

Test report No: 1962139R-RF-US-DFS

TEST REPORT FCC Rules&Requlations 47 CFR Chapter I - Part 15E

Product Name	Barcode Scanner			
Trademark	Honeywell			
Model and /or type reference	8680i			
FCC ID	HD5-8680B			
Applicant's name / address	HONEYWELL INTERNATIONAL INC Honeywell Safety and Productivity Solutions 9680 OLD BAILES RD FORT MILL SC 29707-7539			
Test method requested, standard	FCC CFR Title 47 Part 15 Subpart C Section 15.407 KDB 905462 D02 v02			
	KDB 905462 D03 v01r02			
Verdict Summary	IN COMPLIANCE			
Documented By	Kitty Li /Project Assistant			
Tested by (name / position & signature)	Frank He/ Technical Supervisor			
Approved by (name / position & signature)	Jack Zhang/ Supervisor Jack Zhong			
Date of issue	2019-07-08			
Report template No	1962139R-RF-US-DFS			

INDEX

		page
Com	petenc	es and Guarantees4
Gen	eral co	nditions4
Envi	ronmer	tal conditions4
Poss	sible te	st case verdicts5
Abbr	reviatio	ns5
Docu	ument I	History6
Rem	arks ar	nd Comments6
Used	d Equip	ment7
Unce	ertainty	
1	Gene	ral Information9
	1.1	General Description of the Item(s)9
	1.2	Antenna Information
	1.3	Test date11
	1.4	Data Rate11
	1.5	Channel List
	2.1	Operating mode(s) used for tests
	2.2	Support / Auxiliary equipment / unit / Test software for the EUT14
	2.3	Test Configuration / Block diagram used for tests15
	2.4	Testing process
	3.1	Standards
	3.2	Overview of results
	3.3	Test Facility
	4.1	DFS Overview
		4.1.1 Limit
		4.1.2 Test Setup
		4.1.3 Client Device requreiment
		4.1.4 Radar Waveform Calibration
		4.1.5 Radar Waveform Calibration Result
	4.2	Channel Move Time and Channel Closing Transmission Time
		4.2.1 Test Procedure
		4.2.2 Test Data
	4.3	Non-Occupancy Period
		4.3.1 Test Procedure
		4.3.2 Test Data

4.4	Test setup photo and EUT Photo	.34
-----	--------------------------------	-----

COMPETENCES AND GUARANTEES

DEKRA is a testing laboratory competent to carry out the tests described in this report.

In order to assure the traceability to other national and international laboratories, DEKRA has a calibration and maintenance program for its measurement equipment.

DEKRA guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated in the report and it is based on the knowledge and technical facilities available at DEKRA at the time of performance of the test.

DEKRA is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.

The results presented in this Test Report apply only to the particular item under test established in this document.

IMPORTANT: No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of DEKRA.

GENERAL CONDITIONS

- 1. This report is only referred to the item that has undergone the test.
- 2. This report does not constitute or imply on its own an approval of the product by the Certification Bodies or Competent Authorities.
- 3. This document is only valid if complete; no partial reproduction can be made without previous written permission of DEKRA.
- 4. This test report cannot be used partially or in full for publicity and/or promotional purposes without previous written permission of DEKRA.

ENVIRONMENTAL CONDITIONS

The climatic conditions during the tests are within the limits specified by the manufacturer for the operation of the EUT and the test equipment. The climatic conditions during the tests were within the following limits:

Ambient temperature	15 °C – 35 °C
Relative Humidity air	30% - 60%

If explicitly required in the basic standard or applied product / product family standard the climatic values are recorded and documented separately in this test report.

POSSIBLE TEST CASE VERDICTS

Test case does not apply to test object	N/A
Test object does meet requirement	P (Pass) / PASS
Test object does not meet requirement	F (Fail) / FAIL
Not measured	N/M

ABBREVIATIONS

For the purposes of the present document, the following abbreviations apply:

EUT : Equipment Under Test QP : Quasi-Peak CAV : **CISPR** Average AV : Average CDN **Coupling Decoupling Network** : SAC Semi-Anechoic Chamber : OATS : **Open Area Test Site** BW : Bandwidth AM **Amplitude Modulation** : **Pulse Modulation** PM : HCP Horizontal Coupling Plane Ξ. VCP : Vertical Coupling Plane Nominal voltage $U_{\rm N}$: Тx : Transmitter Rx : Receiver N/A : Not Applicable N/M : Not Measured

DOCUMENT HISTORY

Report No.	Version	Description	Issued Date
1962139R-RF-US-DFS		Initial issue of report.	2019-07-08

REMARKS AND COMMENTS

- 1. The equipment under test (EUT) does meet the essential requirements of the stated standard(s)/test(s).
- 2. These test results on a sample of the device are for the purpose of demonstrating Compliance with Part 15 Subpart E Paragraph 15.407.
- 3. The test results presented in this report relate only to the object tested..
- 4. This report shall not be reproduced, except in full, without the written approval of the Issuing CB Testing laboratory.
- 5. The measurement result is considered in conformance with the requirement if it is within the prescribed limit, It is not necessary to account the uncertainty associated with the measurement result, unless the specification, standard or customer have special requirements.
- 6. This report is not used for social proof in China (or Mainland China) market.

USED EQUIPMENT

Dynamic Frequency Selection (DFS) / TR-8

Instrument	Manufacturer	Model No.	Serial No.	Cal. Date	Next Cal. Date
Spectrum Analyzer	Agilent	N9010A	MY48030494	2019.05.12	2020.05.11
Vector Signal Generator	Agilent	E4438C	MY49070163	2019.03.28	2020.03.27
Splitter/Combiner (Qty: 2)	Mini-Circuits	ZAPD-50W 4.2-6.0 GHz	NN256400424	N/A	N/A
ATT (Qty: 1)	Mini-Circuits	VAT-30+	30912	N/A	N/A
Laptop PC	ASUS	N80V	8BN0AS226971 468	N/A	N/A
RF Cable (Qty: 6)	Mini-Circuits	N/A	DFS-1~6	N/A	N/A
DFS test software	Agilent	N/A	N/A	N/A	N/A

UNCERTAINTY

Uncertainties have been calculated according to the DEKRA internal document. The reported expanded uncertainties are based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%

Test item	Uncertainty
DFS	± 2.02dB

1 GENERAL INFORMATION

1.1 General Description of the Item(s)

Model / Type number	8680i			
Trademark	Honeywell			
Manufacturer	HONEYWELL INTERNATIONAL INC			
	Honeywell Safety and Productivity Solutions			
	2、Metro(Suzhou)Technologies Co.,Ltd			
Manufacturer Address	1、9680 OLD BAILES RD			
	FORT MILL SC 29707-7539			
	2、No.221 Xinghai street China-Singapore Suzhou Industrial Park			

Wireless specifiction	WIFI				
Operating frequency range(s):				Outdoor AP	
	\boxtimes	5150MHz~5250MHz		Indoor AP	
				Fixed point-to-point AP	
			\square	Mobile and Portable Client	
	\boxtimes	5250MHz~5350MHz			
	\boxtimes	5470MHz~5725MHz	\square	With TDWR Channels	
	\Box	3470IVINZ~3723IVINZ		Without TDWR Channels	
	\boxtimes	5725MHz~5850MHz			
Type of modulation	OFDM-BPSK, QPSK, 16QAM, 64QAM, 128QAM, 256QAM				
Number of channel	802.11a/n(20MHz)/ac(20MHz): 24				
		1n(40MHz)/ac(MHz): 11			
	802.1	1ac(80MHz): 5			
Device category		Outdoor AP			
		Indoor AP			
		Fixed point-to-point AP			
	\boxtimes	Mobile and Portable Client		Slaver device with radar detection function	
		Nobile and Poltable Client	\square	Slaver device without radar detection function	
Master AP Information					
Product Name	Cisco Aironet IOS Access Point				
Model No.	AIR-AP1252AG-A-K9				

Rated power supply:	Voltage and Frequency			
	AC: 220 – 240 V, 50/60 Hz			
	AC: 100 – 240 V, 50/60 Hz			
	DC: 12 V, 24 V, 12 / 24 V			
	Battery: DC 3.8V			
Mounting position:		Table top equipment		
		Wall/Ceiling mounted equipment		
		Floor standing equipment		
	\square	Hand-held equipment		
		Other:		

1.2 Antenna Information

Antenna model / type number:	N/A				
Antenna serial number	N/A				
Antenna Delivery	⊠ 1TX + 1RX				
	2TX + 2RX				
		Others:			
Antenna technology	\boxtimes	SISO			
		MIMO		Basic	
				CDD	
				Sectorized	
				Beam-forming	
Antenna Type		External		Dipole	
				Sectorized	
		Internal	\square	PIFA	
	\boxtimes			PCB	
				Others	
Antenna Gain	2.7dBi				
Directional Gain	For Power: N/A				
	For PSD: N/A				

1.3 Test date

Test Location	No. 99, Hongye Road, Suzhou Industrial Park Suzhou, 215006, P.R. China
Date(receive sample)	Jun. 20, 2019
Date (start test)	Jun. 20, 2019
Date (finish test)	Jul. 05, 2019

1.4 Data Rate

MCS	ACS Special		Data Rate (Mbps)									
Index for	Spatial Streams	902 11h	802.11g	802.11a	20MHz I	Bandwidth	40MHz E	Bandwidth				
802.11n	Streams	002.110	802.TTY	002.11a	800ns GI	400ns GI	800ns GI	400ns GI				
0	1	1	6	6	6.5	7.2	13.5	15.0				
1	1	2	9	9	13.0	14.4	27.0	30.0				
2	1	5.5	12	12	19.5	21.7	40.5	45.0				
3	1	11	18	18	26.0	28.9	54.0	60.0				
4	1		24	24	39.0	43.3	81.0	90.0				
5	1		36	36	52.0	57.8	108.0	120.0				
6	1		48	48	58.5	65.0	121.5	135.0				
7	1		54	54	65.0	72.2	135.0	150.0				
Note 1 : Th	ne blue forr	n is the m	aximum p	ower data	rate							

Spatial			Codin	Data Rate(Mb/s)					
Stream	MCS	Modulation		20	MHz	40	MHz	80	MHz
S	Index	type	g rate	Guard	Interval	Guard	Interval	Guard	Interval
(Note1)			Tale	800ns	400ns	800ns	400ns	800ns	400ns
	0	BPSK	1/2	6.5	7.2	13.5	15	29.3	32.5
	1	QPSK	1/2	13	14.4	27	30	58.5	65
	2	QPSK	3/4	19.5	21.7	40.5	45	87.8	97.5
	3	16-QAM	1/2	26	28.9	54	60	117	130
1	4	16-QAM	3/4	39	43.3	81	90	175.5	195
1	5	64-QAM	2/3	52	57.8	108	120	234	260
	6	64-QAM	3/4	58.5	65	121.5	135	263.3	292.5
	7	64-QAM	5/6	65	72.2	135	150	292.5	325
	8	256-QAM	3/4	78	86.7	162	180	351	390
	9	256-QAM	5/6	N/A	N/A	180	200	390	433.3
Note 1: T	he blue	form is the ma	aximum p	ower data r	ate.				

1.5 Channel List

IEEE 802.11a/n(20MHz)/ac(20MHz)

Working Frequency of Each Channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
36	5180 MHz	40	5200 MHz	44	5220 MHz	48	5240 MHz
52	5260 MHz	56	5280 MHz	60	5300 MHz	64	5320 MHz
100	5500 MHz	104	5520 MHz	108	5540 MHz	112	5550 MHz
116	5580 MHz	120	5600 MHz	124	5620 MHz	128	5640 MHz
132	5660 MHz	136	5680 MHz	140	5700 MHz	149	5745 MHz
153	5765 MHz	157	5785 MHz	161	5805 MHz	165	5825MHz

IEEE 802.11n(40MHz)/ac(40MHz)

Working Frequency of Each Channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
38	5190 MHz	46	5230 MHz	54	5270 MHz	62	5310 MHz
102	5510 MHz	110	5550 MHz	118	5590 MHz	126	5630 MHz
134	5670 MHz	151	5755 MHz	159	5795 MHz	N/A	N/A

IEEE 802.11ac(80MHz)

Working Frequency of Each Channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
42	5210 MHz	58	5290 MHz	106	5530MHz	122	5610 MHz
155	5775 MHz	N/A	N/A	N/A	N/A	N/A	N/A

2 DESCRIPTION OF TEST SETUP

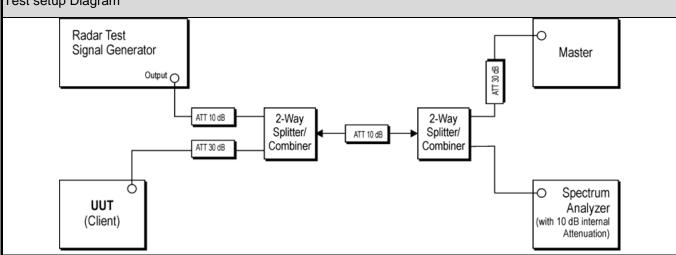
2.1 Operating mode(s) used for tests

During the tests the following operating mode(s) has(have) been used.

Test Mode	Mode 1: Transmit by 802.11ac(80MHz)

2.2 Support / Auxiliary equipment / unit / Test software for the EUT

The EUT has been tested with the following auxiliary equipment / unit / software:


Auxiliary equipment	Type / Version	Manufacturer	Supplied by
Notebook	Think pad x220	Lenovo	Adapter
Splitter/Combiner (Qty: 2)	ZAPD-50W 4.2-6.0 GHz	MINI-Circuit	NN256400424
ATT (Qty: 1)	VAT-30+ MINI-Circuit 30912		
Splitter/Combiner (Qty: 2)	ZAPD-50W 4.2-6.0 GHz	MINI-Circuit	NN256400424
unit / software	Type / Version	Manufacturer	Supplied by
N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A
software	Type / Version	Manufacturer	Supplied by
DFS Tool	7607C	Agilent	N/A
Supplemental information:	·		·

2.3 Test Configuration / Block diagram used for tests

The following test setup / configuration / block diagram has been used during the tests:

2.4 Testing process

1	Setup the EUT as shown in Section 2.3.
2	Open all the equipment and connect the EUT with AP.
3	Configure the test mode, the test channel, and the data rate.
4	Start the continuous Transmitter and add the radar signal.
5	Verify that the EUT stops working after decect the radar wave.

3 VERDICT SUMMARY SECTION

This chapter presents an overview of standards and results. Refer to the next chapters for details of measured test results and applied test levels.

3.1 Standards

Standard	Year	Description
FCC CFR Title 47 Part 15 Subpart E Section 15.407	2019	Unlicensed National Information Infrastructure Devices
ANSI C63.10	2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
KDB 789033 D02V02r01	2017	GUIDELINES FOR COMPLIANCE TESTING OF UNLICENSED NATIONAL INFORMATION INFRASTRUCTURE (U-NII) DEVICES PART 15, SUBPART E

3.2 Overview of results

Requirement – Test case	Basic standard(s)	Verdict	Remark
DFS	FCC CFR Title 47 Part 15 Subpart E Section 15.407(h)	PASS	
Supplementary information:			

3.3 Test Facility

USA	:	FCC Designation Number: CN1199
Canada	:	CAB identifier Number: CN0040

DEKRA

PASS

VERDICT:

4.1 DFS Overview

4.1.1 Limit						
Standard	FCC Part 15	FCC Part 15 Subpart E Paragraph 15.407(h)				
	Operational N	Operational Mode				
Requirement	Master	Client (without radar detection)	Client (with radar detection)			
Non-Occupancy Period	Yes	Not Required	Yes			
DFS Detection Threshold	Yes	Not Required	Yes			
Channel Availability Check Time	Yes	Not Required	Not Required			
U-NII Detection Bandwidth	Yes	Not Required	Yes			

	Operational Mode			
Requirement	Master or Client (with radar detection)	Client (without radar detection)		
DFS Detection Threshold	Yes	Not Required		
Channel Closing Transmission Time	Yes	Yes		
Channel Move Time	Yes	Yes		
U-NII Detection Bandwidth	Yes	Not required		

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client (without radar detection)					
U-NII Detection Bandwidth and							
Statistical Performance Check	All BW modes must be tested	Not required					
Channel Move Time and	Test using widest BW mode						
Channel	available	Test using the widest BW mode					
Closing Transmission Time		available for the link					
All other tests	Any single BW mode	Not required					
Note: Frequencies selected for st	atistical performance check (Section	on 7.8.4) should include several frequencies					
within the radar detection bandwi	dth and frequencies near the edge	of the radar detection bandwidth. For					
802.11 devices it is suggested to	802.11 devices it is suggested to select frequencies in all 20 MHz channel blocks and a null frequencies						
between the bonded 20 MHz channel blocks.							

DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection

Maximum Transmit Power	Value (see note)				
EIRP 200 milliwatt	-64 dBm				
EIRP < 200 milliwatt and power spectral density < 10 dBm/MHz	-62 dBm				
EIRP < 200 milliwatt that do not meet the power spectral density requirement	-62 dBm				
Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.					
Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test					
transmission waveforms to account for variations in measurement equipment. This will ensure that the					
test signal is at or above the detection threshold level to trigger a DFS response.					
Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911					

D01.

DFS Response requirement values

Parameter	Value					
Non-Occupancy Period Minimum 30 minutes						
Channel Availability Check Time	60 Seconds					
	10 Seconds					
Channel Move Time	(See Note1)					
	200 milliseconds + an aggregate of 60 milliseconds					
Channel Closing Transmission Time	over remaining 10 second period.					
	(See Notes 1 and 2)					
	Minimum 100% of the U-NII 99% transmission					
U-NII Detection Bandwidth	power bandwidth. See Note 3.					
Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with						
	egins at the end of the Radar Type 0 burst.					
	me is comprised of 200 milliseconds starting at					
	the beginning of the Channel Move Time plus any additional intermittent control signals required					
to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between						
	issions.					
	detection test, radar type 0 should be used. For					
3	of detection is 90 percent. Measurements are					
performed with no data traffic.						

Radar	Pulse Width	PRI	Number of Pulses	Minimum	Minimum
Туре	(µsec)	(µsec)		Percentage of	Number of
				Successful	Trials
				Detection	
0	1	1428	18	See Note 1	See Note 1
1	1	Test A: 15 unique	$\left(\begin{pmatrix} 1 \end{pmatrix} \right)$	60%	30
		PRI values	$\left(\frac{1}{360}\right)$.		
		randomly selected	Roundup (300)		
		from the list of 23	(19.10^{6})		
		PRI values in Table			
		5a	$\left(\overline{\mathrm{PRI}}_{\mu\mathrm{sec}} \right)$		
		Test B: 15 unique			
		PRI values			
		randomly selected			
		within the range of			
		518-3066 µsec,			
		with a minimum			
		increment of 1			
		µsec, excluding			
		PRI values selected			
		in Test A			
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
	Radar Types 1-			80%	120
Note 1: Sh	ort Pulse Rada	r Type 0 should be u	sed for the detection ba	ndwidth test, ch	annel move
time, and c	hannel closing	time tests.			
 um of 20 uni	aug woweform	a are required for a	ach of the Short Pulse I	Dodor Turoco O t	brough 4 If

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous A or B.

For example if in Short Pulse Radar Type 1 Test B a PRI of 3066 usec is selected, the number of

pulses would be = Roundup

 $\left\{ \left(\frac{1}{360}\right) \cdot \left(\frac{19 \cdot 10^6}{3066}\right) \right\} = \operatorname{Roundup} \{17.2\} = 18.$

Pulse Repetition Frequency Number	Pulse Repetition Frequency (Pulses Per Second)	Pulse Repetition Interval (Microseconds)
1	1930.5	518
2	1858.7	538
3	1792.1	558
4	1730.1	578
5	1672.2	598
6	1618.1	618
7	1567.4	638
8	1519.8	658
9	1474.9	678
10	1432.7	698
11	1392.8	718
12	1355	738
13	1319.3	758
14	1285.3	778
15	1253.1	798
16	1222.5	818
17	1193.3	838
18	1165.6	858
19	1139	878
20	1113.6	898
21	1089.3	918
22	1066.1	938
23	326.2	3066

The aggregate is the average of the percentage of successful detections of Short Pulse Radar Types 1-4.

L	ong Pulse Ra	dar Test Sig	nal		-			
	Radar Waveform	Bursts	Pulses Per Burst	Pulse Width (μsec)	Chirp Width (MHz)	PRI (µsec)	Minimum Percentage of Successful Detection	Minimum Trials
	5	8-20	1-3	50-100	5-20	1000-2000	80%	30

The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the longpulse radar test signal. If more than 30 waveforms are used for the long pulse radar test signal, then eachadditional waveform must also be unique and not repeated from the previous waveforms.

Statistical data will be gathered to determine the ability of the device to detect the Long Pulse Radar Type 5 found in **Table 6**. The device can utilize a test mode to demonstrate when detection occurs to prevent the need to reset the device between trials.

Three subsets of trials will be performed with a minimum of ten trials per subset. The subset of trials differ in where the Long Pulse Type 5 Signal is tuned in frequency:

a) the Channel center frequency (Figure 18);

b) tuned frequencies such that 90% of the Long Pulse Type 5 frequency modulation is within the low edge of the UUT Occupied Bandwidth (Figure 19); and

c) tuned frequencies such that 90% of the Long Pulse Type 5 frequency modulation is within the high edge of the UUT Occupied Bandwidth (Figure 20).

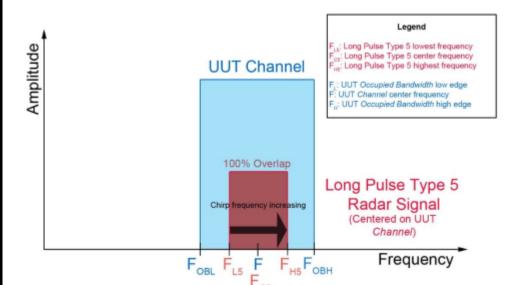
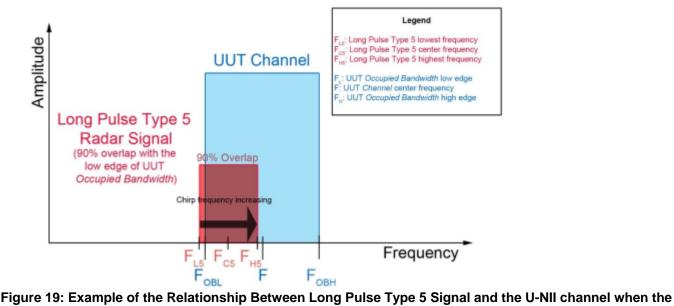
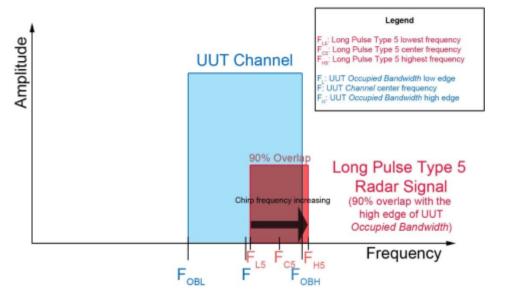




Figure 18: Example of the Relationship Between Long Pulse Type 5 Signal and the U-NII channel when the Signal is Tuned to the UUT Channel Center Frequency

Signal is Tuned so that 90% of the Radar Signal Overlaps with the Low Edge of the UUT Occupied Bandwidth

Figure 20: Example of the Relationship Between Long Pulse Type 5 Signal and the U-NII channel when the Signal is Tuned so that 90% of the Radar Signal Overlaps with the High Edge of the UUT Occupied Bandwidth

For subset case 1: the center frequency of the signal generator will remain fixed at the center of the UUT Channel.

For subset case 2: to retain 90% frequency overlap between the radar signal and the UUT Occupied Bandwidth, the center frequency of the signal generator will vary for each of the ten trials in subset case 2. The center frequency of the signal generator for each trial is calculated by:

$F_L + (0.4 * Chirp Width [in MHz])$

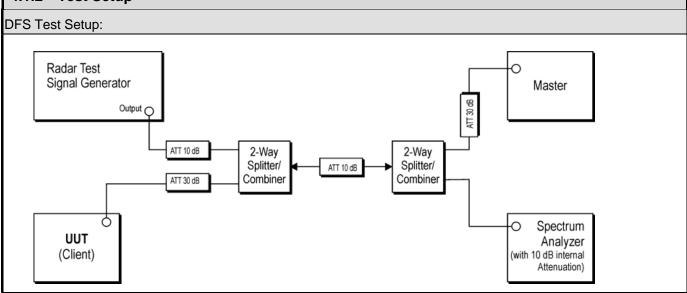
For subset case 3: to retain 90% frequency overlap between the radar signal and the UUT Occupied Bandwidth, the center frequency of the signal generator will vary for each of the ten trials in subset case 3. The center frequency of the signal generator for each trial is calculated by:

$F_H - (0.4 * Chirp Width [in MHz])$

The percentage of successful detection is calculated by dividing the sum of the detections for the three subsets by the sum of trials for the three subsets:

TotalWaveformDetections ×100

TotalWaveformTrials


F	equency Ho	pping Radar	Test Signal					
	Radar	Pulse	PRI	Hopping	Pulses Per Hop	Hopping	Minimum	Minimum
	Waveform	Width	$(\mu \sec)$	Sequence		Rate (kHz)	Percentage	Trials
		$(\mu \sec)$		Length			of	
		 		(msec)			Successful	
							Detection	
	6	1	333	300	9	.333	70%	30

For the Frequency Hopping Radar Type, the same *Burst* parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm:

The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250 – 5724 MHz. Next, the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely.

4.1.2 Test Setup

4.1.3 Client Device requreiment

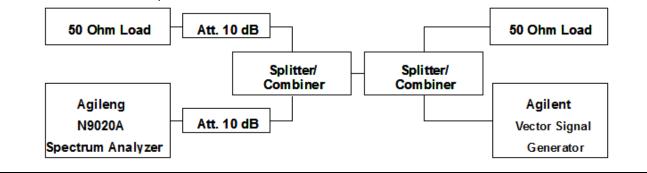
a) A Client Device will not transmit before having received appropriate control signals from a Master Device.

b) A Client Device will stop all its transmissions whenever instructed by a Master Device to which it is associated and will meet the Channel Move Time and Channel Closing Transmission Time requirements. The Client Device will not resume any transmissions until it has again received control signals from a Master Device.c) If a Client Device is performing In-Service Monitoring and detects a Radar Waveform above

the DFS Detection Threshold, it will inform the Master Device. This is equivalent to the Master Device detecting the Radar Waveform and d) through f) of section 5.1.1 apply.

d) Irrespective of Client Device or Master Device detection the Channel Move Time and Channel Closing Transmission Time requirements remain the same.

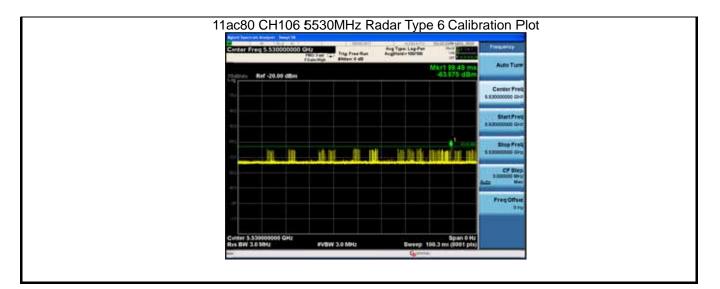
e) The client test frequency must be monitored to ensure no transmission of any type has occurred for 30 minutes. Note: If the client moves with the master, the device is considered compliant if nothing appears in the client non-occupancy period test. For devices that shut down (rather than moving channels), no beacons should appear.



4.1.4 Radar Waveform Calibration


The following equipment setup was used to calibrate the conducted radar waveform. A spectrum analyzer was used to establish the test signal level for each radar type. During this process there were replace 500hm terminal from master and client device and no transmissions by either the master or client device. The spectrum analyzer was switched to the zero span (time domain) at the frequency of the radar waveform generator. Peak detection was utilized. The spectrum analyzer resolution bandwidth (RBW) and video bandwidth (VBW) were set to 3MHz and 3 MHz.

The signal generator amplitude was set so that the power level measured at the spectrum analyzer was -61dBm due to the interference threshold level is not required.


Conducted Calibration Setup

4.2 Channel Move Time and Channel Closing Transmission Time

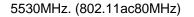
VERDICT: PASS

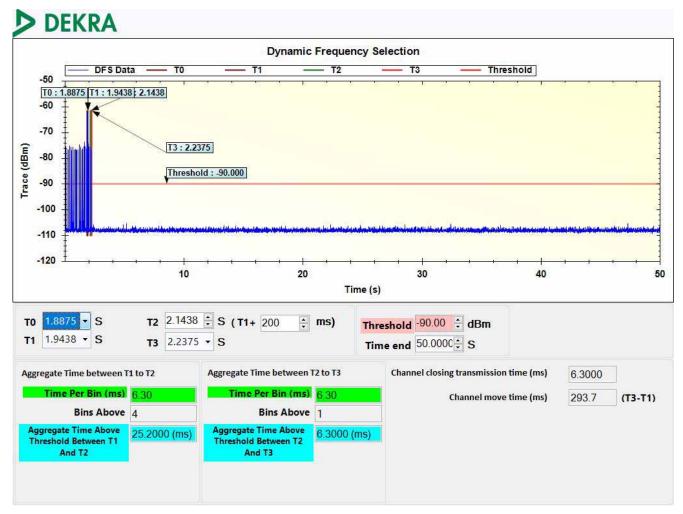
4.2.1 Test Procedure

These tests define how the following DFS parameters are verified during In-Service Monitoring; Channel Closing Transmission Time and Channel Move Time.

The steps below define the procedure to determine the above mentioned parameters when a radar burst with a level -61dBm is generated on the operating channel of the U-NII device.

A U-NII device operating as a Client device will associate with the Master device at 5500MHz.


During the in-service monitoring detection probability and channel moving tests the system was configured with a streaming video file from the master device (sourced by the PC connected to the master device via an Ethernet interface) to the client device. The streamed file was the "FCC" test file and the client device was using Media Player Classic as required by FCC Part 15 Subpart E.


Observe the transmissions of the EUT at the end of the radar burst on the operating channel for duration greater than 10 seconds. Measure and record the transmissions from the spectrum analyzer during the observation time (Channel Move Time). Compare the channel move time and channel closing transmission time results to the limits defined in the DFS Response requirement values table.

Parameter₄	Value₄ ³
Channel Move Time↩	10 Seconds₽
Channel Closing Transmission Time+	200 milliseconds + approx. 60 milliseconds over remaining 10 seconds period +

4.2.2 Test Data

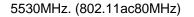
Test Item	Limit	Results
Channel Move Time	10 s	Pass
Channel Closing Transmission Time	200ms + an aggregate of 60ms over	Pass
	remaining 10 second period.	F 855

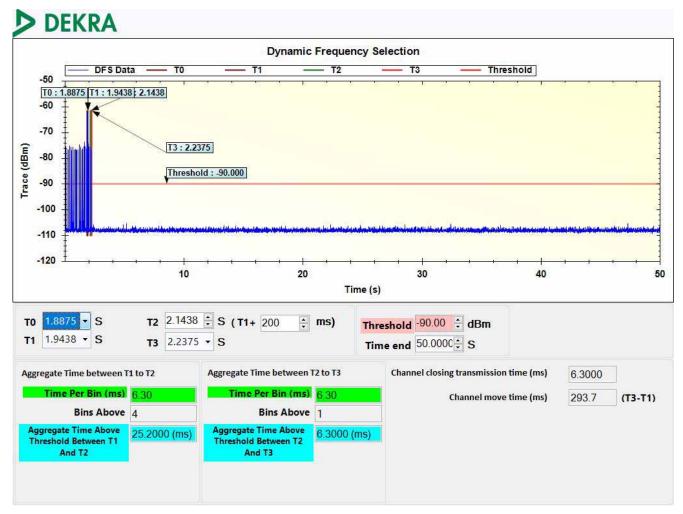
4.3 Non-Occupancy Period

Test Procedure

4.3.1

Measure the EUT for more than 30 minutes following the channel close/move time to verify that the UUT does not resume any transmissions on this channel.


Parameter₽	Value₽
Non-Occupancy Period₽	30 Minutes₽



VERDICT: PASS

4.3.2 Test Data

Test Item	Limit	Results
Channel Move Time	10 s	Pass
Channel Closing Transmission Time	200ms + an aggregate of 60ms over	Pass
	remaining 10 second period.	

4.4 Test setup photo and EUT Photo

Remark: The test setup photo and EUT Photo please see appendix.

The End

DEKRA

VERDICT: PASS