FCC Test Report Report No.: RF190618C05 R1 FCC ID: K7SF8J200V2 Test Model: F8J200V2 Received Date: Jun. 18, 2019 Test Date: Jun. 22 and Jul. 02, 2019 **Issued Date:** Jul. 29, 2019 Applicant: Belkin International, Inc. Address: 12045 East Waterfront Drive, Playa Vista, CA 90094 Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan, Test Location: No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, TAIWAN (R.O.C.) FCC Registration / 788550 / TW0003 **Designation Number:** This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies Report No.: RF190618C05 R1 Page No. 1 / 26 Report Format Version: 6.1.1 Cancels and replaces the report No.: RF190618C05 dated Jul. 11, 2019 # **Table of Contents** | R | elease | e Control Record | 3 | |---|---|--|---| | 1 | C | Certificate of Conformity | 4 | | 2 | 5 | Summary of Test Results | 5 | | | 2.1
2.2 | Measurement Uncertainty | | | 3 | C | General Information | 6 | | | 3.1
3.2
3.2.1
3.3
3.3.1
3.4 | General Description of Applied Standards | 6
7
8
8 | | 4 | T | Fest Types and Results | 9 | | | 4.1.2
4.1.3
4.1.4
4.1.5
4.1.6
4.1.7
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7 | Radiated Emission and Bandedge Measurement. Limits of Radiated Emission and Bandedge Measurement Test Instruments Test Procedures Deviation from Test Standard Test Set Up EUT Operating Conditions Test Results Conducted Emission Measurement Limits of Conducted Emission Measurement Test Instruments Test Procedures Deviation from Test Standard Test Setup EUT Operating Conditions Test Results | 9
10
.11
.11
12
13
19
19
20
20
20
21 | | 5 | | Pictures of Test Arrangements | | | Α | ppend | dix – Information of the Testing Laboratories | 26 | # **Release Control Record** | Issue No. Description | | Description | Date Issued | |------------------------------|----------------|--|---------------| | RF190618C05 Original release | | Original release | Jul. 11, 2019 | | | RF190618C05 R1 | Revised dimension for apple watch inductive coil | Jul. 29, 2019 | Report Format Version: 6.1.1 Report No.: RF190618C05 R1 Page No. 3 / 26 Cancels and replaces the report No.: RF190618C05 dated Jul. 11, 2019 ### 1 Certificate of Conformity **Product:** PowerHouse[™] Charge Dock for Apple Watch + iPhone Brand: belkin Test Model: F8J200V2 Sample Status: Engineering sample Applicant: Belkin International, Inc. Test Date: Jun. 22 and Jul. 02, 2019 Standards: 47 CFR FCC Part 15, Subpart C (Section 15.209) ANSI C63.10: 2013 The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report. **Prepared by:** Jul. 29, 2019 Celine Chou / Senior Specialist Approved by: Jul. 29, 2019 Bruce Chen / Project Engineer Report No.: RF190618C05 R1 Page No. 4 / 26 Report Format Version: 6.1.1 # 2 Summary of Test Results | | 47 CFR FCC Part 15, Subpart C (Section 15.209) | | | | | | |---------------|--|--------|--|--|--|--| | FCC
Clause | Test Item | Result | Remarks | | | | | 15.207 | AC Power Conducted Emission | Pass | Meet the requirement of limit. Minimum passing margin is -11.95dB at 0.15391MHz. | | | | | 15.209 | Radiated Emission Test | Pass | Meet the requirement of limit. Minimum passing margin is -6.6dB at 72.45MHz. | | | | ### 2.1 Measurement Uncertainty Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2: | Measurement | Frequency | Expanded Uncertainty (k=2) (±) | |------------------------------------|------------------|--------------------------------| | Conducted Emissions at mains ports | 150kHz ~ 30MHz | 2.94 dB | | | 9kHz ~ 30MHz | 3.04 dB | | Radiated Emissions up to 1 GHz | 30MHz ~ 200MHz | 3.86 dB | | | 200MHz ~ 1000MHz | 3.87 dB | ### 2.2 Modification Record There were no modifications required for compliance. Report No.: RF190618C05 R1 Page No. 5 / 26 Cancels and replaces the report No.: RF190618C05 dated Jul. 11, 2019 ### 3 General Information ### 3.1 General Description of EUT | Product | PowerHouse [™] Charge Dock for Apple Watch + iPhone | | |---|--|--| | Test Model | F8J200V2 | | | Sample Status | Engineering sample | | | Power Supply Rating | 12Vdc (Adapter) | | | Modulation Type | FSK | | | Operating Frequency | 326.5 kHz | | | Antenna Type | Coil antenna | | | Field Strength | 48.6dBuV/m | | | Dimension for Apple watch inductive coil | 3.80cm² (diameter = 22mm) | | | Accessory Device | Adapter | | | Data Cable Supplied | NA | | | Maximum Power Output for Apple watch inductive coil | Less than 5W | | ### Note: 1. The EUT uses following adapter. | Brand | HONOTO/belkin | | | |--------------|---|--|--| | Model | ADS-25SGP-12 12019E | | | | Input Power | 100-240Vac, 50/60Hz, 0.7A Max | | | | Output Power | 12Vdc, 1.6A | | | | Power Line | 1.5m non-shielded DC cable without core attached on adapter | | | - 2. The EUT has a wireless inductive charging coil for charging Apple watch and a USB board to charge iPhone. - 3. After the evaluation of the metal and plastic band on Apple Watch, the metal band was found to be the worst case test mode and therefore was been presented in the test report. ### 3.2 Description of Test Modes 1 channel is provided to this EUT | Channel | Freq. (kHz) | |---------|-------------| | 1 | 326.5 | Report No.: RF190618C05 R1 Page No. 6 / 26 Report Format Version: 6.1.1 ### 3.2.1 Test Mode Applicability and Tested Channel Detail | EUT
CONFIGURE | APPLICABLE TO | | DESCRIPTION | |------------------|---------------|--------------|---------------| | MODE | RE<1G | PLC | DESCRIPTION | | А | \checkmark | \checkmark | Charging Mode | | В | \checkmark | \checkmark | Standby Mode | Where RE<1G: Radiated Emission below 1GHz PLC: Power Line Conducted Emission Note: The EUT is designed to be positioned on the X-plane only. ### **Radiated Emission Test (Below 1GHz):** Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. | EUT Configure Mode | Available Channel | Tested Channel | | |--------------------|-------------------|----------------|--| | A, B | 1 | 1 | | ### **Power Line Conducted Emission Test:** Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. | EUT Configure Mode | Available Channel | Tested Channel | | |--------------------|-------------------|----------------|--| | A, B | 1 | 1 | | ### **Test Condition:** | Applicable To | Environmental Conditions | Input Power | Tested by | |---------------|--------------------------|--------------|-------------| | RE<1G | 26 deg. C, 70% RH | 120Vac, 60Hz | Willy Cheng | | PLC | 22 deg. C, 66% RH | 120Vac, 60Hz | Adair Peng | Report No.: RF190618C05 R1 Page No. 7 / 26 Report Format Version: 6.1.1 Cancels and replaces the report No.: RF190618C05 dated Jul. 11, 2019 # 3.3 Description of Support Units The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests. | ID | Product | Brand | Model No. | Serial No. | FCC ID | Remarks | |----|-------------|-------|-----------|------------|--------|---------| | A. | iPhone | APPLE | A1901 | NA | NA | - | | B. | Apple Watch | APPLE | A1554 | NA | NA | - | ### 3.3.1 Configuration of System under Test **Charging Mode** ### Standby Mode ### 3.4 General Description of Applied Standards The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards: # FCC Part 15, Subpart C (15.209) ANSI C63.10-2013 All test items have been performed and recorded as per the above standards. Report No.: RF190618C05 R1 Page No. 8 / 26 Report Format Version: 6.1.1 #### **Test Types and Results** 4 # **Radiated Emission and Bandedge Measurement** # 4.1.1 Limits of Radiated Emission and Bandedge Measurement # FOR FREQUENCY BELOW 30MHz | Frequency | Field Streng | th (dBuV/m) | Measurement Distance | |---------------|-----------------|-------------|----------------------| | (MHz) | uV/m | dBuV/m | (meters) | | 0.009 - 0.490 | 2400 / F (kHz) | 48.52-13.80 | 300 | | 0.490 – 1.705 | 24000 / F (kHz) | 33.80-22.97 | 30 | | 1.705 – 30.0 | 30 | 29.54 | 30 | ### FOR FREQUENCY BETWEEN 30-1000MHz | OKTINEQUEITO DELITEERIO TOOMINE | | | | | | | | | |---------------------------------|---------|----------|-----------------|--------|--|--|--|--| | Frequency | Class A | (at 10m) | Class B (at 3m) | | | | | | | (MHz) | uV/m | dBuV/m | uV/m | dBuV/m | | | | | | 30-88 | 90 | 39.1 | 100 | 40.0 | | | | | | 88-216 | 150 | 43.5 | 150 | 43.5 | | | | | | 216-960 | 210 | 46.4 | 200 | 46.0 | | | | | | Above 960 | 300 | 49.5 | 500 | 54.0 | | | | | Report No.: RF190618C05 R1 Page No. 9 / 26 Cancels and replaces the report No.: RF190618C05 dated Jul. 11, 2019 Report Format Version: 6.1.1 ### 4.1.2 Test Instruments | Description & Manufacturer | Model No. | Serial No. | Cal. Date | Cal. Due | |--|---------------------------------------|---------------------------------|---------------|---------------| | Test Receiver ROHDE & SCHWARZ | ESIB7 | 100187 | May 30, 2019 | May 29, 2020 | | BILOG Antenna
SCHWARZBECK | VULB9168 | 9168-171 | Nov. 22, 2018 | Nov. 21, 2019 | | HORN Antenna
SCHWARZBECK | 9120D | 209 | Nov. 25, 2018 | Nov. 24, 2019 | | HORN Antenna
SCHWARZBECK | BBHA 9170 | BBHA9170241 | Nov. 25, 2018 | Nov. 24, 2019 | | Loop Antenna
TESEQ | HLA 6121 | 45745 | Jul. 01, 2019 | Jun. 30, 2020 | | Preamplifier Agilent (Below 1GHz) | 8447D | 2944A10738 | Aug. 21, 2018 | Aug. 20, 2019 | | Preamplifier
Agilent
(Above 1GHz) | 8449B | 3008A02465 | Mar. 27, 2019 | Mar. 26, 2020 | | RF signal cable
HUBER+SUHNER | SUCOFLEX 104 | Cable-CH3-03
(223653/4) | Aug. 21, 2018 | Aug. 20, 2019 | | RF signal cable
HUBER+SUHNER&
EMCI | SUCOFLEX
104&EMC104-SM-S
M-8000 | Cable-CH3-03
(309224+170907) | Aug. 21, 2018 | Aug. 20, 2019 | | Software
BV ADT | ADT_Radiated_
V7.6.15.9.5 | NA | NA | NA | | Antenna Tower inn-co GmbH | MA 4000 | 013303 | NA | NA | | Antenna Tower Controller BV ADT | AT100 | AT93021702 | NA | NA | | Turn Table
BV ADT | TT100 | TT93021702 | NA | NA | | Turn Table Controller BV ADT | SC100 | SC93021702 | NA | NA | | Boresight Antenna Fixture | FBA-01 | FBA-SIP01 | NA | NA | Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA. 2. The test was performed in HwaYa Chamber 3. #### 4.1.3 Test Procedures ### For Radiated emission below 30MHz - a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. ### Note: 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz. ### For Radiated emission above 30MHz - a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz. - f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary. ### Note: - 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz. - 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz. - 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz. - 4. All modes of operation were investigated and the worst-case emissions are reported. ### 4.1.4 Deviation from Test Standard No deviation. Report No.: RF190618C05 R1 Page No. 11 / 26 Report Format Version: 6.1.1 Cancels and replaces the report No.: RF190618C05 dated Jul. 11, 2019 ### 4.1.5 Test Set Up ### For Radiated emission below 30MHz ### For Radiated emission 30MHz to 1GHz For the actual test configuration, please refer to the attached file (Test Setup Photo). # 4.1.6 EUT Operating Conditions Test Mode A - a. The EUT powered by adapter. - b. Put the iPhone & Apple watch on the EUT (wireless charging) during the test. Test Mode B a. The EUT powered by adapter. ### 4.1.7 Test Results ### Below 30MHz Data: ### **Charging Mode** | Channel | TX Channel 1 | Detector Function | Average (AV) | |-----------------|----------------|-------------------|-----------------| | Frequency Range | 9 kHz ~ 30 MHz | Detector Function | Quasi-Peak (QP) | | Test Mode | A | | | | | Α | NTENNA PO | LARITY & TE | EST DISTAN | CE: LOOP A | NTENNA OPE | EN AT 3m | | |-----|----------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------| | No. | Freq.
(MHz) | Emission
Level | Limit
(dBuV/m) | Margin
(dB) | Antenna
Height | Table
Angle | Raw
Value | Correction
Factor | | | . , | (dBuV/m) | , , | , , | (m) | (Degree) | (dBuV) | (dB/m) | | 1 | *0.3265 | 48.6 AV | 97.3 | -48.7 | 1.00 | 324 | 28.5 | 20.1 | | 2 | 6.1394 | 35.9 QP | 69.5 | -33.6 | 1.00 | 106 | 15.1 | 20.8 | | 3 | 8.3031 | 35.4 QP | 69.5 | -34.1 | 1.00 | 97 | 14.0 | 21.4 | | 4 | 11.6087 | 34.7 QP | 69.5 | -34.8 | 1.00 | 337 | 12.9 | 21.8 | | 5 | 17.4386 | 34.7 QP | 69.5 | -34.8 | 1.00 | 174 | 12.9 | 21.8 | | 6 | 18.4604 | 35.6 QP | 69.5 | -33.9 | 1.00 | 165 | 13.8 | 21.8 | | 7 | 20.3235 | 37.2 QP | 69.5 | -32.3 | 1.00 | 330 | 15.3 | 21.9 | | | 1A | NTENNA POI | _ARITY & TE | ST DISTANC | E: LOOP AN | ITENNA CLO | SE AT 3m | | | No. | Freq.
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Antenna
Height
(m) | Table
Angle
(Degree) | Raw
Value
(dBuV) | Correction
Factor
(dB/m) | | 1 | *0.3265 | 46.5 AV | 97.3 | -50.8 | 1.00 | 71 | 26.4 | 20.1 | | 2 | 1.7520 | 36.4 QP | 69.5 | -33.1 | 1.00 | 349 | 16.6 | 19.8 | | 3 | 4.7571 | 35.8 QP | 69.5 | -33.7 | 1.00 | 6 | 15.4 | 20.4 | | 4 | 9.6254 | 35.3 QP | 69.5 | -34.2 | 1.00 | 274 | 13.6 | 21.7 | | 5 | 17.6790 | 34.8 QP | 69.5 | -34.7 | 1.00 | 141 | 13.0 | 21.8 | | 6 | 19.6624 | 35.1 QP | 69.5 | -34.4 | 1.00 | 191 | 13.3 | 21.8 | | 7 | 25.0716 | 36.2 QP | 69.5 | -33.3 | 1.00 | 125 | 14.2 | 22.0 | | | ANTENN | A POLARITY | & TEST DIS | TANCE: LOC | P ANTENNA | GROUND-F | PARALLEL A | T 3m | | No. | Freq.
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Antenna
Height
(m) | Table
Angle
(Degree) | Raw
Value
(dBuV) | Correction
Factor
(dB/m) | | 1 | *0.3265 | 40.8 AV | 97.3 | -56.5 | 1.00 | 305 | 20.7 | 20.1 | | 2 | 1.8121 | 35.3 QP | 69.5 | -34.2 | 1.00 | 119 | 15.5 | 19.8 | | 3 | 6.8005 | 34.9 QP | 69.5 | -34.6 | 1.00 | 39 | 13.9 | 21.0 | | 4 | 9.5051 | 35.5 QP | 69.5 | -34.0 | 1.00 | 72 | 13.8 | 21.7 | | 5 | 13.2315 | 34.9 QP | 69.5 | -34.6 | 1.00 | 286 | 13.1 | 21.8 | | 6 | 17.7993 | 34.7 QP | 69.5 | -34.8 | 1.00 | 6 | 12.9 | 21.8 | | 7 | 22.1867 | 35.5 QP | 69.5 | -34.0 | 1.00 | 231 | 13.6 | 21.9 | # Remarks: - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. The other emission levels were very low against the limit. - 4. Margin value = Emission Level Limit value - 5. " * ": Fundamental frequency. - 6. Loop antenna was used for all radiated emission below 30MHz. - 7. Limit @3m=Limit@300m+40log(300 / 3)=Limit@300m+80 - 8. Limit @3m=Limit@30m+40log(30 / 3)=Limit@30m+40 Report No.: RF190618C05 R1 Page No. 13 / 26 Report Format Version: 6.1.1 Cancels and replaces the report No.: RF190618C05 dated Jul. 11, 2019 ### Standby Mode | Channel | TX Channel 1 | Detector Function | Ougoi Pook (OP) | | |-----------------|----------------|-------------------|-----------------|--| | Frequency Range | 9 kHz ~ 30 MHz | Detector Function | Quasi-Peak (QP) | | | Test Mode | В | | | | | | ANTENNA POLARITY & TEST DISTANCE: LOOP ANTENNA OPEN AT 3m | | | | | | | | |-----|---|-------------------|-------------|------------|-------------------|----------------|--------------|----------------------| | No. | Freq. | Emission
Level | Limit | Margin | Antenna
Height | Table
Angle | Raw
Value | Correction
Factor | | | (MHz) | (dBuV/m) | (dBuV/m) | (dB) | (m) | (Degree) | (dBuV) | (dB/m) | | 1 | *0.3265 | 42.2 AV | 97.3 | -55.1 | 1.00 | 175 | 22.1 | 20.1 | | 2 | 1.6919 | 35.0 QP | 63.0 | -28.0 | 1.00 | 282 | 15.1 | 19.9 | | 3 | 4.5167 | 34.8 QP | 69.5 | -34.7 | 1.00 | 202 | 14.5 | 20.3 | | 4 | 8.1228 | 34.7 QP | 69.5 | -34.8 | 1.00 | 81 | 13.4 | 21.3 | | 5 | 14.0729 | 34.9 QP | 69.5 | -34.6 | 1.00 | 342 | 13.1 | 21.8 | | 6 | 18.4003 | 36.6 QP | 69.5 | -32.9 | 1.00 | 50 | 14.8 | 21.8 | | 7 | 19.3619 | 36.7 QP | 69.5 | -32.8 | 1.00 | 26 | 14.9 | 21.8 | | | ΑN | NTENNA POI | ARITY & TE | ST DISTANC | E: LOOP AN | ITENNA CLO | SE AT 3m | | | | Freg. | Emission | Limit | Margin | Antenna | Table | Raw | Correction | | No. | (MHz) | Level | (dBuV/m) | (dB) | Height | Angle | Value | Factor | | | (1011 12) | (dBuV/m) | (dbd v/iii) | (db) | (m) | (Degree) | (dBuV) | (dB/m) | | 1 | *0.3265 | 40.7 AV | 97.3 | -56.6 | 1.00 | 79 | 20.6 | 20.1 | | 2 | 1.9323 | 34.8 QP | 69.5 | -34.7 | 1.00 | 105 | 15.0 | 19.8 | | 3 | 6.5000 | 34.6 QP | 69.5 | -34.9 | 1.00 | 226 | 13.7 | 20.9 | | 4 | 13.7724 | 35.4 QP | 69.5 | -34.1 | 1.00 | 36 | 13.6 | 21.8 | | 5 | 18.5205 | 35.0 QP | 69.5 | -34.5 | 1.00 | 359 | 13.2 | 21.8 | | 6 | 19.3619 | 36.1 QP | 69.5 | -33.4 | 1.00 | 52 | 14.3 | 21.8 | | 7 | 22.0665 | 35.5 QP | 69.5 | -34.0 | 1.00 | 58 | 13.6 | 21.9 | | | ANTENN | A POLARITY | & TEST DIS | TANCE: LOC | P ANTENNA | A GROUND-F | PARALLEL A | T 3m | | | Freg. | Emission | Limit | Margin | Antenna | Table | Raw | Correction | | No. | (MHz) | Level | (dBuV/m) | (dB) | Height | Angle | Value | Factor | | | (IVIITIZ) | (dBuV/m) | (ubuv/iii) | (ub) | (m) | (Degree) | (dBuV) | (dB/m) | | 1 | *0.3265 | 41.6 AV | 97.3 | -55.7 | 1.00 | 157 | 21.5 | 20.1 | | 2 | 1.6318 | 36.8 QP | 63.4 | -26.6 | 1.00 | 234 | 16.9 | 19.9 | | 3 | 8.5435 | 35.0 QP | 69.5 | -34.5 | 1.00 | 49 | 13.6 | 21.4 | | 4 | 14.1931 | 35.1 QP | 69.5 | -34.4 | 1.00 | 263 | 13.3 | 21.8 | | 5 | 18.2801 | 35.2 QP | 69.5 | -34.3 | 1.00 | 215 | 13.4 | 21.8 | | 6 | 21.2251 | 36.2 QP | 69.5 | -33.3 | 1.00 | 206 | 14.3 | 21.9 | | 7 | 23.1483 | 35.3 QP | 69.5 | -34.2 | 1.00 | 143 | 13.3 | 22.0 | ### Remarks: - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. The other emission levels were very low against the limit. - 4. Margin value = Emission Level Limit value - 5. " * ": Fundamental frequency. - 6. Loop antenna was used for all radiated emission below 30MHz. - 7. Limit @3m=Limit@300m+40log(300 / 3)=Limit@300m+80 - 8. Limit @3m=Limit@30m+40log(30 / 3)=Limit@30m+40 ### Below 1GHz Data: # **Charging Mode** | Channel | TX Channel 1 | Datastas Function | Ougoi Pook (OP) | | |-----------------|--------------|-------------------|-----------------|--| | Frequency Range | 30MHz ~ 1GHz | Detector Function | Quasi-Peak (QP) | | | Test Mode | А | | | | | | Antenna Polarity & Test Distance: Horizontal At 3m | | | | | | | | | |-----|--|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--| | No. | Freq.
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Antenna
Height
(m) | Table
Angle
(Degree) | Raw
Value
(dBuV) | Correction
Factor
(dB/m) | | | 1 | 74.62 | 33.1 QP | 40.0 | -6.9 | 1.50 H | 128 | 45.9 | -12.8 | | | 2 | 136.84 | 31.7 QP | 43.5 | -11.8 | 1.99 H | 80 | 41.7 | -10.0 | | | 3 | 167.94 | 34.1 QP | 43.5 | -9.4 | 1.50 H | 259 | 43.4 | -9.3 | | | 4 | 300.16 | 33.1 QP | 46.0 | -12.9 | 1.00 H | 147 | 40.5 | -7.4 | | | 5 | 352.65 | 30.4 QP | 46.0 | -15.6 | 1.00 H | 220 | 37.0 | -6.6 | | | 6 | 471.25 | 28.2 QP | 46.0 | -17.8 | 1.50 H | 259 | 32.3 | -4.1 | | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. The other emission levels were very low against the limit. - 4. Margin value = Emission Level Limit value | Channel | TX Channel 1 | | | | |-----------------|--------------|-------------------|-----------------|--| | Frequency Range | 30MHz ~ 1GHz | Detector Function | Quasi-Peak (QP) | | | Test Mode | А | | | | | | Antenna Polarity & Test Distance: Vertical At 3m | | | | | | | | | |-----|--|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--| | No. | Freq.
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Antenna
Height
(m) | Table
Angle
(Degree) | Raw
Value
(dBuV) | Correction
Factor
(dB/m) | | | 1 | 32.23 | 33.3 QP | 40.0 | -6.7 | 1.00 V | 207 | 44.8 | -11.5 | | | 2 | 72.45 | 33.4 QP | 40.0 | -6.6 | 1.50 V | 345 | 45.8 | -12.4 | | | 3 | 166.00 | 30.4 QP | 43.5 | -13.1 | 1.00 V | 82 | 39.5 | -9.1 | | | 4 | 292.38 | 29.3 QP | 46.0 | -16.7 | 1.50 V | 100 | 37.0 | -7.7 | | | 5 | 360.43 | 29.3 QP | 46.0 | -16.7 | 1.00 V | 195 | 35.7 | -6.4 | | | 6 | 550.97 | 26.9 QP | 46.0 | -19.1 | 1.00 V | 177 | 29.7 | -2.8 | | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. The other emission levels were very low against the limit. - 4. Margin value = Emission Level Limit value # Standby Mode | Channel | TX Channel 1 | Detector Function Quesi Peak (QR) | | | |-----------------|--------------|-----------------------------------|-----------------|--| | Frequency Range | 30MHz ~ 1GHz | Detector Function | Quasi-Peak (QP) | | | Test Mode | В | | | | | | Antenna Polarity & Test Distance: Horizontal At 3m | | | | | | | | | | |-----|--|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--| | No. | Freq.
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Antenna
Height
(m) | Table
Angle
(Degree) | Raw
Value
(dBuV) | Correction
Factor
(dB/m) | | | | 1 | 57.12 | 27.4 QP | 40.0 | -12.6 | 1.99 H | 256 | 37.5 | -10.1 | | | | 2 | 74.62 | 30.2 QP | 40.0 | -9.8 | 1.50 H | 125 | 43.0 | -12.8 | | | | 3 | 134.89 | 29.2 QP | 43.5 | -14.3 | 1.99 H | 68 | 39.3 | -10.1 | | | | 4 | 167.94 | 33.4 QP | 43.5 | -10.1 | 1.99 H | 265 | 42.7 | -9.3 | | | | 5 | 247.66 | 30.9 QP | 46.0 | -15.1 | 1.00 H | 263 | 40.1 | -9.2 | | | | 6 | 364.32 | 30.4 QP | 46.0 | -15.6 | 1.00 H | 225 | 36.7 | -6.3 | | | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. The other emission levels were very low against the limit. - 4. Margin value = Emission Level Limit value | Channel | TX Channel 1 | Detector Function | Overi Book (OD) | | |-----------------|--------------|-------------------|-----------------|--| | Frequency Range | 30MHz ~ 1GHz | Detector Function | Quasi-Peak (QP) | | | Test Mode | В | | | | | | Antenna Polarity & Test Distance: Vertical At 3m | | | | | | | | | | |-----|--|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--| | No. | Freq.
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Antenna
Height
(m) | Table
Angle
(Degree) | Raw
Value
(dBuV) | Correction
Factor
(dB/m) | | | | 1 | 47.40 | 32.4 QP | 40.0 | -7.6 | 1.01 V | 4 | 42.1 | -9.7 | | | | 2 | 72.67 | 31.6 QP | 40.0 | -8.4 | 1.01 V | 334 | 44.1 | -12.5 | | | | 3 | 166.00 | 30.6 QP | 43.5 | -12.9 | 1.01 V | 79 | 39.7 | -9.1 | | | | 4 | 267.10 | 28.3 QP | 46.0 | -17.7 | 1.01 V | 65 | 36.7 | -8.4 | | | | 5 | 348.76 | 30.1 QP | 46.0 | -15.9 | 1.01 V | 198 | 36.8 | -6.7 | | | | 6 | 366.26 | 29.4 QP | 46.0 | -16.6 | 1.50 V | 205 | 35.7 | -6.3 | | | ### Remarks: - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. The other emission levels were very low against the limit. - 4. Margin value = Emission Level Limit value Report Format Version: 6.1.1 ### 4.2 Conducted Emission Measurement ### 4.2.1 Limits of Conducted Emission Measurement | Fraguenov (MHz) | Conducted Limit (dBuV) | | | | | |-----------------|------------------------|---------|--|--|--| | Frequency (MHz) | Quasi-peak | Average | | | | | 0.15 - 0.5 | 66 - 56 | 56 - 46 | | | | | 0.50 - 5.0 | 56 | 46 | | | | | 5.0 - 30.0 | 60 | 50 | | | | Note: 1. The lower limit shall apply at the transition frequencies. ### 4.2.2 Test Instruments | Description & Manufacturer | Model No. | Serial No. | Cal. Date | Cal. Due | |---|--------------------------|----------------|---------------|---------------| | Test Receiver ROHDE & SCHWARZ | ESCI | 100613 | Dec. 10, 2018 | Dec. 09, 2019 | | RF signal cable
Woken | 5D-FB | Cable-cond1-01 | Sep. 05, 2018 | Sep. 04, 2019 | | LISN
ROHDE & SCHWARZ
(EUT) | ENV216 | 101826 | Feb. 21, 2019 | Feb. 20, 2020 | | LISN
ROHDE & SCHWARZ
(Peripheral) | ESH3-Z5 | 100311 | Aug. 19, 2018 | Aug. 18, 2019 | | Software
ADT | BV ADT_Cond_
V7.3.7.4 | NA | NA | NA | Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA. - 2. The test was performed in HwaYa Shielded Room 1. - 3. The VCCI Site Registration No. is C-12040. ^{2.} The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz. ### 4.2.3 Test Procedures - a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument. - b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference. - The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) were not recorded. **NOTE:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz. #### 4.2.4 Deviation from Test Standard No deviation. ### 4.2.5 Test Setup Note: 1.Support units were connected to second LISN. For the actual test configuration, please refer to the attached file (Test Setup Photo). # 4.2.6 EUT Operating Conditions Same as 4.1.6. Report No.: RF190618C05 R1 Page No. 20 / 26 Report Format Version: 6.1.1 ### 4.2.7 Test Results ### **Charging Mode** | Phase | Line (L) | Detector Function | Quasi-Peak (QP) /
Average (AV) | |-----------|----------|-------------------|-----------------------------------| | Test Mode | A | | | | | From | Corr. | Reading Value Emission Level | | Limit | | Margin | | | | |----|----------|--------|------------------------------|-------|-------|-------|--------|-------|--------|--------| | No | Freq. | Factor | [dB (| (uV)] | [dB (| (uV)] | [dB (| (uV)] | (d | B) | | | [MHz] | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | 1 | 0.15391 | 9.69 | 41.94 | 27.48 | 51.63 | 37.17 | 65.79 | 55.79 | -14.16 | -18.62 | | 2 | 0.19692 | 9.68 | 37.67 | 24.29 | 47.35 | 33.97 | 63.74 | 53.74 | -16.39 | -19.77 | | 3 | 0.36505 | 9.68 | 30.66 | 17.68 | 40.34 | 27.36 | 58.61 | 48.61 | -18.27 | -21.25 | | 4 | 1.02607 | 9.67 | 18.33 | 11.38 | 28.00 | 21.05 | 56.00 | 46.00 | -28.00 | -24.95 | | 5 | 1.70227 | 9.69 | 17.95 | 11.33 | 27.64 | 21.02 | 56.00 | 46.00 | -28.36 | -24.98 | | 6 | 17.91313 | 9.92 | 13.26 | 8.53 | 23.18 | 18.45 | 60.00 | 50.00 | -36.82 | -31.55 | ### Remarks: - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value. Report Format Version: 6.1.1 | Phase | Neutral (N) | LI DETECTOR FUNCTION | Quasi-Peak (QP) /
Average (AV) | |-----------|-------------|----------------------|-----------------------------------| | Test Mode | A | | | | | From | Corr. | | Reading Value | | Emission Level | | Limit | | Margin | | |----|----------|--------|-------|---------------|-------|----------------|-------|-------|--------|--------|--| | No | Freq. | Factor | [dB (| (uV)] | [dB (| (uV)] | [dB (| (uV)] | (d | B) | | | | [MHz] | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | | 1 | 0.15391 | 9.66 | 42.79 | 28.10 | 52.45 | 37.76 | 65.79 | 55.79 | -13.34 | -18.03 | | | 2 | 0.16564 | 9.66 | 42.51 | 27.02 | 52.17 | 36.68 | 65.18 | 55.18 | -13.01 | -18.50 | | | 3 | 0.33396 | 9.65 | 30.41 | 21.71 | 40.06 | 31.36 | 59.35 | 49.35 | -19.29 | -17.99 | | | 4 | 0.70913 | 9.64 | 9.51 | 1.47 | 19.15 | 11.11 | 56.00 | 46.00 | -36.85 | -34.89 | | | 5 | 1.90950 | 9.67 | 15.28 | 6.91 | 24.95 | 16.58 | 56.00 | 46.00 | -31.05 | -29.42 | | | 6 | 16.23183 | 9.95 | 12.72 | 7.84 | 22.67 | 17.79 | 60.00 | 50.00 | -37.33 | -32.21 | | - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value. # Standby Mode | Phase | Line (L) | Detector Function | Quasi-Peak (QP) /
Average (AV) | |-----------|----------|-------------------|-----------------------------------| | Test Mode | В | | | | | Erog | Corr. | Readin | g Value | Emissio | n Level | Lir | nit | Mai | rgin | |----|----------|--------|--------|---------|---------|---------|-------|-------|--------|--------| | No | Freq. | Factor | [dB | (uV)] | [dB | (uV)] | [dB (| (uV)] | (d | B) | | | [MHz] | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | 1 | 0.15802 | 9.69 | 42.93 | 26.52 | 52.62 | 36.21 | 65.57 | 55.57 | -12.95 | -19.36 | | 2 | 0.16967 | 9.69 | 37.93 | 25.13 | 47.62 | 34.82 | 64.98 | 54.98 | -17.36 | -20.16 | | 3 | 0.27120 | 9.68 | 25.87 | 17.38 | 35.55 | 27.06 | 61.08 | 51.08 | -25.53 | -24.02 | | 4 | 0.37999 | 9.68 | 31.59 | 23.92 | 41.27 | 33.60 | 58.28 | 48.28 | -17.01 | -14.68 | | 5 | 0.91636 | 9.67 | 16.42 | 10.17 | 26.09 | 19.84 | 56.00 | 46.00 | -29.91 | -26.16 | | 6 | 17.26407 | 9.92 | 10.78 | 6.03 | 20.70 | 15.95 | 60.00 | 50.00 | -39.30 | -34.05 | - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value. | Phase | Neutral (N) | Detector Function | Quasi-Peak (QP) /
Average (AV) | |-----------|-------------|-------------------|-----------------------------------| | Test Mode | В | | | | No | Freq. | Corr.
Factor | Reading Value | | Emission Level | | Limit | | Margin | | |----|----------|-----------------|---------------|-------|----------------|-------|-----------|-------|--------|--------| | | | | [dB (uV)] | | [dB (uV)] | | [dB (uV)] | | (dB) | | | | [MHz] | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | 1 | 0.15391 | 9.66 | 44.18 | 28.88 | 53.84 | 38.54 | 65.79 | 55.79 | -11.95 | -17.25 | | 2 | 0.16967 | 9.66 | 39.48 | 24.40 | 49.14 | 34.06 | 64.98 | 54.98 | -15.84 | -20.92 | | 3 | 0.27120 | 9.66 | 29.92 | 21.33 | 39.58 | 30.99 | 61.08 | 51.08 | -21.50 | -20.09 | | 4 | 0.35018 | 9.65 | 30.57 | 22.94 | 40.22 | 32.59 | 58.96 | 48.96 | -18.74 | -16.37 | | 5 | 2.19102 | 9.67 | 12.74 | 6.26 | 22.41 | 15.93 | 56.00 | 46.00 | -33.59 | -30.07 | | 6 | 16.22792 | 9.95 | 12.56 | 7.59 | 22.51 | 17.54 | 60.00 | 50.00 | -37.49 | -32.46 | - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value. | 5 Pictures of Test Arrangements | | | | | | | | | | | |---|--|--|--|--|--|--|--|--|--|--| | Please refer to the attached file (Test Setup Photo). | Report No.: RF190618C05 R1 Page No. 25 / 26 Cancels and replaces the report No.: RF190618C05 dated Jul. 11, 2019 # Appendix - Information of the Testing Laboratories We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited and approved according to ISO/IEC 17025. If you have any comments, please feel free to contact us at the following: Lin Kou EMC/RF Lab Hsin Chu EMC/RF/Telecom Lab Tel: 886-2-26052180 Tel: 886-3-6668565 Fax: 886-2-26051924 Fax: 886-3-6668323 Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892 Email: service.adt@tw.bureauveritas.com Web Site: www.bureauveritas-adt.com The address and road map of all our labs can be found in our web site also. --- END --- Report No.: RF190618C05 R1 Page No. 26 / 26 Report Format Version: 6.1.1