

EMC TEST REPORT

Applicant Honor Device Co., Ltd.

FCC ID 2AYGCANY-LX3

Product Smart Phone

Model ANY-LX3

Report No. R2202A0171-E1V1

Issue Date March 18, 2022

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in FCC Code CFR47 Part15B (2021)/ ANSI C63.4 (2014). The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Prepared by: Wei Liu

Approved by: Guangchang Fan

Guangchang Fan

TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000

Table of Contents

1	Test	Laboratory	5
	1.1	Notes of the Test Report	5
	1.2	Test facility	5
	1.3	Testing Location	5
2	Ger	eral Description of Equipment under Test	6
	2.1	Applicant and Manufacturer Information	6
	2.2	General information	6
	2.3	Applied Standards	9
	2.4	Test Mode	10
3	Test	Case Results	. 11
	3.1	Radiated Emission	
	3.2	Conducted Emission	17
4	Mai	n Test Instruments	21
Α	NNEX.	A: The EUT Appearance	22
Α	NNEX	B: Test Setup Photos	23

Report No.: R2202A0171-E1V1

Version	Revision description	Issue Date			
Rev.0	Initial issue of report.	March 18, 2022			
Rev.1	Rev.1 Added adapter information in Page 7.				

Note: This revised report (Report No. R2202A0171-E1V1) supersedes and replaces the previously issued report (Report No. R2202A0171-E1). Please discard or destroy the previously issued report and dispose of it accordingly.

Summary of measurement results

Report No.: R2202A0171-E1V1

Number	Test Case	Clause in FCC Rules	Conclusion
1	Radiated Emission	FCC Part15.109, ANSI C63.4-2014	PASS
2	Conducted Emission	FCC Part15.107, ANSI C63.4-2014	PASS

Date of Testing: March 3, 2022 ~ March 4, 2022 Date of Sample Received: February 21, 2022

Note: All indications of Pass/Fail in this report are opinions expressed by TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only.

EMC Test Report No.: R2202A0171-E1V1

1 Test Laboratory

1.1 Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of **TA technology** (shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2 Test facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform measurements.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform measurement.

1.3 Testing Location

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Fan Guangchang

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: http://www.ta-shanghai.com

E-mail: fanguangchang@ta-shanghai.com

2 General Description of Equipment under Test

2.1 Applicant and Manufacturer Information

Applicant	Honor Device Co., Ltd.		
Annilla and address	Suite 3401, Unit A, Building 6, Shum Yip Sky Park, No. 8089,		
Applicant address	Hongli West Road, Xiangmihu Street, Futian District, Shenzhen, Guangdong 518040, People's Republic of China		
Manufacturer	Honor Device Co., Ltd.		
	Suite 3401, Unit A, Building 6, Shum Yip Sky Park, No. 8089,		
Manufacturer address	Hongli West Road, Xiangmihu Street, Futian District, Shenzhen,		
	Guangdong 518040, People's Republic of China		

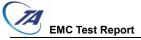
2.2 General information

EUT Description							
Device Type	Portable Device						
Model	ANY-LX3						
SN	AJDR012126000081						
HW Version	HL2ANYM						
SW Version	4.2.0.19(SP01C900E11R1	P1)					
Power Rating	DC 3.87V from battery or D	DC 5V from Adapter.					
Connecting I/O Port(s)	Please refer to the User's I	Manual.					
Antenna Type	Internal Antenna						
	Band	Tx (MHz)	Rx (MHz)				
	GSM 850	824 ~ 849	869 ~ 894				
	GSM 1900	1850 ~ 1910	1930 ~ 1990				
	WCDMA Band II	1850 ~ 1910	1930 ~ 1990				
	WCDMA Band IV	1710 ~ 1755	2110 ~ 2155				
	WCDMA Band V	824 ~ 849	869 ~ 894				
F	LTE Band 2	LTE Band 2 1850 ~ 1910					
Frequency	LTE Band 4	1710 ~ 1755	2110 ~ 2155				
	LTE Band 5	824 ~ 849	869 ~ 894				
	LTE Band 7	2500 ~ 2570	2620 ~ 2690				
	LTE Band 13	777 ~ 787	746 ~ 756				
	LTE Band 26	814 ~ 849	859 ~ 894				
	LTE Band 38	2570 ~ 2620	2570 ~ 2620				
	LTE Band 66	1710 ~ 1780	2110 ~ 2180				

TA Technology (Shanghai) Co., Ltd.

TA-MB-06-001E

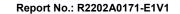
Page 6 of 23



Report No.: R2202A0171-E1V1 Bluetooth 2400 ~ 2483.5 2400 ~ 2483.5 Wi-Fi 2.4G 2400 ~ 2483.5 2400 ~ 2483.5 Wi-Fi 5G(U-NII-1) 5150 ~ 5250 5150 ~ 5250 Wi-Fi 5G(U-NII-2A) 5250 ~ 5350 5250 ~ 5350 Wi-Fi 5G(U-NII-2C) 5470 ~ 5725 5470 ~ 5725 Wi-Fi 5G(U-NII-3) 5725 ~ 5850 5725 ~ 5850 **EUT Accessory** Model Manufacture No. Accessory Honor Device Co., Ltd. HW-110600E00 1 (Manufacturer: Astec) Honor Device Co., Ltd. 2 HW-110600B00 (Manufacturer: Astec) Honor Device Co., Ltd. HW-110600U00 3 (Manufacturer: Astec) Adapter Honor Device Co., Ltd. HN-110600E00 4 (Manufacturer: Astec) Honor Device Co., Ltd. HN-110600B00 5 (Manufacturer: Astec) Honor Device Co., Ltd. HN-110600U00 6 (Manufacturer: Astec) Honor Device Co., Ltd. HB466596EFW 1 (Manufacturer: Desay) Honor Device Co., Ltd. Battery HB466596EFW 2 (Manufacturer: NVT) Honor Device Co., Ltd. 3 HB466596EFW (Manufacturer: SCUD) **BOLUO COUNTY QUANCHENG** 1293-3283-3.5mm-339 1 ELECTRONIC CO..LTD. **FOXCONN INTERCONNECT** EPAB542-2WH05-DH 2 Earphone **TECHNOLOGY LIMITED** Jiangxi Lianchuang Hongsheng Electronic 3 MEND1532B528A11 Co., LTD. 1 L99UC139 - CS - H Luxshare Precision Industry Co.,Ltd. **USB** Cable 213-01011-0 MING JI ELECTRONICS CO., LTD. 2 Earphone, USB Type-C to Model: USB042020090AW7 1 3.5mm Adapter Assembly Auxiliary test equipment PC Manufacturer: Microsoft Corporation Model: L20170076 PC PC Manufacturer: Microsoft Corporation Model: 1724 SN: 032324771953

Note: 1. The EUT is sent from the applicant to TA and the information of the EUT is declared by the applicant.

2. There is more than one Adapter/Battery/ USB cable, each one should be applied throughout the compliance test respectively, and however, only the worst case (Adapter 3 / Battery 2 for Unwanted Emissions and Battery 3 for Conducted Emissions/ USB cable 1) will be recorded in this report.



IC Test Report No.: R2202A0171-E1V1

2.3 Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards FCC Code CFR47 Part15B (2021) ANSI C63.4 (2014)

2.4 Test Mode

Test Mode	Test Mode							
Mode 1:	Adapter +USB cable+ earphone + Front camera On +GNSS Rx +							
	GSM/WCDMA/LTE/ Bluetooth/ WLAN receiver							
Mode 2:	Adapter +USB cable+ earphone + Front camera On +GNSS Rx +							
WOOC Z.	GSM/WCDMA/LTE/ Bluetooth/ WLAN Traffic							
Mode 3:	Adapter +USB cable+ earphone + Rear camera On +GNSS Rx +							
Wiode 5.	GSM/WCDMA/LTE/ Bluetooth/ WLAN receiver							
Mode4:	Adapter +USB cable+ earphone + Rear camera On +GNSS Rx +							
Mode4.	GSM/WCDMA/LTE/ Bluetooth/ WLAN Traffic							
Mode 5:	Adapter + USB cable + earphone + Mp4							
Mode 6:	Adapter + USB cable + earphone + GSM/WCDMA/LTE/GNSS/ Bluetooth/ WLAN							
wode 6.	receiver							
Mode 7:	Adapter + USB cable + earphone + GSM/WCDMA/LTE/GNSS/ Bluetooth/ WLAN							
wode 7.	Traffic							
Mode 8:	USB Copy(EUT with PC) + USB cable + earphone							
Mode 9:	Front Camera On +earphone + GNSS Rx + GSM/WCDMA/LTE/ Bluetooth/ WLAN							
wode 9.	receiver							
Mode 10:	Front Camera On +earphone + GNSS Rx + GSM/WCDMA/LTE/ Bluetooth/ WLAN							
Mode 10.	Traffic							
Mode 11:	Rear camera On +earphone + GNSS Rx + GSM/WCDMA/LTE/ Bluetooth/ WLAN							
Mode 11.	receiver							
Mode 12:	Rear camera On +earphone + GNSS Rx + GSM/WCDMA/LTE/ Bluetooth/ WLAN							
IVIOUE 12.	Traffic							
Mode 13:	Earphone + MP4							
Mode 14:	Earphone + GNSS Rx + GSM/WCDMA/LTE/ Bluetooth/ WLAN receiver							
Mode 15:	Earphone + GNSS Rx + GSM/WCDMA/LTE/ Bluetooth/ WLAN Traffic							

During the test, the preliminary test was performed in all modes with all adapters, USB, Earphone and batteries, mode 8 is selected as the worst condition. The test data of the worst-case condition was recorded in this report.

3 Test Case Results

3.1 Radiated Emission

Ambient condition

Temperature	Relative humidity	Pressure		
15°C~35°C	30%~60%	101.5kPa		

Methods of Measurement

The EUT is placed on a non-metallic table 0.8m above the horizontal metal reference ground plane. The distance between EUT and receive antenna should be 3 meters. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2014. Sweep the whole frequency band through the range from 30MHz to the 5th harmonic of the carrier. During the test, the height of receive antenna shall be moved from 1 to 4 meters, and the antenna shall be performed under horizontal and vertical polarization. The turn table shall be rotated from 0 to 360 degrees for detecting the maximum of radiated signal level.

The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing. During the test, the EUT is worked at maximum output power.

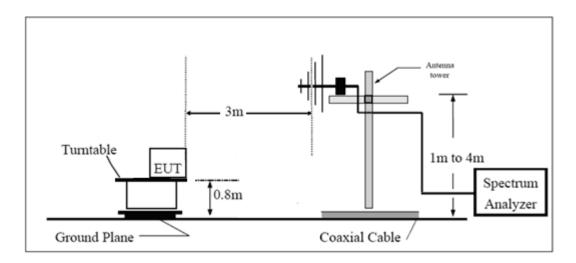
Set the spectrum analyzer in the following:

Below 1GHz:

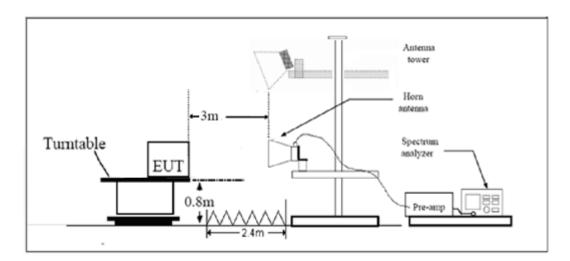
RBW=100 kHz / VBW=300 kHz / Sweep=AUTO

Above 1GHz:

- (a) PEAK Detector: RBW=1MHz / VBW=3MHz/ Sweep=AUTO
- (b) AVERAGE Detector: RBW=1MHz / VBW=3MHz / Sweep=AUTO


The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (X axis) and the worst case was recorded.

During the test, EUT is connected to a laptop via a USB cable in the case of Transfer Data mode. The EUT is used as the peripheral equipment of the PC. The data is transferred from EUT to PC; PC is connected to server via a long LAN cable.



Test Setup

Below 1GHz

Above 1GHz

Note: Area side: 2.4mX3.6m

Antenna Tower meets ANSI C63.4 requirements for measurements above 1 GHz by keeping the antenna aimed at the EUT during the antenna's ascent/ descent along the antenna mast.

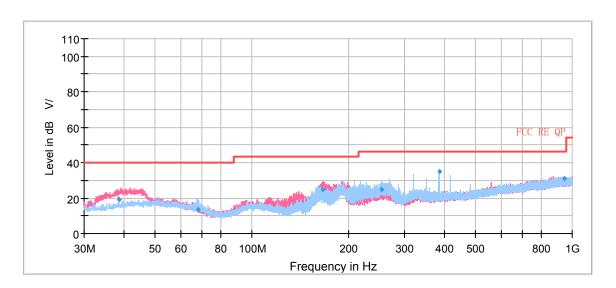
Limits

Class B

Frequency (MHz)	Field Strength (dBµV/m)	Detector
30 -88	40.0	Quasi-peak
88-216	43.5	Quasi-peak
216 – 960	46.0	Quasi-peak
960-1000	54.0	Quasi-peak
1000-5 th harmonic of the highest	54	Average
frequency or 40GHz, which is lower	74	Peak

Measurement Uncertainty

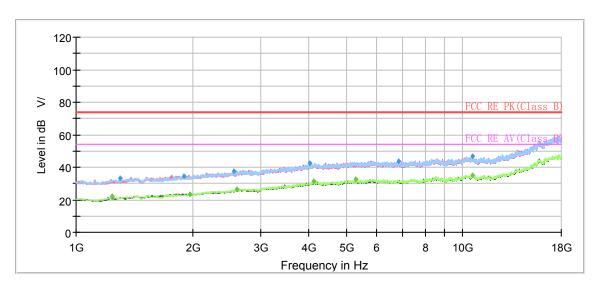
The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.


Frequency	Uncertainty
30MHz~200MHz	4.17 dB
200MHz~1000MHz	4.84 dB
1GHz~18GHz	4.35 dB
18GHz~26.5GHz	5.90 dB
26.5GHz~40GHz	5.92 dB

Test Results

Sweep the whole frequency band through the range from 30MHz to the 5th harmonic of the carrier. The Emissions in the frequency band 18GHz – 40GHz is more than 20dB below the limit are not reported.

The following graphs display the maximum values of horizontal and vertical by software. For above 1GHz, Blue trace uses the peak detection, Green trace uses the average detection. A font (Level in dB $^{V/}$) in the test plot =(level in dB $^{\mu}$ V/m)

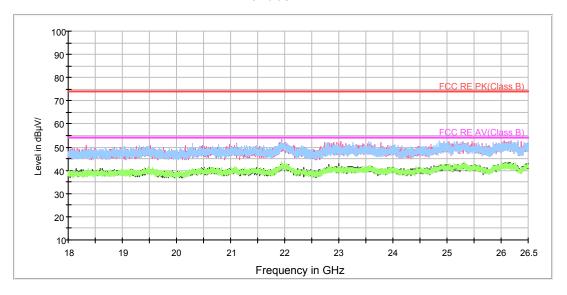


Radiated Emission from 30MHz to 1GHz

Frequency (MHz)	Quasi-Peak (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)
38.65	19.08	40.00	20.92	1000.00	100.0	V	61.00	19
67.75	13.61	40.00	26.39	1000.00	225.0	Н	9.00	17
167.04	24.62	43.50	18.88	1000.00	100.0	V	296.00	16
254.26	24.87	46.00	21.13	1000.00	109.0	Н	89.00	20
383.99	35.08	46.00	10.92	1000.00	100.0	Н	342.00	23
942.99	30.96	46.00	15.04	1000.00	100.0	Н	248.00	31

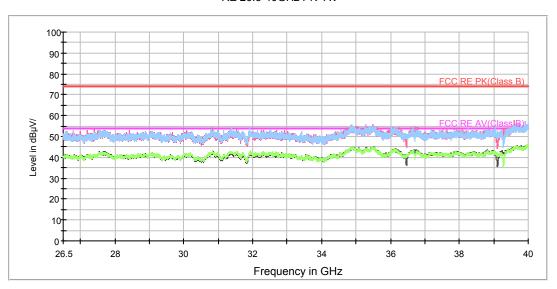
Remark: 1. Correction Factor = Antenna factor + Insertion loss(cable loss+amplifier gain)

2. Margin = Limit - Quasi-Peak



Radiated Emission from 1GHz to 18GHz

Frequency (MHz)	Peak (dBuV/m)	Average (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)
1240.13		21.99	54.00	32.01	500.00	200.0	Н	166.00	-17
1299.63	32.98		74.00	41.02	500.00	200.0	Н	59.00	-17
1896.75	34.16		74.00	39.84	500.00	200.0	V	168.00	-14
1969.00		23.67	54.00	30.33	500.00	100.0	Н	0.00	-13
2553.38	37.75		74.00	36.25	500.00	200.0	V	174.00	-10
2612.88		26.24	54.00	27.76	500.00	100.0	Н	0.00	-10
4028.13	42.41		74.00	31.59	500.00	200.0	Н	331.00	-4
4128.00		31.10	54.00	22.90	500.00	100.0	Н	163.00	-3
5275.50		32.47	54.00	21.53	500.00	100.0	Н	332.00	-1
6839.50	43.72		74.00	30.28	500.00	100.0	Н	359.00	0
10609.25		34.92	54.00	19.08	500.00	100.0	Н	245.00	5
10622.00	46.70		74.00	27.30	500.00	100.0	Н	354.00	5


EMC Test Report No.: R2202A0171-E1V1

RE 18-26.5GHz PK+AV

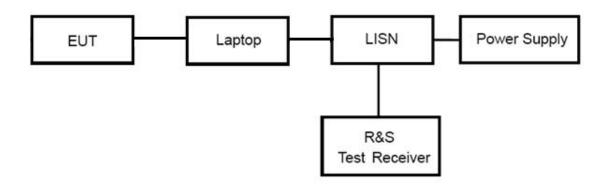
Radiated Emission from 18GHz to 26.5GHz

RE 26.5-40GHz PK+AV

Radiated Emission from 26.5GHz to 40GHz

3.2 Conducted Emission

Ambient condition


Temperature	Relative humidity	Pressure
15°C~35°C	30%~60%	101.5kPa

Methods of Measurement

The EUT is placed on a non-metallic table of 80cm height above the horizontal metal reference ground plane. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2014. Connect the AC power line of the EUT to the L.I.S.N. Use EMI receiver to detect the average and Quasi-peak value. RBW is set to 9 kHz, VBW is set to 30kHz. The measurement result should include both L line and N line.

During the test, EUT is connected to a laptop via a USB cable in the case of Transfer Data mode. The EUT is used as the peripheral equipment of the PC. The data is transferred from EUT to PC; PC is connected to server via a long LAN cable.

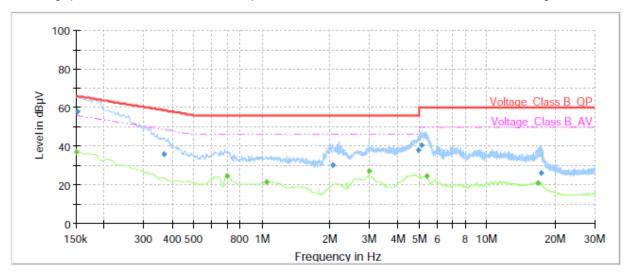
Test Setup

Note: Power Supply is AC Power source and it is used to change the voltage 120V/60Hz.

Limits

Frequency	Conducted Limits(dBµV)					
(MHz)	Quasi-peak	Average				
0.15 - 0.5	66 to 56 *	56 to 46*				
0.5 - 5	56	46				
5 - 30	60	50				
* Decreases with the logarithm of the frequency.						

Measurement Uncertainty

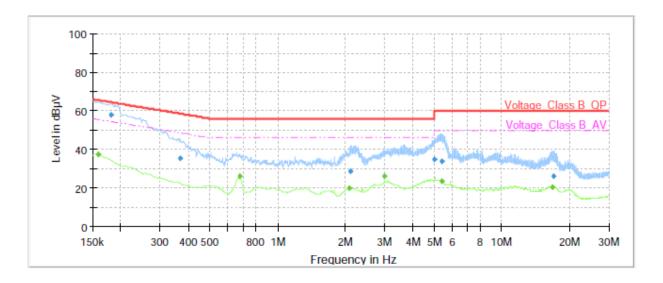

Report No.: R2202A0171-E1V1 The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is

with the coverage factor k = 1.96. U= 2.57 dB.

EMC Test Report No.: R2202A0171-E1V1

Test Results

Following plots, Blue trace uses the peak detection; Green trace uses the average detection.


Frequency (MHz)	QuasiPeak (dΒμV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.15		36.99	56.00	19.01	1000.00	9.000	L1	ON	21
0.15	57.86		65.88	8.02	1000.00	9.000	L1	ON	21
0.37	35.77		58.54	22.77	1000.00	9.000	L1	ON	21
0.70		24.86	46.00	21.14	1000.00	9.000	L1	ON	20
1.05		21.64	46.00	24.36	1000.00	9.000	L1	ON	20
2.07	30.36		56.00	25.64	1000.00	9.000	L1	ON	20
2.99		27.21	46.00	18.79	1000.00	9.000	L1	ON	19
4.96	38.10		56.00	17.90	1000.00	9.000	L1	ON	19
5.13	40.54		60.00	19.46	1000.00	9.000	L1	ON	19
5.38		24.85	50.00	25.15	1000.00	9.000	L1	ON	19
16.74		20.81	50.00	29.19	1000.00	9.000	L1	ON	20
17.37	25.92		60.00	34.08	1000.00	9.000	L1	ON	20

Remark: Correct factor=cable loss + LISN factor

L line

Conducted Emission from 150 KHz to 30 MHz

Frequency (MHz)	QuasiPeak (dΒμV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.16		37.26	55.52	18.26	1000.00	9.000	N	ON	21
0.18	57.88		64.42	6.54	1000.00	9.000	N	ON	21
0.37	35.57		58.54	22.97	1000.00	9.000	N	ON	21
0.68		26.03	46.00	19.97	1000.00	9.000	N	ON	20
2.08		19.97	46.00	26.03	1000.00	9.000	N	ON	20
2.12	28.79		56.00	27.21	1000.00	9.000	N	ON	20
2.99		26.01	46.00	19.99	1000.00	9.000	N	ON	19
4.98	34.71		56.00	21.30	1000.00	9.000	N	ON	19
5.38		23.69	50.00	26.31	1000.00	9.000	N	ON	19
5.42	34.00		60.00	26.00	1000.00	9.000	N	ON	19
16.76		20.33	50.00	29.67	1000.00	9.000	N	ON	20
17.07	26.28		60.00	33.72	1000.00	9.000	N	ON	20

Remark: Correct factor=cable loss + LISN factor

N line Conducted Emission from 150 KHz to 30 MHz

4 Main Test Instruments

Name of Equipment	Manufacturer	Type/Model	Serial Number	Calibration Date	Expiration Time				
Communication Simulation Base Station	R&S	CMW500	113645	2021-05-15	2022-05-14				
Radiated Emission									
EMI Test Receiver	R&S	ESR	102389	2021-06-04	2022-06-03				
Signal Analyzer	R&S	FSV40	100815	2021-05-15	2022-05-14				
TRILOG Broadband Antenna	SCHWARZBECK	VULB 9163	1023	2020-05-05	2023-05-04				
Horn Antenna	Schwarzbeck	BBHA 9120D	430	2019-12-16	2022-12-15				
Horn Antenna	ETS-Lindgren	3160-09	00102643	2020-08-11	2023-08-10				
Horn Antenna	STEATITE	QSH-SL-26-40- K-15	16779	2018-06-20	2023-06-19				
Software	R&S	EMC32	9.26.01	1	1				
Conducted Emission									
Artificial main network	R&S	ENV216	102191	2020-12-13	2022-12-12				
EMI Test Receiver	R&S	ESR 101667		2021-05-15	2022-05-14				
Software	R&S	EMC32	10.35.10	1	/				

******END OF REPORT ******

Report No.: R2202A0171-E1V1

ANNEX A: The EUT Appearance

The EUT Appearance are submitted separately.

EMC Test Report No.: R2202A0171-E1V1

ANNEX B: Test Setup Photos

The Test Setup Photos are submitted separately.