Tonal

REVISED TEST REPORT TO 110285-50

Apollo Board Model: 500-0806

> Trainer Model: T2

Tested to The Following Standards:

FCC Part 15 Subpart E Section(s)

15.207 & 15.407 (NII 5470 – 5725 MHz)

Report No.: 110285-50A

Date of issue: December 20, 2024

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 159 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Revision History	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Standard / Specification: FCC Part 15 Subpart E - 15.407 (NII 5470 - 5725)	5
Modifications During Testing	5
Conditions During Testing	5
Equipment Under Test (EUT)	6
General Product Information:	7
FCC Part 15 Subpart E	10
15.215 Occupied Bandwidth	10
15.407(a) Output Power	39
15.407(a) Power Spectral Density	68
15.407(b) Radiated Emissions & Band Edge	97
15.207 AC Conducted Emissions	148
APPENDIX A: Modifications Made During Testing	157
Supplemental Information	158
Measurement Uncertainty	158
Emissions Test Details	158

Administrative Information

Test Report Information

REPORT PREPARED FOR:

Tonal 69 Converse, Suite 200 San Francisco, CA 94103 **REPORT PREPARED BY:**

Lisa Bevington CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Representative: Lars Gilstrom Customer Reference Number: PO3196

DATE OF EQUIPMENT RECEIPT: DATE(S) OF TESTING: Project Number: 110285

October 2, 2024 October 7, 8, 9, 17, 24, and 25, 2024 And November 1 and 6, 2024

Revision History

Original: Testing of Apollo Board, Model: 500-0806 & Trainer, Model: T2, to FCC Part 15 Subpart E Sections 15.207 & 15.407 (NII 5470 - 5725 MHz). **Revision A:** 15.407(a), updated note on page 41.

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve -7 Be

Steve Behm Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable, and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 1120 Fulton Place Fremont, CA 94539

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.20

Site Registration & Accreditation Information

Location	*NIST CB #	FCC	Canada	Japan
Canyon Park, Bothell, WA	US0103	US1024	3082C	A-0136
Brea, CA	US0103	US1024	3082D	A-0136
Fremont, CA	US0103	US1024	3082B	A-0136
Mariposa, CA	US0103	US1024	3082A	A-0136

*CKC's list of NIST designated countries can be found at: <u>https://standards.gov/cabs/designations.html</u>

Summary of Results

Standard / Specification: FCC Part 15 Subpart E - 15.407 (NII 5470 - 5725)

Test Procedure	Description	Modifications	Results
15.215	Occupied Bandwidth	NA	Pass
15.407(a)	Output Power	NA	Pass
15.407(a)	Power Spectral Density	NA	Pass
15.407(b)	Radiated Emissions & Band Edge	Mod. #1	Pass
15.407(g)	Frequency Stability	NA	NA1
15.207	AC Conducted Emissions	Mod. #1	Pass

NA = Not Applicable

NA1 = In accordance with KDB 789033, this test is not required.

ISO/IEC 17025 Decision Rule

The equipment sample utilized for testing is selected by the manufacturer. The declaration of pass or fail herein is a binary statement for simple acceptance rule (ILAC G8) based upon assessment to the specification(s) listed above, without consideration of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

Modification #1: Added a ferrite (Wurth: 742 712 21) on lower resistor wire. Green Resistor.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

Worst case tested: 802.11a 18Mbit/s 802.11n HT20 MSC2 802,11n HT40 MSC0 802.11ac VHT20 MSC2 802.11ac VHT40 MSC0 802.11ac VHT40 MSC1

Equipment Under Test (EUT)

During testing numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration A				
Equipment Under Test (* = EUT):				
Device Name	Manufacturer	Model #	S/N	
Apollo Board	Tonal	500-0806	080600030001263	
Support Devices:				
Device Name	Manufacturer	Model #	S/N	

Device Name	Manufacturer	Model #	S/N
MCB Board	Tonal Systems	500-0131	500-
			0131_rev003_00001286_2
			0240909_17
Laptop	Dell	XPS	22E00911
AC/DC Adapter for Laptop	Dell	DA130PM130	CN-06TTY6-48661-4CO-
			27M7-A00

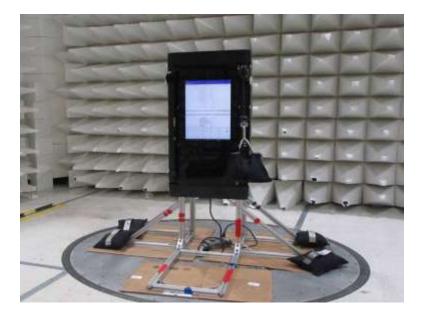
Configuration 1

Equipment Under Test (* = EUT):

Device Name	Manufacturer	Model #	S/N
Trainer	Tonal	T2	4000055

Support Devices:

Device Name	Manufacturer	Model #	S/N
Laptop	Dell	XPS	22E00911
AC/DC Adapter for Laptop	Dell	DA130PM130	CN-06TTY6-48661-4CO-
			27M7-A00

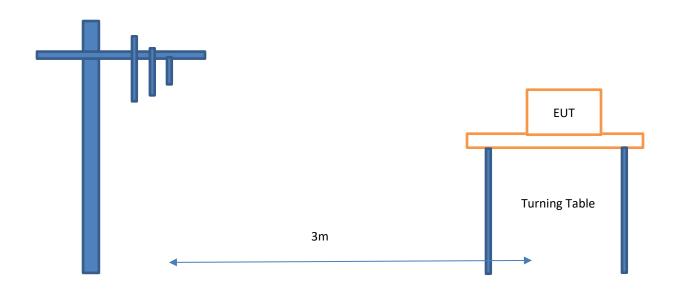

General Product Information:

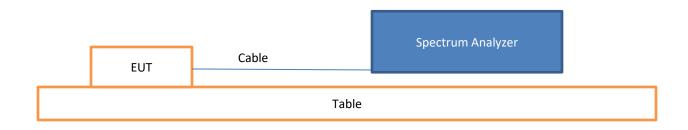
Description of EUT
Exercise Trainer

Product Information	Manufacturer-Provided Details		
Operating Frequencies Tested:	5500MHz-5720MHz		
Equipment Type:	Stand-Alone Equipment		
Type of Wideband System:	802.11		
Maximum Duty Cycle:	100%		
	802.11a (BPSK, QPSK, 16QAM, 64QAM)		
	802.11n HT20 (BPSK, QPSK, 16QAM, 64QAM)		
Modulation Type(s):	802.11n HT40 (BPSK, QPSK, 16QAM, 64QAM)		
wodulation rype(s).	802.11ac VHT20 (BPSK, QPSK, 16QAM,64QAM, 256QAM)		
	802.11ac VHT40 (BPSK, QPSK, 16QAM,64QAM, 256QAM)		
	802.11ac VHT80 (BPSK, QPSK, 16QAM,64QAM, 256QAM)		
	2		
Number of TX Chains:	Note: The manufacturer declared MIMO is not enabled, completely		
	uncorrelated transmission.		
Beamforming Type:	NA		
Antenna Type(s) and Gain:	External/4.66dBi		
Antenna Connection Type:	External Connector		
Nominal Input Voltage:	12VDC		
Firmware / Software Version(s):	QRCT (Qualcomm Radio Control Toolkit) Version 4.1		
Firmulara / Coftulara Decarintian	Using C-Prompt and QRCT application to control all modulation types and		
Firmware / Software Description:	frequencies to continuously transmit or receive as intended		
Firmware / Software Setting(s):	NA		
Tune-up or Adjustment(s):	NA		
	Indoor Access Point		
	Outdoor Access Point		
Declared Operational	🛛 Indoor Client		
Configuration:	Outdoor Client		
	Outdoor Fixed Equipment		
The validity of	of results is dependent on the stated product details,		
the accuracy of which the manufacturer assumes full responsibility.			
the decidely of which the manufacturer assumes full responsibility.			

EUT and Accessory Photo(s)

Support Equipment Photo(s)




Block Diagram of Test Setup(s)

Config#	Setup Description of Block Diagram
1 & A	Radiated Measurement: The antenna is set up at 3meter distance from the EUT according to ANSI C63.10 2020. The EUT is set up and operated as intended.
	Conducted Measurement: The EUT is placed non-conducted table. It is operated as intended. It is connected straight to a Spectrum Analyzer.

Radiated Method Setup

Conducted Method Setup

FCC Part 15 Subpart E

15.215 Occupied Bandwidth

Test Setup/Conditions				
Test Location:	Fremont Lab Bench	Test Engineer:	Hieu Song Nguyenpham	
Test Method:	ANSI C63.10 (2020), KDB 789033	Test Date(s):	10/07-09/2024 and 11/08/2024	
Configuration:	A			
Test Setup: The EUT is placed non-conducted table. It is operated as intended. It is connected straight				
to a Spectrum Analyzer.				

Environmental Conditions						
Temperature (ºC)	Temperature (°C) 21.2-23.7 Relative Humidity (%): 39-45					

Test Equipment							
Asset# Description Manufacturer Model Cal Date Cal Du							
03013	Cable	Astrolab	32022-2-2909K-36TC	1/9/2024	1/9/2026		
P07365	Attenuator	Weinschel	54A-10	5/26/2023	5/26/2025		
03471	Spectrum Analyzer	Agilent	E4440A	2/23/2024	2/23/2026		

26dB Occupied Bandwidth

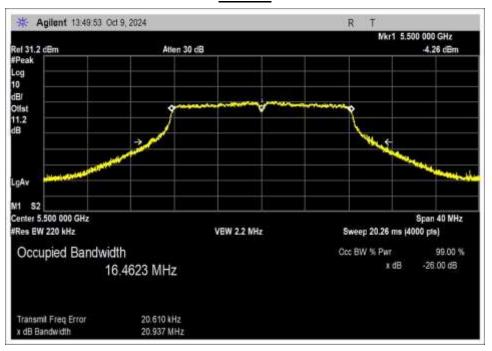
	Test Data Summary					
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results	
5500	0	802.11a	20937			
5580	0	802.11a	20798			
5720	0	802.11a	20979			
5500	0	802.11n HT20	21576			
5580	0	802.11n HT20	21614			
5720	0	802.11n HT20	21848		N/A	
5500	0	802.11ac 20MHz	21595			
5580	0	802.11ac 20MHz	21224			
5720	0	802.11ac 20MHz	21771			
5510	0	802.11n HT40	41573	None		
5550	0	802.11n HT40	41449			
5710	0	802.11n HT40	41589			
5510	0	802.11ac 40MHz	41617			
5550	0	802.11ac 40MHz	41482	-		
5710	0	802.11ac 40MHz	41829			
5530	0	802.11ac 80MHz	83983			
5610	0	802.11ac 80MHz	84206			
5690	0	802.11ac 80MHz	83824			

	Test Data Summary					
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results	
5500	1	802.11a	20494			
5580	1	802.11a	20289			
5720	1	802.11a	21162			
5500	1	802.11n HT20	21230			
5580	1	802.11n HT20	20916			
5720	1	802.11n HT20	22282		N/A	
5500	1	802.11ac 20MHz	21751			
5580	1	802.11ac 20MHz	20822			
5720	1	802.11ac 20MHz	21931			
5510	1	802.11n HT40	41277	None		
5550	1	802.11n HT40	41863			
5710	1	802.11n HT40	41914			
5510	1	802.11ac 40MHz	41500			
5550	1	802.11ac 40MHz	40802			
5710	1	802.11ac 40MHz	41838			
5530	1	802.11ac 80MHz	83788			
5610	1	802.11ac 80MHz	83000			
5690	1	802.11ac 80MHz	85319			

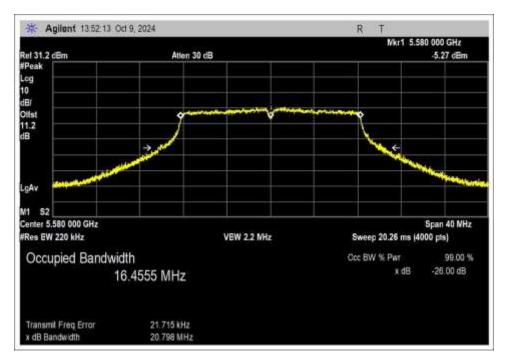
	Test Data Summary					
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results	
5720	0	802.11a	3200	≥500	Pass	
5720	0	802.11n HT20	3819	≥500	Pass	
5720	0	802.11ac 20MHz	3838	≥500	Pass	
5710	0	802.11n HT40	3011	≥500	Pass	
5710	0	802.11ac 40MHz	3011	≥500	Pass	
5690	0	802.11ac 80MHz	3021	≥500	Pass	

	Test Data Summary					
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results	
5720	1	802.11a	3231	≥500	Pass	
5720	1	802.11n HT20	3831	≥500	Pass	
5720	1	802.11ac 20MHz	3850	≥500	Pass	
5710	1	802.11n HT40	3021	≥500	Pass	
5710	1	802.11ac 40MHz	3001	≥500	Pass	
5690	1	802.11ac 80MHz	2820	≥500	Pass	

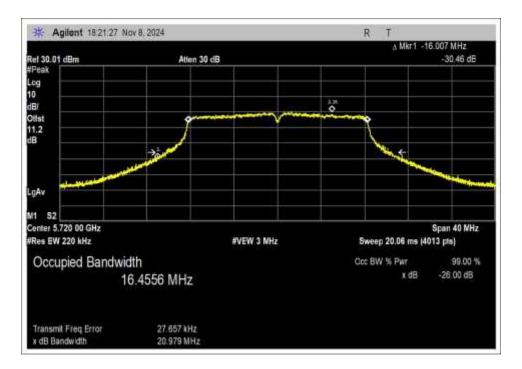
99% Occupied Bandwidth

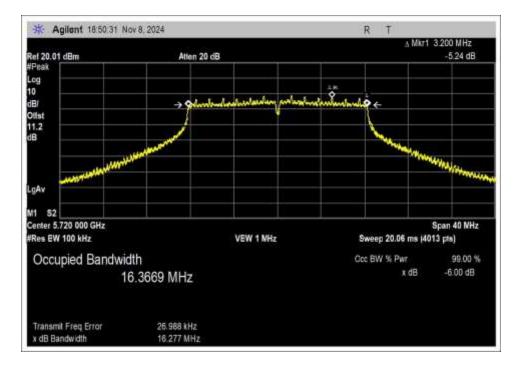

Test Data Summary					
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results
5500	0	802.11a	16462.3		
5580	0	802.11a	16455.5		
5720	0	802.11a	16455.6		
5500	0	802.11n HT20	17674.6		
5580	0	802.11n HT20	17686.7		
5720	0	802.11n HT20	17677.2		N/A
5500	0	802.11ac 20MHz	17681.1		
5580	0	802.11ac 20MHz	17667.1		
5720	0	802.11ac 20MHz	17677.8		
5510	0	802.11n HT40	36187.9	None	
5550	0	802.11n HT40	36201.9		
5710	0	802.11n HT40	362437		
5510	0	802.11ac 40MHz	36205.7		
5550	0	802.11ac 40MHz	36180.7	-	
5710	0	802.11ac 40MHz	36246.1		
5530	0	802.11ac 80MHz	75630.7		
5610	0	802.11ac 80MHz	75606.2		
5690	0	802.11ac 80MHz	75639.6		

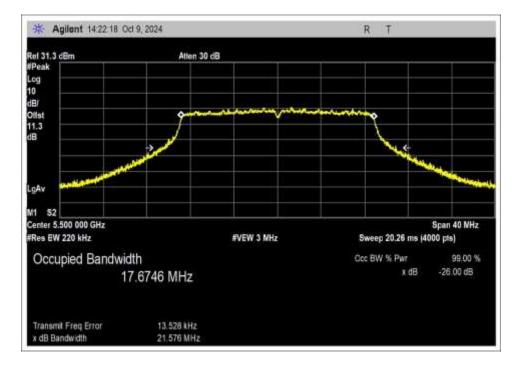
	Test Data Summary						
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results		
5500	1	802.11a	16447.8	-			
5580	1	802.11a	16444.3				
5720	1	802.11a	16495.0				
5500	1	802.11n HT20	17676.2		N/A		
5580	1	802.11n HT20	17694.1				
5720	1	802.11n HT20	17688.9				
5500	1	802.11ac 20MHz	16678.4				
5580	1	802.11ac 20MHz	17667.5				
5720	1	802.11ac 20MHz	17687.2				
5510	1	802.11n HT40	36196.6	None			
5550	1	802.11n HT40	36207.0				
5710	1	802.11n HT40	36247.7				
5510	1	802.11ac 40MHz	36199.9				
5550	1	802.11ac 40MHz	36180.7	-			
5710	1	802.11ac 40MHz	36233.0				
5530	1	802.11ac 80MHz	75676.0				
5610	1	802.11ac 80MHz	75654.8				
5690	1	802.11ac 80MHz	75656.3				



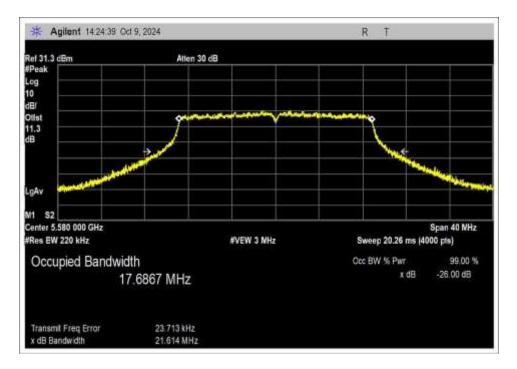
Plot(s)

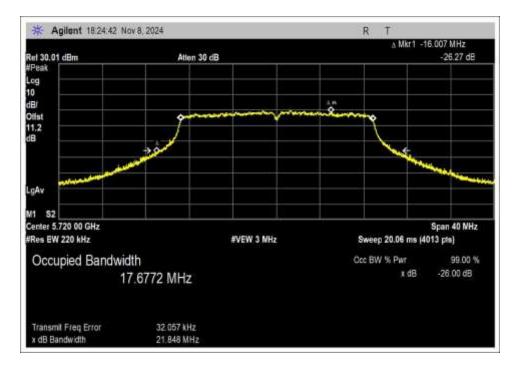


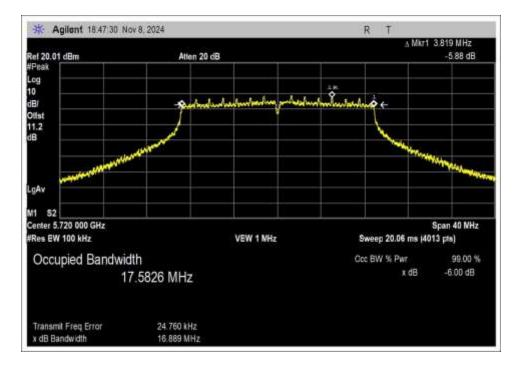

Low Channel

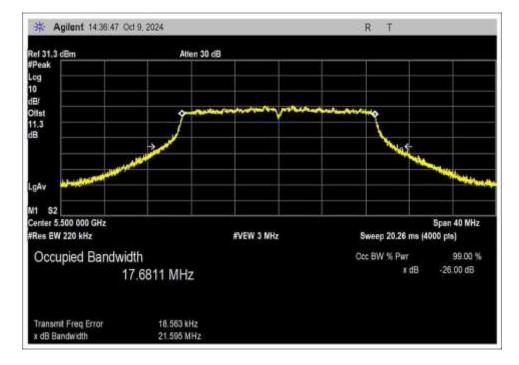


High Channel

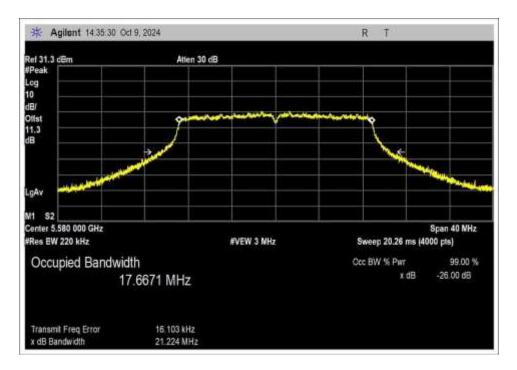


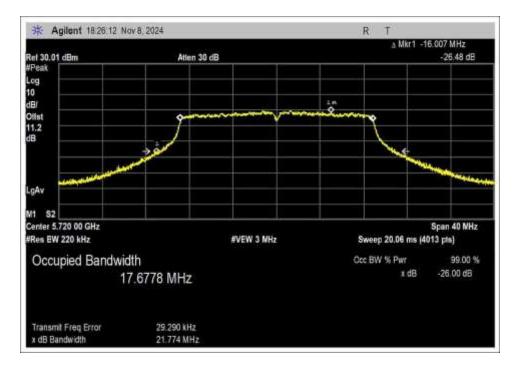

802.11n HT20

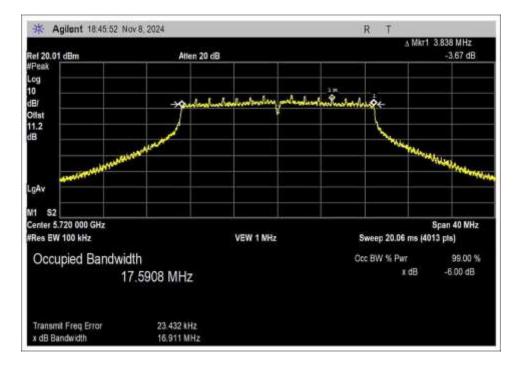

Low Channel

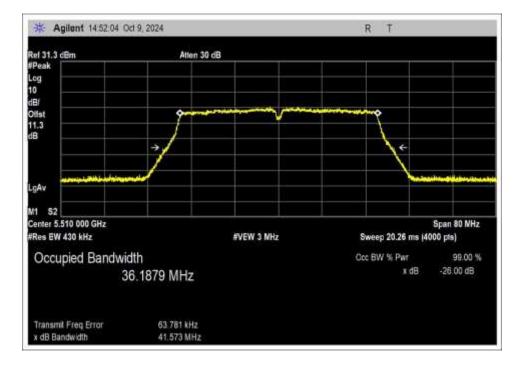


High Channel

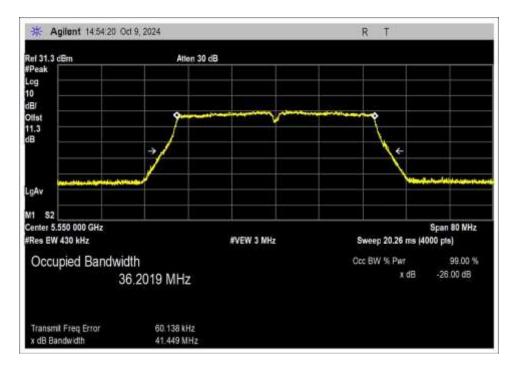


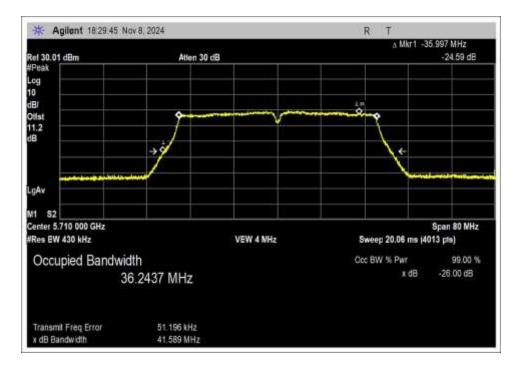

<u>802.11ac 20MHz</u>

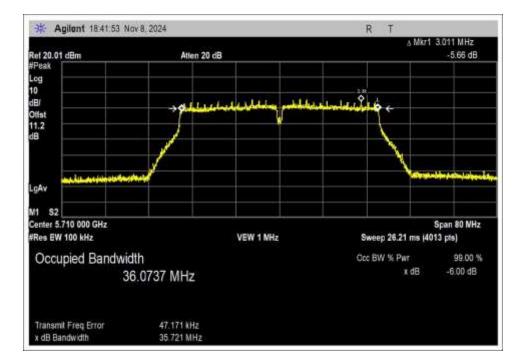

Low Channel

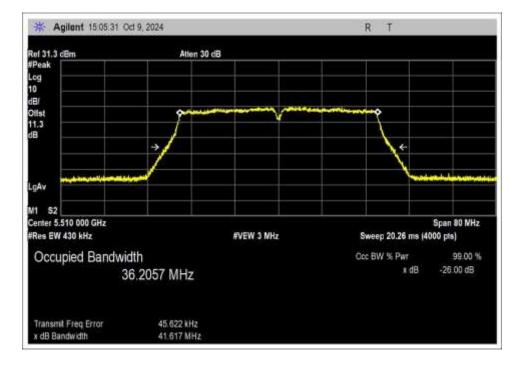


High Channel

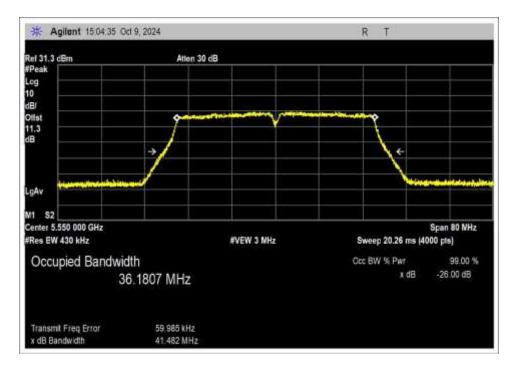


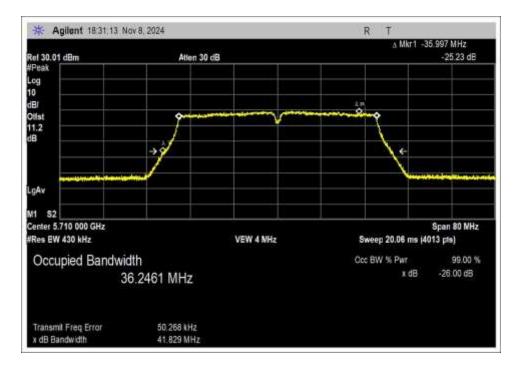

802.11 n HT40

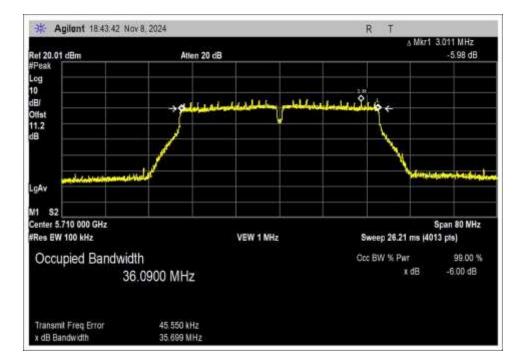

Low Channel

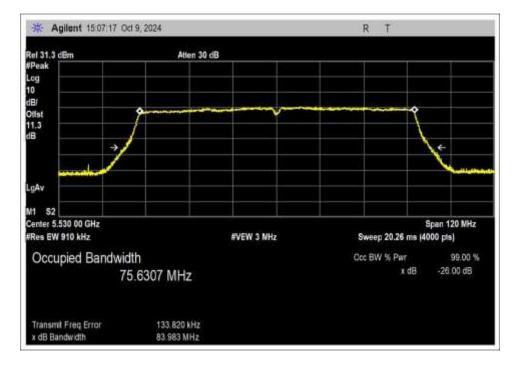


High Channel

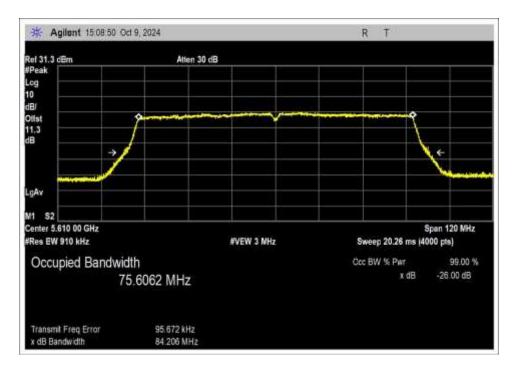


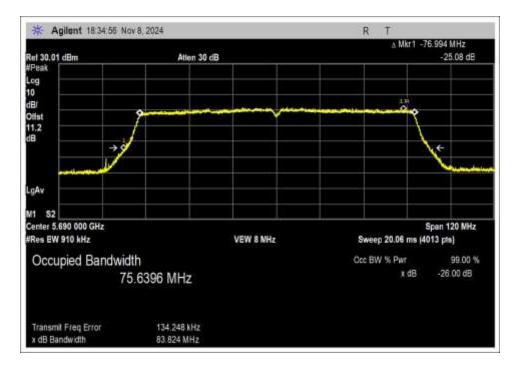

802.11ac 40MHz

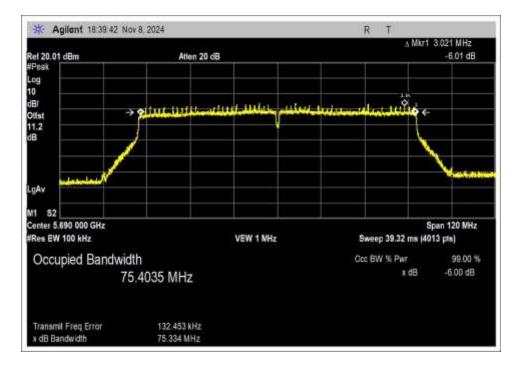

Low Channel

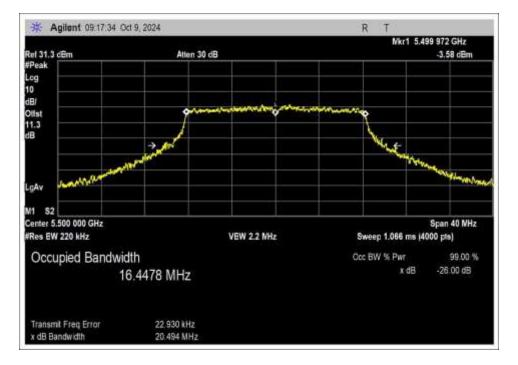


High Channel

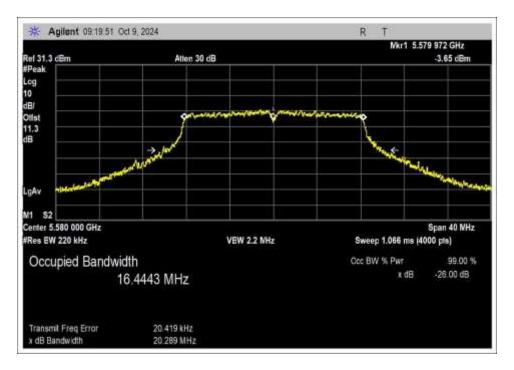


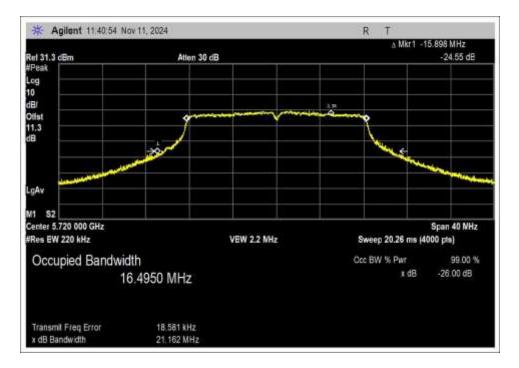

802.11ac 80MHz

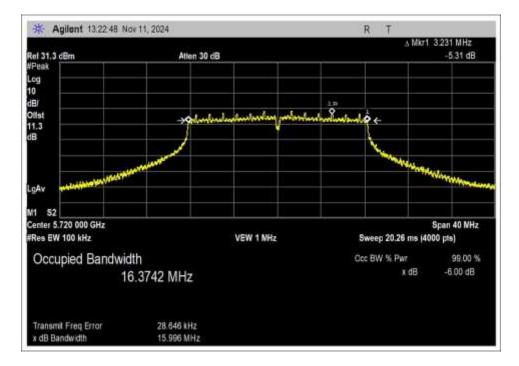

Low Channel

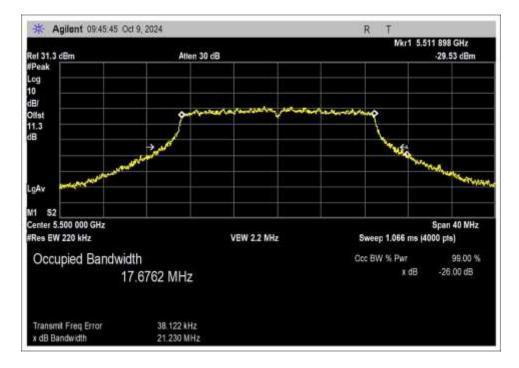


High Channel

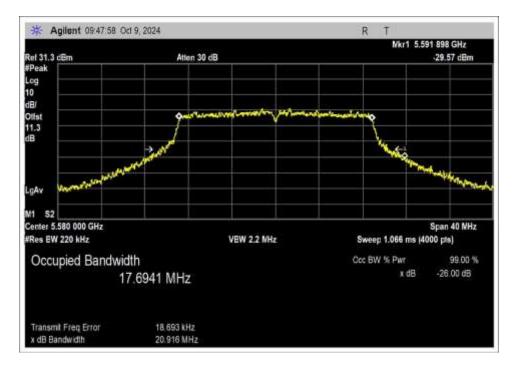


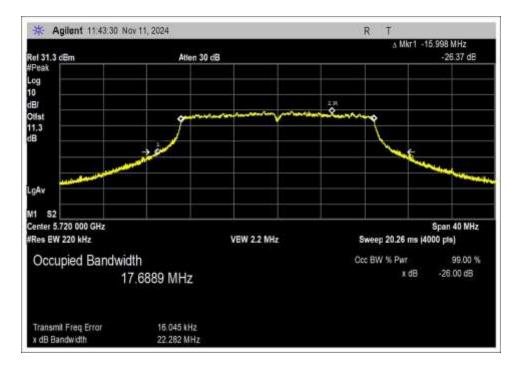

<u>Chain 1</u> 802.11a


Low Channel

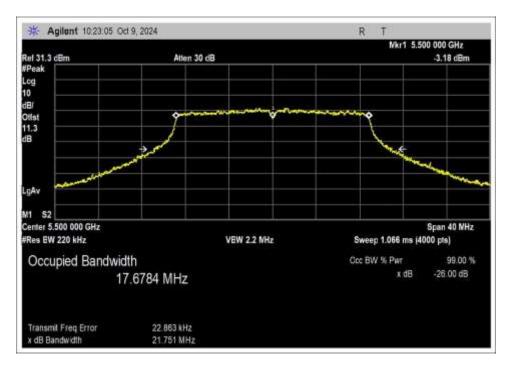


High Channel

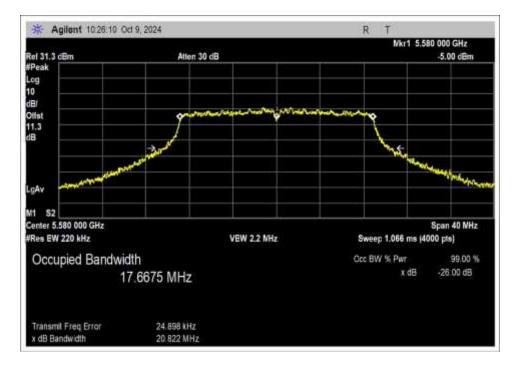


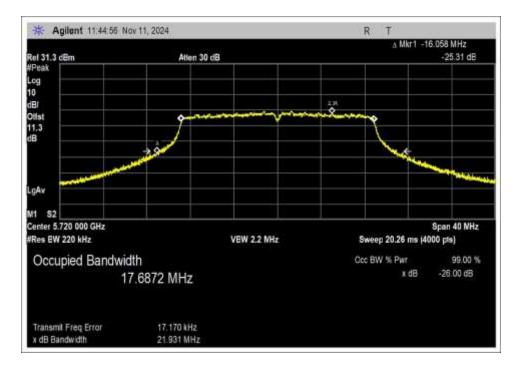

802.11n HT20


Low Channel

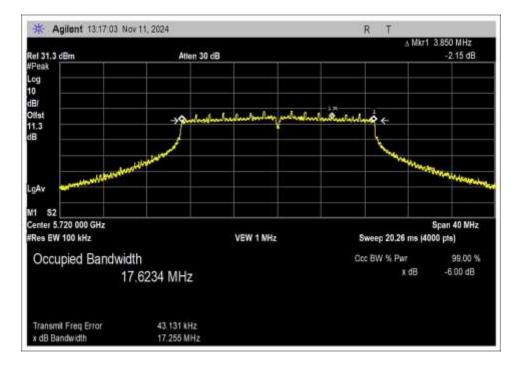


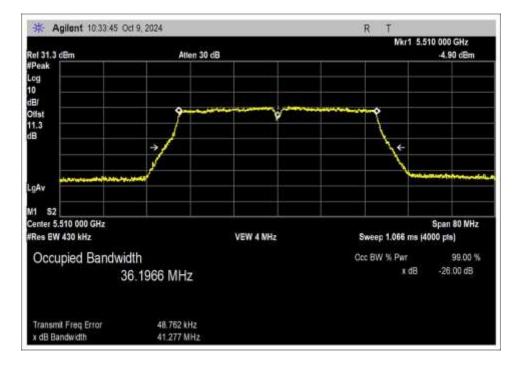
High Channel

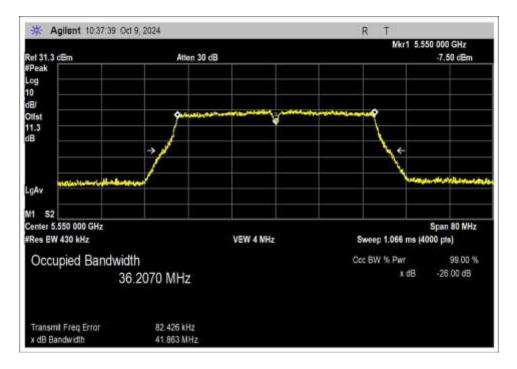


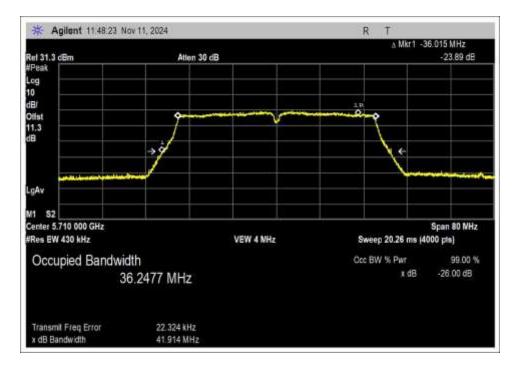


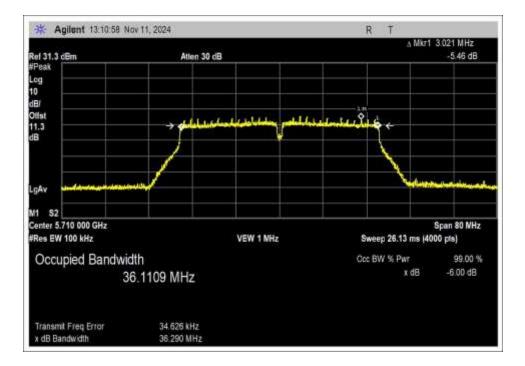
802.11ac 20MHz

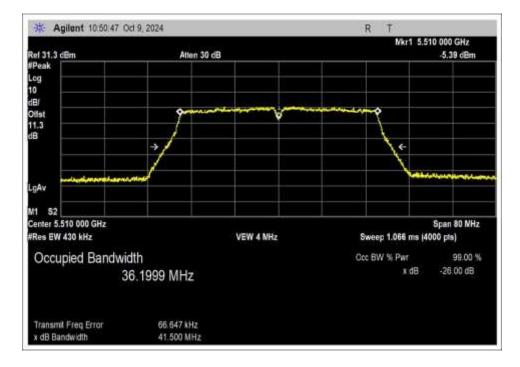

Low Channel

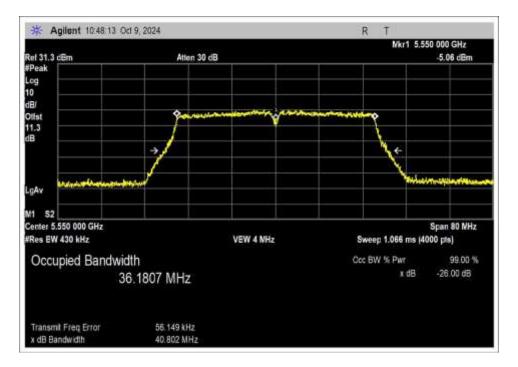

High Channel

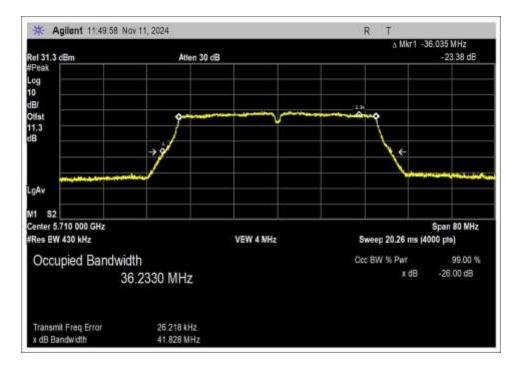

Addition 6dB Occupied Bandwidth on High Channel overlapping UNII 3I

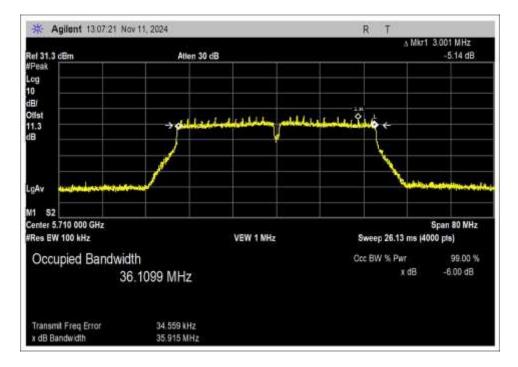

802.11 n HT40

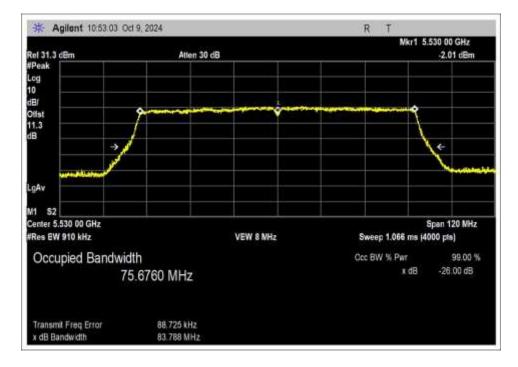

Low Channel


High Channel

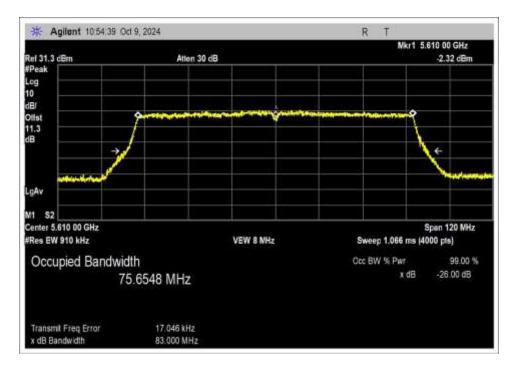

Addition 6dB Occupied Bandwidth on High Channel overlapping UNII 3

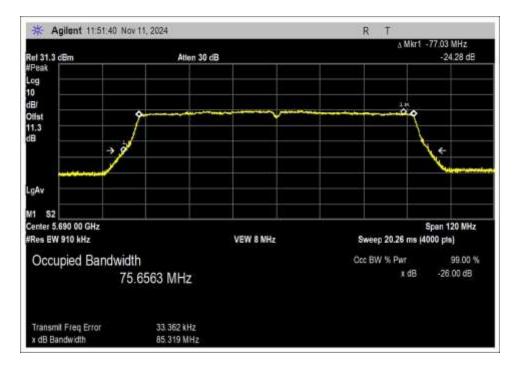

802.11ac 40MHz

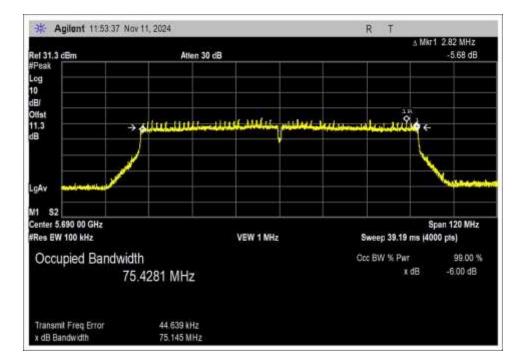

Low Channel



High Channel




802.11ac 80MHz


Low Channel

High Channel

Addition 6dB Occupied Bandwidth on High Channel overlapping UNII 3

Test Setup Photo(s)

Test Setup

Test Setup, Close View

15.407(a) Output Power

Test Setup/Conditions						
Test Location:	Fremont Lab Bench	Test Engineer:	Hieu Song Nguyenpham			
Test Method:	ANSI C63.10 (2020), KDB 789033	Test Date(s):	10/07-09/2024 and 11/08/2024			
Configuration:	Α					
Test Setup:	The EUT is placed non-conducted	The EUT is placed non-conducted table. It is operated as intended. It is connected straight				
	to a Spectrum Analyzer.					

Environmental Conditions					
Temperature (ºC)	21.2-23.7	Relative Humidity (%):	39-45		

Test Equipment							
Asset# Description Manufacturer Model Cal Date Cal Du							
03013	Cable	Astrolab	32022-2-2909K-36TC	1/9/2024	1/9/2026		
P07365	Attenuator	Weinschel	54A-10	5/26/2023	5/26/2025		
03471	Spectrum Analyzer	Agilent	E4440A	2/23/2024	2/23/2026		

Test Data Summary - Voltage Variations							
Frequency (MHz) Modulation / Ant Port V _{Minimum} (dBm) V _{Nominal} (dBm) V _{Maximum} (dBm) Max D from V							
5500	802.11a/1	12.02	12.0	12.01	0.02		
5580	802.11a/1	11.87	11.9	11.93	0.03		
5720	802.11a/1	8.98	9.00	9.00	0.02		

Test performed using operational mode with the highest output power, representing worst case.

Parameter Definitions:

Measurements performed at input voltage Vnominal \pm 15%.

Parameter	Value
V _{Nominal} :	12VDC
V _{Minimum} :	10.2VDC
V _{Maximum} :	13.8VDC

	Test Data Summary - RF Conducted Measurement- Chain 0							
Measuremer	Measurement Option: AVGSA-1							
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)		RF Conducted (dBm)		EIRP (dBm)		
		Gain (ubi)	Measured	Limit	Calculated	Limit		
5500	802.11a	External/4.66	11.18	≤24	15.84	≤30	Pass	
5580	802.11a	External/4.66	10.94	≤24	15.6	≤30	Pass	
5720	802.11a	External/4.66	8.1	≤24	12.76	≤30	Pass	
5500	802.11n HT20	External/4.66	11.05	≤24	15.71	≤30	Pass	
5580	802.11n HT20	External/4.66	10.81	≤24	15.47	≤30	Pass	
5720	802.11n HT20	External/4.66	7.85	≤24	12.51	≤30	Pass	
5500	802.11ac 20MHz	External/4.66	11.03	≤24	15.69	≤30	Pass	
5580	802.11ac 20MHz	External/4.66	10.8	≤24	15.46	≤30	Pass	
5720	802.11ac 20MHz	External/4.66	7.88	≤24	12.54	≤30	Pass	
5510	802.11n HT40	External/4.66	10.94	≤24	15.6	≤30	Pass	
5550	802.11n HT40	External/4.66	11.04	≤24	15.7	≤30	Pass	
5710	802.11n HT40	External/4.66	8.54	≤24	13.2	≤30	Pass	
5510	802.11ac 40MHz	External/4.66	10.89	≤24	15.55	≤30	Pass	
5550	802.11ac 40MHz	External/4.66	11.03	≤24	15.69	≤30	Pass	
5710	802.11ac 40MHz	External/4.66	8.56	≤24	13.22	≤30	Pass	
5530	802.11ac 80MHz	External/4.66	11.53	≤24	16.19	≤30	Pass	
5610	802.11ac 80MHz	External/4.66	10.03	≤24	14.69	≤30	Pass	
5690	802.11ac 80MHz	External/4.66	8.69	≤24	13.35	≤30	Pass	

Test Data Summary - RF Conducted Measurement- Chain 1								
Measuremer	Measurement Option: AVGSA-1							
Frequency	Modulation	Ant. Type /	RF Cond (dB		EIR (dBi		Results	
(MHz)		Gain (dBi)	Measured	Limit	Calculated	Limit		
5500	802.11a	External/4.66	11.99	≤24	16.65	≤30	Pass	
5580	802.11a	External/4.66	11.86	≤24	16.52	≤30	Pass	
5720	802.11a	External/4.66	8.96	≤24	13.62	≤30	Pass	
5500	802.11n HT20	External/4.66	11.88	≤24	16.54	≤30	Pass	
5580	802.11n HT20	External/4.66	11.76	≤24	16.42	≤30	Pass	
5720	802.11n HT20	External/4.66	8.79	≤24	13.45	≤30	Pass	
5500	802.11ac 20MHz	External/4.66	11.89	≤24	16.55	≤30	Pass	
5580	802.11ac 20MHz	External/4.66	11.77	≤24	16.43	≤30	Pass	
5720	802.11ac 20MHz	External/4.66	8.77	≤24	13.43	≤30	Pass	
5510	802.11n HT40	External/4.66	11.83	≤24	16.49	≤30	Pass	
5550	802.11n HT40	External/4.66	11.67	≤24	16.33	≤30	Pass	
5710	802.11n HT40	External/4.66	9.31	≤24	13.97	≤30	Pass	
5510	802.11ac 40MHz	External/4.66	11.83	≤24	16.49	≤30	Pass	
5550	802.11ac 40MHz	External/4.66	11.61	≤24	16.27	≤30	Pass	
5710	802.11ac 40MHz	External/4.66	9.38	≤24	14.04	≤30	Pass	
5530	802.11ac 80MHz	External/4.66	11.33	≤24	15.99	≤30	Pass	
5610	802.11ac 80MHz	External/4.66	10.86	≤24	15.52	≤30	Pass	
5690	802.11ac 80MHz	External/4.66	9.73	≤24	14.39	≤30	Pass	

EIRP is calculated as RF conducted power (dBm) + antenna gain (dBi)

If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

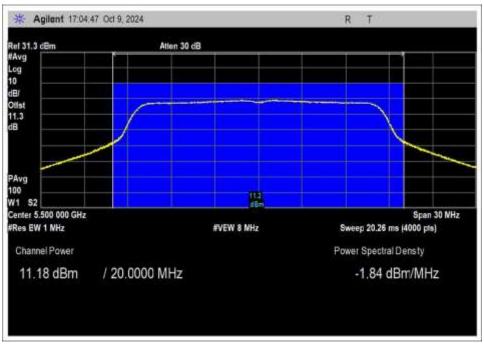
The limit is calculated in accordance with 15.407(a)(2):

limit - The lesser of	(24 dBm - (G - 6))
Limit = The lesser of	$\begin{cases} 24 dBm - (G - 6) \\ 11 dBm + 10 LOG(B) - (G - 6) \end{cases}$

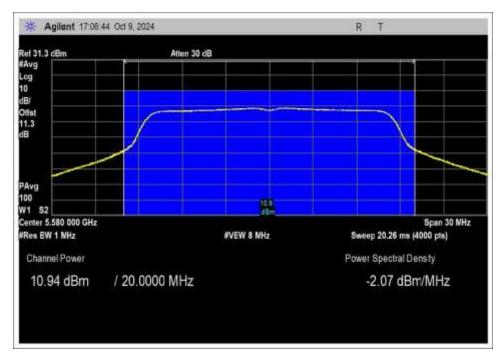
Addition RF out power on High Channel overlapping UNII 3

	Test Data Summary - RF Conducted Measurement- Chain 0								
Measuremer	Measurement Option: AVGSA-1								
Frequency	Modulation	Ant. Type /	RF Conducted (dBm)		EIRP (dBm)		Results		
(MHz)		Gain (dBi)	Measured	Limit	Calculated	Limit			
5720	802.11a	External/4.66	1.57	≤30	6.23	≤36	Pass		
5720	802.11n HT20	External/4.66	1.8	≤30	6.46	≤36	Pass		
5720	802.11ac 20MHz	External/4.66	1.77	≤30	6.43	≤36	Pass		
5710	802.11n HT40	External/4.66	-2.28	≤30	2.38	≤36	Pass		
5710	802.11ac 40MHz	External/4.66	-2.32	≤30	2.34	≤36	Pass		
5690	802.11ac 80MHz	External/4.66	-5.14	≤30	-0.48	≤36	Pass		

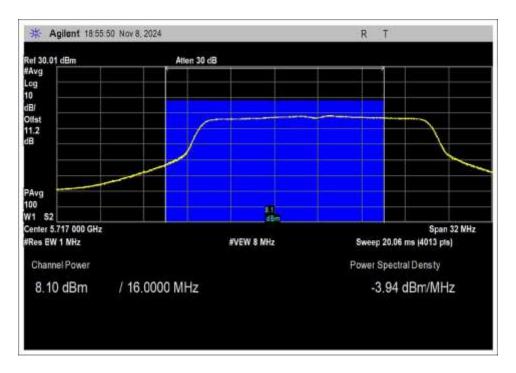
Test Data Summary - RF Conducted Measurement- Chain 1

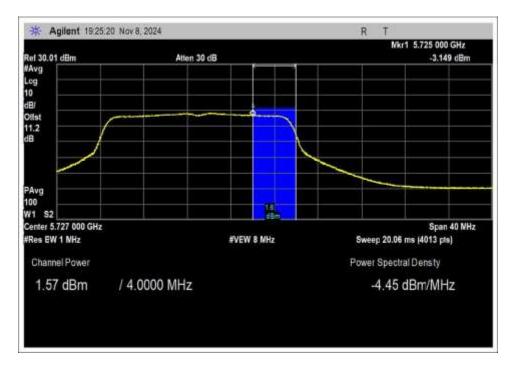

Measurement Option: AVGSA-1

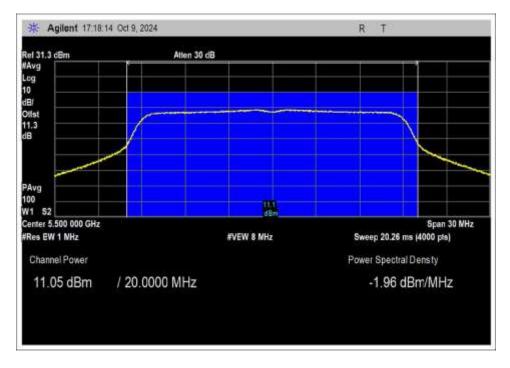
Frequency Modulation		Ant. Type /	RF Conducted (dBm)		EIRP (dBm)		Results
(MHz)		Gain (dBi)	Measured	Limit	Calculated	Limit	
5720	802.11a	External/4.66	2.58	≤30	7.24	≤36	Pass
5720	802.11n HT20	External/4.66	2.63	≤30	7.29	≤36	Pass
5720	802.11ac 20MHz	External/4.66	2.59	≤30	7.25	≤36	Pass
5710	802.11n HT40	External/4.66	-1.42	≤30	3.24	≤36	Pass
5710	802.11ac 40MHz	External/4.66	-1.5	≤30	3.16	≤36	Pass
5690	802.11ac 80MHz	External/4.66	-4.47	≤30	0.19	≤36	Pass

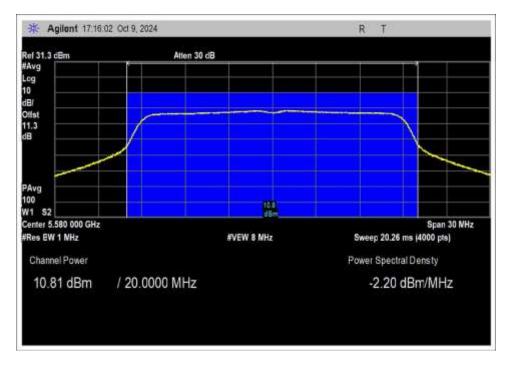


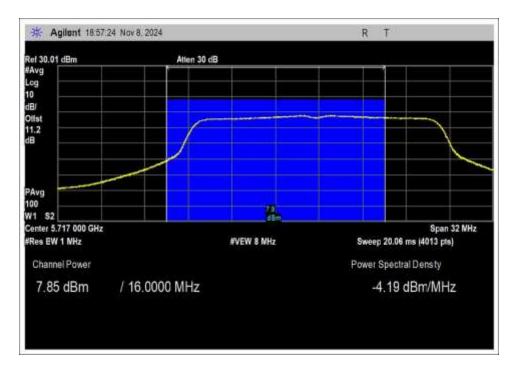
Plot(s) Chain 0

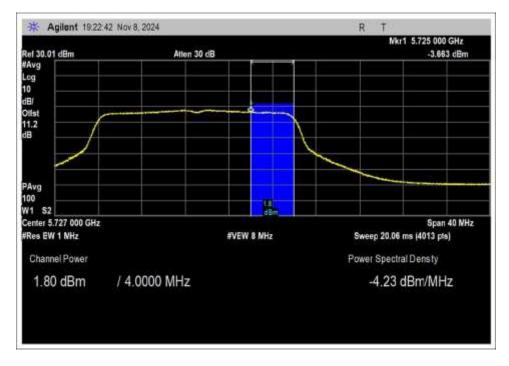


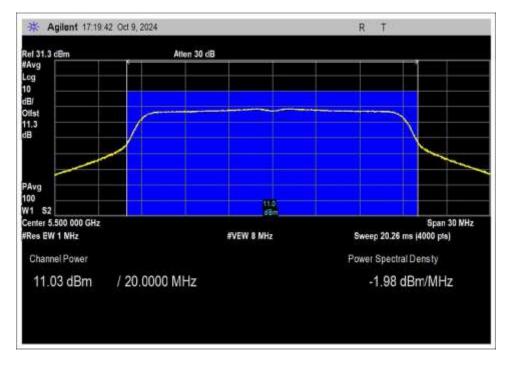

Low Channel

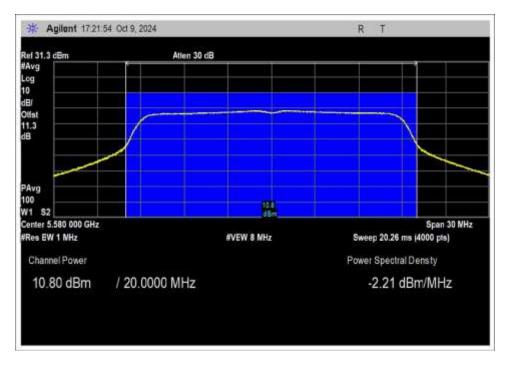

High Channel

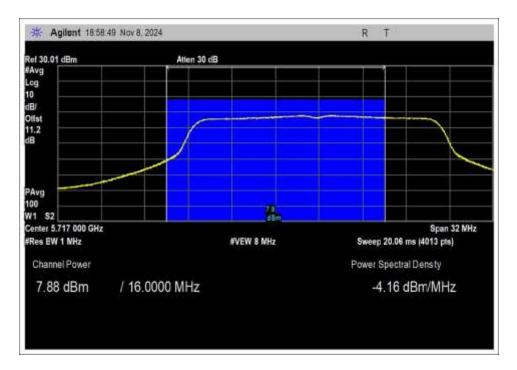

Addition RF out power on High Channel overlapping UNII 3

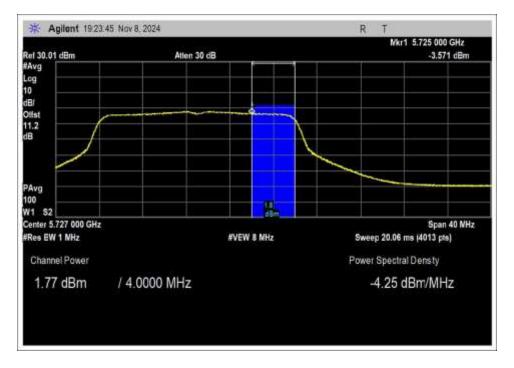

802.11n HT20

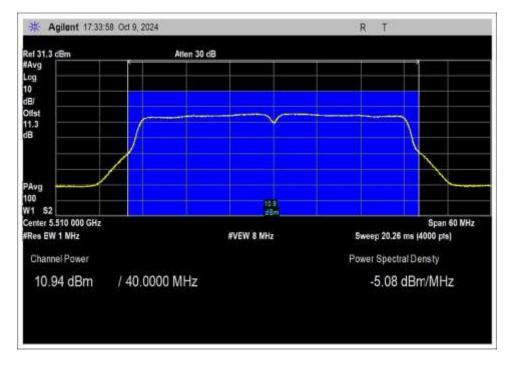

Low Channel

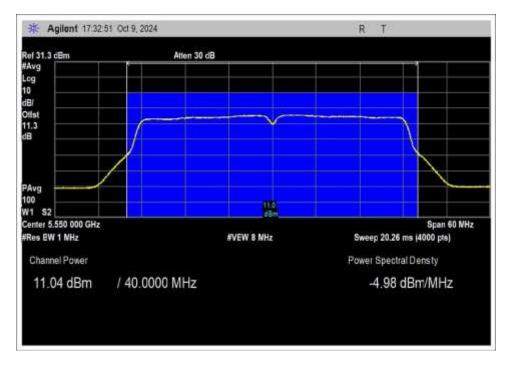

High Channel

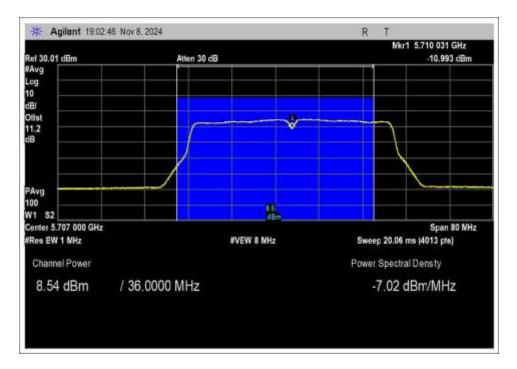

Addition RF out power on High Channel overlapping UNII 3

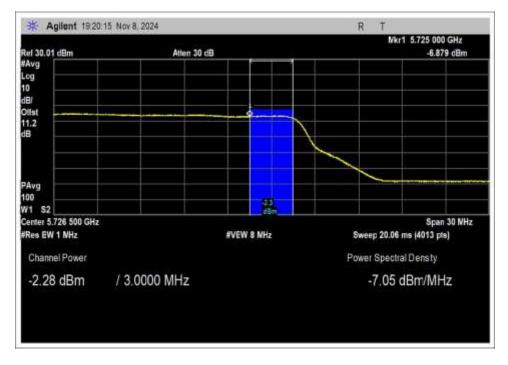

802.11ac 20MHz

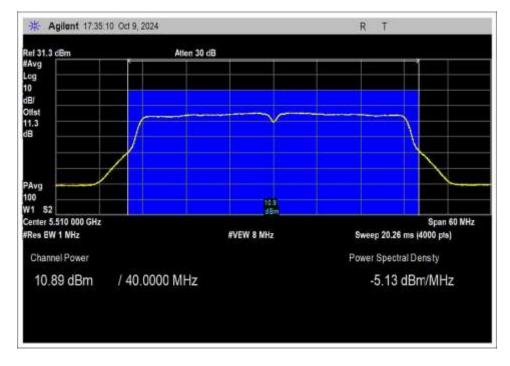

Low Channel

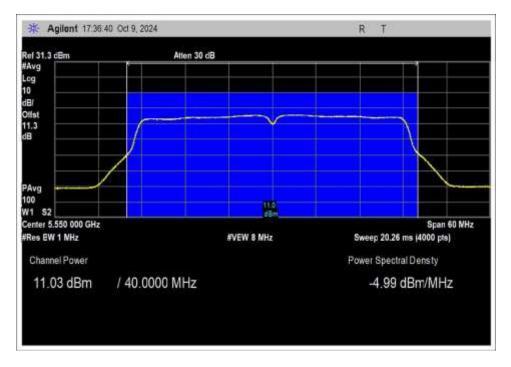

High Channel

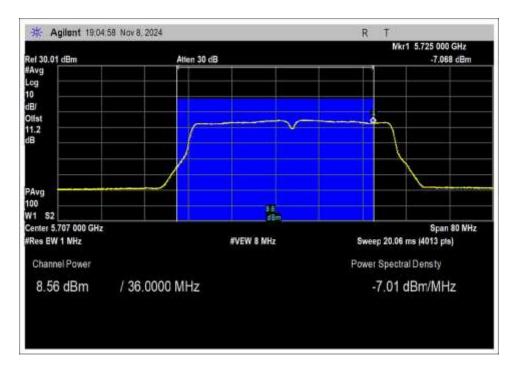

Addition RF out power on High Channel overlapping UNII 3

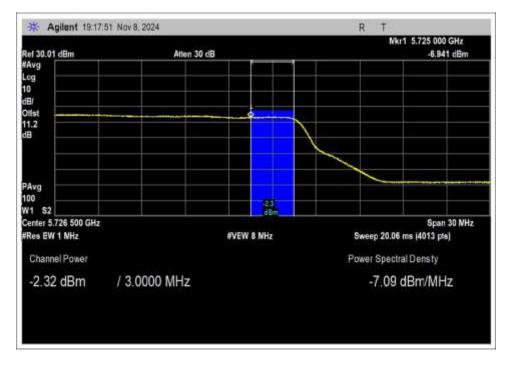

802.11 n HT40

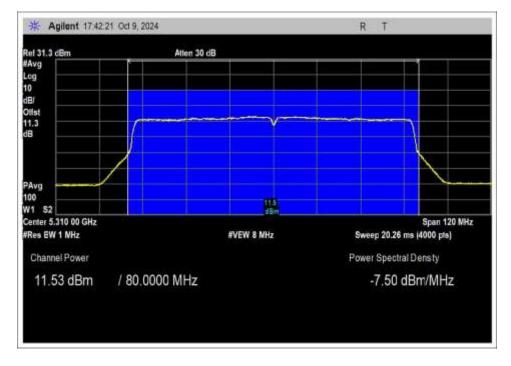

Low Channel

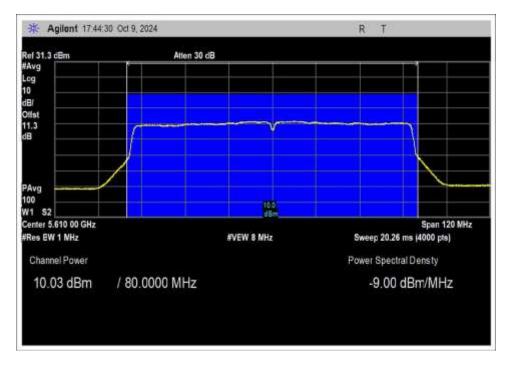

High Channel

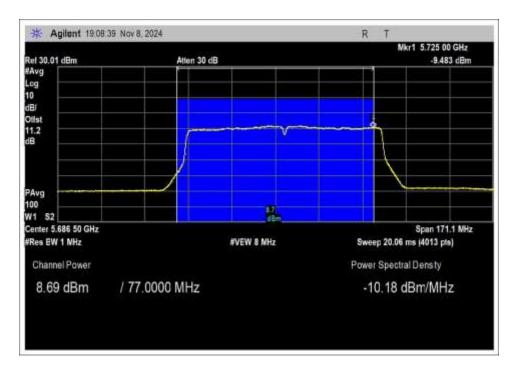

Addition RF out power on High Channel overlapping UNII 3

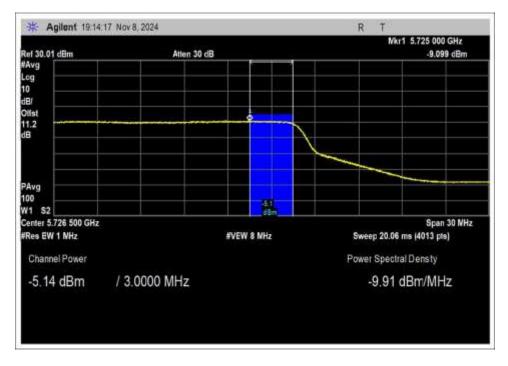

802.11ac 40MHz

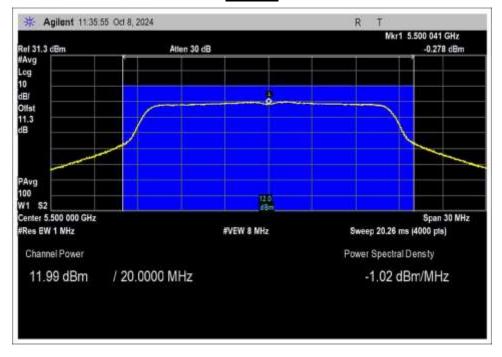

Low Channel

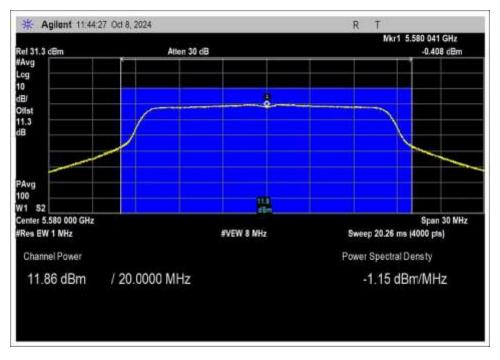

High Channel

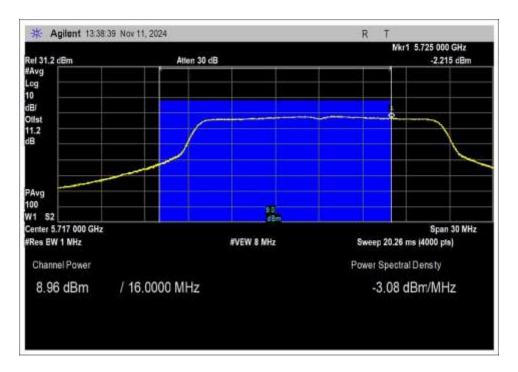

Addition RF out power on High Channel overlapping UNII 3

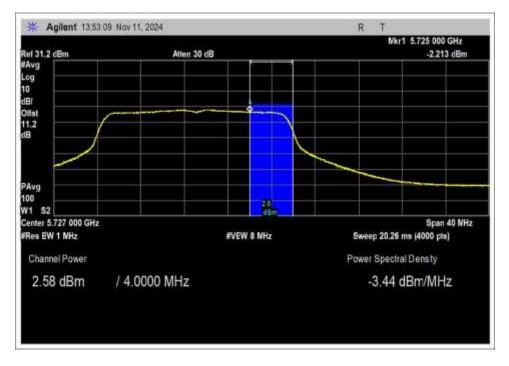

802.11ac 80MHz

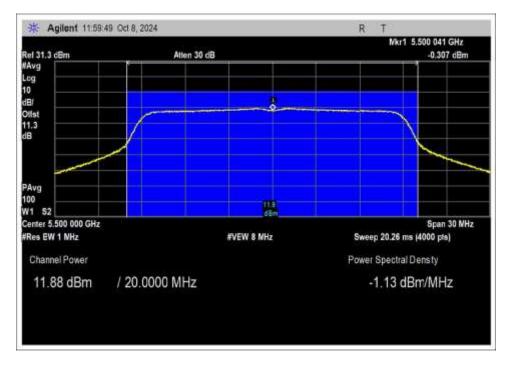

Low Channel

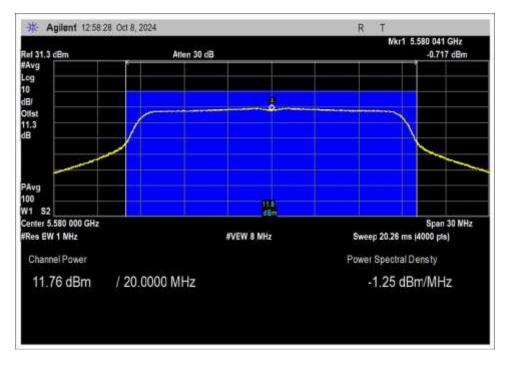

High Channel


Addition RF out power on High Channel overlapping UNII 3

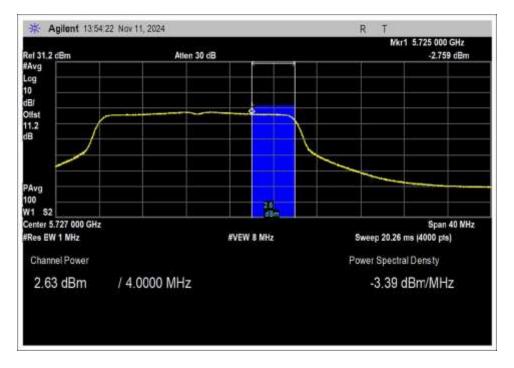

<u>Chain 1</u> 802.11a

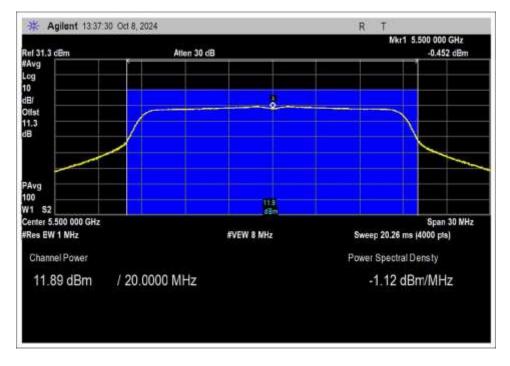

Low Channel

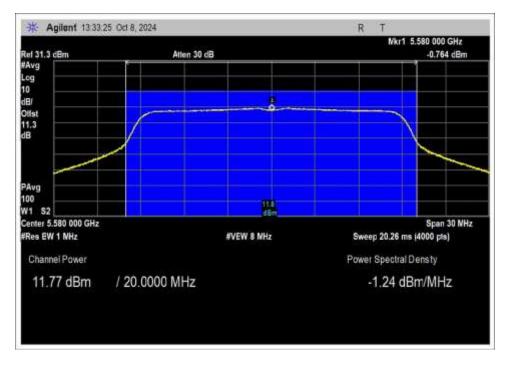

High Channel

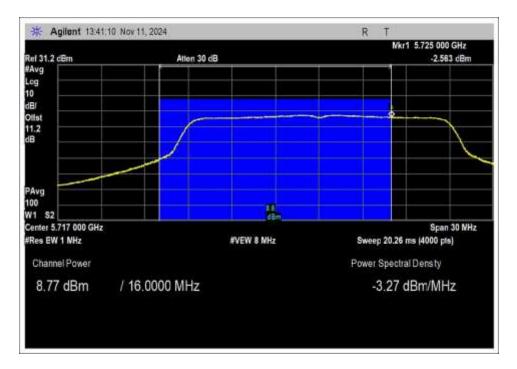

Addition RF out power on High Channel overlapping UNII 3

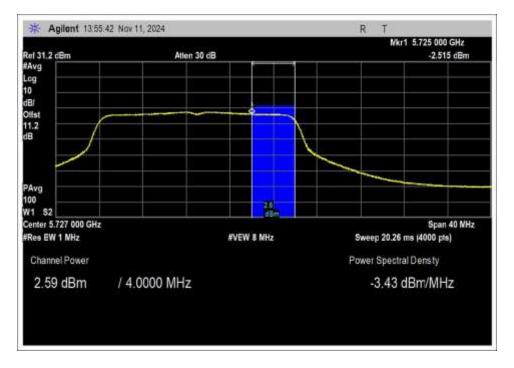
802.11n HT20

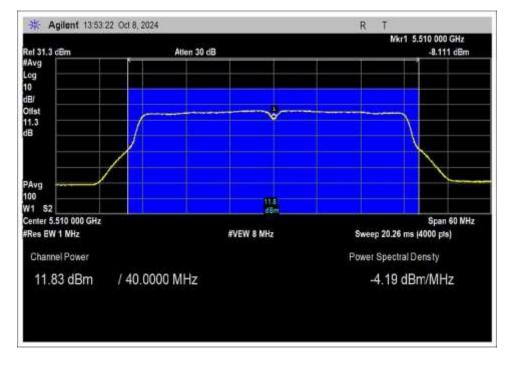

Low Channel

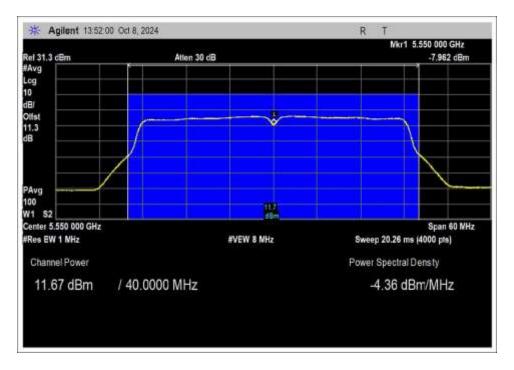

High Channel

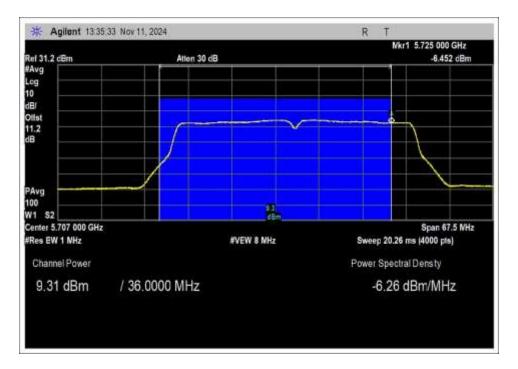

Addition RF out power on High Channel overlapping UNII 3

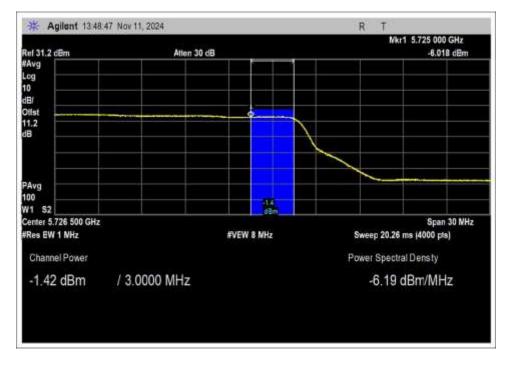

802.11ac 20MHz

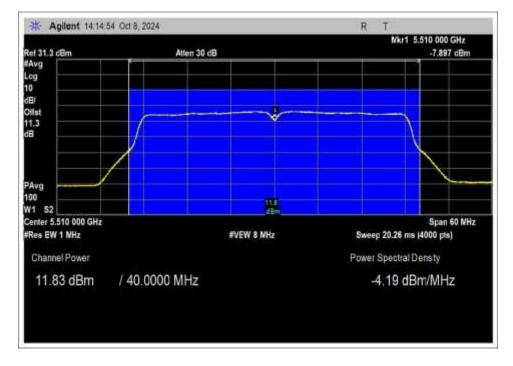

Low Channel

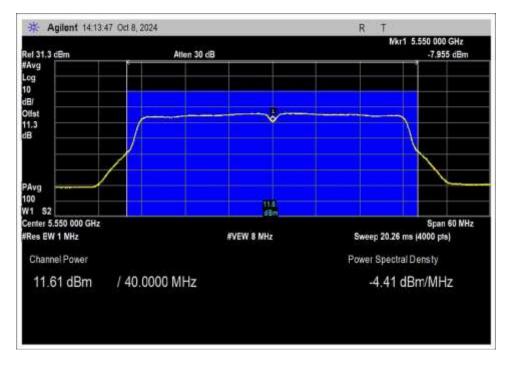

High Channel

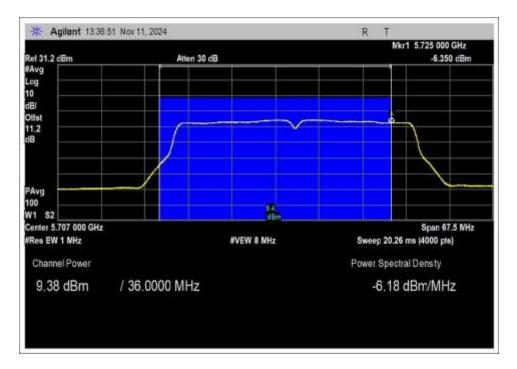

Addition RF out power on High Channel overlapping UNII 3

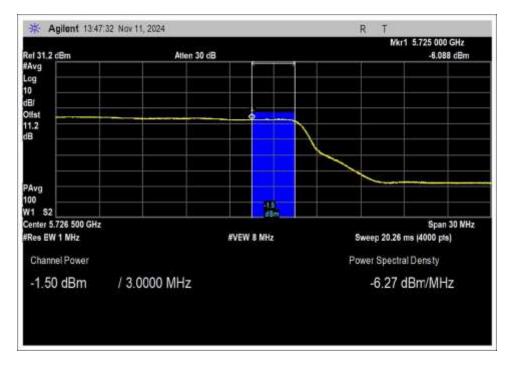

802.11 n HT40

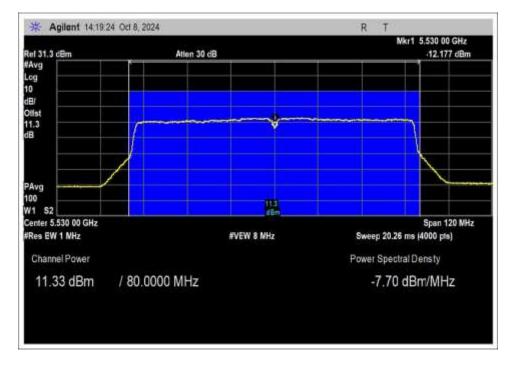

Low Channel

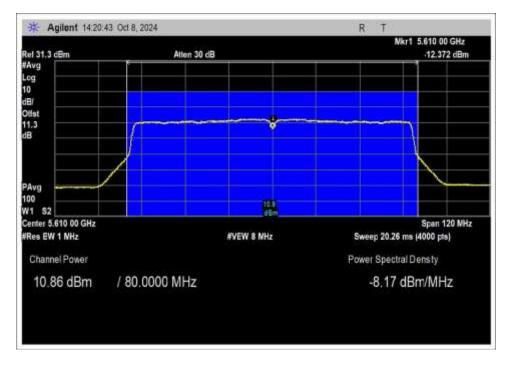

High Channel

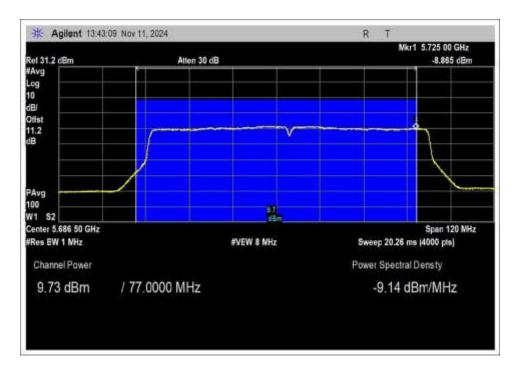

Addition RF out power on High Channel overlapping UNII 3

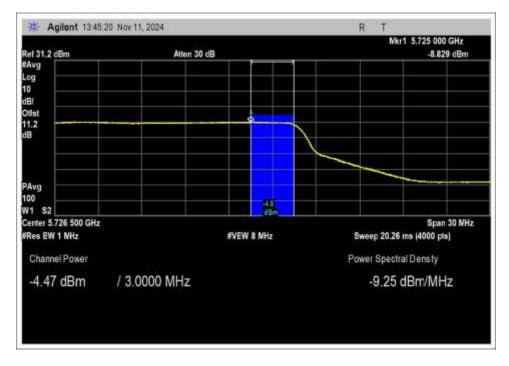

802.11ac 40MHz


Low Channel


High Channel


Addition RF out power on High Channel overlapping UNII 3


802.11ac 80MHz


Low Channel

High Channel

Addition RF out power on High Channel overlapping UNII 3

Test Setup Photo(s)

Test Setup

Test Setup, Close View

15.407(a) Power Spectral Density

Test Setup/Conditions						
Test Location:	Fremont Lab Bench	Test Engineer:	Hieu Song Nguyenpham			
Test Method:	ANSI C63.10 (2020), KDB 789033	Test Date(s):	10/07-09/2024 and 11/08/2024			
Configuration:	A					
Test Setup:	The EUT is placed non-conducted	The EUT is placed non-conducted table. It is operated as intended. It is connected straight				
	to a Spectrum Analyzer.					

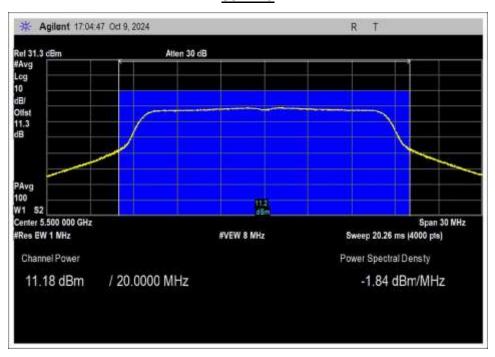
Environmental Conditions					
Temperature (ºC)	21.2-23.7	Relative Humidity (%):	39-45		

Test Equipment						
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due	
03013	Cable	Astrolab	32022-2-2909K-36TC	1/9/2024	1/9/2026	
P07365	Attenuator	Weinschel	54A-10	5/26/2023	5/26/2025	
03471	Spectrum Analyzer	Agilent	E4440A	2/23/2024	2/23/2026	

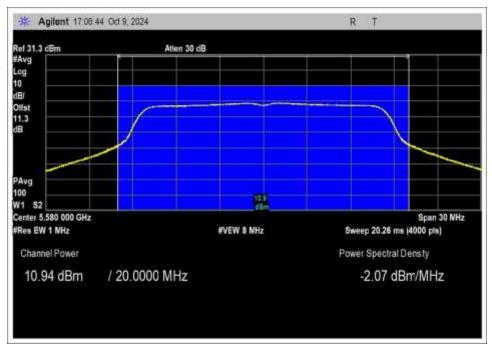
Test Data Summary - RF Conducted Measurement -Chain 0					
Measurement Option: AVGSA-1					
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm/MHz)	Limit (dBm/MHz)	Results
5500	802.11a	External/4.66	-1.84	≤11	Pass
5580	802.11a	External/4.66	-2.07	≤11	Pass
5720	802.11a	External/4.66	-3.94	≤11	Pass
5500	802.11n HT20	External/4.66	-1.96	≤11	Pass
5580	802.11n HT20	External/4.66	-2.2	≤11	Pass
5720	802.11n HT20	External/4.66	-4.19	≤11	Pass
5500	802.11ac 20MHz	External/4.66	-1.98	≤11	Pass
5580	802.11ac 20MHz	External/4.66	-2.21	≤11	Pass
5720	802.11ac 20MHz	External/4.66	-4.16	≤11	Pass
5510	802.11n HT40	External/4.66	-5.08	≤11	Pass
5550	802.11n HT40	External/4.66	-4.98	≤11	Pass
5710	802.11n HT40	External/4.66	-7.02	≤11	Pass
5510	802.11ac 40MHz	External/4.66	-5.13	≤11	Pass
5550	802.11ac 40MHz	External/4.66	-4.99	≤11	Pass
5710	802.11ac 40MHz	External/4.66	-7.01	≤11	Pass
5530	802.11ac 80MHz	External/4.66	-7.5	≤11	Pass
5610	802.11ac 80MHz	External/4.66	-9	≤11	Pass
5690	802.11ac 80MHz	External/4.66	-10.18	≤11	Pass

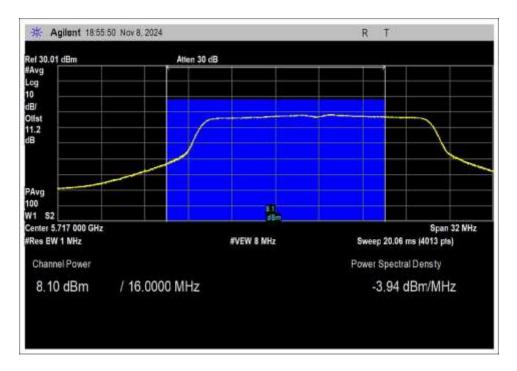
Test Data Summary - RF Conducted Measurement -Chain 1					
Measurement Option: AVGSA-1					
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm/MHz)	Limit (dBm/MHz)	Results
5500	802.11a	External/4.66	-1.02	≤11	Pass
5580	802.11a	External/4.66	-1.15	≤11	Pass
5720	802.11a	External/4.66	-3.08	≤11	Pass
5500	802.11n HT20	External/4.66	-1.13	≤11	Pass
5580	802.11n HT20	External/4.66	-1.25	≤11	Pass
5720	802.11n HT20	External/4.66	-3.25	≤11	Pass
5500	802.11ac 20MHz	External/4.66	-1.12	≤11	Pass
5580	802.11ac 20MHz	External/4.66	-1.24	≤11	Pass
5720	802.11ac 20MHz	External/4.66	-3.27	≤11	Pass
5510	802.11n HT40	External/4.66	-4.19	≤11	Pass
5550	802.11n HT40	External/4.66	-4.36	≤11	Pass
5710	802.11n HT40	External/4.66	-6.26	≤11	Pass
5510	802.11ac 40MHz	External/4.66	-4.19	≤11	Pass
5550	802.11ac 40MHz	External/4.66	-4.41	≤11	Pass
5710	802.11ac 40MHz	External/4.66	-6.18	≤11	Pass
5530	802.11ac 80MHz	External/4.66	-7.7	≤11	Pass
5610	802.11ac 80MHz	External/4.66	-8.17	≤11	Pass
5690	802.11ac 80MHz	External/4.66	-9.14	≤11	Pass

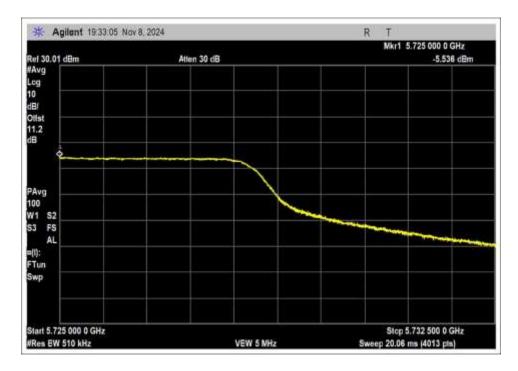
The limit is calculated in accordance with 15.407(a)(2): Limit = 11 - Roundup(G - 6)

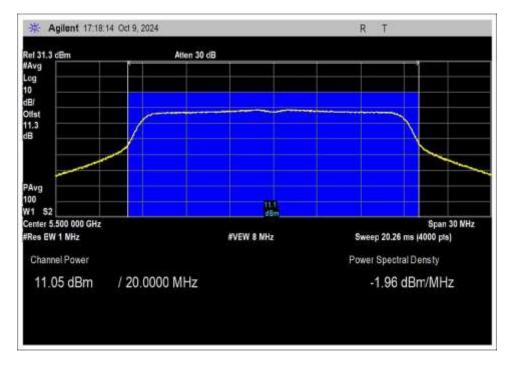

Addition Power Spectral Density on High Channel overlapping UNII 3

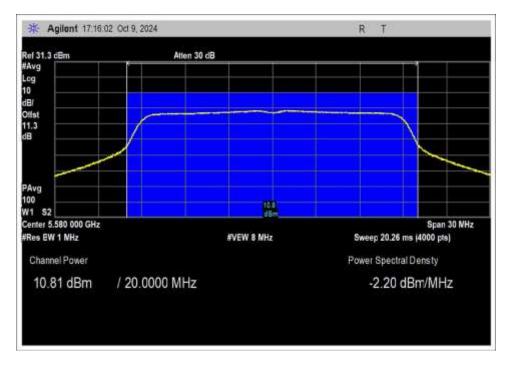
Test Data Summary - RF Conducted Measurement -Chain 0						
Measurement Option: AVGSA-1						
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm/500kHz)	Limit (dBm/500kHz)	Results	
5720	802.11a	External/4.66	-5.536	≤30	Pass	
5720	802.11n HT20	External/4.66	-6.203	≤30	Pass	
5720	802.11ac 20MHz	External/4.66	-6.235	≤30	Pass	
5710	802.11n HT40	External/4.66	-9.171	≤30	Pass	
5710	802.11ac 40MHz	External/4.66	-9.415	≤30	Pass	
5690	802.11ac 80MHz	External/4.66	-11.980	≤30	Pass	

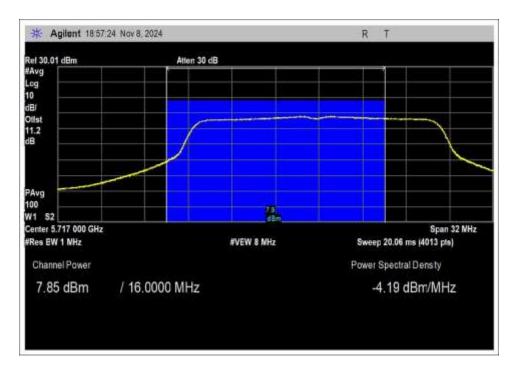

Test Data Summary - RF Conducted Measurement -Chain 1						
Measurement Option: AVGSA-1						
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm/500kHz)	Limit (dBm/500kHz)	Results	
5720	802.11a	External/4.66	-4.680	≤30	Pass	
5720	802.11n HT20	External/4.66	-5.259	≤30	Pass	
5720	802.11ac 20MHz	External/4.66	-4.964	≤30	Pass	
5710	802.11n HT40	External/4.66	-8.205	≤30	Pass	
5710	802.11ac 40MHz	External/4.66	-8.250	≤30	Pass	
5690	802.11ac 80MHz	External/4.66	-11.019	≤30	Pass	

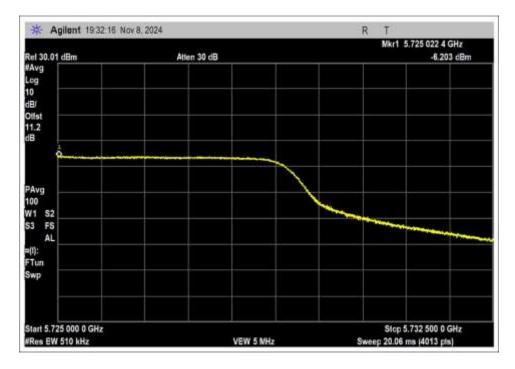

Plot(s) <u>Chain 0</u> 802.11a

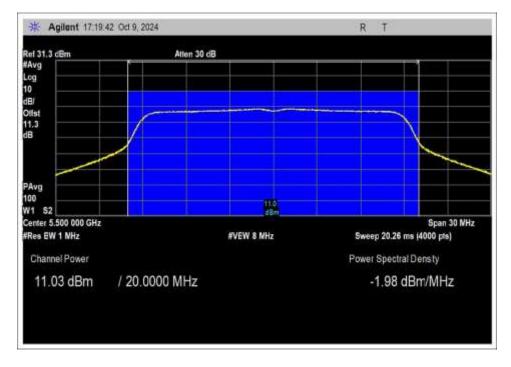

Low Channel

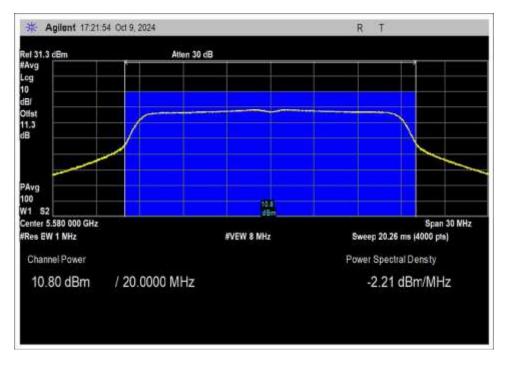

High Channel

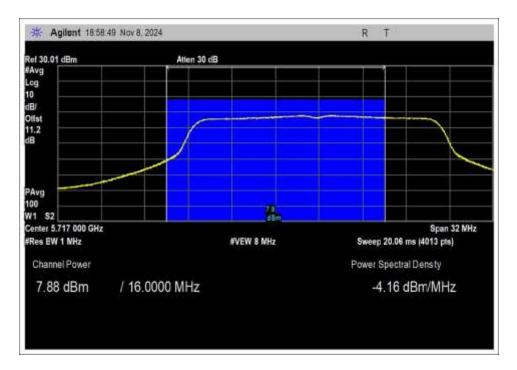

Addition Power Spectral Density on High Channel overlapping UNII 3

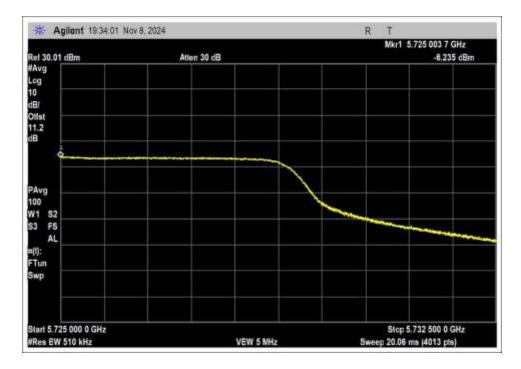

802.11n HT20

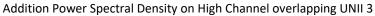

Low Channel

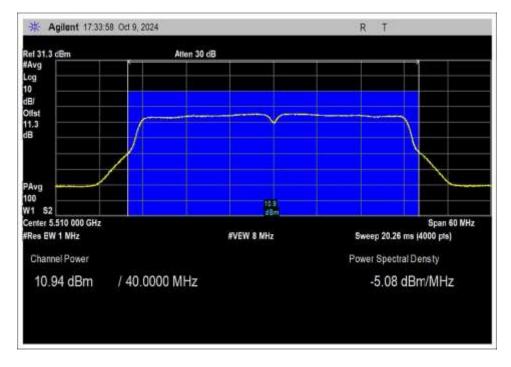

High Channel

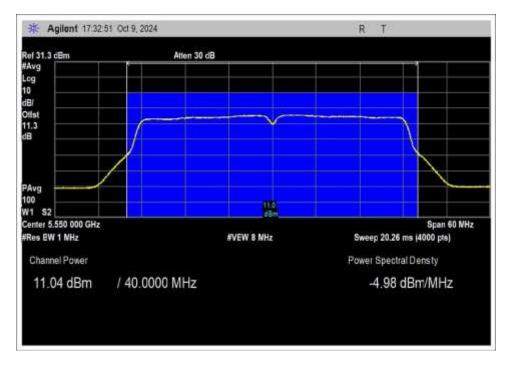

Addition Power Spectral Density on High Channel overlapping UNII 3

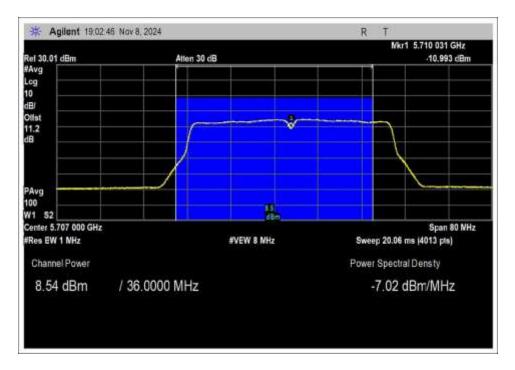

802.11ac 20MHz

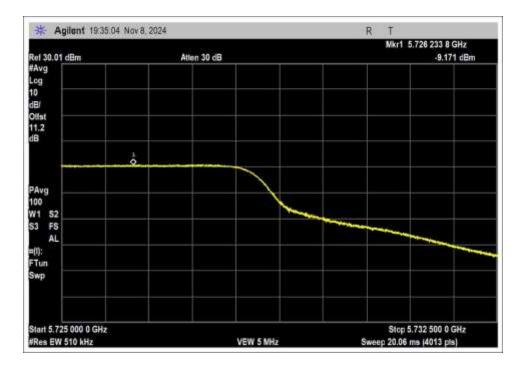

Low Channel

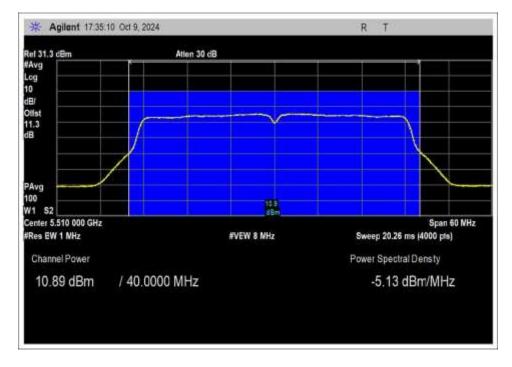


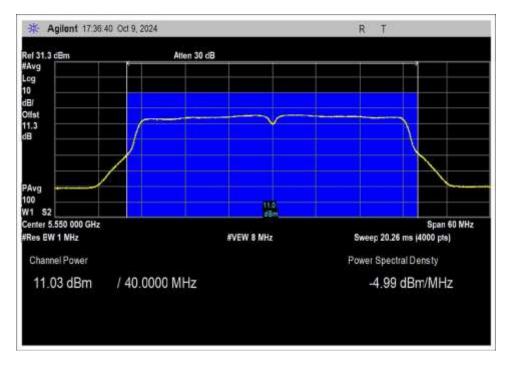

High Channel

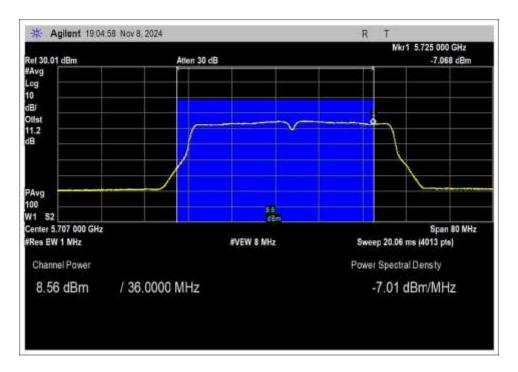


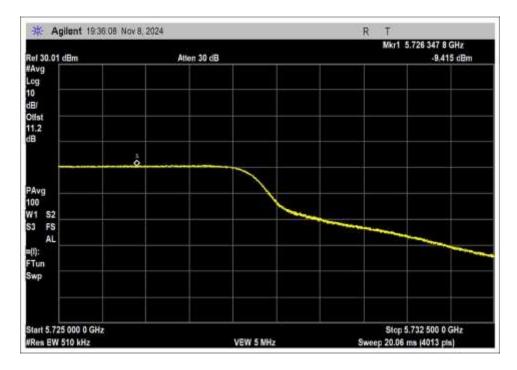

802.11 n HT40

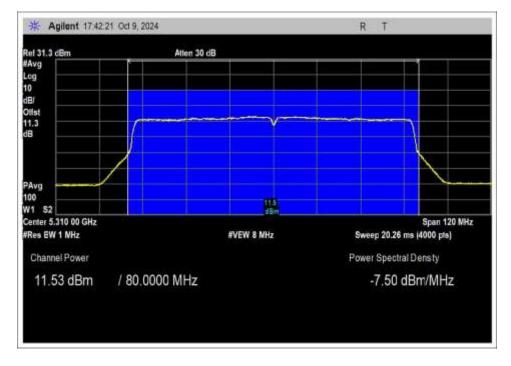

Low Channel

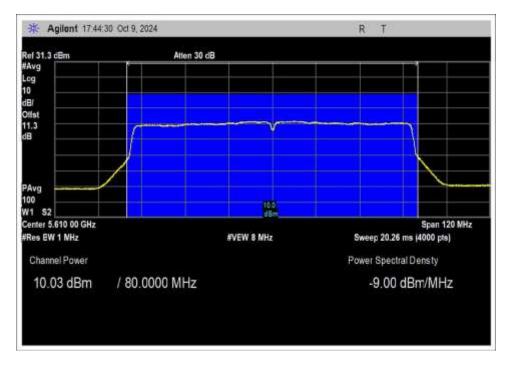

High Channel

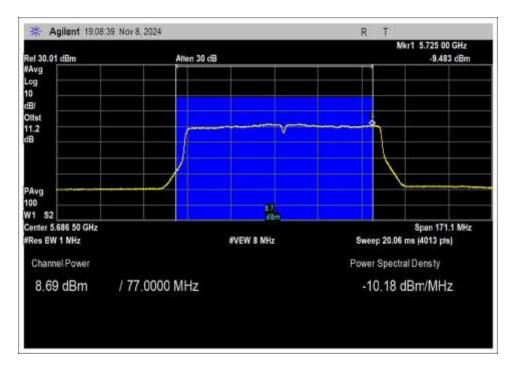

Addition Power Spectral Density on High Channel overlapping UNII 3

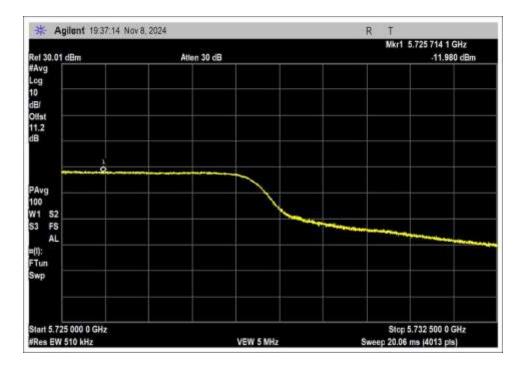

802.11ac 40MHz

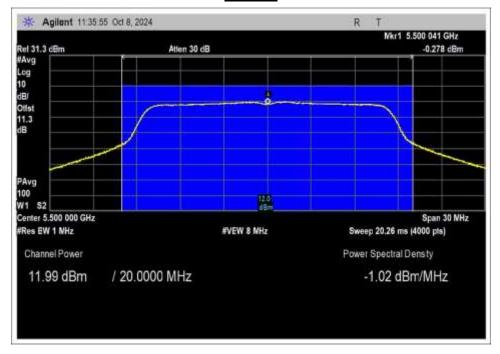

Low Channel

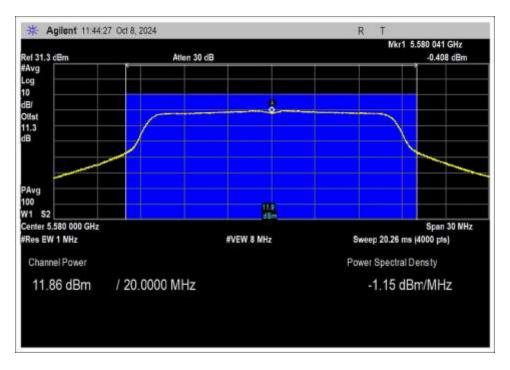

High Channel

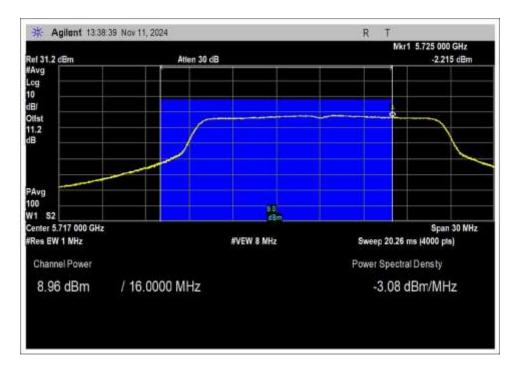

Addition Power Spectral Density on High Channel overlapping UNII 3

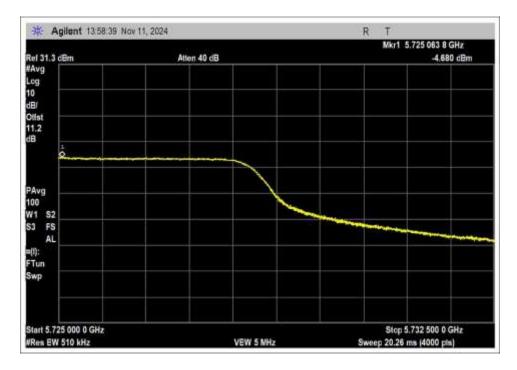

802.11ac 80MHz

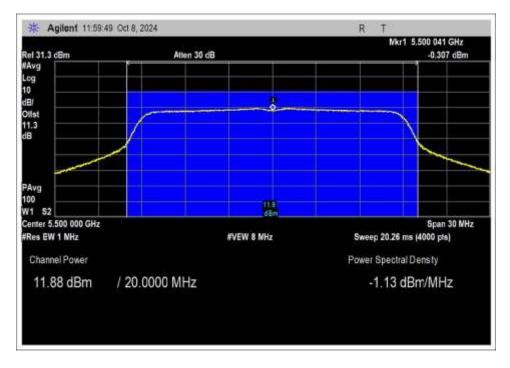

Low Channel

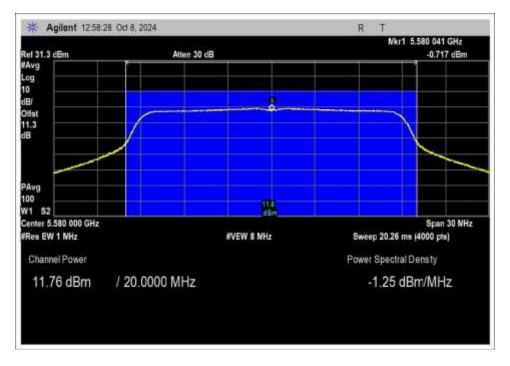

High Channel

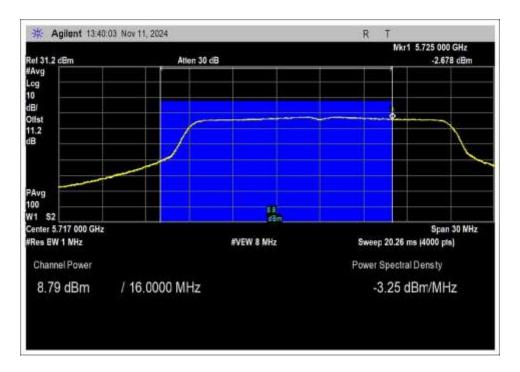

Addition Power Spectral Density on High Channel overlapping UNII 3

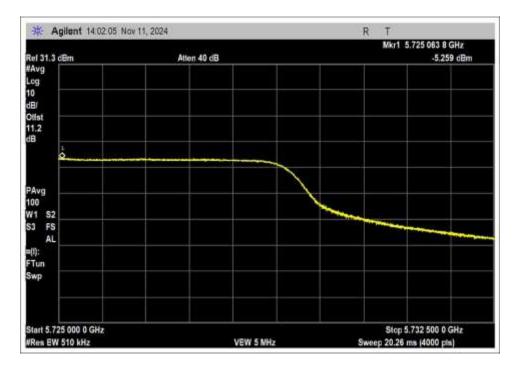

<u>Chain 1</u> 802.11a

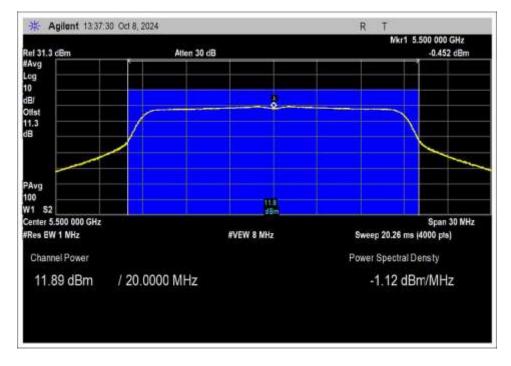

Low Channel

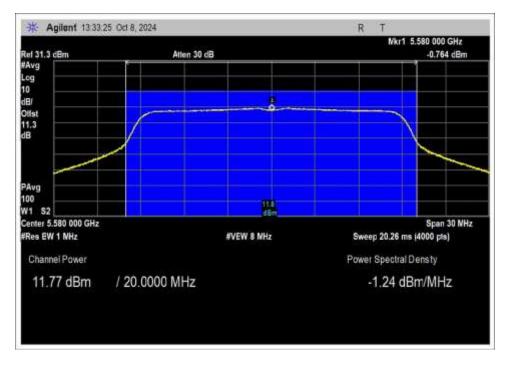

High channel

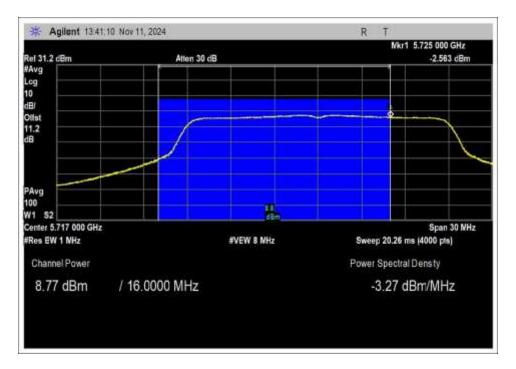

Addition Power Spectral Density on High Channel overlapping UNII 3

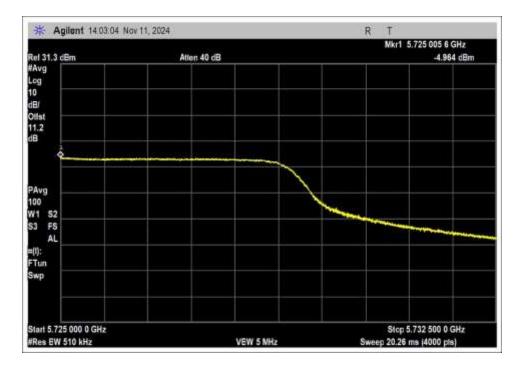

802.11n HT20

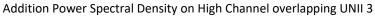

Low Channel

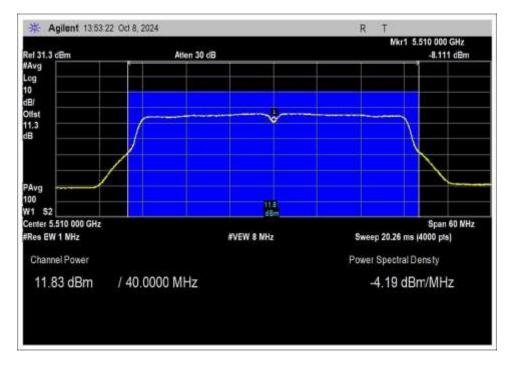

High Channel

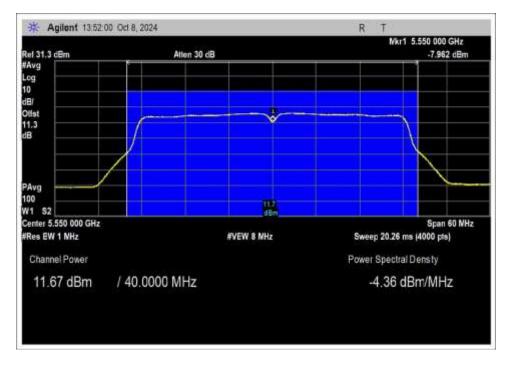

Addition Power Spectral Density on High Channel overlapping UNII 3

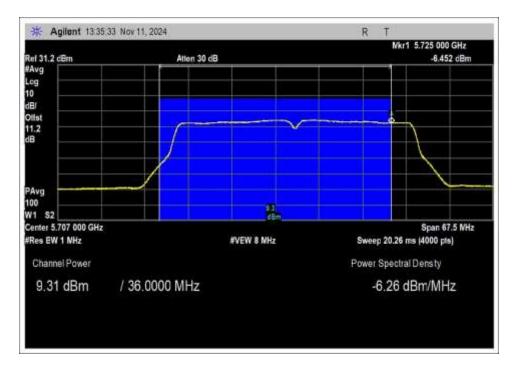

802.11ac 20MHz

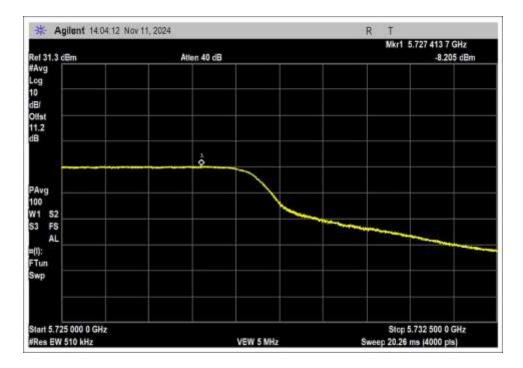

Low Channel

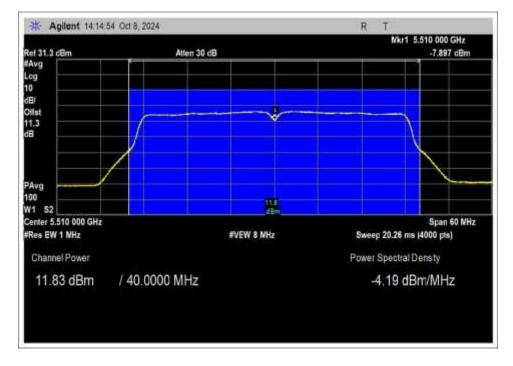


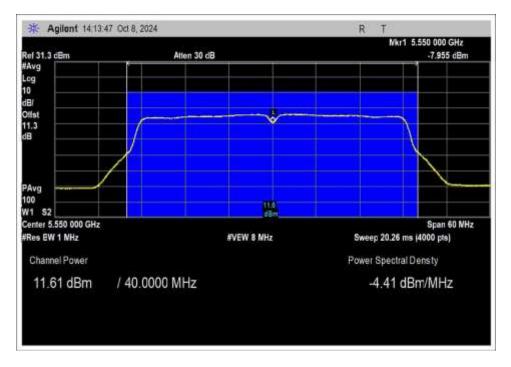

High Channel

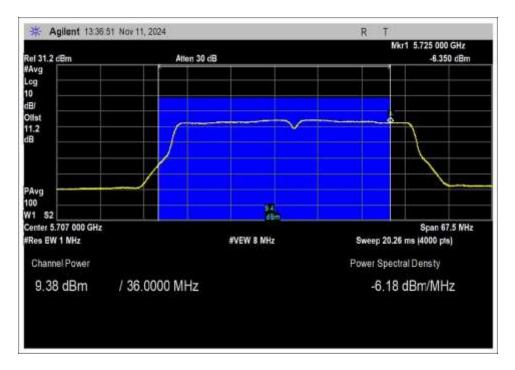


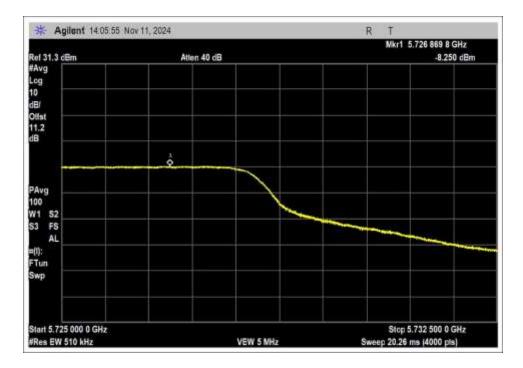

802.11 n HT40

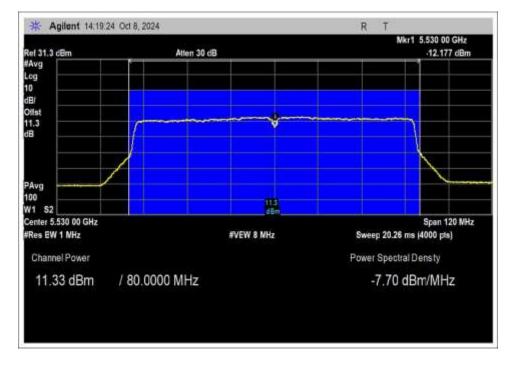

Low Channel

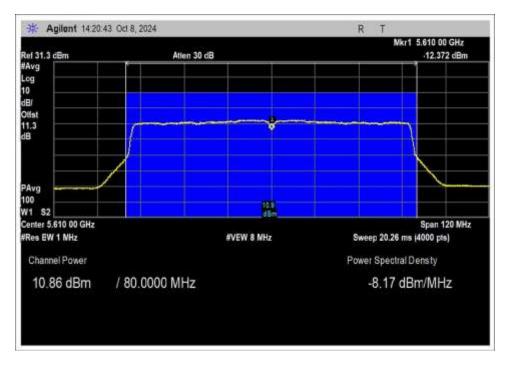

High Channel

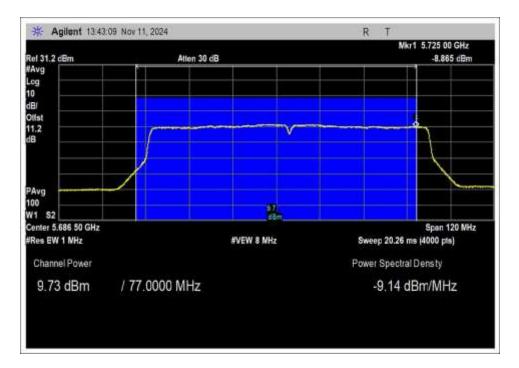

Addition Power Spectral Density on High Channel overlapping UNII 3

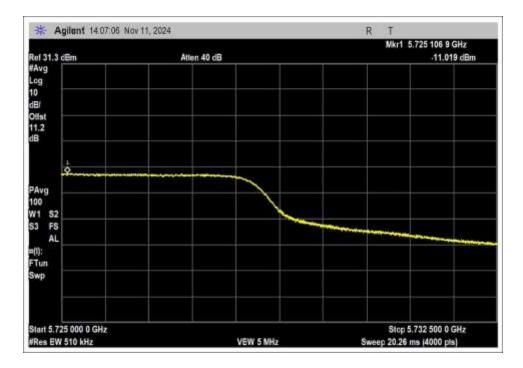

802.11ac 40MHz


Low Channel


High Channel


Addition Power Spectral Density on High Channel overlapping UNII 3


802.11ac 80MHz


Low Channel

High Channel

Addition Power Spectral Density on High Channel overlapping UNII 3

Test Setup Photo(s)

Test Setup

Test Setup, Close View

15.407(b) Radiated Emissions & Band Edge

	Test Setup/Conditions								
Test Location:	Fremont Lab C3	Test Engineer:	Hieu Song Nguyenpham						
Test Method:	ANSI C63.10 (2020), KDB 789033	Test Date(s):	10/30-31/2024 and 11/01- 06/2024						
Configuration:	1								
Note	the investigation on RF output por Spurious Emission.	2: The maximum emission is measured close to band edge. The emission at band edge is							

Environmental Conditions								
Temperature (^o C)	21.3-23.5	Relative Humidity (%):	39-48					

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc. • 112	0 Fulton Pl • Fremont, CA 9	94539 • (510) 249-1170
Customer:	Tonal		
Specification:	15.407(b) / 15.209 Radiated S	Spurious Emissions	
Work Order #:	110285	Date:	11/6/2024
Test Type:	Radiated Scan	Time:	15:01:58
Tested By:	Hieu Song Nguyenpham	Sequence#:	149
Software:	EMITest 5.03.20		

Equipment Tested:

	6/11
Configuration 1	

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Radiated Emission Frequency Range: 9kHz to 1GHz

Test Environment Conditions: Temperature: 22.7°C Humidity: 36% Atmospheric Pressure: 101.8kPa

Highest Generated Frequency: 5.825GHz Test Method: ANSI C63.10 (2020), KDB 789033

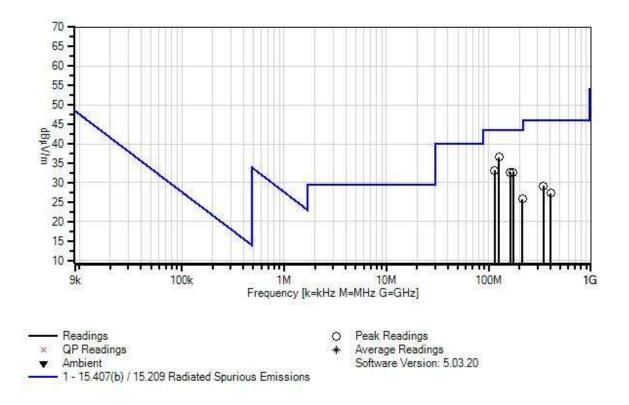
The unit is mounted to a floor standing rack as to simulate typical wall mounted setup. One weight line is extended to the floor. Camera is on.

WiFi transmitting continuously with modulation type as listed with pattern of 0s and 1s at power level 14 with duty cycle at 100%.

802.11a (18Mbps)-OFDM-5580MHz-Middle Channel

MIMO not enabled, manufacturer declares chain 0 and chain 1 transmit uncorrelated data.

Chain 0


Operational mode is representative of worst case.

No emissions from EUT has been found in 20dB tolerance in the frequency range 9kHz to 30MHz.

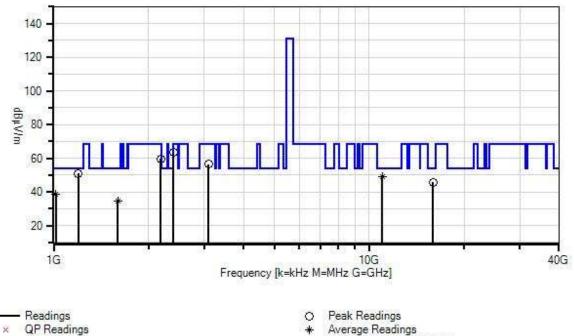
Modification #1 was in place during testing.

Tonal WO#: 110285 Sequence#: 149 Date: 11/6/2024 15.407(b) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP07508	Preamp	310N	4/5/2024	4/5/2026
	AN00432	Loop Antenna	6502	7/10/2023	7/10/2025
T2	AN01995	Biconilog Antenna	CBL6111C	5/16/2024	5/16/2026
Т3	ANP00880	Cable	RG214U	3/26/2024	3/26/2026
T4	ANP01187	Cable	CNT-195	7/3/2024	7/3/2026
T5	ANP06691	Cable	PE3062-180	3/20/2024	3/20/2026
	AN02660	Spectrum Analyzer	E4446A	12/6/2022	12/6/2024

Measu	rement Data:	Re	ading lis	ted by ma	argin.		Te	est Distance	e: 3 Meters		
#	Freq	Rdng	T1 T5	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	125.982M	49.2	-32.1 +0.4	+17.7	+1.1	+0.3	+0.0	36.6	43.5	-6.9	Horiz
2	114.049M	46.1	-32.0 +0.4	+17.3	+1.0	+0.3	+0.0	33.1	43.5	-10.4	Horiz
3	161.981M	46.2	-32.0 +0.4	+16.5	+1.2	+0.3	+0.0	32.6	43.5	-10.9	Horiz
4	173.934M	46.9	-32.0 +0.5	+15.6	+1.3	+0.3	+0.0	32.6	43.5	-10.9	Horiz
5	342.072M	37.8	-31.9 +0.6	+20.2	+1.9	+0.6	+0.0	29.2	46.0	-16.8	Vert
6	212.810M	40.6	-32.0 +0.5	+14.8	+1.4	+0.4	+0.0	25.7	43.5	-17.8	Vert
7	402.087M	33.7	-31.9 +0.7	+22.0	+2.0	+0.7	+0.0	27.2	46.0	-18.8	Vert


Test Location:	CKC Laboratories, Inc. • 1120 Fulton Pl	• Fremont, CA 9	4539 • (510) 249-1170
Customer:	Tonal		
Specification:	15.407(b)(3) / 15.209 Radated Spurious	Emissions	
Work Order #:	110285	Date:	11/6/2024
Test Type:	Radiated Scan	Time:	10:30:31
Tested By:	Hieu Song Nguyenpham	Sequence#:	138
Software:	EMITest 5.03.20		

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			
Support Equipment:			
Device	Manufacturer	Model #	S/N
Configuration 1			
Test Conditions / Note	s:		
Radiated Emission			
Frequency Range: 1GH	z to 40GHz		
Test Environment Conc	litions		
Temperature: 22.7°C			
Humidity: 36%			
Atmospheric Pressure:	101.8kPa		
Highest Generated Free	uency: 5.825GHz		
0	3.10 (2020), KDB 789033		
The unit is mounted to	a floor standing rack as to a	simulate typical wall mo	unted setup. One weight line is extended
to the floor. Camera is		sinulate typical wan mo	unted setup. One weight fine is extended
		pe as listed with pattern	of 0s and 1s at power level 14
802.11a-OFDM-5.5GH	z Band		
MIMO not enabled, ma	nufacturer declares chain 0	and chain 1 transmit unc	correlated data.
Chain 0			
Operational mode is re-	recontative of worst asso		
Operational mode is rep	presentative of worst case.		
Low Channel			
Modification #1 was in	n place during testing		
wiounication #1 was n	i place un ing testing.		

Tonal WO#: 110285 Sequence#: 138 Date: 11/6/2024 15.407(b)(3) / 15.209 Radated Spurious Emissions Test Distance: 3 Meters

Ambient

1 - 15.407(b)(3) / 15.209 Radated Spurious Emissions

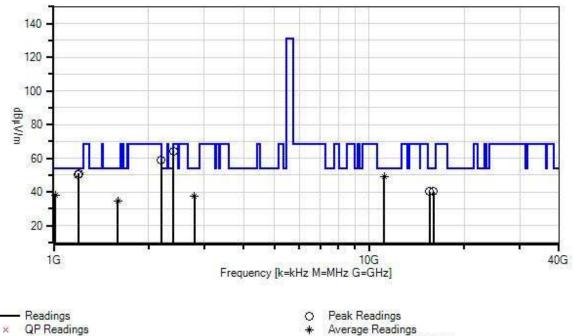
Average Readings Software Version: 5.03.20

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157	Horn Antenna- ANSI C63.5	3115	1/11/2023	1/11/2025
T2	AN03302	Cable	32026-29094K- 29094K-72TC	1/9/2024	1/9/2026
Т3	ANP01210	Cable	FSJ1P-50A-4A	1/9/2024	1/9/2026
	AN02660	Spectrum Analyzer	E4446A	12/6/2022	12/6/2024
T4	AN02810	Preamp	83051A	4/6/2023	4/6/2025
T5	AN03013	Cable	32022-2-2909K- 36TC	1/9/2024	1/9/2026
Т6	ANP07701	Cable	32022-29094K- 29094K-120TC	8/16/2024	8/16/2026
Τ7	AN02693	Active Horn Antenna	AMFW-5F- 12001800-20- 10P	1/9/2024	1/9/2026
	AN02694	Horn Antenna	AMFW-5F- 18002650-20- 10P	1/9/2024	1/9/2026
Т8	ANP00928	Cable	various	1/26/2024	1/26/2026

	ANP00929	Cable	various	1/26/2024	1/26/2026
Т9	ANP07698	Cable	32022-29094K-	8/16/2024	8/16/2026
			29094K-72TC		
	AN03011	Cable	32022-2-2909K-	3/23/2023	3/23/2025
			24TC		
	AN03209	Preamp	83051A	8/22/2023	8/22/2025
	ANP07646	High Pass Filter	11SH10-	11/5/2024	11/5/2026
			6000/T1800-		
			0/0		
	AN02695	Active Horn	AMFW-5F-	1/9/2024	1/9/2026
		Antenna	260400-33-8P		
	ANP00930	Cable	various	1/26/2024	1/26/2026
T10	ANP07365	Attenuator	54A-10	5/26/2023	5/26/2025

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Те	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10							
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	dBµV/m	dB	Ant
1	1198.000M	41.6	+24.8	+0.9	+1.7	-28.5	+0.0	51.0	54.0	-3.0	Horiz
			+0.6	+0.0	+0.0	+0.0					
			+0.0	+9.9							
2	2400.000M	47.6	+28.3	+1.4	+2.5	-27.1	+0.0	63.4	68.2	-4.8	Vert
			+0.8	+0.0	+0.0	+0.0					
			+0.0	+9.9							
3	11001.950	18.4	+39.4	+3.2	+6.1	-29.7	+0.0	49.1	54.0	-4.9	Horiz
	Μ		+1.7	+0.0	+0.0	+0.0					
	Ave		+0.0	+10.0							
^	11001.950	29.0	+39.4	+3.2	+6.1	-29.7	+0.0	59.7	54.0	+5.7	Horiz
	Μ		+1.7	+0.0	+0.0	+0.0					
			+0.0	+10.0							
5	11001.950	18.2	+39.4	+3.2	+6.1	-29.7	+0.0	48.9	54.0	-5.1	Vert
	Μ		+1.7	+0.0	+0.0	+0.0					
	Ave		+0.0	+10.0							
^	11001.950	30.7	+39.4	+3.2	+6.1	-29.7	+0.0	61.4	54.0	+7.4	Vert
	Μ		+1.7	+0.0	+0.0	+0.0					
			+0.0	+10.0							
7	15936.000	50.4	+0.0	+0.0	+0.0	+0.0	+0.0	45.7	54.0	-8.3	Vert
	Μ		+0.0	+5.7	-14.2	+0.5					
			+3.3	+0.0							
8	2184.000M	44.2	+28.2	+1.3	+2.4	-27.2	+0.0	59.6	68.2	-8.6	Vert
			+0.8	+0.0	+0.0	+0.0					
			+0.0	+9.9							
9	3097.000M	37.3	+30.4	+1.6	+2.9	-26.7	+0.0	56.3	68.2	-11.9	Horiz
			+0.9	+0.0	+0.0	+0.0					
			+0.0	+9.9							
10	1016.000M	30.2	+24.3	+1.0	+1.6	-28.7	+0.0	38.8	54.0	-15.2	Vert
	Ave		+0.6	+0.0	+0.0	+0.0					
			+0.0	+9.8							
^	1016.000M	48.4	+24.3	+1.0	+1.6	-28.7	+0.0	57.0	54.0	+3.0	Vert
			+0.6	+0.0	+0.0	+0.0					
			+0.0	+9.8							
12	1600.000M	22.7	+26.1	+1.1	+2.0	-28.0	+0.0	34.4	54.0	-19.6	Horiz
	Ave		+0.6	+0.0	+0.0	+0.0					
			+0.0	+9.9							
^	1600.000M	42.4	+26.1	+1.1	+2.0	-28.0	+0.0	54.1	54.0	+0.1	Horiz
			+0.6	+0.0	+0.0	+0.0					
			+0.0	+9.9							


Test Location:	CKC Laboratories, Inc. • 1120 Fulton Pl	• Fremont, CA 9	4539 • (510) 249-1170
Customer:	Tonal		
Specification:	15.407(b)(3) / 15.209 Radated Spurious	Emissions	
Work Order #:	110285	Date:	11/6/2024
Test Type:	Radiated Scan	Time:	10:40:41
Tested By:	Hieu Song Nguyenpham	Sequence#:	139
Software:	EMITest 5.03.20		

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			
Support Equipment:			
Device	Manufacturer	Model #	S/N
Configuration 1			
Test Conditions / Not	tes:		
Radiated Emission			
Frequency Range: 1G	Hz to 40GHz		
Test Environment Con	nditions		
Temperature: 22.7°C			
Humidity: 36%			
Atmospheric Pressure	: 101.8kPa		
Highest Generated Fre	equency: 5 825CHz		
Ũ	C63.10 (2020), KDB 789033		
		imulate typical wall mo	unted setup. One weight line is extended
to the floor. Camera is		no on listed with nottom	of 0a and 1a at norman laval 14
wiri transmitting con	unuousiy with modulation ty	pe as instea with pattern	of 0s and 1s at power level 14
802.11a-OFDM-5.5G	Hz Band		
MIMO not enabled, m	hanufacturer declares chain 0	and chain 1 transmit une	correlated data.
Chain 0			
Operational mode is r	epresentative of worst case.		
M 111 Channel			
Middle Channel			
Modification #1 was	in place during testing.		

Tonal WO#: 110285 Sequence#: 139 Date: 11/6/2024 15.407(b)(3) / 15.209 Radated Spurious Emissions Test Distance: 3 Meters

Ambient

1 - 15.407(b)(3) / 15.209 Radated Spurious Emissions

Average Readings Software Version: 5.03.20

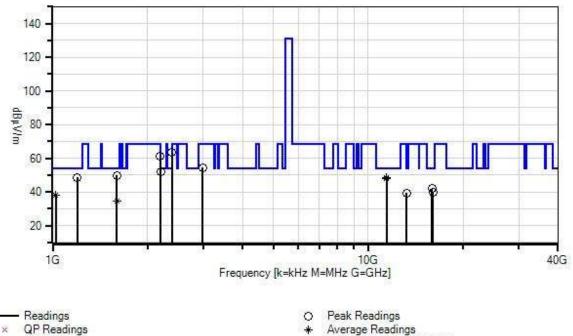
Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157	Horn Antenna- ANSI C63.5	3115	1/11/2023	1/11/2025
T2	AN03302	Cable	32026-29094K- 1/9/2024 29094K-72TC		1/9/2026
Т3	ANP01210	Cable	FSJ1P-50A-4A	1/9/2024	1/9/2026
	AN02660	Spectrum Analyzer	E4446A	12/6/2022	12/6/2024
T4	AN02810	Preamp	83051A	4/6/2023	4/6/2025
T5	AN03013	Cable	32022-2-2909K- 36TC	1/9/2024	1/9/2026
Т6	ANP07701	Cable	32022-29094K- 29094K-120TC	8/16/2024	8/16/2026
Τ7	AN02693	Active Horn Antenna	AMFW-5F- 12001800-20- 10P	1/9/2024	1/9/2026
	AN02694	Horn Antenna	AMFW-5F- 18002650-20- 10P	1/9/2024	1/9/2026
Т8	ANP00928	Cable	various	1/26/2024	1/26/2026

	ANP00929	Cable	various	1/26/2024	1/26/2026
Т9	ANP07698	Cable	32022-29094K-	8/16/2024	8/16/2026
			29094K-72TC		
	AN03011	Cable	32022-2-2909K-	3/23/2023	3/23/2025
			24TC		
	AN03209	Preamp	83051A	8/22/2023	8/22/2025
	ANP07646	High Pass Filter	11SH10-	11/5/2024	11/5/2026
			6000/T1800-		
			0/0		
	AN02695	Active Horn	AMFW-5F-	1/9/2024	1/9/2026
		Antenna	260400-33-8P		
	ANP00930	Cable	various	1/26/2024	1/26/2026
T10	ANP07365	Attenuator	54A-10	5/26/2023	5/26/2025

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10							
	MHz	dBµV	dB	dB	dB	dB		dBµV/m	$dB\mu V/m$	dB	Ant
1	1200.000M	41.5	+24.8	+0.9	+1.7	-28.5	+0.0	50.9	54.0	-3.1	Horiz
			+0.6	+0.0	+0.0	+0.0					
			+0.0	+9.9							
2	1196.000M	40.7	+24.8	+0.9	+1.7	-28.5	+0.0	50.1	54.0	-3.9	Horiz
			+0.6	+0.0	+0.0	+0.0					
			+0.0	+9.9							
3	2400.000M	48.4	+28.3	+1.4	+2.5	-27.1	+0.0	64.2	68.2	-4.0	Vert
			+0.8	+0.0	+0.0	+0.0					
			+0.0	+9.9							
4	11164.600	18.7	+39.4	+3.2	+6.0	-29.7	+0.0	49.3	54.0	-4.7	Horiz
	Μ		+1.7	+0.0	+0.0	+0.0					
	Ave		+0.0	+10.0							
^	11164.600	32.3	+39.4	+3.2	+6.0	-29.7	+0.0	62.9	54.0	+8.9	Horiz
	М		+1.7	+0.0	+0.0	+0.0					
			+0.0	+10.0							
6	11164.350	18.7	+39.4	+3.2	+6.0	-29.7	+0.0	49.3	54.0	-4.7	Vert
	М		+1.7	+0.0	+0.0	+0.0					
	Ave		+0.0	+10.0							
۸	11164.350	31.2	+39.4	+3.2	+6.0	-29.7	+0.0	61.8	54.0	+7.8	Vert
	Μ		+1.7	+0.0	+0.0	+0.0					
			+0.0	+10.0							
8	2192.000M	43.4	+28.2	+1.3	+2.4	-27.2	+0.0	58.8	68.2	-9.4	Vert
			+0.8	+0.0	+0.0	+0.0					
			+0.0	+9.9							
9	15558.000	44.7	+0.0	+0.0	+0.0	+0.0	+0.0	40.3	54.0	-13.7	Horiz
	М		+0.0	+5.6	-13.8	+0.5					
			+3.3	+0.0							
10	15996.000	45.0	+0.0	+0.0	+0.0	+0.0	+0.0	40.2	54.0	-13.8	Vert
	М		+0.0	+5.7	-14.3	+0.5					
			+3.3	+0.0							
11	1012.000M	29.7	+24.2	+1.0	+1.6	-28.7	+0.0	38.2	54.0	-15.8	Vert
	Ave		+0.6	+0.0	+0.0	+0.0					
			+0.0	+9.8							
۸	1012.000M	47.9	+24.2	+1.0	+1.6	-28.7	+0.0	56.4	54.0	+2.4	Vert
			+0.6	+0.0	+0.0	+0.0					
			+0.0	+9.8							

13 2792.000M	20.1	+29.4	+1.5	+2.7	-26.8	+0.0	37.6	54.0	-16.4	Vert
Ave		+0.8	+0.0	+0.0	+0.0					
		+0.0	+9.9							
^ 2792.000M	39.3	+29.4	+1.5	+2.7	-26.8	+0.0	56.8	54.0	+2.8	Vert
		+0.8	+0.0	+0.0	+0.0					
		+0.0	+9.9							
15 1600.000M	22.8	+26.1	+1.1	+2.0	-28.0	+0.0	34.5	54.0	-19.5	Horiz
Ave		+0.6	+0.0	+0.0	+0.0					
		+0.0	+9.9							
^ 1600.000M	43.2	+26.1	+1.1	+2.0	-28.0	+0.0	54.9	54.0	+0.9	Horiz
		+0.6	+0.0	+0.0	+0.0					
		+0.0	+9.9							


Test Location:	CKC Laboratories, Inc. • 1120 Fulton Pl • Fremont, CA 94539 • (510) 249-1170					
Customer:	Tonal					
Specification:	15.407(b)(3) / 15.209 Radated Spurious E	Emissions				
Work Order #:	110285	Date:	11/6/2024			
Test Type:	Radiated Scan	Time:	10:45:26			
Tested By:	Hieu Song Nguyenpham	Sequence#:	140			
Software:	EMITest 5.03.20					

Equipment Tested:

Device	Manufacturer	Model #	S/N				
Configuration 1							
Support Equipment:							
Device	Manufacturer	Model #	S/N				
Configuration 1							
Test Conditions / Not	tes:						
Radiated Emission							
Frequency Range: 1G	Hz to 40GHz						
Test Environment Cor	nditions						
Temperature: 22.7°C							
Humidity: 36%							
Atmospheric Pressure	: 101.8kPa						
Highest Generated Fre	equency: 5 825GHz						
U U	263.10 (2020), KDB 789033						
		simulate typical wall mo	unted setup. One weight line is extended				
to the floor. Camera is		no as listed with pattern	of 0s and 1s at power level 14				
win't transmitting con	unuousiy with modulation ty	pe as instea with pattern	of os and 1s at power level 14				
802.11a-OFDM-5.5G	Hz Band						
MIMO not enabled, m	hanufacturer declares chain 0	and chain 1 transmit und	correlated data.				
Chain 0							
Operational mode is r	Operational mode is representative of worst case.						
High Channel							
nigii Chaimei	High Channel						
Modification #1 was	in place during testing.						

Tonal WO#: 110285 Sequence#: 140 Date: 11/6/2024 15.407(b)(3) / 15.209 Radated Spurious Emissions Test Distance: 3 Meters

Ambient

1 - 15.407(b)(3) / 15.209 Radated Spurious Emissions

Average Readings Software Version: 5.03.20

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157	Horn Antenna-	3115	1/11/2023	1/11/2025
		ANSI C63.5			
T2	AN03302	Cable	32026-29094K-	1/9/2024	1/9/2026
			29094K-72TC		
Т3	ANP01210	Cable	FSJ1P-50A-4A	1/9/2024	1/9/2026
	AN02660	Spectrum Analyzer	E4446A	12/6/2022	12/6/2024
T4	AN02810	Preamp	83051A	4/6/2023	4/6/2025
Т5	AN03013	Cable	32022-2-2909К-	1/9/2024	1/9/2026
			36TC		
Т6	ANP07701	Cable	32022-29094K-	8/16/2024	8/16/2026
			29094K-120TC		
Τ7	AN02693	Active Horn	AMFW-5F-	1/9/2024	1/9/2026
		Antenna	12001800-20-		
			10P		
	AN02694	Horn Antenna	AMFW-5F-	1/9/2024	1/9/2026
			18002650-20-		
			10P		
Т8	ANP00928	Cable	various	1/26/2024	1/26/2026

	ANP00929	Cable	various	1/26/2024	1/26/2026
Т9	ANP07698	Cable	32022-29094K-	8/16/2024	8/16/2026
			29094K-72TC		
	AN03011	Cable	32022-2-2909K-	3/23/2023	3/23/2025
			24TC		
	AN03209	Preamp	83051A	8/22/2023	8/22/2025
	ANP07646	High Pass Filter	11SH10-	11/5/2024	11/5/2026
			6000/T1800-		
			0/0		
	AN02695	Active Horn	AMFW-5F-	1/9/2024	1/9/2026
		Antenna	260400-33-8P		
	ANP00930	Cable	various	1/26/2024	1/26/2026
T10	ANP07365	Attenuator	54A-10	5/26/2023	5/26/2025

#	rement Data: Freq	Rdng	T1	ted by ma T2	T3	T4	Dist	Corr	e: 3 Meters Spec	Margin	Polar
π	iicq	Rung	T5	T6	T7	T8	Dist	Coll	Spee	wiaigin	1 0141
			T9	T10	17	10					
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	2200.000M	36.5	+28.2	+1.3	+2.4	-27.2	+0.0	51.9	54.0	-2.1	Horiz
			+0.8	+0.0	+0.0	+0.0					
			+0.0	+9.9							
2	1600.000M	38.1	+26.1	+1.1	+2.0	-28.0	+0.0	49.8	54.0	-4.2	Horiz
			+0.6	+0.0	+0.0	+0.0					
			+0.0	+9.9							
3	2392.000M	47.7	+28.3	+1.3	+2.5	-27.1	+0.0	63.4	68.2	-4.8	Vert
			+0.8	+0.0	+0.0	+0.0					
			+0.0	+9.9							
4	1196.000M	39.1	+24.8	+0.9	+1.7	-28.5	+0.0	48.5	54.0	-5.5	Horiz
			+0.6	+0.0	+0.0	+0.0					
			+0.0	+9.9							
5	11440.000	17.9	+39.4	+3.2	+5.9	-29.9	+0.0	48.2	54.0	-5.8	Horiz
	М		+1.7	+0.0	+0.0	+0.0					
	Ave		+0.0	+10.0							
^	11440.000	30.1	+39.4	+3.2	+5.9	-29.9	+0.0	60.4	54.0	+6.4	Horiz
	М		+1.7	+0.0	+0.0	+0.0					
			+0.0	+10.0							
7	11440.000	17.8	+39.4	+3.2	+5.9	-29.9	+0.0	48.1	54.0	-5.9	Vert
	М		+1.7	+0.0	+0.0	+0.0					
	Ave	a a (+0.0	+10.0		• • • •					
~	11440.000	30.4	+39.4	+3.2	+5.9	-29.9	+0.0	60.7	54.0	+6.7	Vert
	М		+1.7	+0.0	+0.0	+0.0					
0	2102 00014	45.0	+0.0	+10.0	. 0. 4	27.2	. 0. 0	(1.0	(0.0	7.0	X 7 4
9	2192.000M	45.8	+28.2	+1.3	+2.4	-27.2	+0.0	61.2	68.2	-7.0	Vert
			+0.8	+0.0	+0.0	+0.0					
10	15020.000	165	+0.0	+9.9		10.0	10.0	41.0	54.0	-12.2	IIania
10	15939.000 M	46.5	+0.0	+0.0	+0.0	+0.0	+0.0	41.8	54.0	-12.2	Horiz
	IVI		+0.0	+5.7	-14.2	+0.5					
11	2992.000M	25.0	+3.3	+0.0	120	267	+0.0	511	68.2	-13.8	Vert
11	2992.000M	35.9	+30.1 +0.9	$^{+1.5}_{+0.0}$	+2.8 +0.0	-26.7 +0.0	+0.0	54.4	08.2	-15.8	ven
					± 0.0	+0.0					
10	16056.000	44.6	+0.0 +0.0	+9.9 +0.0	+0.0	+0.0	+0.0	39.8	54.0	-14.2	Vert
12	10030.000 M	44.0	$^{+0.0}_{+0.0}$	+0.0 +5.7	+0.0 -14.4	+0.0 +0.5	± 0.0	39.0	54.0	-14.2	ven
	141		+0.0 +3.4	+0.0	17.4	10.5					
13	13257.000	45.2	+0.0	+0.0	+0.0	+0.0	+0.0	39.3	54.0	-14.7	Horiz
15	13237.000 M	73.2	+0.0 +0.0	+5.1	-14.6	+0.0 $+0.5$	10.0	57.5	54.0	17./	11011
	1.1		+3.1	+0.0	11.0	10.5					
14	1024.000M	29.4	+24.3	+1.0	+1.6	-28.7	+0.0	38.0	54.0	-16.0	Vert
	Ave	27.4	+0.6	+0.0	+0.0	+0.0	10.0	50.0	5 1.0	10.0	1011
			+0.0	+9.8	. 0.0	. 0.0					
۸	1024.000M	47.4	+24.3	+1.0	+1.6	-28.7	+0.0	56.0	54.0	+2.0	Vert
		.,	+0.6	+0.0	+0.0	+0.0	. 0.0	2010	2 110	. 2.0	1 011
			+0.0	+9.8							

16 1596.000M	23.1	+26.1	+1.1	+2.0	-28.0	+0.0	34.8	54.0	-19.2	Vert
Ave		+0.6	+0.0	+0.0	+0.0					
		+0.0	+9.9							
^ 1596.000M	42.2	+26.1	+1.1	+2.0	-28.0	+0.0	53.9	54.0	-0.1	Vert
		+0.6	+0.0	+0.0	+0.0					
		+0.0	+9.9							

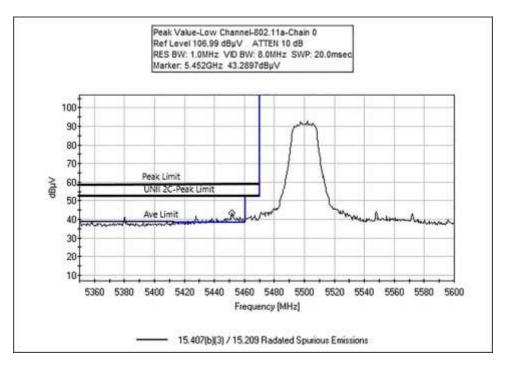
Band Edge

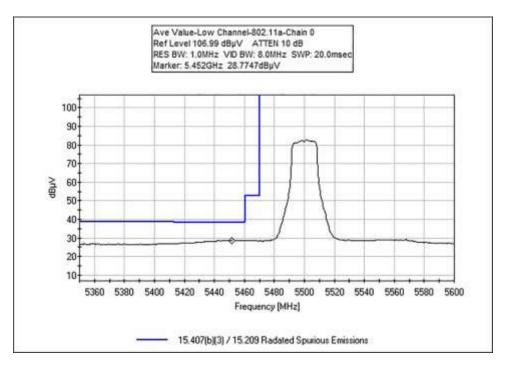
	Band Edge Summary-Chain 0								
Frequency	Modulation	Ant. Type /	Aver (dBuV/n	•	Pea (dBuV/n	Results			
(MHz)		Gain (dBi)	Measured	Limit	Measured	Limit			
5451.7*	802.11a	External/4.66	44.3	≤54	58.8	≤74	Pass		
5925	802.11a	External/4.66	NA2	NA2	53.5	<68.2	Pass		
5452*	802.11n HT20	External/4.66	44.3	≤54	57.5	≤74	Pass		
5925	802.11n HT20	External/4.66	NA2	NA2	54.0	<68.2	Pass		
5452*	802.11ac 20MHz	External/4.66	44.6	≤54	58.1	≤74	Pass		
5925	802.11ac 20MHz	External/4.66	NA2	NA2	53.3	<68.2	Pass		
5390.2*	802.11n HT40	External/4.66	42.4	≤54	59.6	≤74	Pass		
5925	802.11n HT40	External/4.66	NA2	NA2	53.6	<68.2	Pass		
5390.2*	802.11ac 40MHz	External/4.66	42.3	≤54	59.1	≤74	Pass		
5925	802.11ac 40MHz	External/4.66	NA2	NA2	53.2	<68.2	Pass		
5409.7*	802.11ac 80MHz	External/4.66	43.4	≤54	61.6	≤74	Pass		
5925	802.11ac 80MHz	External/4.66	NA2	NA2	53.0	<68.2	Pass		

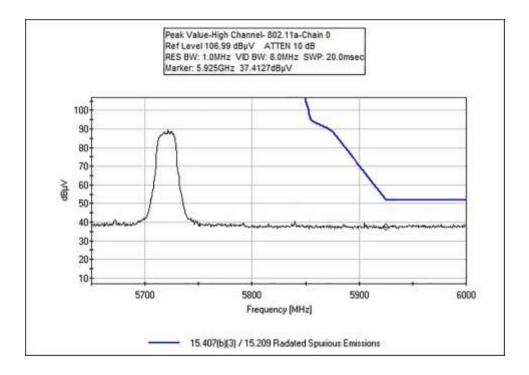
	Band Edge Summary-Chain 1								
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Aver (dBuV/n	•	Pea (dBuV/m	Results			
(10112)		Gaill (UDI)	Measured	Limit	Measured	Limit			
5460*	802.11a	External/4.66	43.8	≤54	54	≤74	Pass		
5925	802.11a	External/4.66	NA2	NA2	53.1	<68.2	Pass		
5460*	802.11n HT20	External/4.66	44.1	≤54	53.3	≤74	Pass		
5925	802.11n HT20	External/4.66	NA2	NA2	53.4	<68.2	Pass		
5460*	802.11ac 20MHz	External/4.66	44.0	≤54	54.3	≤74	Pass		
5925	802.11ac 20MHz	External/4.66	NA2	NA2	52.9	<68.2	Pass		
5460*	802.11n HT40	External/4.66	44.1	≤54	55.3	≤74	Pass		
5925	802.11n HT40	External/4.66	NA2	NA2	53.4	<68.2	Pass		
5460*	802.11ac 40MHz	External/4.66	44.1	≤54	54.8	≤74	Pass		
5925	802.11ac 40MHz	External/4.66	NA2	NA2	52.7	<68.2	Pass		
5460*	802.11ac 80MHz	External/4.66	44.7	≤54	55.6	≤74	Pass		
5925	802.11ac 80MHz	External/4.66	NA2	NA2	53.3	<68.2	Pass		

*Restricted band edge

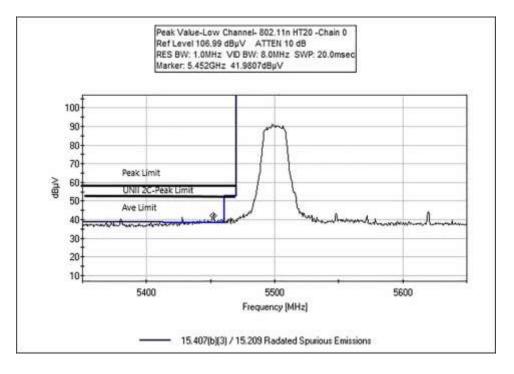
** Devices which have OBW extending into 5725-5850 are allowed to meet BE limits at 5850 MHz.

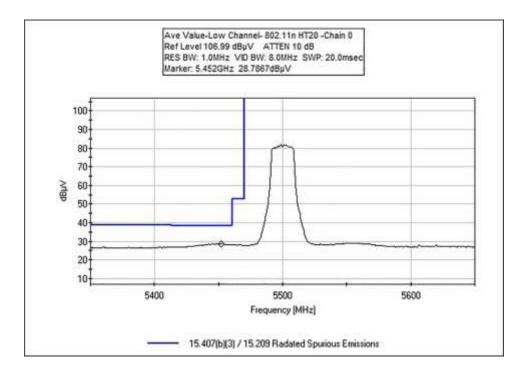

Notes:

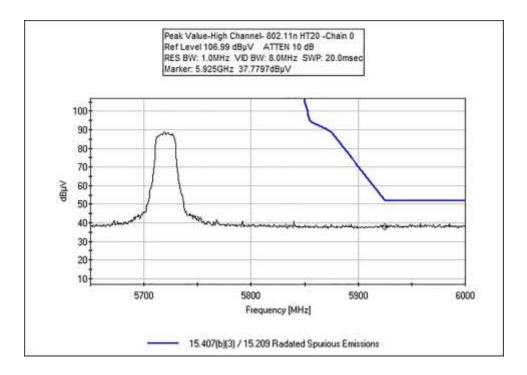

NA2 Average limit not applicable when applying -27dBm/MHz limit.	
--	--


Band Edge Plots

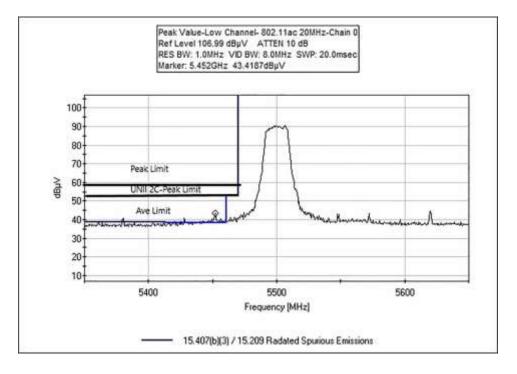
<u>Chain 0</u> 802.11a

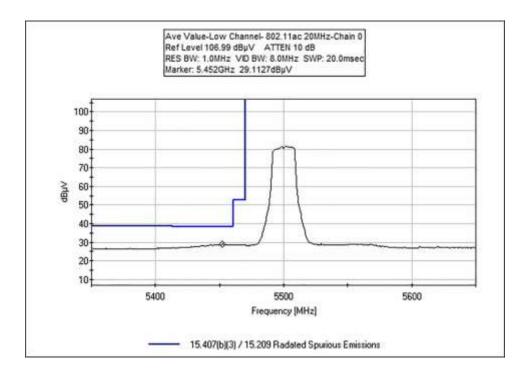


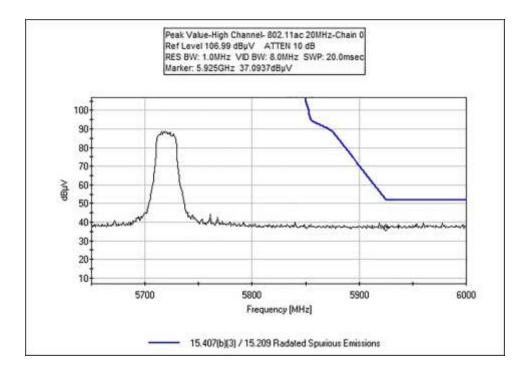




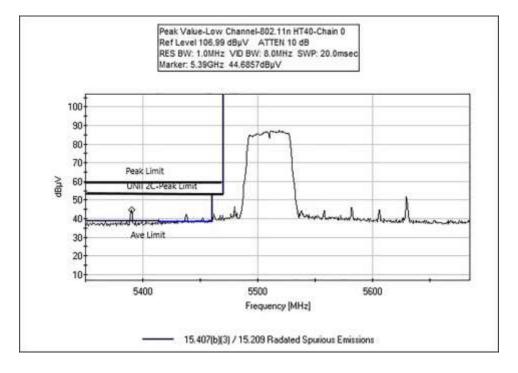
802.11n HT20

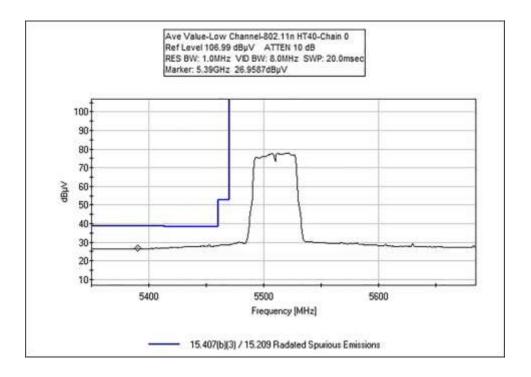


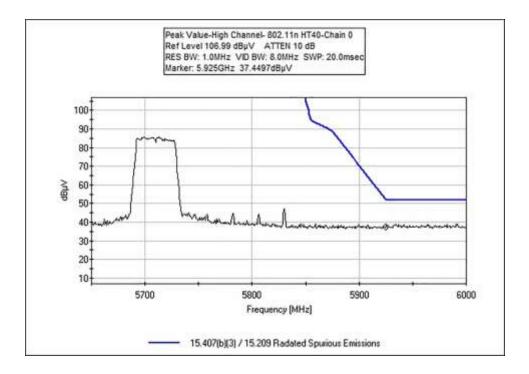




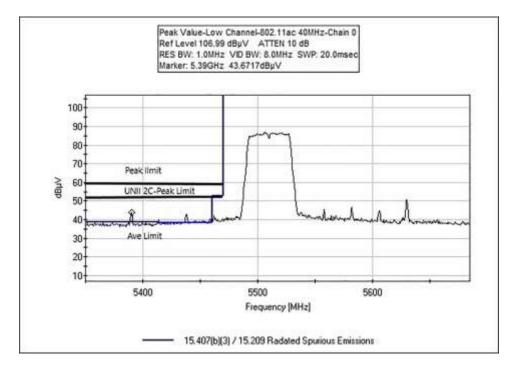
802.11ac 20MHz

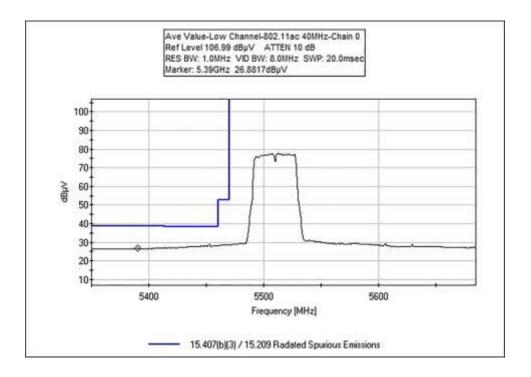


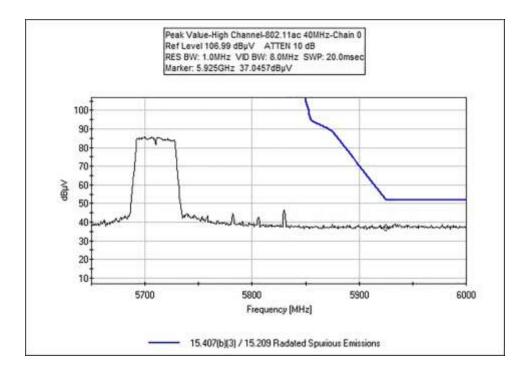




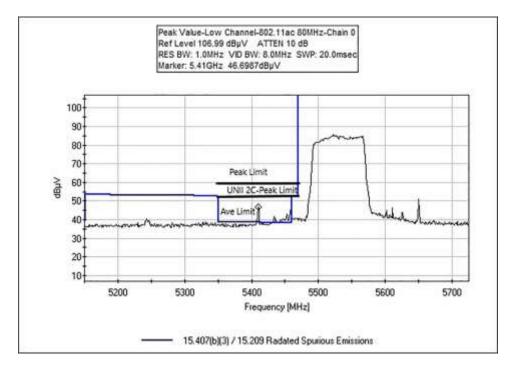
802.11 n HT40

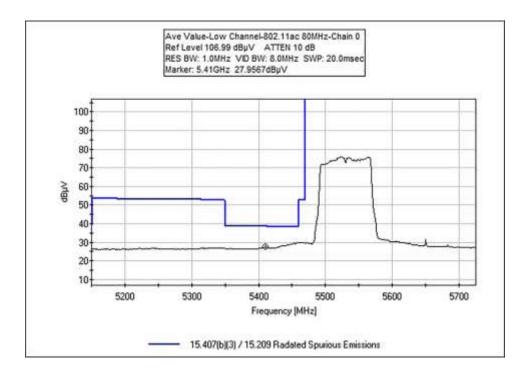


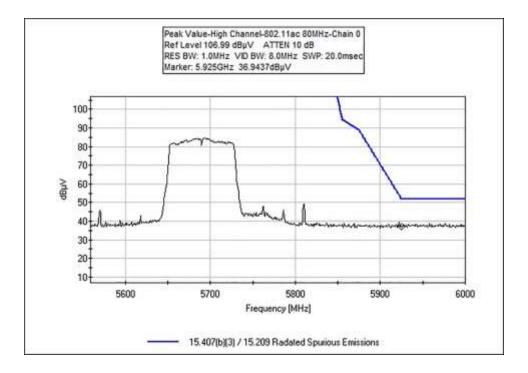




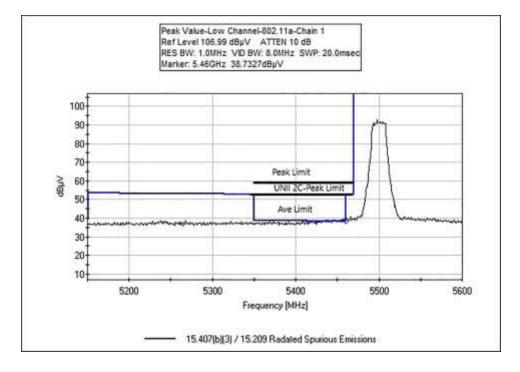
802.11ac 40MHz

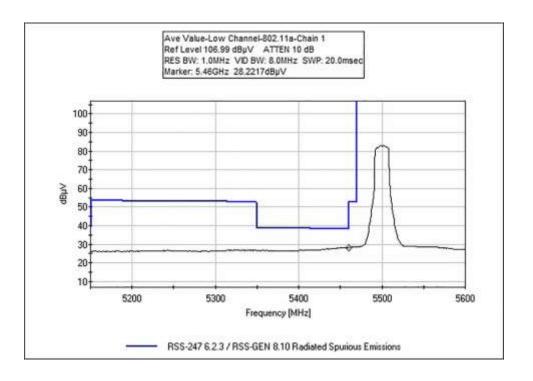


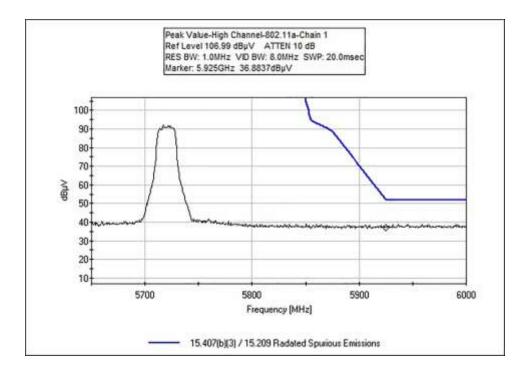




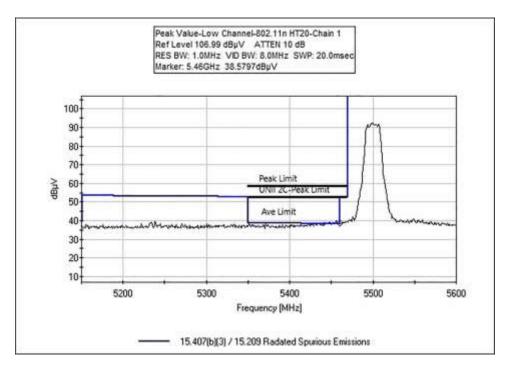
802.11ac 80MHz

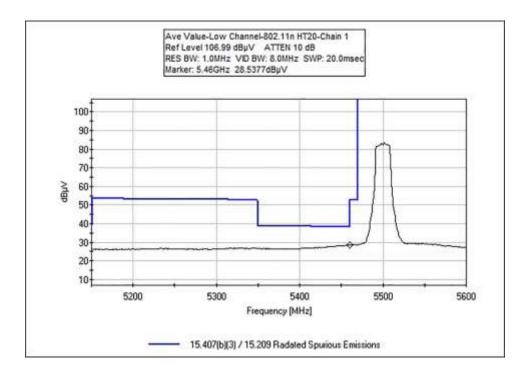


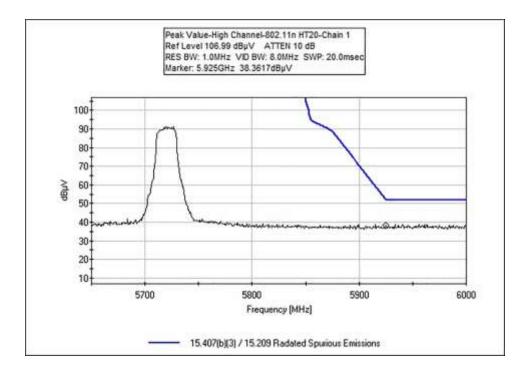




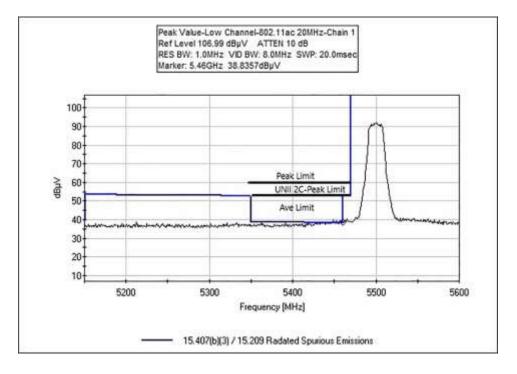
<u>Chain 1</u> 802.11a

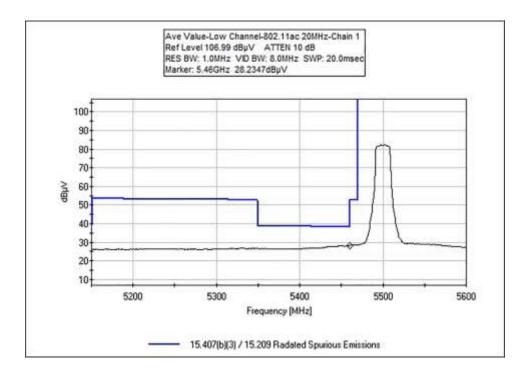


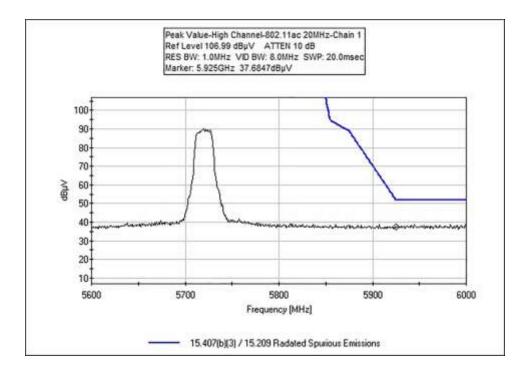




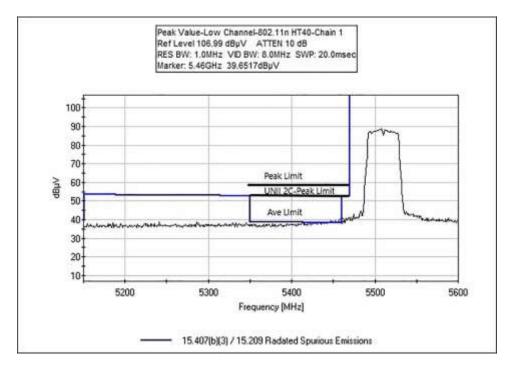
802.11n HT20

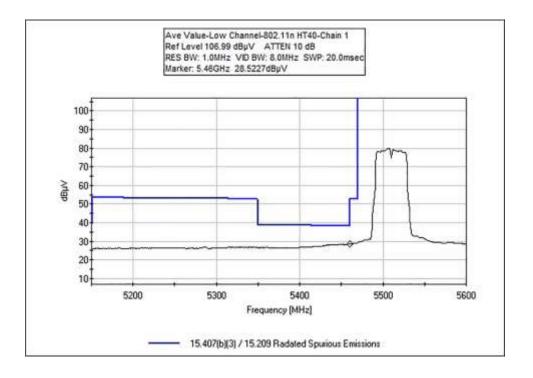


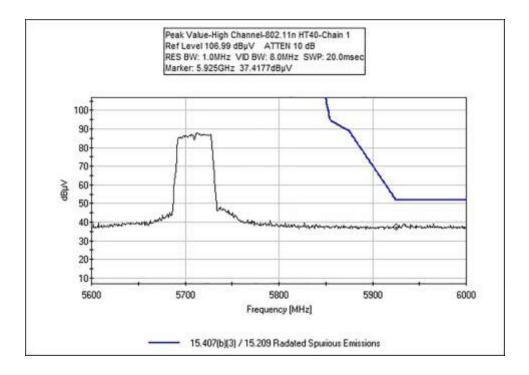




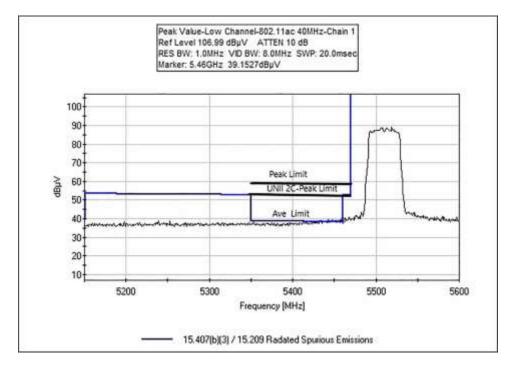
802.11ac 20MHz

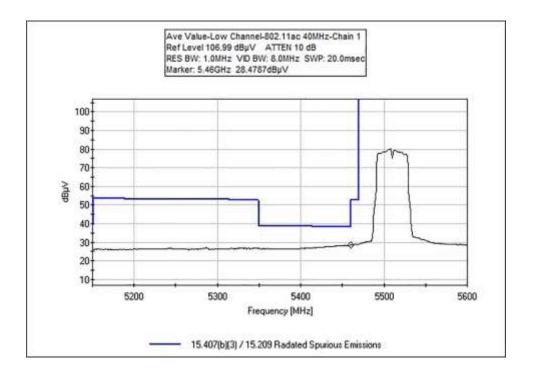


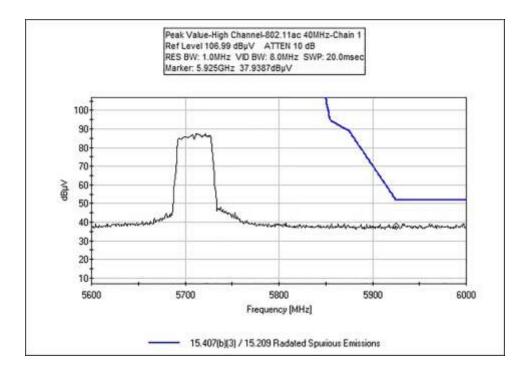




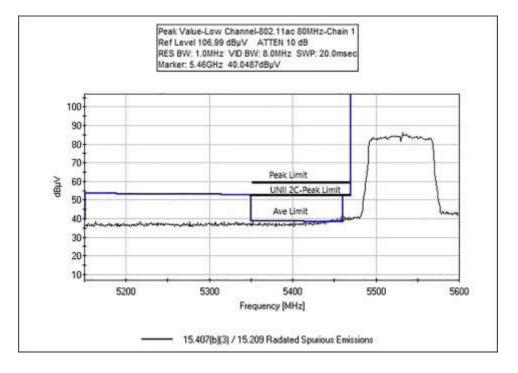
802.11 n HT40

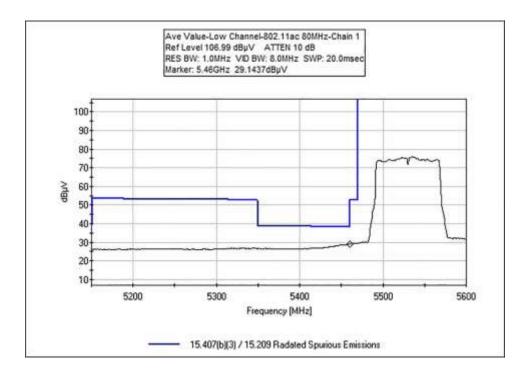


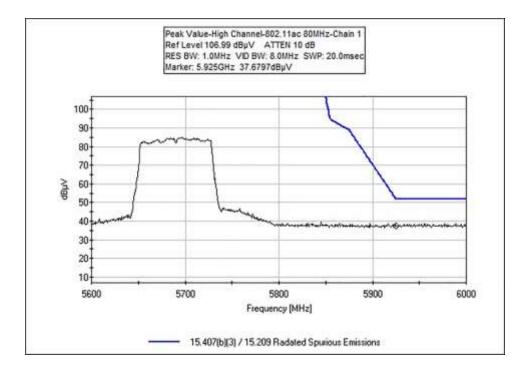




802.11ac 40MHz







802.11ac 80MHz

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc. • 1120 Fulton Pl	• Fremont, CA	94539 • (510) 249-1170
Customer:	Tonal		
Specification:	Band Edge		
Work Order #:	110285	Date:	10/31/2024
Test Type:	Radiated Scan	Time:	09:09:17
Tested By:	Hieu Song Nguyenpham	Sequence#:	16
Software:	EMITest 5.03.20		

Equipment Tested:

Device	Manufacturer	Model #	S/N				
Configuration 1							
Support Equipment	:						
Device	Manufacturer	Model #	S/N				
Configuration 1							
Test Conditions / N	otes:						
Band Edge							
Test Environment C							
Temperature: 21.8°C	2						
Humidity: 47%							
Atmospheric Pressur	re: 101.5kPa						
Lichast Constant I	Section of the sectio						
U	Frequency: 5.825GHz						
Test Method: ANSI	C63.10 (2020), KDB 789033						
The unit is mounted	to a floor standing rack as to s	imulate typical wall mor	unted setup. One weight line is extended				
	The unit is mounted to a floor standing rack as to simulate typical wall mounted setup. One weight line is extended to the floor. Camera is on.						
Note:							
Chain 0							

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date	
T1	AN02157	Horn Antenna-ANSI C63.5	3115	1/11/2023	1/11/2025	
T2	AN03302	Cable	32026-29094K-	1/9/2024	1/9/2026	
			29094K-72TC			
Т3	ANP01210	Cable	FSJ1P-50A-4A	1/9/2024	1/9/2026	
T4	AN02810	Preamp	83051A	4/6/2023	4/6/2025	
T5	AN03013	Cable	32022-2-2909K-	1/9/2024	1/9/2026	
			36TC			
	AN02660	Spectrum Analyzer	E4446A	12/6/2022	12/6/2024	

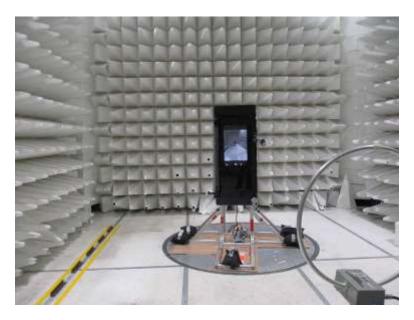
Measu	irement Data:	: Reading listed by order taken.				Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dBµV	dB	dB	dB	dB			dBµV/m	dB	Ant
1	5451.700M	43.3	+34.7	+2.2	+3.8	-26.4	+0.0	58.8	54.0	+4.8	Horiz
			+1.2						802.11a		
2	5451.700M	28.8	+34.7	+2.2	+3.8	-26.4	+0.0	44.3	54.0	-9.7	Horiz
	Ave		+1.2		• •				802.11a		
3	5925.000M	37.3	+34.9	+2.3	+3.9	-26.2	+0.0	53.5	68.2	-14.7	Horiz
4	5025 00014	27.0	+1.3		.2.0	26.2	. 0. 0	54.0	802.11a	14.0	TT ·
4	5925.000M	37.8	+34.9	+2.3	+3.9	-26.2	+0.0	54.0	68.2	-14.2	Horiz
5	5452.000M	42.0	+1.3 +34.7	+2.2	+3.8	-26.4	+0.0	57.5	802.11n H 54.0	+3.5	Horiz
3	3432.000M	42.0	+54.7	+2.2	+3.8	-20.4	+0.0	57.5	54.0 802.11n H		HOUTZ
6	5452.000M	28.8	+1.2 +34.7	+2.2	+3.8	-26.4	+0.0	44.3	54.0	-9.7	Horiz
0	Ave	20.0	+34.7 +1.2	+2.2	+3.0	-20.4	± 0.0	44.5	802.11n H		TIOUZ
7	5452.000M	42.6	+34.7	+2.2	+3.8	-26.4	+0.0	58.1	54.0	+4.1	Horiz
,	5152.000101	12.0	+1.2	12.2	15.0	20.1	10.0	50.1	802.11ac 2		HOHE
8	5452.000M	29.1	+34.7	+2.2	+3.8	-26.4	+0.0	44.6	54.0	-9.4	Horiz
_	Ave		+1.2						802.11ac 2	0MHz	-
9	5925.000M	37.1	+34.9	+2.3	+3.9	-26.2	+0.0	53.3	68.2	-14.9	Horiz
			+1.3						802.11ac 2	0MHz	
10	5925.000M	37.4	+34.9	+2.3	+3.9	-26.2	+0.0	53.6	68.2	-14.6	Horiz
			+1.3						802.11n H	Г40	
11	5390.200M	44.2	+34.6	+2.2	+3.8	-26.4	+0.0	59.6	54.0	+5.6	Horiz
			+1.2						802.11n H	Г40	
12	5390.200M	27.0	+34.6	+2.2	+3.8	-26.4	+0.0	42.4	54.0	-11.6	Horiz
	Ave		+1.2						802.11n H		
13	5390.200M	43.7	+34.6	+2.2	+3.8	-26.4	+0.0	59.1	54.0	+5.1	Horiz
	50 00 0 00 6	2.6.0	+1.2		2.0	264		12.2	802.11ac 4		
14	5390.200M	26.9	+34.6	+2.2	+3.8	-26.4	+0.0	42.3	54.0	-11.7	Horiz
1.5	Ave	27.0	+1.2		2.0	26.2	0.0	52.2	802.11ac 4		
15	5925.000M	37.0	+34.9	+2.3	+3.9	-26.2	+0.0	53.2	68.2	-15.0	Horiz
16	5925.000M	36.8	+1.3 +34.9	+2.3	+3.9	-26.2	+0.0	53.0	802.11ac 4 68.2	-15.2	Horiz
10	3923.000M	50.8	+54.9	+2.3	+3.9	-20.2	+0.0	55.0	802.11ac 8		HOUTZ
17	5409.700M	46.2	+1.3 +34.6	+2.2	+3.8	-26.4	+0.0	61.6	54.0	+7.6	Horiz
1/	J+07.700WI	40.2	+34.0 +1.2	+2.2	+3.8	-20.4	± 0.0	01.0	802.11ac 8		TIOUZ
18	5409.700M	28.0	+34.6	+2.2	+3.8	-26.4	+0.0	43.4	54.0	-10.6	Horiz
10	Ave	20.0	+34.0 +1.2	1 2.2	10.0	20.4	10.0	T. . T	802.11ac 8		110112
L			1 1 1 2						55 2.1140 0	····	

Test Location:	CKC Laboratories, Inc. •	1120 Fulton Pl • Fremont, CA 9	94539 • (510) 249-1170
Customer:	Tonal		
Specification:	Band Edge		
Work Order #:	110285	Date:	10/31/2024
Test Type:	Radiated Scan	Time:	14:42:27
Tested By:	Hieu Song Nguyenpham	Sequence#:	19
Software:	EMITest 5.03.20	-	

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			
Support Equipmen	:		
Device	Manufacturer	Model #	S/N
Configuration 1			
Test Conditions / N	otes:		
Band Edge			
	C re: 101.5kPa Frequency: 5.825GHz		
Test Method: ANSI	C63.10 (2020), KDB 789033		
	-	imulate typical wall mo	unted setup. One weight line is extended
to the floor. Camera	is on.		
Note:			
Chain 1			

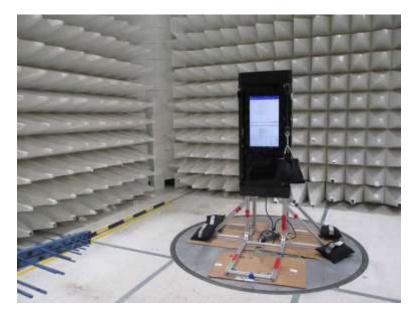
Test Equipment:


ID	Asset #	Description	Model	Calibration Date	Cal Due Date	
T1	AN02157	Horn Antenna-ANSI C63.5	3115	1/11/2023	1/11/2025	
T2	AN03302	Cable	32026-29094K-	1/9/2024	1/9/2026	
			29094K-72TC			
Т3	ANP01210	Cable	FSJ1P-50A-4A	1/9/2024	1/9/2026	
T4	AN02810	Preamp	83051A	4/6/2023	4/6/2025	
T5	AN03013	Cable	32022-2-2909K-	1/9/2024	1/9/2026	
			36TC			
	AN02660	Spectrum Analyzer	E4446A	12/6/2022	12/6/2024	

Measu	rement Data:	Reading listed by order taken.			r taken.	Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	NUT		T5	ID	ID	ID	T 11			ID	. .
1	MHz	dBµV	dB	dB	dB	dB			dBµV/m	dB	Ant
1	5460.000M	38.4	+34.7	+2.2	+3.8	-26.3	+0.0	54.0	54.0	+0.0	Horiz
	5460.000M	28.2	+1.2 +34.7	+2.2	+3.8	-26.3	+0.0	43.8	802.11a 54.0	-10.2	Horiz
2		28.2	+34.7 +1.2	+2.2	+3.8	-20.3	+0.0	43.8	54.0 802.11a	-10.2	HOUT
2	Ave 5925.000M	36.9	+1.2 +34.9	+2.3	+3.9	-26.2	+0.0	53.1	68.2	-15.1	Horiz
5	3923.000M	50.9	+34.9	+2.3	+3.9	-20.2	+0.0	55.1	802.11a	-13.1	HOLIZ
4	5925.000M	37.2	+34.9	+2.3	+3.9	-26.2	+0.0	53.4	68.2	-14.8	Horiz
			+1.3						802.11n H		
5	5460.000M	37.7	+34.7	+2.2	+3.8	-26.3	+0.0	53.3	54.0	-0.7	Horiz
			+1.2						802.11n H	Г20	
6	5460.000M	28.5	+34.7	+2.2	+3.8	-26.3	+0.0	44.1	54.0	-9.9	Horiz
	Ave		+1.2						802.11n H	Г20	
7	5460.000M	38.7	+34.7	+2.2	+3.8	-26.3	+0.0	54.3	54.0	+0.3	Horiz
			+1.2						802.11ac 2	0MHz	
8	5460.000M	28.4	+34.7	+2.2	+3.8	-26.3	+0.0	44.0	54.0	-10.0	Horiz
	Ave		+1.2						802.11ac 2	0MHz	
9	5925.000M	36.7	+34.9	+2.3	+3.9	-26.2	+0.0	52.9	68.2	-15.3	Horiz
			+1.3						802.11ac 2		
10	5460.000M	39.7	+34.7	+2.2	+3.8	-26.3	+0.0	55.3	54.0	+1.3	Horiz
			+1.2						802.11n H		
11	5460.000M	28.5	+34.7	+2.2	+3.8	-26.3	+0.0	44.1	54.0	-9.9	Horiz
	Ave		+1.2						802.11n H		
12	5925.000M	37.2	+34.9	+2.3	+3.9	-26.2	+0.0	53.4	68.2	-14.8	Horiz
-			+1.3						802.11n H		
13	5925.000M	36.5	+34.9	+2.3	+3.9	-26.2	+0.0	52.7	68.2	-15.5	Horiz
			+1.3		• •				802.11ac 4		
14	5460.000M	39.2	+34.7	+2.2	+3.8	-26.3	+0.0	54.8	54.0	+0.8	Horiz
1.5	5 460,000) (20.5	+1.2		2.0	26.2	0.0	44.1	802.11ac 4		
15	5460.000M	28.5	+34.7	+2.2	+3.8	-26.3	+0.0	44.1	54.0	-9.9	Horiz
1.0	Ave	40.0	+1.2	10.0	12.0	26.2		55 (802.11ac 4		Haria
10	5460.000M	40.0	+34.7 +1.2	+2.2	+3.8	-26.3	+0.0	55.6	54.0 802.11ac 8	+1.6 0MHz	Horiz
17	5460.000M	29.1	+34.7	+2.2	+3.8	-26.3	+0.0	44.7	54.0	-9.3	Horiz
1,	2.00.00000	27.1	+1.2	. 2.2	. 510	-0.5	. 0.0		802.11ac 8		
18	5925.000M	37.1	+34.9	+2.3	+3.9	-26.2	+0.0	53.3	68.2	-14.9	Horiz
			+1.3						802.11ac 8	0MHz	

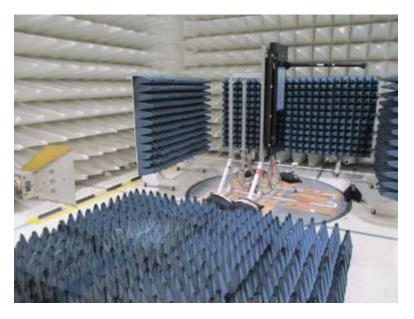
Test Setup Photo(s)

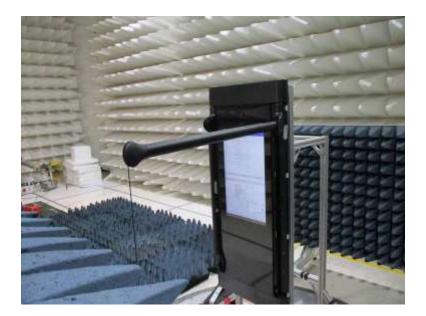
<u>9kHz-1GHz</u>


Front View

Back View

30MHz-1GHz


Front View


Back View

1GHz-12GHz

Front View

Back View

12GHz-40GHz

Front View

Back View

15.207 AC Conducted Emissions

Test Data

Test Location:	CKC Laboratories, Inc. • 1120 Fulton Pl	• Fremont, CA 9	94539 • (510) 249-1170
Customer:	Tonal		
Specification:	15.207 AC Mains - Average		
Work Order #:	110285	Date:	10/17/2024
Test Type:	Conducted Emissions	Time:	13:46:52
Tested By:	Hieu Song Nguyenpham	Sequence#:	170
Software:	EMITest 5.03.20		120V 60Hz

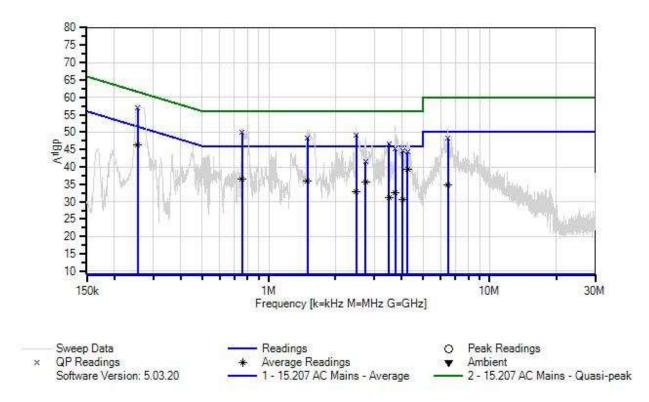
Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				
Test Conditions / Notes:				

Conducted Emission Frequency Range: 150kHz to 30MHz

Test Environment Conditions: Temperature: 21.6°C Humidity: 49% Atmospheric Pressure: 101.4kPa


Highest Generation Frequency: 5.825GHz Test Method: ANSI C63.10 (2020)

The unit is mounted to a floor standing rack as to simulate typical wall mounted setup. It is set in a testing mode, lifting a weight on a loop. Video and Camera are On All WIFI and Bluetooth modules are on

Modification #1 was in place during testing.

Tonal WO#: 110285 Sequence#: 170 Date: 11/06/2024 15.207 AC Mains - Average Test Lead: 120V 60Hz Line

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP01211	Attenuator	23-10-34	12/2/2022	12/2/2024
T2	ANP00880	Cable	RG214U	3/26/2024	3/26/2026
Т3	ANP06691	Cable	PE3062-180	3/20/2024	3/20/2026
T4	AN03814	50uH LISN-1PH- Line (dB)	NSLK 8126	1/4/2023	1/4/2025
	AN03814	50uH LISN-1PH- Neutral (dB)	NSLK 8126	1/4/2023	1/4/2025
	AN02660	Spectrum Analyzer	E4446A	12/6/2022	12/6/2024
T5	ANP05258	High Pass Filter	HE9615-150K- 50-720B	5/6/2024	5/6/2026

	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: Line		
#	Freq	Rdng	T1 T5	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	254.718k	46.8	+9.9	+0.1	+0.0	+0.0	+0.0	56.9	61.6	-4.7	Line
	QP		+0.1								
2	254.718k	36.2	+9.9	+0.1	+0.0	+0.0	+0.0	46.3	51.6	-5.3	Line
	Ave		+0.1								
۸	254.718k	48.1	+9.9	+0.1	+0.0	+0.0	+0.0	58.2	51.6	+6.6	Line
			+0.1								
4	758.671k	39.7	+9.9	+0.1	+0.0	+0.1	+0.0	50.0	56.0	-6.0	Line
	QP	20.0	+0.2	.0.0	.0.1	.0.1	.0.0	20.4	16.0		T ·
5	4.237M	29.0	+9.9	+0.2	+0.1	+0.1	+0.0	39.4	46.0	-6.6	Line
6	Ave 2.485M	39.0	+0.1 +9.9	+0.1	+0.0	+0.1		49.2	56.0	-6.8	Line
	QP	59.0	+9.9 +0.1	± 0.1	+0.0	+0.1	+0.0	49.2	30.0	-0.8	Line
7		38.2	+9.9	+0.1	+0.0	+0.1	+0.0	48.4	56.0	-7.6	Line
	QP	50.2	+0.1	10.1	10.0	10.1	10.0	-10 - 1	50.0	-7.0	Line
8	3.501M	36.2	+9.9	+0.2	+0.1	+0.1	+0.0	46.6	56.0	-9.4	Line
	QP	2012	+0.1						0010	2	2
9	-	26.2	+9.9	+0.1	+0.0	+0.1	+0.0	36.5	46.0	-9.5	Line
	Ave		+0.2								
۸	758.671k	41.9	+9.9	+0.1	+0.0	+0.1	+0.0	52.2	46.0	+6.2	Line
			+0.2								
11	1.494M	25.7	+9.9	+0.1	+0.0	+0.1	+0.0	35.9	46.0	-10.1	Line
	Ave		+0.1								
۸	1.494M	41.0	+9.9	+0.1	+0.0	+0.1	+0.0	51.2	46.0	+5.2	Line
			+0.1								
13	2.744M	25.6	+9.9	+0.1	+0.0	+0.1	+0.0	35.8	46.0	-10.2	Line
	Ave		+0.1		0.1	0.1		1 7 1		10.0	
14	3.739M	34.7	+9.9	+0.2	+0.1	+0.1	+0.0	45.1	56.0	-10.9	Line
	QP 4.041M	24.1	+0.1	.0.2	.0.1	.0.1	.0.0	445	560	11 5	T
15	4.041M QP	34.1	+9.9	+0.2	+0.1	+0.1	+0.0	44.5	56.0	-11.5	Line
16	4.237M	33.9	+0.1 +9.9	+0.2	+0.1	+0.1	+0.0	44.3	56.0	-11.7	Line
	QP	55.9	+9.9 +0.1	± 0.2	± 0.1	± 0.1	± 0.0	44.5	50.0	-11./	Line
٨	4.237M	41.2	+9.9	+0.2	+0.1	+0.1	+0.0	51.6	46.0	+5.6	Line
	1.237101	11.2	+0.1	10.2	10.1	10.1	10.0	51.0	10.0	15.0	Line
18	6.463M	37.8	+9.9	+0.2	+0.1	+0.1	+0.0	48.2	60.0	-11.8	Line
-	QP	27.0	+0.1			1					
19	-	22.7	+9.9	+0.1	+0.0	+0.1	+0.0	32.9	46.0	-13.1	Line
	Ave		+0.1								
۸		41.1	+9.9	+0.1	+0.0	+0.1	+0.0	51.3	46.0	+5.3	Line
			+0.1								
21	3.739M	22.2	+9.9	+0.2	+0.1	+0.1	+0.0	32.6	46.0	-13.4	Line
	Ave		+0.1								
۸	3.739M	42.0	+9.9	+0.2	+0.1	+0.1	+0.0	52.4	46.0	+6.4	Line
			+0.1								

23	2.744M	31.3	+9.9	+0.1	+0.0	+0.1	+0.0	41.5	56.0	-14.5	Line
Ç)P		+0.1								-
^	2.744M	36.6	+9.9	+0.1	+0.0	+0.1	+0.0	46.8	46.0	+0.8	Line
			+0.1								
25	3.501M	20.9	+9.9	+0.2	+0.1	+0.1	+0.0	31.3	46.0	-14.7	Line
A	ve		+0.1								
^	3.501M	39.8	+9.9	+0.2	+0.1	+0.1	+0.0	50.2	46.0	+4.2	Line
			+0.1								
27	6.463M	24.3	+9.9	+0.2	+0.1	+0.1	+0.0	34.7	50.0	-15.3	Line
A	ve		+0.1								
^	6.463M	41.7	+9.9	+0.2	+0.1	+0.1	+0.0	52.1	50.0	+2.1	Line
			+0.1								
29	4.041M	20.2	+9.9	+0.2	+0.1	+0.1	+0.0	30.6	46.0	-15.4	Line
A	ve		+0.1								
^	4.041M	39.1	+9.9	+0.2	+0.1	+0.1	+0.0	49.5	46.0	+3.5	Line
			+0.1								

Test Location: Customer:	Tonal	lton Pl • Fremont, CA 94539 • (510) 249-1170	
Specification:	15.207 AC Mains - Average		
Work Order #:	110285	Date: 10/17/2024	
Test Type:	Conducted Emissions	Time: 14:16:33	
Tested By:	Hieu Song Nguyenpham	Sequence#: 171	
Software:	EMITest 5.03.20	120V 60Hz	

Equipment Tested:

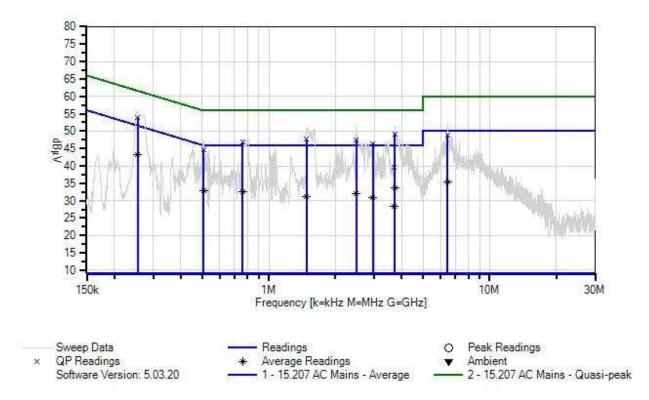
Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Fauinment:				

Support Equipment:			
Device	Manufacturer	Model #	S/N
Configuration 1			

Test Conditions / Notes:

Conducted Emission Frequency Range: 150kHz to 30MHz

Test Environment Conditions: Temperature: 21.6°C Humidity: 49% Atmospheric Pressure: 101.4kPa


Highest Generation Frequency: 5.825GHz Test Method: ANSI C63.10 (2020)

The unit is mounted to a floor standing rack as to simulate typical wall mounted setup. It is set in a testing mode, lifting a weight on a loop. Video and Camera are On All WIFI and Bluetooth modules are on

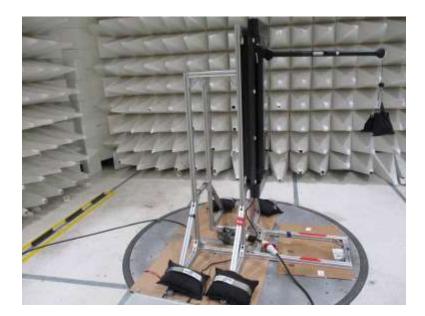
Modification #1 was in place during testing.

Tonal WO#: 110285 Sequence#: 171 Date: 11/06/2024 15.207 AC Mains - Average Test Lead: 120V 60Hz Neutral

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP01211	Attenuator	23-10-34	12/2/2022	12/2/2024
T2	ANP00880	Cable	RG214U	3/26/2024	3/26/2026
Т3	ANP06691	Cable	PE3062-180	3/20/2024	3/20/2026
	AN03814	50uH LISN-1PH- Line (dB)	NSLK 8126	1/4/2023	1/4/2025
T4	AN03814	50uH LISN-1PH- Neutral (dB)	NSLK 8126	1/4/2023	1/4/2025
	AN02660	Spectrum Analyzer	E4446A	12/6/2022	12/6/2024
T5	ANP05258	High Pass Filter	HE9615-150K- 50-720B	5/6/2024	5/6/2026

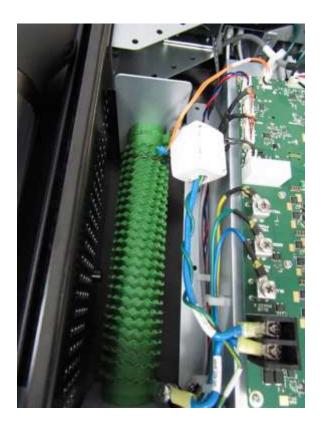
	rement Data:		eading lis			m 4	D · · ·		d: Neutral		. .
#	Freq	Rdng	T1 T5	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	3.722M	38.8	+9.9	+0.2	+0.1	+0.1	+0.0	49.2	56.0	-6.8	Neutr
	QP		+0.1								
2	255.445k	44.0	+9.8	+0.1	+0.0	+0.0	+0.0	54.0	61.6	-7.6	Neutr
	QP		+0.1								
3	255.445k	33.3	+9.8	+0.1	+0.0	+0.0	+0.0	43.3	51.6	-8.3	Neutr
	Ave		+0.1								
٨	255.445k	44.9	+9.8	+0.1	+0.0	+0.0	+0.0	54.9	51.6	+3.3	Neutr
			+0.1								
5	1.485M	37.4	+9.9	+0.1	+0.0	+0.1	+0.0	47.6	56.0	-8.4	Neutr
	QP		+0.1								
6	2.489M	37.3	+9.9	+0.1	+0.0	+0.1	+0.0	47.5	56.0	-8.5	Neutr
	QP		+0.1								
7		36.7	+9.9	+0.1	+0.0	+0.0	+0.0	46.9	56.0	-9.1	Neutr
	QP		+0.2	0.1	0.0					0.6	
8	2.961M	36.2	+9.9	+0.1	+0.0	+0.1	+0.0	46.4	56.0	-9.6	Neutr
	QP	20.5	+0.1		0.4	0.1	0.0	10.0	<u> </u>		
9	6.449M	38.5	+9.9	+0.2	+0.1	+0.1	+0.0	48.9	60.0	-11.1	Neutr
	QP	24.5	+0.1	0.1	0.0	0.0	0.0	447	560	11.0	N T .
10	506.032k	34.5	+9.9	+0.1	+0.0	+0.0	+0.0	44.7	56.0	-11.3	Neutr
	<u>QP</u>	22.2	+0.2	10.2	+0.1	+0.1		22.7	46.0	10.2	Nasata
11	3.722M	23.3	+9.9	+0.2	+0.1	+0.1	+0.0	33.7	46.0	-12.3	Neutr
^	Ave 2 722M	42.2	+0.1	10.2	+0.1	+0.1		52.6	46.0	16.6	Massár
~	3.722M	42.2	+9.9 +0.1	+0.2	+0.1	+0.1	+0.0	52.6	46.0	+6.6	Neutr
13	506.032k	22.6	+0.1 +9.9	+0.1	+0.0	+0.0	+0.0	32.8	46.0	-13.2	Neutr
	Ave	22.0	+9.9 +0.2	± 0.1	+0.0	+0.0	± 0.0	52.0	40.0	-13.2	neuu
^	506.032k	38.9	+0.2	+0.1	+0.0	+0.0	+0.0	49.1	46.0	+3.1	Neutr
	500.052K	50.7	+0.2	10.1	10.0	10.0	10.0	77.1	+0.0	13.1	iteuu
15	761.580k	22.4	+9.9	+0.1	+0.0	+0.0	+0.0	32.6	46.0	-13.4	Neutr
	Ave	22.7	+0.2	10.1	10.0	10.0	10.0	52.0	+0.0	-15.4	iteuu
^	761.580k	39.4	+9.9	+0.1	+0.0	+0.0	+0.0	49.6	46.0	+3.6	Neuti
	701.500K	57.1	+0.2	10.1	10.0	10.0	10.0	12.0	10.0	15.0	iteuu
17	2.489M	21.8	+9.9	+0.1	+0.0	+0.1	+0.0	32.0	46.0	-14.0	Neuti
	Ave	21.0	+0.1	10.1	10.0	10.1	10.0	52.0	10.0	1 1.0	iveuu
٨	2.489M	41.5	+9.9	+0.1	+0.0	+0.1	+0.0	51.7	46.0	+5.7	Neuti
			+0.1		1010			0117	1010		1.0000
19	6.449M	25.0	+9.9	+0.2	+0.1	+0.1	+0.0	35.4	50.0	-14.6	Neuti
	Ave		+0.1								
٨	6.449M	42.2	+9.9	+0.2	+0.1	+0.1	+0.0	52.6	50.0	+2.6	Neuti
			+0.1								
21	1.485M	21.0	+9.9	+0.1	+0.0	+0.1	+0.0	31.2	46.0	-14.8	Neuti
	Ave		+0.1								
٨	1.485M	41.5	+9.9	+0.1	+0.0	+0.1	+0.0	51.7	46.0	+5.7	Neuti
			+0.1								


23	2.961M	20.6	+9.9	+0.1	+0.0	+0.1	+0.0	30.8	46.0	-15.2	Neutr
A	ve		+0.1								
^	2.961M	38.9	+9.9	+0.1	+0.0	+0.1	+0.0	49.1	46.0	+3.1	Neutr
			+0.1								
25	3.705M	29.2	+9.9	+0.2	+0.1	+0.1	+0.0	39.6	56.0	-16.4	Neutr
Q)P		+0.1								
26	3.705M	17.9	+9.9	+0.2	+0.1	+0.1	+0.0	28.3	46.0	-17.7	Neutr
Ave			+0.1								
^	3.705M	39.7	+9.9	+0.2	+0.1	+0.1	+0.0	50.1	46.0	+4.1	Neutr
			+0.1								

Test Setup Photo(s)

Front View

Side View


APPENDIX A: MODIFICATIONS MADE DURING TESTING

This list is a summary of the conditions noted for or modifications made to the equipment during testing.

Summary of Conditions

Modification #1 (Mod#1) = Added a ferrite (Wurth: 742 712 21) on lower resistor wire. Green Resistor.

Modifications listed above must be incorporated into all production units.

Modification #1

Supplemental Information

Measurement Uncertainty

Uncertainty Value	Parameter	
5.77 dB	Radiated Emissions	
0.673 dB	RF Conducted Measurements	
5.77 x 10 ⁻¹⁰	Frequency Deviation	
0.00005 s	Time Deviation	
3.18 dB	Mains Conducted Emissions	

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in dB μ V/m, the spectrum analyzer reading in dB μ V was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS				
	Meter reading	(dBµV)		
+	Antenna Factor	(dB/m)		
+	Cable Loss	(dB)		
-	Distance Correction	(dB)		
-	Preamplifier Gain	(dB)		
=	Corrected Reading	(dBµV/m)		

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE				
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING	
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz	
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz	
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz	
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz	
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz	

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

End of Report