

Radio Test Report

Redtail Telematics Ltd VLU6M4SP-EW

47 CFR Part 90I Effective Date 1st October 2023

→ 47 CFR part 2J 2023

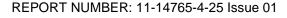
TNB: Licensed Non-Broadcast Station Transmitter Test Date: 21st November 2024 to 5th March 2025 Report Number: 11-14765-4-25 Issue 01

The testing was carried out by Kiwa Electrical Compliance, an independent test house, at their test facility located at:

Kiwa Electrical Compliance

Arnolds Court
Arnolds Farm Lane
Mountnessing
Essex
CM13 1UT
U.K.

www.Kiwa.com


Telephone: +44 (0) 1277 352219 Email: uk.enquiries@kiwa.com

This laboratory is accredited in accordance with the recognised International Standard ISO/IEC 17025. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer joint ISO-ILAC-IAF communiqué dated April 2017).

This report is not to be reproduced by any means except in full and in any case not without the written approval of Kiwa Electrical Compliance.

File Name: Redtail Telematics Ltd.14765-4 Issue 01

QMF21J - Issue 05 - KEC Issue 02; 47 CFR Part 90I 2023

Arnolds Court, Arnolds Farm Lane, Mountnessing, Brentwood Essex, CM13 1UT Certificate of Test 14765-4

The equipment noted below has been fully tested by Kiwa Electrical Compliance and, where appropriate, conforms to the relevant subpart of 47 CFR Part 90I. This is a certificate of test only and should not be confused with an equipment authorisation. Other standards may also apply.

Equipment: VLU6M4SP-EW

Model Number: VLU6M4SP-EW

Unique Serial Numbers: 13D701C (Occupied bandwidth, Mask, Power)

13D701F (All other tests)

Applicant: Redtail Telematics Ltd

Plextek Building London Road Great Chesterford

Essex CB10 1NY

Proposed FCC ID 2AXBF-VLU6M4SP

Full measurement results are

detailed in Report Number: 11-14765-4-25 Issue 01

Test Standards: 47 CFR Part 90I Effective Date 1st October 2023

→ 47CFR part 2J 2023

TNB: Licensed Non-Broadcast Station Transmitter

NOTE:

Certain tests were not performed based upon applicant's declarations. Certain other requirements are subject to applicant's declaration only and have not been tested/verified. For details refer to section 3 of this report. This report pertains to model variant VLU6M4SP-EW (with Bluetooth) only. The results for model variant VLU6M4SP (without the pre-approved Bluetooth module FCC ID RFRMS42 fitted) are contained within KEC report: 02-14765-5-25.

DEVIATIONS:

No deviations have been applied.

This certificate relates only to the unit tested as identified by a unique serial number and in the condition at the time it was tested. It does not relate to any other similar equipment and performance of the product before or after the test cannot be guaranteed. Whilst every effort is made to assure quality of testing, type tests are not exhaustive and although no non-conformances may be found, this doesn't exclude the possibility of unit not meeting the intentions of the standard or the requirements of the Federal Regulations, particularly under different conditions to those during testing. Any compliance statements are made reliant on (a) the application of the product and use of the assigned band being acceptable to the FCC and (b) the modes of operation as instructed to us by the Customer based on their specific knowledge of the application and functionality of the EUT. Statements of compliance, where measurements were made, do not include the measurement uncertainty. The measurement uncertainty, where stated, is the expanded uncertainty based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Date of Test:	21st November 2024 to 5 th March 2025		
Test Engineer: Graham Blake		and	da
Approved By: Test Development Engineer		ilac MRA	UKAS
Customer Representative:		"Adalahili	2360

File Name: Redtail Telematics Ltd.14765-4 Issue 01

QMF21J - Issue 05 - KEC Issue 02; 47 CFR Part 90I 2023

1 Contents

		ntents	
2	Equ	uipment under test (EUT)	5
	2.1	Equipment specification	5
	2.2	Applicant declarations for testing	5
	2.3	Functional description	6
	2.4	Modes of operation	
	2.5	Emissions configuration	
3	-	nmary of test results	
		ecifications	
•		Relevant standards	
		Deviations	
		Tests at extremes of temperature & voltage	
		Test fixtures	
5		ests, methods and results	
J	5.1	Radiated emissions	
	5.2	Conducted emissions	
	5.3	Conducted power	
	5.4	Frequency stability	
	5.5	Occupied bandwidth	
	5.6	Emission mask	
	5.7	Modulation limiting	
	5.8	Modulation frequency response	
	5.9	Transient frequency behaviour	
	5.10	7	
	5.11	- 7 - 7	
6		ts/Graphical results	
		Conducted power	
		Occupied bandwidth	
		Emission mask	
		Transient frequency behaviour	
		Duty cycle	
7	Exp	olanatory Notes	. 31
	7.1	Explanation of Table of Signals Measured	.31
	7.2	Explanation of limit line calculations for radiated measurements	.31
8	Pho	otographs	. 33
	8.1	EUT Front View	.33
	8.2	EUT Reverse Angle	.35
	8.3	EUT Left side View	.35
		EUT Right side View	
		EUT Antenna	
		EUT Display & Controls	
		EUT Internal photos	
		EUT ID Label	
		25-1000MHz Spurious emissions test set-up	
		Above 1GHz Spurious emissions test set-up	
		Radiated emission diagrams	
		st equipment calibration list	
		uxiliary and peripheral equipment	
1			
		Customer supplied equipment	
1.		Kiwa Electrical Compliance supplied equipment	
1		ondition of the equipment tested	
	11.1		
	11.2	3	
		escription of test sites	
าร	∢ Λh	ANTENIATIONS AND LINITS	50

©2025 Kiwa Electrical Compliance ALL RIGHTS RESERVED

REPORT NUMBER: 11-14765-4-25 Issue 01

ALL RIGHTO RESERVES

2 Equipment under test (EUT)

2.1 Equipment specification

Applicant	Redtail Telematics Ltd		
	Plextek Building		
	London Road		
	Great Chesterford		
	Essex		
	CB10 1NY		
	UK		
Manufacturer of EUT	Redtail Telematics Ltd		
Full Name of EUT	VLU6M4SP-EW		
Model Number of EUT (HVIN)	VLU6M4SP-EW		
Serial Number of EUT	13D701C (Occupied bandwidth, Mask, Power)		
	13D701F (All other tests)		
Date Received	1 st July 2024		
Date of Test:	21st November 2024 to 5th March	n 2025	
Date Report Issued	27th March 2025		
	<u>.</u>		
Main Function	Stolen vehicle recovery.		
EUT Specification	Height	130 mm	
	Width	60 mm	
	Depth	40 mm	
	Weight	0.2 kg	
	Voltage	3 - 6 VDC	
	Current <1 Amp		

2.2 Applicant declarations for testing

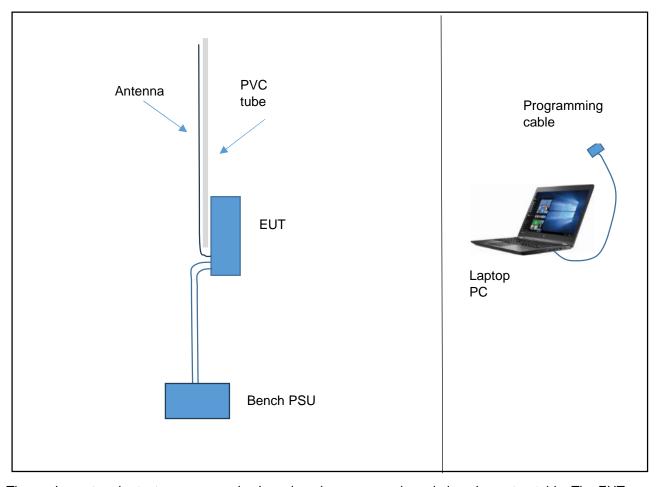
General Parameters	
EUT Normal use position	Vehicle mounted
Choice of model(s) for type tests	Sample
Antenna details	PVC coated wire, 2.14 m long
Antenna port	No
Baseband Data port (yes/no)?	No
Highest Signal generated in EUT	2480 MHz
Lowest Signal generated in EUT	40 MHz
Hardware Version (HVIN)	VLU6M4SP-EW
Software Version	Not applicable
Firmware Version (FVIN)	114.5
Type of Equipment	Stand alone
Technology Type	VHF PMR
Geo-location (yes/no)	Yes
TX Parameters	
Alignment range – transmitter	173.075 MHz
EUT Declared Modulation Parameters	MSK and FSK
EUT Declared Power level	+30dBm ±2.0dB max
EUT Declared Signal Bandwidths	10 kHz
Declared Channel Spacing's	12.5 kHz

ALL RIGHTS RESERVED

REPORT NUMBER: 11-14765-4-25 Issue 01

	Stolen/Active mode (MSK) = 200ms every 2 seconds
EUT Declared Duty Cycle	Normal mode (MSK) = 200ms every 17.5 seconds +- 2.5 seconds
	Status update mode (FSK) = 1.75 seconds typically every week
Unmodulated carrier available?	CW test mode available
Declared frequency stability	<5 ppm
RX Parameters	
Alignment range – receiver	173.075 MHz
EUT Declared RX Signal Bandwidth	12.5 kHz
FCC Parameters	
FCC Transmitter Class	TNB: Licensed Non-Broadcast Station Transmitter

2.3 Functional description


VLU6M3-EW is a vehicle security device, using proprietary VHF communication and radio location techniques to enable recovery of a stolen vehicle. The product is designed for covert installation and is powered from the vehicle. If the external power is lost it will run from an internal 6V primary cell. The radio transceiver is a discrete design, operating at a single frequency 173.075MHz (for US and Latam markets) with a nominal transmit power of 31.8dBm, using either FSK or MSK modulation. Bit rates: FSK 50 bps, MSK 1200 bps.

Modes of operation 2.4

Mode Reference	Description	Used for testing
Mode 1	The EUT is transmitting bursts of data at 173.075 MHz, MSK 1200bps, stolen/active mode. The Bluetooth radio is transmitting.	Yes
Mode 2	The EUT is transmitting continuous bursts of data at 173.075 MHz, FSK 50bps. The Bluetooth radio is transmitting.	Yes
Mode 3	The EUT is transmitting continuously at 173.075 MHz CW.	Yes
Mode 4	The EUT is transmitting every 2 seconds at 173.075 MHz CW.	Yes
Mode 5	The EUT is transmitting bursts of data at 173.075 MHz, MSK 1200bps, normal mode. The Bluetooth radio is transmitting.	Yes

2.5 Emissions configuration

Test Area Outside Test Area

The equipment under test was powered using a bench power supply and placed on a turntable. The EUTs wire antenna was extended vertically and attached to a plastic pole for support. Using a laptop PC running engineering software, the EUT was configured into the relevant test modes as stated in section 2.4. The laptop PC was removed from the chamber prior to test. In order to perform conducted tests, a matching circuit pcb board was provided by Redtail Telematics Ltd to allow connection of the 377Ω antenna circuit to a 50Ω measurement port, the circuit attenuated the conducted RF output power by approximately 15dB in band, and where applicable, was compensated for during tests. The pre-approved Bluetooth module was also operating during testing to determine any radiated intermodulation emissions arising from simultaneous operation. This particular product comes in two model variants, both variants utilise exactly the same enclosure and internal pcb, but one model has the pre-approved Bluetooth module de-populated. This report pertains to the fully populated variant model: VLU6M4SP-EW. The results for variant model VLU6M4SP with the pre-approved Bluetooth de-populated are contained within KEC report: 02-14765-5-25.

2.5.1 Signal leads

Port Name	Cable Type	Connected	
VHF antenna	PVC coated wire	Yes	
Supply ground	PVC coated wire	Yes	
Vehicle supply	PVC coated wire	Yes	
GPIO (3 lines)	PVC coated wire	Yes	

ALL RIGHTS RESERVED

3 Summary of test results

The VLU6M4SP-EW was tested for compliance to the following standard(s):

47 CFR Part 90I Effective Date 1st October 2023

→ 47CFR part 2J 2023

REPORT NUMBER: 11-14765-4-25 Issue 01

TNB: Licensed Non-Broadcast Station Transmitter

Any compliance statements are made reliant on (a) the application of the product and use of the assigned band being acceptable to the FCC and (b) the modes of operation as instructed to us by the Customer based on their specific knowledge of the application and functionality of the EUT. Whilst every effort is made to assure quality of testing, type tests are not exhaustive and although no non-conformances may be found, this doesn't exclude the possibility of equipment not meeting the intentions of the standard or the essential requirements of the directive, particularly under different conditions to those during testing. Statements of compliance, where measurements were made, do not include the measurement uncertainty. The measurement uncertainty, where stated, is the expanded uncertainty based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Title	References	Results
Transmitter Tests		
Radiated emissions	47 CFR Part 90I Clause 90.210(d),	PASSED1
T. Radiated emissions	47 CFR Part 2J Clause 2.1053	1 ACCED
2. Conducted emissions	47 CFR Part 90I Clause 90.210(d),	NOT APPLICABLE ²
2. Conducted emissions	47 CFR Part 2J Clause 2.1051	NOT AFFEICABLE
3. Conducted power	47 CFR Part 90I Clause 2.1046,	PASSED
5. Conducted power	47 CFR Part 90I Clause 90.20(e)(6)(iii)	FASSED
4. Frequency stability	47 CFR Part 90I Clause 90.213(a)	PASSED
5. Occupied bandwidth	47 CFR Part 90I Clause 90.209	PASSED
6. Emission mask	47 CFR Part 90I Clause 90.210(d)	PASSED
7. Modulation limiting	47 CFR Part 2J Clause 2.1047(b)	NOT APPLICABLE ³
8. Modulation frequency response	47 CFR Part 2J Clause 2.1047(a)	NOT APPLICABLE ³
9. Transient frequency behaviour	47 CFR Part 90I Clause 90.214	PASSED
10. Adjacent channel power	47 CFR Part 90I Clause 90.221	NOT APPLICABLE ⁴
11. Duty Cycle	47 CFR Part 90B Clause 90.20(e)6(v)	PASSED

¹ Spectrum investigated up to a frequency of 25GHz based on 10 times the highest channel/ signal generated in equipment of 2480MHz.

² The EUT has no antenna port and a temporary connection could not be made to 50ohms measuring equipment without the need for a matching board which attenuated maximum power observed by approximately 15dB in band. Therefore, radiated emissions tests were performed with the permanent antenna in place.

³ Not Applicable to Digitally modulated EUTs.

⁴ Only applicable to transmitters within the 450 - 470 MHz, 809 - 824 MHz and 854 - 869 MHz frequency bands.

4 Specifications

The tests were performed and operated in accordance with Kiwa Electrical Compliance procedures and the relevant standards listed below.

REPORT NUMBER: 11-14765-4-25 Issue 01

4.1 Relevant standards

Ref.	Standard Number	Version	Description
4.1.1	47 CFR Part 90I	October 2023	Part 90 - Private Land Mobile Radio Services - Subpart I -
			General Technical standards
4.1.2	47 CFR Part 2J	October 2023	Part 2 – Frequency Allocations and radio treaty matters; General
			rules and regulations
4.1.3	ANSI C63.26	2015	American National Standard for Compliance Testing of
			Transmitters Used in Licensed Radio Services

4.2 Deviations

No deviations were applied.

4.3 Tests at extremes of temperature & voltage

The following test conditions were used to simulate testing at nominal or extremes.

Temperature Test Conditions		Voltage Test Conditions	
T nominal 20°C		V nominal	3V DC
T minimum -30°C		V minimum	2.2V DC
T maximum	50°C	V maximum	3.2V DC

Extremes of voltage are based upon manufacturer's declaration.

Extremes of temperature are based upon the requirements of 47 CFR 2.1055.

The ambient test conditions of humidity and pressure in the laboratory were as specified in each specific test section within this report

4.4 Test fixtures

In order to measure RF parameters at temperature extremes, the EUT was tested in a temperature-controlled chamber as follows:

A temporary RF port was created for testing by use a matching network board supplied by applicant.

REPORT NUMBER: 11-14765-4-25 Issue 01

5 Tests, methods and results

5.1 Radiated emissions

5.1.1 Test methods

Test Requirements: 47 CFR Part 90l Clause 90.210(d) [Reference 4.1.1 of this report],

47 CFR Part 2J Clause 2.1053 [Reference 4.1.2 of this report]

Test Method: ANSI C63.26 Clause 5.5 [Reference 4.1.3 of this report]

Limits: 47 CFR Part 90I Clause 90.210(d)(3) [Reference 4.1.1 of this report]

5.1.2 Configuration of EUT

The EUT was tested in an ALSE and ambient conditions were monitored. Three orthogonal planes were examined. All test modes specified in section 2.4 were initially checked; MSK modulation scheme was found to be worst case for emissions and, therefore the EUT was operated in Mode 1 for this test.

5.1.3 Test procedure

Tests were made in accordance with the Test Method noted above using the measuring equipment noted in the 'Test Equipment' Section at Site H. Peak field strength from the EUT was maximised by rotating it 360 degrees.

An RMS detector was used for final measurements.

25MHz - 1GHz.

The measuring antenna was scanned 1 - 4m in both Horizontal and Vertical polarisations. Substitution method was performed using tuned dipoles / a calibrated bi-conical antenna.

1GHz - 26 GHz.

The measuring antenna was used in both Horizontal and Vertical polarisations. Substitution method was performed using standard gain horn antennas.

5.1.4 Test equipment

CAL08, E007-2, E268, E403, E417, E429, E467, E602, E642, E745, E914, F230, F231, F238, LPE261, LPE333, P179, P189, TMS812

See Section 8 for more details

5.1.5 Test results

Temperature of test environment 20°C
Humidity of test environment 50%
Pressure of test environment 101kPa

Setup Table

Band	173.075 MHz
Power Level	Maximum
Channel Spacing	Single Channel
Mod Scheme	MSK
Single channel	173.075 MHz

Spurious Frequency (MHz)	Measured Spurious Level (dBm)	Difference to Limit (dB)	Antenna Polarisation	EUT Polarisation
346.15	-38.3	-18.3	Vertical	Flat
346.15	-38.7	-18.7	Horizontal	Flat

Note: No intermodulation products were observed.

ALL RIGHTS RESERVED

LIMITS:

Part 90.210(d)(3), On any frequency removed from the centre of the <u>authorized bandwidth</u> by a displacement frequency (fd in kHz) of more than 12.5 kHz: At least $50 + 10 \log (P) dB$ or 70 dB, whichever is the lesser attenuation: $50 + 10 \log (P) dB = -20 dBm$.

REPORT NUMBER: 11-14765-4-25 Issue 01

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows:

30MHz - 1000MHz ±6.1dB 1 – 18 GHz ±3.5dB 18 – 26.5 GHz ±3.9dB

REPORT NUMBER: 11-14765-4-25 Issue 01

5.2 Conducted emissions

NOT APPLICABLE: The EUT has no antenna port and a temporary connection could not be made to 50ohms measuring equipment without the need for a matching board which attenuated maximum power observed by approx. 15dB in band. Therefore, Radiated emissions tests performed with permanent antenna in place.

ALL RIGHTS RESERVED

5.3 Conducted power

5.3.1 Test methods

Test Requirements: 47 CFR Part 90I Clause 2.1046 [Reference 4.1.1 of this report],

47 CFR Part 90I Clause 90.20(e)(6)(iii) [Reference 4.1.1 of this report]

REPORT NUMBER: 11-14765-4-25 Issue 01

Test Method: ANSI C63.26 Clause 5.2 [Reference 4.1.3 of this report]

Limits: 47 CFR Part 90I Clause 90.20(e)(6)(iii) [Reference 4.1.1 of this report]

5.3.2 Configuration of EUT

The EUT was measured on a bench using a spectrum analyser connected to the temporary RF port. The EUT was operated in Mode 1 and Mode 2 for this test. The EUT was set to each mode and test signal in turn (see section 2.4) and highest power levels recorded.

5.3.3 Test procedure

Tests were made in accordance with the Test Method noted above using the measuring equipment noted in the 'Test Equipment' Section. Peak power measurements were made via a test fixture which matched the impedance of the radio to 50 ohms. The test fixture has a declared loss of 15 dB which has been compensated for in the final result.

5.3.4 Test equipment

E256, E367, E517, H071

See Section 8 for more details

5.3.5 Test results

Temperature of test environment 20°C
Humidity of test environment 50%
Pressure of test environment 101kPa

Band	173.075 MHz
Power Level	Maximum
Channel Spacing	Single Channel
Mod Scheme	MSK
Channel	173.075 MHz

Test conditions	Carrier Power (dBm)	Carrier Power (Watts)
Maximum TX Power observed (dBm)	29.92	0.981

Band	173.075 MHz
Power Level	Maximum
Channel Spacing	Single Channel
Mod Scheme	FSK
Channel	173.075 MHz

Test conditions	Carrier Power (dBm)	Carrier Power (Watts)
Maximum TX Power observed (dBm)	30.02	1.004

LIMITS:

Part 90B: 90.20(e)(6) (iii) Mobile transmitters operating on this frequency with emissions authorized in a maximum bandwidth of 12.5 kHz are limited to 5.0 watts power output (37 dBm). Mobile transmitters operating on this frequency with emissions authorized in a maximum bandwidth of 20 kHz are limited to 2.5 watts power output (34 dBm).

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows:

UR02D <3 GHz ±0.56 dB

File Name: Redtail Telematics Ltd.14765-4 Issue 01

QMF21J - Issue 05 - KEC Issue 02; 47 CFR Part 90I 2023

REPORT NUMBER: 11-14765-4-25 Issue 01

5.4 Frequency stability

5.4.1 Test methods

Test Requirements: 47 CFR Part 90I Clause 90.213(a) [Reference 4.1.1 of this report] Test Method: 47 CFR Part 2J Clause 2.1055 [Reference 4.1.2 of this report] Limits: 47 CFR Part 90I Clause 90.213(a) [Reference 4.1.1 of this report]

5.4.2 Configuration of EUT

The EUT was placed in a temperature-controlled chamber and thermal balance was achieved before tests began. The EUT emissions were observed by means of a test fixture. The EUT was operated in Mode 3 for this test.

5.4.3 Test procedure

Tests were made in accordance with the Test Method noted above, using the measuring equipment listed in the 'Test Equipment' Section. Temperature stability was achieved at each test level before taking measurements. The measurement was performed on a CW signal.

Tests were performed using Test Site A.

5.4.4 Test equipment

E253, F307, H071, L264, TMS38

See Section 8 for more details

5.4.5 Test results

20°C Temperature of test environment Humidity of test environment 50% Pressure of test environment 101kPa

Band	173.075 MHz
Power Level	Maximum
Channel Spacing	Single Channel
Mod Scheme	MSK
Single channel	173.075 MHz

	Test conditions	Frequency measured (MHz)
		Single channel
-30°C	Volts Nominal (12V DC)	173.075123
-20°C	Volts Nominal (12V DC)	173.075106
-10°C	Volts Nominal (12V DC)	173.075083
0°C	Volts Nominal (12V DC)	173.075043
10°C	Volts Nominal (12V DC)	173.075134
20°C	Volts Minimum (V DC)	173.075003
	Volts Nominal (12V DC)	173.075031
	Volts Maximum (V DC)	173.075023
30°C	Volts Nominal (12V DC)	173.075077
40°C	Volts Nominal (12V DC)	173.075122
50°C	Volts Nominal (12V DC)	173.074979
Max Frequency Error per cha	an (Hz)	+103
Max Frequency Error observ	red (MHz)	0.000103

LIMITS:

Part 90.213: 5 ppm (+/- 0.865 kHz for a centre frequency of 173.075 MHz)

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows: <± 0.7 ppm

ALL RIGHTS RESERVED

5.5 Occupied bandwidth

5.5.1 Test methods

Test Requirements: 47 CFR Part 90l Clause 90.209 [Reference 4.1.1 of this report]
Test Method: 47 CFR Part 2J Clause 2.1049 [Reference 4.1.2 of this report]
Limits: 47 CFR Part 90l Clause 90.209 [Reference 4.1.1 of this report]

5.5.2 Configuration of EUT

The EUT was operated on a test bench. Measurements were made at the temporary RF port. The EUT was operated in Mode 1 and Mode 2.

REPORT NUMBER: 11-14765-4-25 Issue 01

5.5.3 Test procedure

Tests were performed using Test Site A.

Tests were made in accordance with the Test Method noted above using the measuring equipment noted in the 'Test Equipment' Section. A 200 Hz RBW, 3x VBW, auto sweep time and max hold settings were used for the 99% bandwidth.

5.5.4 Test equipment

E462, E517, F050, H071

See Section 8 for more details

5.5.5 Test results

Temperature of test environment 20°C
Humidity of test environment 50%
Pressure of test environment 101kPa

Band	173.075 MHz
Power Level	Maximum
Channel Spacing	Single Channel
Mod Scheme	MSK
Single channel	173.075 MHz

	Single channel
99 % Bandwidth (kHz) Nominal Temp & Volts	7.076
Plot for 99 % Bandwidth	14765-4 OBW MSK

FLOW Worst case (MHz)	173.071462
FHIGH Worst case (MHz)	173.078538

Band	173.075 MHz
Power Level	Maximum
Channel Spacing	Single Channel
Mod Scheme	FSK
Single channel	173.075 MHz

	Single channel
99 % Bandwidth (kHz) Nominal Temp & Volts	7.112
Plot for 99 % Bandwidth (kHz)	14765-4 OBW FSK
EL 0\4\14\	470.074.444

FLOW Worst case (MHz)	173.071444
FHIGH Worst case (MHz)	173.078556

Analyser plots can be found in Section 6 of this report.

File Name: Redtail Telematics Ltd.14765-4 Issue 01

QMF21J - Issue 05 - KEC Issue 02; 47 CFR Part 90I 2023

ALL RIGHTS RESERVED

LIMITS:

Part 90.209 (B)(5), Operations using equipment designed to operate with a 12.5 kHz channel bandwidth will be authorized a 11.25 kHz bandwidth.

REPORT NUMBER: 11-14765-4-25 Issue 01

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows: UR19B ± 0.17 %

ALL RIGHTS RESERVED

5.6 Emission mask

5.6.1 Test methods

Test Requirements: 47 CFR Part 90I Clause 90.210(d) [Reference 4.1.1 of this report]

REPORT NUMBER: 11-14765-4-25 Issue 01

Test Method: ANSI C63.26 Clause 5.5 [Reference 4.1.3 of this report]

Limits: 47 CFR Part 90I Clause 90.210(d) [Reference 4.1.1 of this report]

5.6.2 Configuration of EUT

The EUT was operated on a test bench. Measurements were made at the temporary RF port. The EUT was operated in Mode 1 and Mode 2.

5.6.3 Test procedure

Tests were made in accordance with the Test Method noted above using the measuring equipment listed in the 'Test equipment used' Section. The analyser was tuned to the nominal centre frequency with span initially greater than 250% bandwidth and allowed to sweep enough times to capture the entire power envelope. The frequencies at which the spurious emission limits were last exceeded were noted. Plots were taken referenced to the applicable spectrum mask.

Tests were performed is test site A.

5.6.4 Test equipment

E462, E517, F050, H071

See Section 8 for more details

5.6.5 Test results

Temperature of test environment 20°C
Humidity of test environment 50%
Pressure of test environment 101kPa

Band	173.075 MHz
Power Level	Maximum
Channel Spacing	Single Channel
Mod Scheme	MSK
Single channel	173.075 MHz

	Single channel
Plot reference	14765-4 MSK FCC part 90.210 emission mask D (12.5kHz)

Band	173.075 MHz
Power Level	Maximum
Channel Spacing	Single Channel
Mod Scheme	FSK
Single channel	173.075 MHz

	Single channel	
Plot reference	14765-4 FSK FCC part 90.210 emission mask D (12.5kHz)	

Analyser plots can be found in Section 6 of this report.

ALL RIGHTS RESERVED

LIMITS:

Part 90.210

(d) Emission Mask D—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

REPORT NUMBER: 11-14765-4-25 Issue 01

- (1) On any frequency from the center of the authorized bandwidth f₀ to 5.625 kHz removed from f₀: Zero dB.
- (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.625 kHz but no more than 12.5 kHz: At least 7.27(f_d−2.88 kHz) dB.
- (3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows: $\pm 2.8 \text{ dB}$ up to 26.5 GHz

ALL RIGHTS RESERVED

5.7 Modulation limiting

NOT APPLICABLE: Not Applicable to Digitally modulated EUT's.

5.8 Modulation frequency response

NOT APPLICABLE: Not Applicable to Digitally modulated EUT's.

File Name: Redtail Telematics Ltd.14765-4 Issue 01

REPORT NUMBER: 11-14765-4-25 Issue 01

REPORT NUMBER: 11-14765-4-25 Issue 01

5.9 Transient frequency behaviour

5.9.1 Test methods

Test Requirements: 47 CFR Part 90l Clause 90.214 [Reference 4.1.1 of this report]
Test Method: ANSI C63.26 Clause 6.5.2.2 [Reference 4.1.3 of this report]
Limits: 47 CFR Part 90l Clause 90.214 [Reference 4.1.1 of this report]

5.9.2 Configuration of EUT

The EUT was operated on a test bench. Measurements were made at the temporary RF port. The EUT was operated in Mode 4 for this test.

5.9.3 Test procedure

Tests were made in accordance with the Test Method noted above using the measuring equipment noted in the 'Test Equipment' Section at Site A. The EUT repeatedly keyed up and down and the frequency vs. time curve observed from the discriminator output of a modulation analyser was recorded using a storage oscilloscope.

5.9.4 Test equipment

E249, E301, E401, E479, E517, E699, F136, H071, TMS206, TMS30

See Section 8 for more details

5.9.5 Test results

Temperature of test environment 20°C
Humidity of test environment 50%
Pressure of test environment 101kPa

Band	173.075 MHz
Power Level	Maximum
Channel Spacing	Single Channel
Mod Scheme	MSK
Single channel	173.075 MHz

	Single channel
TX ON Result	PASSED
TX ON Plot Reference	14765-4 TX on transient
TX OFF Result	PASSED
TX OFF Plot Reference	14765-4 TX off transient

LIMITS:

Channel Separation	Time Period ^{1,2}	Transient Period	Maximum frequency difference ³
	t ₁ ⁴	5 ms	±12.5 kHz
12.5 kHz	t_2	20 ms	±6.25 kHz
	t_3^4	5 ms	±12.5 kHz

 $¹_{on}$ is the instant when a 1 kHz test signal is completely suppressed, including any capture time due to phasing. 1_{t_1} is the time period immediately following 1_{t_2} .

toff is the instant when the 1 kHz test signal starts to rise.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows: <± 185 Hz

T₂ is the time period immediately following t1.

T₃ is the time period from the instant when the transmitter is turned off until toff.

² During the time from the end of t₂ to the beginning of t₃, the frequency difference must not exceed the limits specified in § 90.213.

³ Difference between the actual transmitter frequency and the assigned transmitter frequency.

⁴ If the transmitter carrier output power rating is 6 watts or less, the frequency difference during this time period may exceed the maximum frequency difference for this time period.

REPORT NUMBER: 11-14765-4-25 Issue 01

5.10 Adjacent channel power

NOT APPLICABLE: Only applicable to transmitters within the 450 - 470 MHz, 809 - 824 MHz and 854 - 869 MHz frequency bands.

ALL RIGHTS RESERVED

5.11 Duty cycle

5.11.1 Test methods

Test Requirements: FCC Part 90B Clause 90.20(e)6(v) [Reference 4.1.5 of this report]
Test Method: ANSI C63.26 Clause 6.5.2.2 [Reference 4.1.3 of this report]
Limits: FCC Part 90B Clause 90.20(e)6(v) [Reference 4.1.5 of this report]

5.11.2 Configuration of EUT

The EUT was operated on a test bench. Measurements were made at the temporary RF port. the EUT was operated in TX1, TX2 and TX5 modes for this test.

REPORT NUMBER: 11-14765-4-25 Issue 01

5.11.3 Test procedure

Tests were made in accordance with the Test Method noted above using the measuring equipment listed in the 'Test Equipment' Section. An analyser in zerospan/Time Domain mode, was centred on the EUT frequency and the EUT was allowed to automatically key up and down. The observed time domain was plotted and timings calculated.

Tests were performed in Site A.

5.11.4 Test equipment

E640, E755

See Section 8 for more details

5.115 Test results

Temperature of test environment 21°C Humidity of test environment 60% Pressure of test environment 102kPa

Band	173.075 MHz
Power Level	Maximum
Channel Spacing	Single Channel
Mod Scheme	MSK / FSK
Single channel	173.075 MHz

	Single channel
Normal mode – On time (ms)	203.5
Plot Reference	14765 Duty cycle - Normal mode On time MSK test mode (+BT)
Normal mode – period (s)	19.92
Plot Reference	14765 Duty cycle - Normal mode MSK test mode (+BT)
Tracking mode – On time (ms)	203.7
Plot Reference	14765 Duty cycle - On time Tracking mode MSK test mode (+BT)
Tracking mode – period (s)	1.187
Plot Reference	14765 Duty cycle - Tracking mode MSK test mode (+BT)
Status update mode – On time (s)	1.462
Plot Reference	14765 Duty cycle - On time Status update FSK test mode (+BT)
Status update – period (s)	46.99
Plot Reference	14765 Duty cycle Status update FSK test mode (+BT)

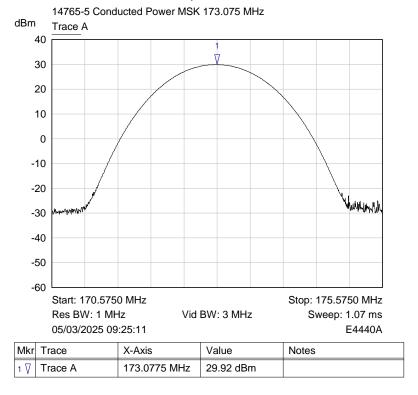
Note: Status update mode was provided in an increased cycle time/period for test only and is typically every seven days / once a week transmission rate.

ALL RIGHTS RESERVED

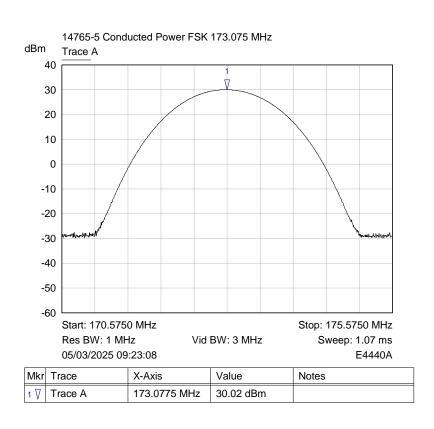
LIMITS:

90.20(e)6(v) Transmissions from mobiles shall be limited to 400 milliseconds for every 10 seconds, except when a vehicle is being tracked actively transmissions are limited to 400 milliseconds for every second. Alternatively, transmissions from mobiles shall be limited to 7200 milliseconds for every 300 seconds with a maximum of six such messages in any 30 minute period.

REPORT NUMBER: 11-14765-4-25 Issue 01


These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows: Duty cycle|<± 2.57 ms


6 Plots/Graphical results

6.1 Conducted power

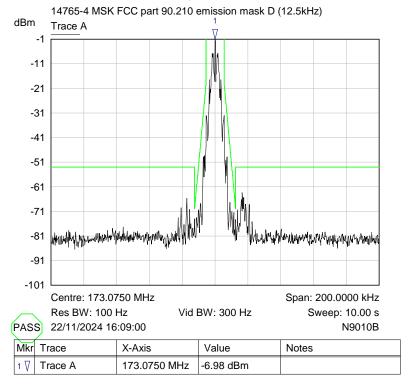
RF Parameters: Band 173.075 MHz, Power Maximum, Channel Spacing Single Channel, Modulation MSK, Channel 173.075 MHz

RF Parameters: Band 173.075 MHz, Power Maximum, Channel Spacing Single Channel, Modulation FSK, Channel 173.075 MHz

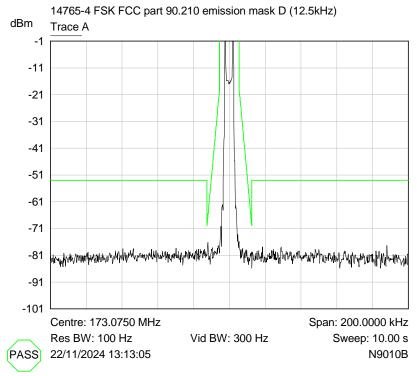
6.2 Occupied bandwidth

RF Parameters: Band 173.075 MHz, Power Maximum, Channel Spacing Single Channel, Modulation MSK, Channel 173.075 MHz

Plot for 99 % Bandwidth

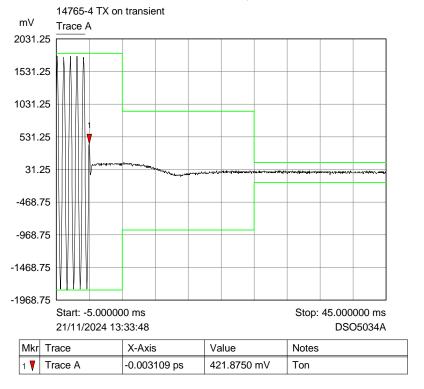

RF Parameters: Band 173.075 MHz, Power Maximum, Channel Spacing Single Channel, Modulation FSK, Channel 173.075 MHz

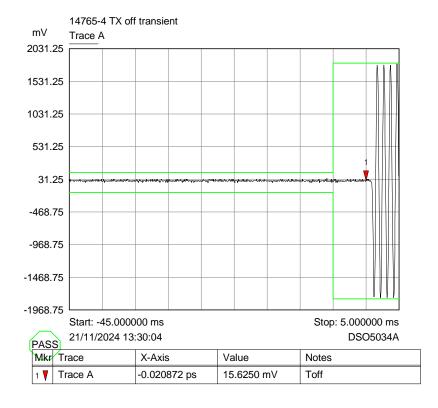
Plot for 99 % Bandwidth


6.3 Emission mask

RF Parameters: Band 173.075 MHz, Power Maximum, Channel Spacing Single Channel, Modulation MSK, Channel 173.075 MHz

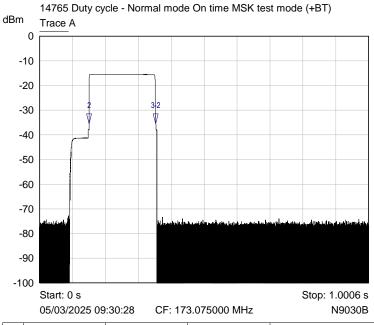
Nominal Temperature, Nominal Voltage


RF Parameters: Band 173.075 MHz, Power Maximum, Channel Spacing Single Channel, Modulation FSK, Channel 173.075 MHz

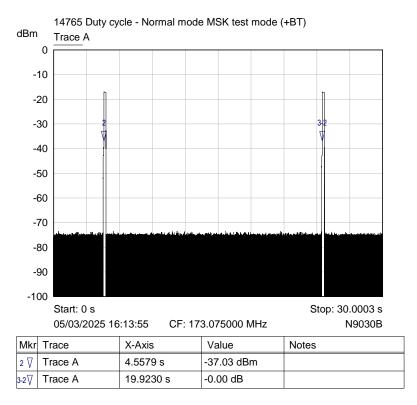

Nominal Temperature, Nominal Voltage

6.4 Transient frequency behaviour

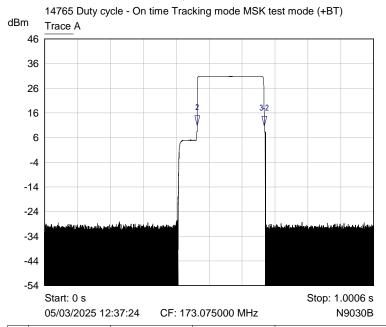
RF Parameters: Band 173.075 MHz, Power Maximum, Channel Spacing Single Channel, Modulation MSK, Channel 173.075 MHz


TX ON Result

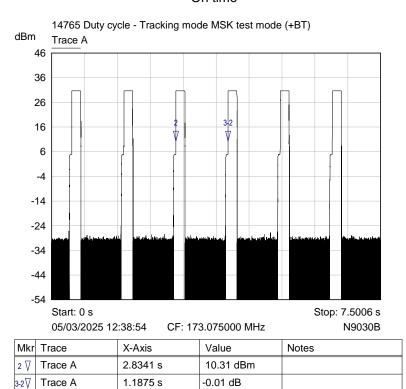
TX OFF Result


6.5 Duty cycle

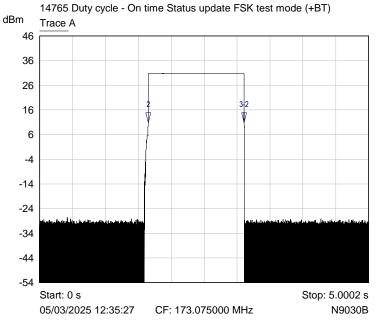
RF Parameters: Band 173.075 MHz, Power Maximum, Channel Spacing Single Channel, Modulation MSK, Channel 173.075 MHz


Mkr	Trace	X-Axis	Value	Notes
2 ▽	Trace A	149.6738 ms	-35.49 dBm	
3-2∇	Trace A	203.5510 ms	-0.00 dB	

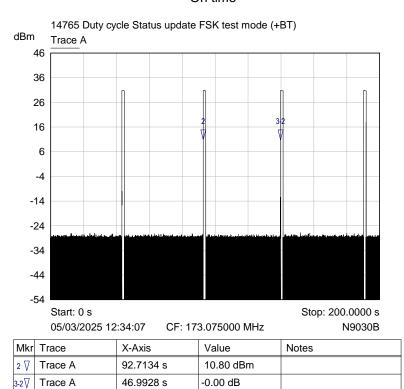
On time


Cycle/period time

RF Parameters: Band 173.075 MHz, Power Maximum, Channel Spacing Single Channel, Modulation MSK, Channel 173.075 MHz


Mkr	Trace	X-Axis	Value	Notes
2 ∇	Trace A	464.3285 ms	10.81 dBm	
3-2∇	Trace A	203.7057 ms	0.00 dB	

On time


Cycle/period time

RF Parameters: Band 173.075 MHz, Power Maximum, Channel Spacing Single Channel, Modulation FSK, Channel 173.075 MHz

Mkr	Trace	X-Axis	Value	Notes
2 ∇	Trace A	1.6474 s	10.79 dBm	
3-2 ▽	Trace A	1.4620 s	0.00 dB	

On time

Cycle/period time

REPORT NUMBER: 11-14765-4-25 Issue 01

7 Explanatory Notes

7.1 Explanation of Table of Signals Measured

Measurements are made as required by the standard. These measurements are made and recorded using detectors, either peak, quasi peak or average dependant on the test. A table of results has been given following the relevant plots. This table looks similar to the one illustrated below dependant on the measurements required by the test: -

Signal	No.	Freq (MHz)	Peak Amp (dBuV)	Pk – Lim 1 (dB)	QP Amp (dBuV)	QP - Lim1 (dB)	Av Amp (dBuV)	Av - Lim1 (dB)
1		12345	54.9	-10.5	48	-12.6	37.6	-14.4

Column One - Labelled Signal No. is an incremental number that the receiver has given to each signal that has been measured.

Column Two - Labelled Freq (MHz) is the approximate frequency of the signal received.

Column Three - Labelled Peak Amp ($dB_{\mu}V$) is the level of received signal that was measured in dB above $1\mu V$ using the peak detector.

Column Four - Labelled Pk - Lim1 (dB) is the difference in level from the peak signal given to the active limit line. If this column appears in the table the peak detector measurement is required by the standard for this test. The results entered in this column indicate the signal level relative to the compliance limit required. Negative numbers indicate that the product is compliant.

Column Five - Labelled QP Amp (dB μ V) is the level of received signal that was measured in dB above 1 μ V using the quasi-peak detector.

Column Six - Labelled QP - Lim1 (dB) is the difference in level from the quasi-peak signal given to the active limit line. If this column appears in the table the quasi-peak detector measurement is required by the standard for this test. The results entered in this column indicate the signal level relative to the compliance limit required. Negative numbers indicate that the product is compliant.

Column Seven - Labelled Av Amp (dB μ V) is the level of received signal that was measured in dB above 1 μ V using the average detector.

Column Eight - Labelled Av - Lim1 (dB) is the difference in level from the average signal given to the active limit line. If this column appears in the table the average detector measurement is required by the standard for this test. The results entered in this column indicate the signal level relative to the compliance limit required. Negative numbers indicate that the product is compliant.

Only signals highlighted in red are deemed to exceed the limit of the detector required.

7.2 Explanation of limit line calculations for radiated measurements

The limits given in the test standard are normally expressed as absolute values (e.g. in μ V/m at a specified distance), whereas the measured values are expressed as peak, quasi peak or average values in dB μ V/m referenced to the measuring instrument inputs. Kiwa Electrical Compliance calibrate the test set-up to account for any path losses, antenna gains, etc. so that the value read at the receiver relates directly to the absolute value required, except that it is expressed in dB relative to one microVolt and may need to take account of any alternative measuring distance used. Examples:

- (a) limit of 500 μ V/m equates to 20.log (500) = 54 dB μ V/m.
- (b) limit of 300 μ V/m at 10m equates to 20.log (300 . 10/3) = 60 dB μ V/m at 3m

ALL RIGHTS RESERVED

REPORT NUMBER: 11-14765-4-25 Issue 01

(c) limit of 30 μ V/m at 30m, but below 30MHz, equates to 20.log(30) + 40.log(30/3) = 69.5 dB μ V/m at 3m, as extrapolation factor below 30MHz is 40dB/decade per 15.31(f)(2).

The measurement receiver used for emissions testing, performs the field strength (FS) calculations automatically.

The receiver combines the signal amplitude (RA), Antenna Factor (AF) and Cable Loss (CL) factors for the frequency to be measured.

Example calculation: - FS = RA + AF + CL.

Receiver amplitude (RA)	Antenna factor (3m) (AF)	Cable loss (CL)	Field strength result (3m) (FS)
20dBuV	25 dB	3 dB	48dBuV/m

Additional calculation examples per ANSI C63.10 clause 9.4 – 9.6 equations 21, 22, 25 & 26:

Equation 21: $E_{Linear} = 10^{((E_{log}^{-120})/20)}$

And therefore equation 21 transposed is: E_{Log} = 20xLog(E_{Linear)} +120

Where:

E_{Linear} is the field strength of the emission in V/m

E_{Log} is the field strength of the emissions in dBµV/m

Equation 22: EIRP = E_{Meas} + $20log(d_{Meas})$ -104.7

Where:

EIRP is equivalent isotropically radiated power in dBm

E_{Meas} is the field strength of the emission at the measurement distance in dBμV/m

 d_{Meas} is the measurement distance in metres

Equation 25: PD = EIRP_{Linear} $/ 4\pi d^2$

And therefore equation 25 transposed is: EIRP_{Linear} = PD x $4\pi d^2$

Where:

PD is the power density at distance specified by the limit, in W/m²

EIRP_{Linear} is the equivalent isotropically radiated power in Watts

d is the distance at which the power density limit is specified in metres

Equation 26: PD = E²Speclimit / 377

And therefore equation 26 transposed is: $E_{Spec \ limit} = \sqrt{(PD \ x \ 377)}$

Where:

PD is the power density at distance specified by the limit, in W/m²

E_{spec limit} is the field strength at the distance specified by the limit in V/m

Example:

Radiated spurious emissions limit at 3metres of 90pW/cm²

 $90pW/cm^2 \times 100^2 = 0.9 \mu W/m^2 = (EIRP Linear)$

Equation 25 transposed: $0.9 \times 10^{-6} \times 4 \times \pi \times 3^2 = 0.0001017876 \text{ W}$

And

Equation 26 transposed: $E_{Spec limit} = \sqrt{(0.9 \times 10^{-6} \times 377)} = 0.01842 \text{ V/m}.$

Equation 21 transposed: $E_{Log} = 20Log(0.01842) + 120 = 85.3dB\mu V/m @ 3m$.

File Name: Redtail Telematics Ltd.14765-4 Issue 01

QMF21J - Issue 05 - KEC Issue 02; 47 CFR Part 90I 2023

8 Photographs

8.1 EUT Front View

8.2 EUT Reverse Angle

8.3 EUT Left side View

8.4 EUT Right side View

8.5 EUT Antenna

Note: Antenna shown coiled up, for test purposes this was stretched out vertically.

©2025 Kiwa Electrical Compliance ALL RIGHTS RESERVED

REPORT NUMBER: 11-14765-4-25 Issue 01

8.6 EUT Display & Controls

The EUT has display or controls

ALL RIGHTS RESERVED

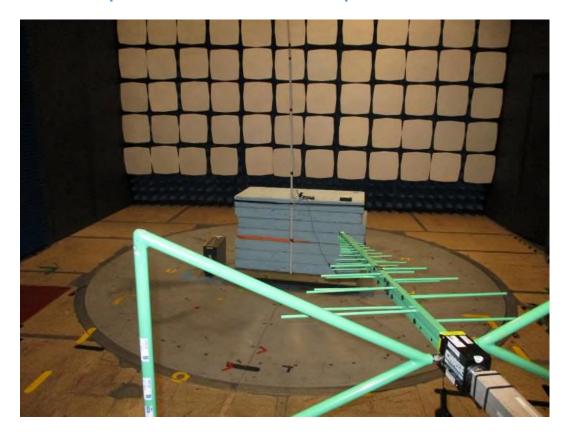
8.7 EUT Internal photos

Photos removed for confidentiality.

File Name: Redtail Telematics Ltd.14765-4 Issue 01

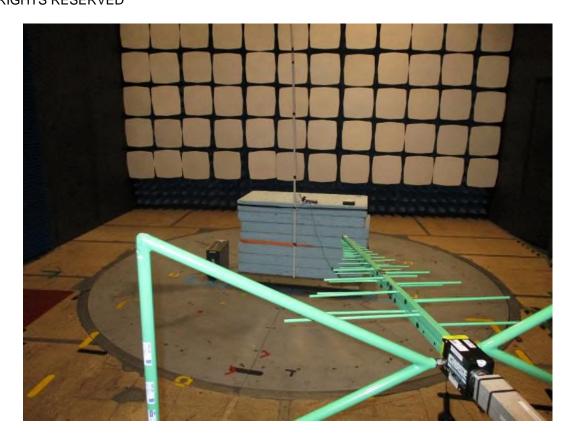
QMF21J - Issue 05 - KEC Issue 02; 47 CFR Part 90I 2023

REPORT NUMBER: 11-14765-4-25 Issue 01

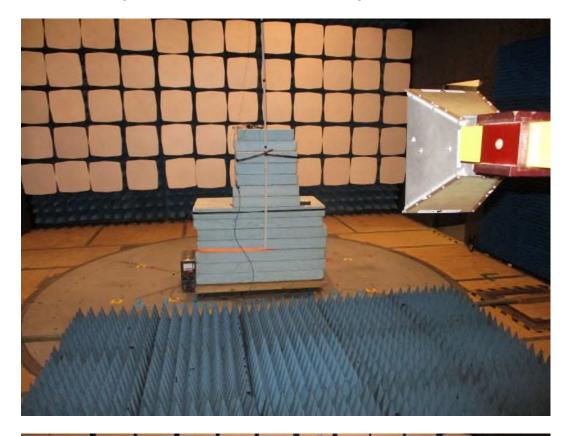

REPORT NUMBER: 11-14765-4-25 Issue 01

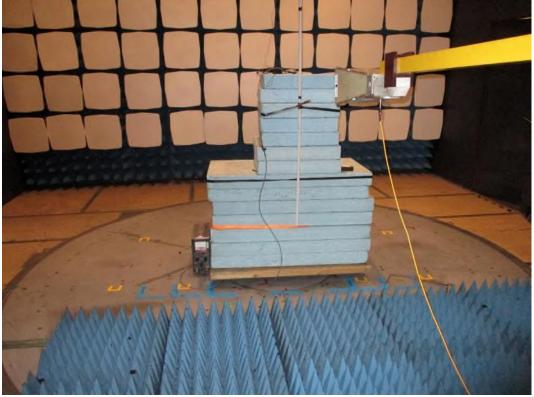
REPORT NUMBER: 11-14765-4-25 Issue 01

8.8 EUT ID Label

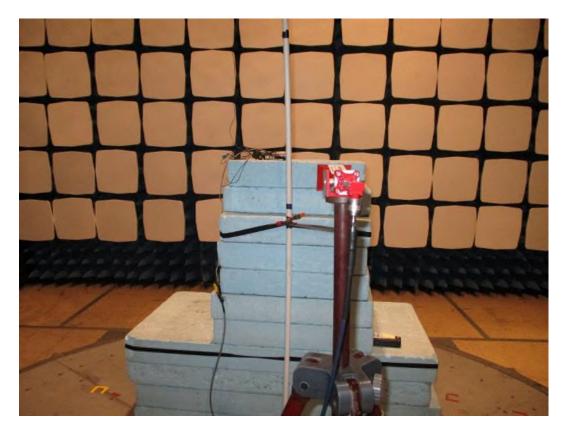


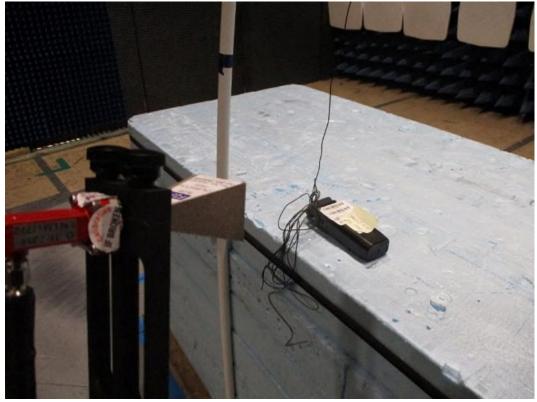
8.9 25-1000MHz Spurious emissions test set-up





File Name: Redtail Telematics Ltd.14765-4 Issue 01 QMF21J - Issue 05 - KEC Issue 02; 47 CFR Part 90I 2023


8.10 Above 1GHz Spurious emissions test set-up



File Name: Redtail Telematics Ltd.14765-4 Issue 01

QMF21J - Issue 05 - KEC Issue 02; 47 CFR Part 90I 2023

8.11 Radiated emission diagrams

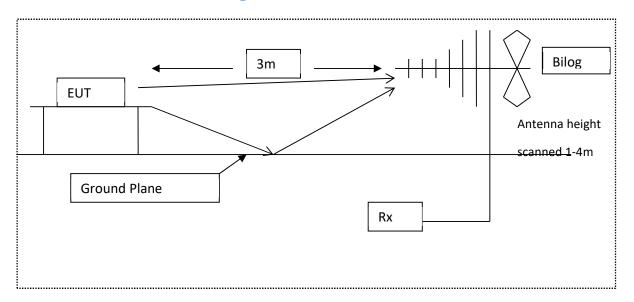
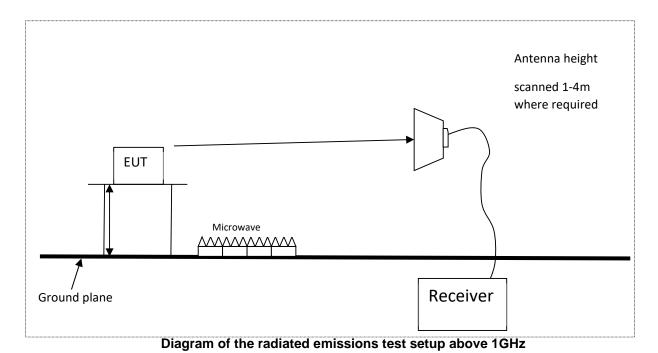



Diagram of the radiated emissions test setup 30 - 1000 MHz

ALL RIGHTS RESERVED

9 Test equipment calibration list

The following is a list of the test equipment used by Kiwa Electrical Compliance to test the unit detailed within this report. In line with our procedures, the equipment was within calibration for the period during which testing was carried out.

KEC No	Model	Description	Manufacturer	Calibrated Date	Period
	MWX221	Cable N Type to SMA Blue 2m (B)	Junflon	06/11/2024	12 months
	VHA9103	Antenna Bi-con	Schwarzbeck	15/05/2023	36 months
	8471E	Detector 0.01 to 12GHz	Hewlett Packard	#11/12/2024	12 months
E253	6810.19.A	Attenuator 10dB 18GHz	Suhner	09/09/2024	12 months
		A.,	Weinschel	00/04/0004	40 11
E256	44	Attenuator 10dB 18GHz	Engineering	03/04/2024	12 months
E268	BHA 9118	Horn Antenna 1 - 18 GHz	Schaffner	15/05/2024	12 months
E301	8493C	Attenuator 20dB 26.5GHz	Hewlett Packard	09/04/2024	12 months
E367	6534/4	Attenuator 20dB 18GHz	Marconi Instruments	20/11/2024	12 months
E401	1506A	Splitter 18 GHz 6dB	Weinschel	03/04/2024	12 months
E403	TTR190- 3EE	Filter Notch Filter 125-250 MHz	Telonic Berkeley Inc	Not appl	icable
E417	MW-1120-7	Filter BPF 182 - 518 MHz	AEL	Not appl	icable
E429	-	Filter Box 5 Switch Filters 0.91 GHz - 16.3 GHz	RN Electronics	14/08/2024	12 months
E462	6534/3	Attenuator 10dB 18GHz	Marconi Instruments	02/04/2024	12 months
E467	8447F	Pre-Amplifier 0.1MHz to 1300MHz	Hewlett Packard	20/05/2024	12 months
E479	3750	Variable Electronic Filter	Krohn-Hite	03/05/2024	12 months
E517	E4421B	Signal Generator 250 kHz - 3 GHz	Hewlett Packard	10/09/2024	12 months
E602	MG3692A	Signal Generator 10 MHz - 20 GHz	Anritsu	28/06/2024	12 months
E640	6630.19.AA	Attenuator 30dB 18GHz	Suhner	08/04/2024	12 months
E642	E4440A	PSA 3 Hz - 26.5 GHz	Agilent Technologies	20/02/2024	24 months
E699	2305	Modulation Meter	Marconi Instruments	16/04/2024	12 months
E745	2017 4/2dB	Attenuator 4/2dB 30-1000MHz	RN Electronics	#17/02/2025	12 months
E755	N9030B	PXA Signal Analyser 3 Hz to 50 GHz	Keysight Technologies	13/08/2024	12 months
E914	VULB 9163	Antenna BiLog 30MHz to 3GHz	Schwarzbeck	28/06/2024	24 months
F230	3160-08	Horn Std Gain 12.4 - 18 GHz	ETS-Lindgren	26/09/2024	12 months
F231	3160-09	Horn Std Gain 18 - 26.5 GHz	ETS-Lindgren	11/07/2024	12 months
F050	6534/4	Attenuator N Type 20dB 18GHz	Marconi Instruments	02/04/2024	12 months
F136	DSO5034A	Oscilloscope 300MHz 4CH	Agilent Technologies	#17/12/2024	12 months
F238	N9039A	9 kHz - 1 GHz RF Filter Section	rechnologies	22/08/2024	12 months
F307	AA18-10H	Attenuator 10dB 18GHz SMA	Atlantic Microwave	10/05/2024	12 months
H071	N9010B	EXA Signal Analyser 10 Hz to 44 GHz	Keysight Technologies	#12/12/2022	24 months
L264	DT75	Digital Thermometer	Instrotech Ltd	28/05/2024	24 months
LPE261	3115	Horn Antenna 1 - 18 GHz	EMCO	15/05/2024	12 months
LPE333	8449B	Pre-Amplifier 1GHz - 26.5GHz	Hewlett Packard	09/07/2024	12 months
P179	FU301	Filter High Pass Filter 400-2000MHz	Rantec	Not appl	icable
P189	RN-140	Filter Low Pass Filter 140MHz	RN Electronics	04/04/2024	12 months
	VMT04/140	Environmental Oven	Heraeus Votsch	#22/02/2024	12 months
	4901.01B	Power Divider 50Ω 6dB 1W DC-2GHz	Suhner	#09/01/2024	12 months
	778D	Dual Directional Coupler 100MHz to 2GHz		#06/12/2024	12 months

File Name: Redtail Telematics Ltd.14765-4 Issue 01

QMF21J - Issue 05 - KEC Issue 02; 47 CFR Part 90I 2023

ALL RIGHTS RESERVED

REPORT NUMBER: 11-14765-4-25 Issue 01

TMS812 MP534A Dipole Set 200 - 1700 MHz Anrits	tsu 11/10/2024 1	12 months
--	------------------	-----------

[#] Equipment was within calibration dates for tests and has been re-calibrated since/during date of tests.

ALL RIGHTS RESERVED

10 Auxiliary and peripheral equipment

10.1 Customer supplied equipment

Item No.	Model No.	Description	Manufacturer	Serial No.
1	E6540	Laptop PC	Dell	3680025917
2	Not stated	USB to serial adapter	Generic	Not stated
3	8TP3CD01	VLU7 Test Fixture	Plextek Ltd	8T212

REPORT NUMBER: 11-14765-4-25 Issue 01

10.2 Kiwa Electrical Compliance supplied equipment

No Kiwa Electrical Compliance supplied equipment was used.

File Name: Redtail Telematics Ltd.14765-4 Issue 01

QMF21J - Issue 05 - KEC Issue 02; 47 CFR Part 90I 2023

ALL RIGHTS RESERVED

11 Condition of the equipment tested

In order for the EUT to produce the results shown within this report the following modifications, if any, were implemented.

REPORT NUMBER: 11-14765-4-25 Issue 01

11.1 Modifications before test

No modifications were made before test by Kiwa Electrical Compliance.

11.2 Modifications during test

No modifications were made during test by Kiwa Electrical Compliance.

ALL RIGHTS RESERVED

12 Description of test sites

Site A	Radio Laboratory and Anechoic Chamber
Site B	Semi-Anechoic Chamber and Control Room FCC Registration No. 654321, ISED Registration No. 5612A-4
Site C	Transient Laboratory
Site D	Screened Room (Conducted Immunity)
Site E	Screened Room (Control Room for Site D)
Site F	Screened Room (Conducted Emissions)
Site G	Screened Room (Control Room for Site H)
Site H	3m Semi-Anechoic Chamber (indoor OATS) FCC Registration No. 654321, ISED Registration No. 5612A-2, VCCI Registration No. 4065
Site J	Transient Laboratory
Site K	Screened Room (Control Room for Site M)
Site M	3m Semi-Anechoic Chamber (indoor OATS) FCC Registration No. 654321, ISED Registration No. 5612A-3
Site N	Radio Laboratory
Site Q	Fully-Anechoic Chamber
Site OATS	S3m and 10m Open Area Test Site FCC Registration No. 654321, ISED Registration No. 5612A-1
Site R	Screened Room (Conducted Immunity)
Site S	Safety Laboratory
Site T	Transient Laboratory
CAB iden	tifier as issued by Innovation, Science and Economic Development Canada is UK0002

File Name: Redtail Telematics Ltd.14765-4 Issue 01

CAB identifier as issued by FCC is UK2015

REPORT NUMBER: 11-14765-4-25 Issue 01

ALL RIGHTS RESERVED

13 Abbreviations and units

%	Percent	dΒμV	deciBels relative to 1µV
λ	Wavelength	dBµV/m	deciBels relative to 1µV/m
μA/m	microAmps per metre	dBc	deciBels relative to Carrier
μV	microVolts	dBd	deciBels relative to dipole gain
μW	microWatts	dBi	deciBels relative to isotropic gain
AC	Alternating Current	dBm	deciBels relative to 1mW
ACK	ACKnowledgement	dBr	deciBels relative to a maximum value
ACP	Adjacent Channel Power	dBW	deciBels relative to 1W
AFA	Adaptive Frequency Agility	DC	Direct Current
ALSE	Absorber Lined Screened Enclosure	DFS	Dynamic Frequency Selection
AM	Amplitude Modulation	DMO	Dynamic Modulation Order
Amb	Ambient	DSSS	Direct Sequence Spread Spectrum
ANSI	American National Standards Institute	DTA	Digital Transmission Analyser
ATPC	Automatic Transmit Power Control	EIRP	Equivalent Isotropic Radiated Power
AVG	Average	emf	electromotive force
AWGN	Additive White Gaussian Noise	ERC	European Radiocommunications Committee
BER	Bit Error Rate	ERP	Effective Radiated Power
BPSK	Binary Phase Shift Keying	ETSI	European Telecommunications Standards Institute
BT	BlueTooth	EU	European Union
BLE	BlueTooth Low Energy	EUT	Equipment Under Test
BW	Bandwidth	FCC	Federal Communications Commission
°С	Degrees Celsius	FER	Frame Error Rate
C/I	Carrier / Interferer	FHSS	Frequency Hopping Spread Spectrum
CAC	Channel Availability Check	FM	Frequency Modulation
CCA	Clear Channel Assessment	FSK	Frequency Shift Keying
CEPT	European Conference of Postal and Telecommunications Administrations	FSS	Fixed Satellite Service
CFR	Code of Federal Regulations	g	Grams
CISPR	Comité International Spécial des Perturbations Radioélectriques	GHz	GigaHertz
cm	centimetre	GNSS	Global Navigation Satellite System
COFDM	Coherent OFDM	GPS	Global Positioning System
COT	Channel Occupancy Time	Hz	Hertz
CS	Channel Spacing	IEEE	Institute of Electrical and Electronics Engineers
CW	Continuous Wave	IF	Intermediate Frequency
DAA	Detect And Avoid	ISED	Innovation Science and Economic Development
dB	deciBels	ITU	International Telecommunications Union
dBµA/m	deciBels relative to 1µA/m	KDB	Knowledge DataBase

ALL RIGHTS RESERVED

REPORT NUMBER: 11-14765-4-25 Issue 01

picoWatts kilogram Wa kg Quadrature Amplitude Modulation kiloHertz QAM kHz QΡ kPa Kilopascal Quasi Peak Listen Before Talk QPSK Quadrature Phase Shift Keying **LBT** Line Impedance Stabilisation Resolution Band Width LISN RBW Network LNA Low Noise Amplifier RED Radio Equipment Directive **LNB** Low Noise Block R&TTE Radio and Telecommunication Terminal Equipment LO Local Oscillator Ref Reference RF m metre Radio Frequency mΑ milliAmps RFC Remote Frequency Control RFID maximum Radio Frequency IDentification max Mbit/s MegaBits per second RLAN Radio Local Area Network **MCS** Modulation and Coding Scheme RMS Root Mean Square MHz MegaHertz RNSS Radio Navigation Satellite Service mic Microphone RSL Received Signal Level MIMO Multiple Input, Multiple Output RSSI Received Signal Strength Indicator min minimum RTP Room Temperature and Pressure RTPC Remote Transmit Power Control millimetres mm ms milliseconds Rx Receiver Seconds mW milliWatts SINAD NA Not Applicable Signal to Noise And Distortion **NFC Near Field Communications** SRD **Short Range Device** Nominal Τx Transmitter nom UKAS nW nanoWatt United Kingdom Accreditation Service OATS Open Area Test Site UKCA United Kingdom Conformity Assessed **OBW** Occupied Band Width UKRER United Kingdom Radio Equipment Regulations **OCW** Occupied Channel Width UHF Ultra High Frequency Orthogonal Frequency Division Unlicensed National Information Infrastructure OFDM U-NII Multiplexing OOB Out Of Band USB Universal Serial Bus Parts per million UWB Ultra Wide Band ppm **PER** Packet Error Rate Volts Peak Volts per metre PΚ V/m Private Mobile Radio VBW Video Band Width **PMR** Pseudo Random Bit Sequence VHF Very High Frequency **PRBS** Pulse Repetition Frequency VSAT Very Small Aperture Terminal **PRF**

Watts

W

File Name: Redtail Telematics Ltd.14765-4 Issue 01

Power Spectral Density

Power Supply Unit

PSD PSU

REPORT NUMBER: 11-14765-4-25 Issue 01

14 Revision History

Issue Number	Revision History	Page Reference(s)
01	First Issue	-

===== END OF TEST REPORT =====

File Name: Redtail Telematics Ltd.14765-4 Issue 01

QMF21J - Issue 05 - KEC Issue 02; 47 CFR Part 90I 2023