the receiver levels at those selected frequencies. At each of the frequencies selected for final measurements, Quasi-peak and Average detector readings were taken on each conductor.

The table shows the selected final measurement data. It includes at least the six strongest emissions observed relative to the limit lines, along with other data points of interest. The yellow highlight indicate the data points with the least margin to the guasi-peak detector limit and the Average detector limit. A positive margin value indicates that the emission was below the test limit. The test limit is the FCC Class B.

Page 72 of 75	Page 72 of 75 GCL Test Report 2023-092					
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.						
Garmin						

Frequency	QP Limit	AV Limit	L1 QP	L2 QP	L1 AV	L2 AV	QP Margin	AV Margin
(kHz)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)
654	56	46	46.56	42.65	40.87	34.88	9.44	5.13
699	56	46	38.29	33.32	31.92	26.69	17.71	14.08
1140	56	46	38.45	33.89	30.93	27.63	17.55	15.07
1358	56	46	44.02	35.93	34.36	29.4	11.98	11.64
1365	56	46	39.1	34.4	31.66	28.56	16.9	14.34
1433	56	46	37.76	32.3	29.99	26.62	18.24	16.01

Table CE03.2: Emission summary

The graph below shows preliminary scan data as continuous curves. Superimposed are the final measurement data points reported in the table above.

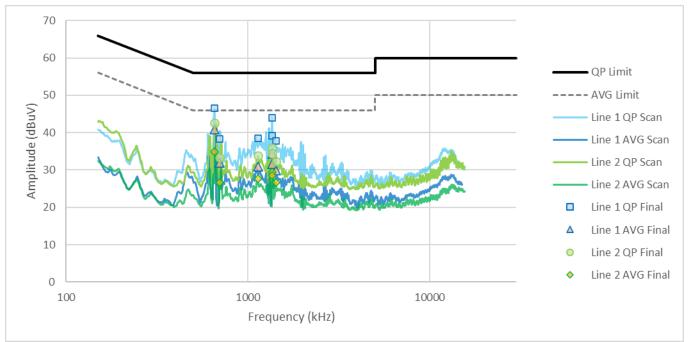


Figure CE03.1: Spectral data

Setup Photographs

The following photographs show the EUT configured and arranged in the manner in which it was measured.

Page 73 of 75	GCL Test Report 2023-092	Version C				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.						
Garmin						

Image removed for client confidentiality.

See section 1 of this report to identify the report where the photos may be viewed.

Figure CE03.2: Test setup, front view



Figure CE03.3: Test setup, side view

Page 74 of 75	GCL Test Report 2023-092	Version C		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

Concluding Notes

This report stands as an integrated record of the tests performed and must be copied or distributed in its complete form. The reproduction of selected pages or sections separate from the complete report would require specific approval from the manager of the Garmin Compliance Lab.

This is the final page of the report.

Page 75 of 75	GCL Test Report 2023-092	Version C		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				