

Page 41 of 83

8DPSK_LCH_Graphs

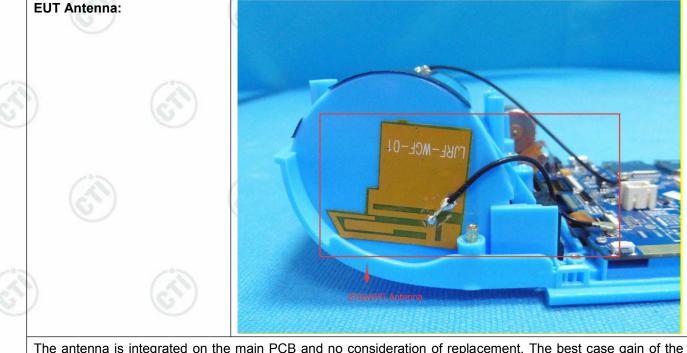
Pag

Page 42 of 83

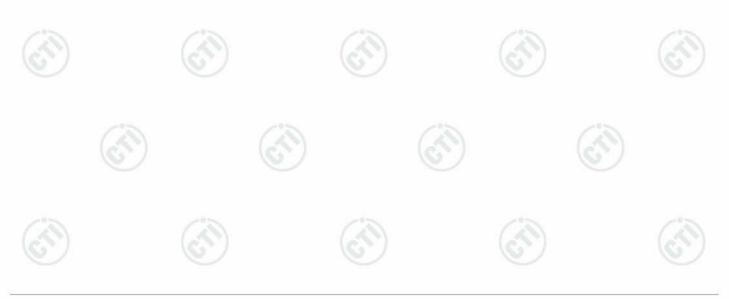
Page 43 of 83 8DPSK_HCH_Graphs #Avg Type: RMS Avg Hold: 100/100 r Freq 2.48 Trig: Free Ru Auto Ti Ref Offset 19.05 dB Ref 19.05 dBm Center Fr 2.45 Start F 2 478 2 491

Appendix H): Pseudorandom Frequency Hopping Sequence

Test Requirement:	47 CFR Part 15C Section 15.247	(a)(1) requirement:								
kHz or the 20 dB bandwidth of th	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.									
	Iternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping									
	nannel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping nannel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.									
	frequencies that are selected at the									
		must be used equally on the average t	oy							
each transmitter. The system rec	eivers shall have input bandwidths t	hat match the hopping channel								
bandwidths of their correspondin transmitted signals.	g transmitters and shall shift frequer	ncies in synchronization with the								
EUT Pseudorandom Frequency Hopping Sequence										
outputs are added in a modulo-	two addition stage. And the result i	shift register whose 5th and 9th st s fed back to the input of the first sta e. the shift register is initialized with r	age.							
 Number of shift register s 	-									
	n sequence: $2^9 - 1 = 511$ bits									
Longest sequence of zero	os: 8 (non-inverted signal)		1							
	<u></u>									
	<u> </u>									
	(+)•									
Linear Feedback	Shift Register for Generation of	the PRBS sequence								
-	dom Frequency Hopping Sequence									
20 62 46 77	7 64 8 73	16.75 1								
)							
Each frequency used equa	ally on the average by each transmit	er.								
	input bandwidths that match the ho									
	s and shift frequencies in synchroniz									
The device does not have		her FHSS systems in an effort to avoid	d the							


Appendix I): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1.95dBi.

Appendix J): AC Power Line Conducted Emission

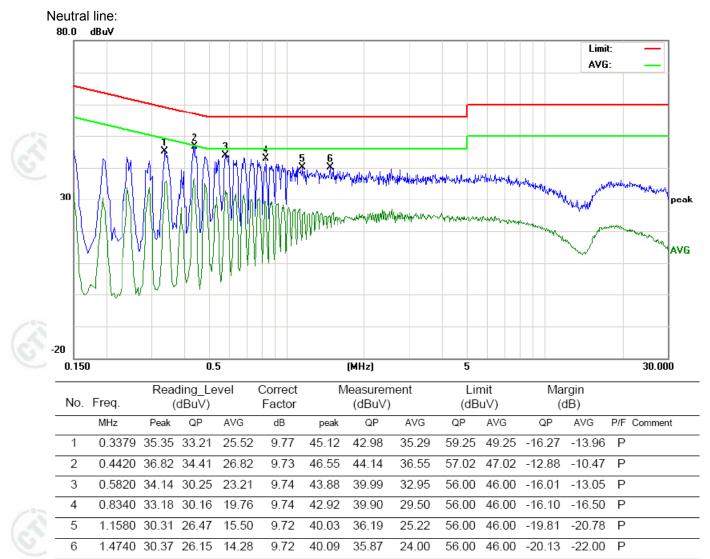
Test Procedure:	Test frequency range :150KHz	-30MHz		
	 The mains terminal disturbar The EUT was connected to Stabilization Network) whice power cables of all other u which was bonded to the g for the unit being measure multiple power cables to a s exceeded. 	AC power source thr h provides a $50\Omega/50$ nits of the EUT were round reference plane d. A multiple socket of	ough a LISN 1 (Line μH + 5Ω linear imp connected to a sec e in the same way a putlet strip was use	e Impedance edance. Th cond LISN s the LISN d to conne
	3)The tabletop EUT was place reference plane. And for flo horizontal ground reference	or-standing arrangem		
	 4) The test was performed wir EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from the ground reference plane for plane. This distance was be All other units of the EUT at LISN 2. 	e vertical ground refe d to the horizontal gr the boundary of the u or LISNs mounted o etween the closest po	rence plane. The ve ound reference plar unit under test and n top of the grour pints of the LISN 1 a	ertical grour ne. The LIS bonded to nd reference and the EU
	5) In order to find the maximum of the interface cables mus conducted measurement.			
Limit:				_
	Frequency range (MHz)	Limit (d	dBµV)	
		Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
10	0.5-5	56	46	(2)
	5-30	60	50	Gr,
	* The limit decreases linearly MHz to 0.50 MHz. NOTE : The lower limit is appli	-		e range 0.
~ 2 ~		18-		

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.



Live line: 80.0 dBu¥ Limit: AVG: water addates to a 30 MANAMANAN peak AVG -20 0.150 0.5 (MHz) 5 30.000 Reading_Level Measurement Limit Margin Correct No. Freq. (dBuV) Factor (dBuV) (dBuV) (dB) AVG MHz Peak QP AVG dB peak QP AVG QP QP AVG P/F Comment 0.4380 36.31 34.05 25.42 9.73 46.04 43.78 35.15 57.10 -13.32 -11.95 Ρ 1 47.10 35.15 2 0.5860 36.87 23.76 9.74 46.61 44.89 33.50 56.00 46.00 -12.50 Ρ -11.11 21.70 9.75 45.39 43.37 -14.55 Ρ 3 0.7300 35.64 33.62 31.45 56.00 46.00 -12.63 21.13 9.74 Ρ 4 0.9220 35.41 32.23 45.15 41.97 30.87 56.00 46.00 -14.03 -15.13 5 1.0940 34.40 31.84 13.31 9.72 44.12 41.56 23.03 56.00 46.00 -14.44 -22.97 Ρ 1.7460 32.29 30.37 17.18 9.72 42.01 40.09 26.90 -15.91 6 56.00 46.00 -19.10 Ρ



Page 48 of 83

Notes:

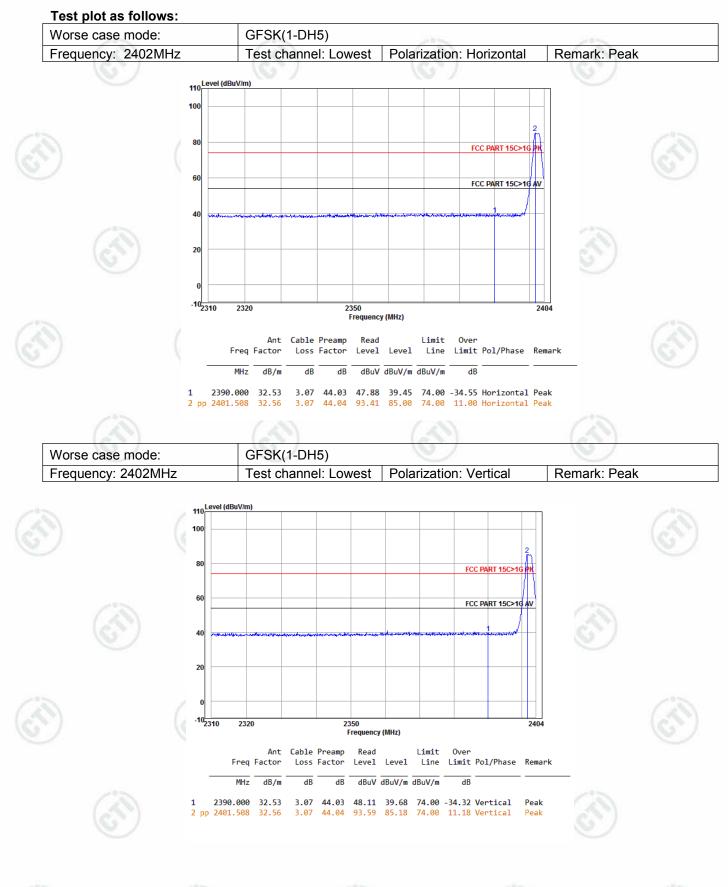
1. The following Quasi-Peak and Average measurements were performed on the EUT:

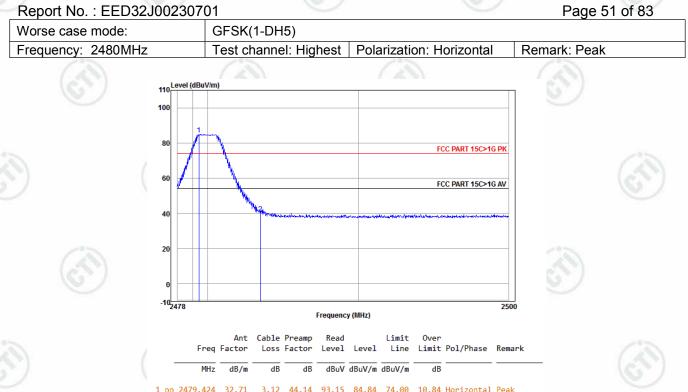
2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

3. AC120V and 240V are tested and found the worst case is 120V, So only the 120V data were shown in the

Appendix K): Restricted bands around fundamental frequency (Radiated)

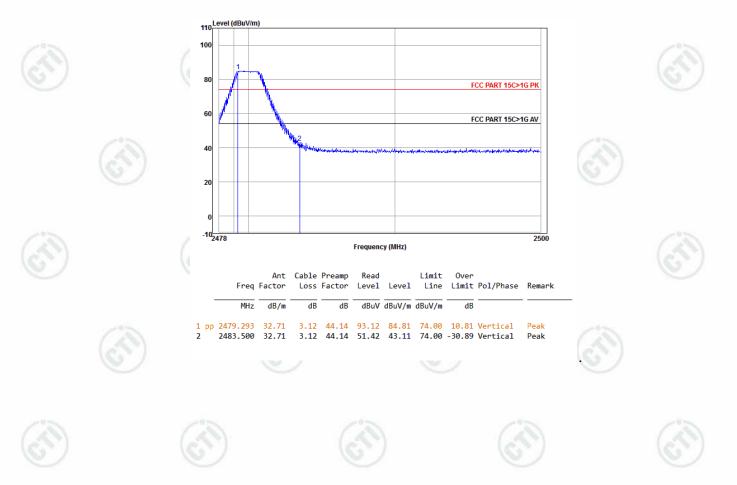
						1
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Above 1GHz	Peak	1MHz	3MHz	Peak	
	Above IGHZ	Peak	1MHz	10Hz	Average	1
Test Procedure:	Below 1GHz test proce	edure as below:	(č	8)	(c,
	 a. The EUT was place at a 3 meter semi-a determine the positi b. The EUT was set 3 was mounted on the c. The antenna height determine the maxin polarizations of the d. For each suspected the antenna was turn table was turned fro e. The test-receiver sy Bandwidth with Max f. Place a marker at the frequency to show of bands. Save the spe- for lowest and higher Above 1GHz test processing 0. Different between a to fully Anechoic Chemeter (Above 18GH) 	nechoic camber. T on of the highest ra meters away from e top of a variable- is varied from one mum value of the fi antenna are set to emission, the EUT ned to heights from on 0 degrees to 36 rstem was set to Per kimum Hold Mode. ne end of the restrict compliance. Also me ectrum analyzer platest channel edure as below: bove is the test site amber and change	he table wa adiation. the interfer height ante meter to for eld strength make the r was arran 1 meter to 0 degrees to eak Detect cted band of heasure any ot. Repeat to e, change fi e form table	as rotated 3 ence-recei nna tower. bur meters h. Both hor neasureme aged to its 4 meters 4 meters 5 find the Function a closest to the closest to the closest to the con semi- e 0.8 meter	360 degrees to iving antenna, above the grou rizontal and ve ent. worst case and and the rotatak maximum reac and Specified he transmit s in the restrict ower and modu Anechoic Cha to 1.5	wh unc rtic d th ble ling red
Limit:	h. b. Test the EUT in t i. The radiation measure Transmitting mode, j. Repeat above proce	he lowest channel urements are perfo and found the X as edures until all freq	, the Highe rmed in X, kis position uencies me	st channel Y, Z axis p ing which i easured wa	positioning for t is worse case as complete.	
Limit:	h. b. Test the EUT in t i. The radiation measu Transmitting mode, j. Repeat above proce	he lowest channel urements are perfo and found the X as edures until all freq Limit (dBµV	, the Highe rmed in X, kis position uencies me /m @3m)	st channel Y, Z axis p ing which i easured wa	oositioning for t is worse case as complete. mark	
Limit:	h. b. Test the EUT in t i. The radiation measure Transmitting mode, j. Repeat above proce Frequency 30MHz-88MHz	he lowest channel urements are perfo and found the X as edures until all freq Limit (dBµV 40.	, the Highe rmed in X, kis position uencies me /m @3m) D	st channel Y, Z axis p ing which i easured wa Rei Quasi-po	oositioning for t is worse case as complete. mark eak Value	e.
Limit:	h. b. Test the EUT in t i. The radiation measu Transmitting mode, j. Repeat above proce Frequency 30MHz-88MHz 88MHz-216MHz	he lowest channel urements are perfo and found the X as edures until all freq Limit (dBµV 40.	, the Highe rmed in X, kis position uencies me /m @3m) 0	st channel Y, Z axis p ing which i easured wa Rei Quasi-po Quasi-po	oositioning for t is worse case as complete. mark eak Value eak Value	
Limit:	h. b. Test the EUT in t i. The radiation measures Transmitting mode, j. Repeat above proce Souther Street Souther Street Souther Street Souther Street Souther Street Souther Street Souther Street Souther Street Souther Street	he lowest channel urements are perfor and found the X as edures until all freq Limit (dBµV 40.0 43.1 46.1	, the Highe rmed in X, kis position <u>uencies me</u> /m @3m) 0 5 0	st channel Y, Z axis p ing which i easured wa Rei Quasi-po Quasi-po Quasi-po	oositioning for t is worse case as complete. mark eak Value eak Value eak Value	
Limit:	h. b. Test the EUT in t i. The radiation measu Transmitting mode, j. Repeat above proce Frequency 30MHz-88MHz 88MHz-216MHz	he lowest channel urements are perfo and found the X as edures until all freq Limit (dBµV 40.	, the Highe rmed in X, kis position uencies me /m @3m) 0 5 0 0	st channel Y, Z axis p ing which i easured wa Rei Quasi-po Quasi-po Quasi-po Quasi-po	oositioning for t is worse case as complete. mark eak Value eak Value	





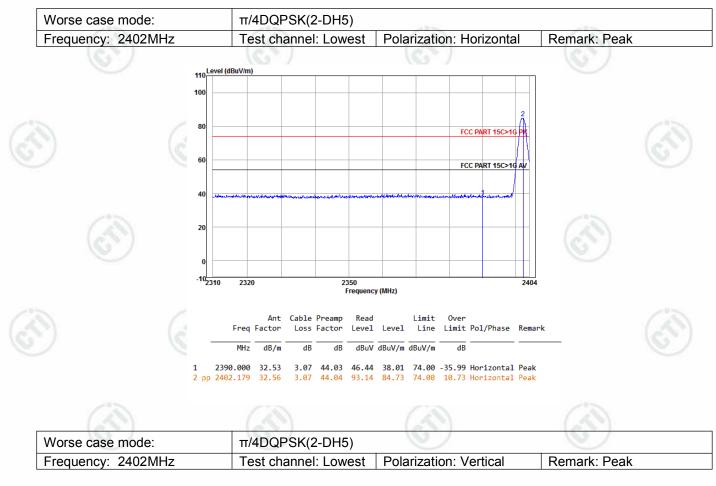
Page 50 of 83

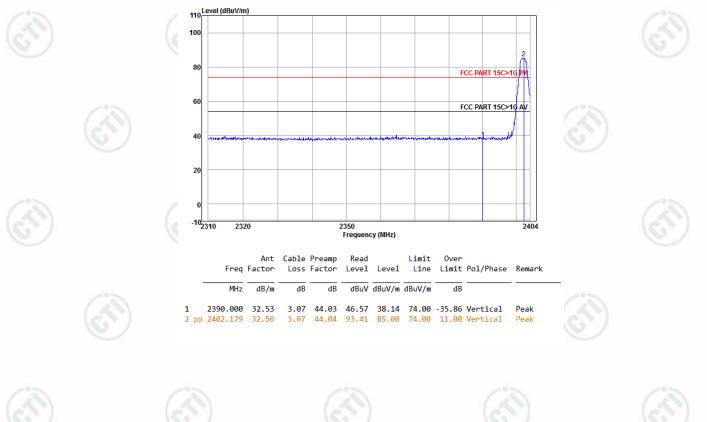
Report No. : EED32J00230701

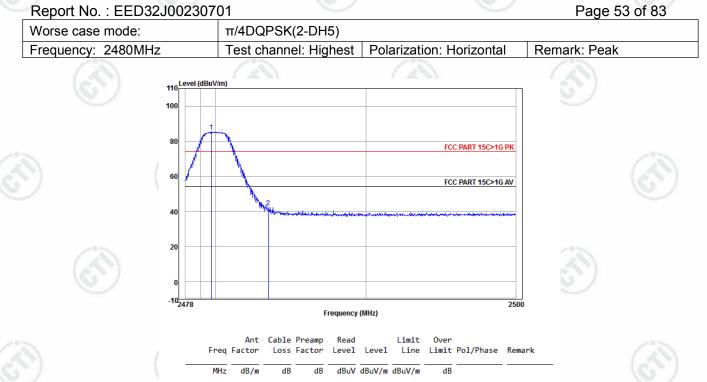


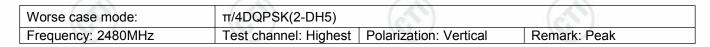
1 pp 2479.424 32.71 3.12 44.14 93.15 84.84 74.00 10.84 Horizontal Peak 2 2483.500 32.71 3.12 44.14 48.36 40.05 74.00 -33.95 Horizontal Peak

Worse case mode:	GFSK(1-DH5)		
Frequency: 2480MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak






Page 52 of 83



93.65

85.34

74.00

3.12 44.14 50.56 42.25 74.00 -31.75 Horizontal Peak

11.34 Horizontal Peak

1 pp 2479.731

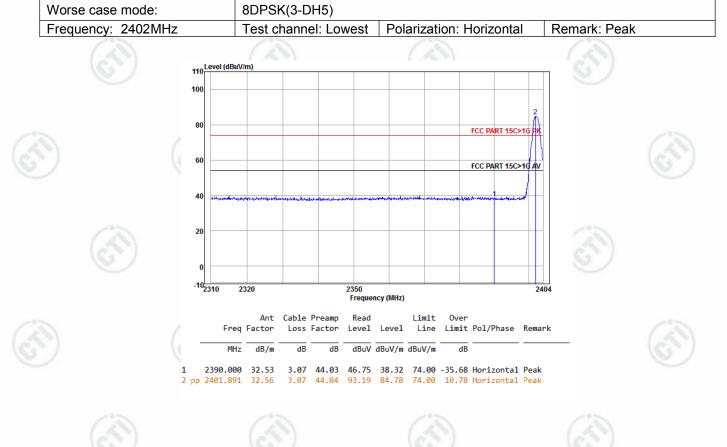
2483.500


2

32.71

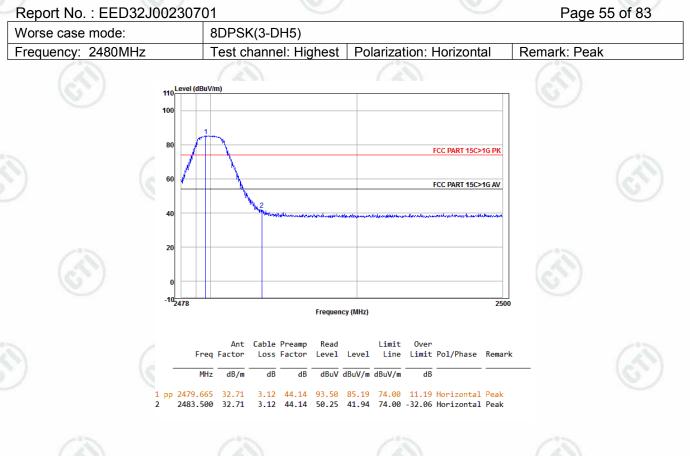
32.71

3.12

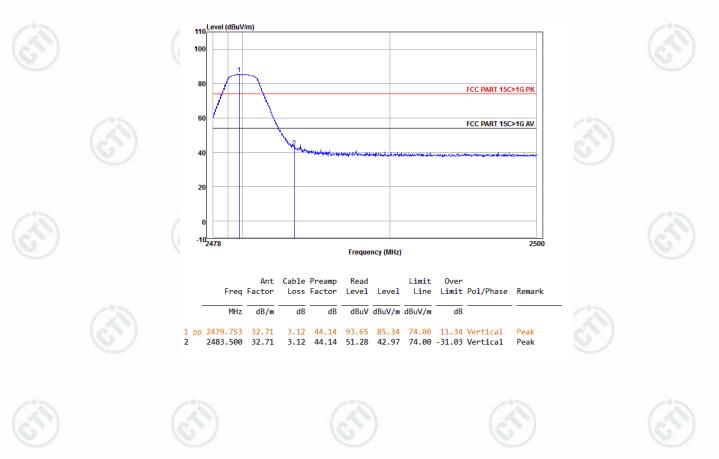

44.14

Page 54 of 83

Worse case mode:		8DPSK(3	3-DH5)	C	6	$\overline{\mathbb{C}}$	
Frequency: 2402MHz	2	Test cha	nnel: Lowest	Polarizatio	on: Vertical	Remark: Peak	
	110 Level (dl	BuV/m)				-	
	80				FCC PART 15C>1G PK		
	60				FCC PART 15C>1G AV	S)	
	20					-	
	0 -10 2310	2320	2350		24	104	


	Freq						Limit Line		Pol/Phase	Remark
	MHz	dB/m	dB	dB	dBuV	dBuV/m	dBuV/m	dB		
1	2390.000	32.53	3.07	44.03	46.19	37.76	74.00	-36.24	Vertical	Peak
2 pp	2402.275	32.56	3.08	44.04	93.63	85.23	74.00	11.23	Vertical	Peak

ency (MHz)


2350 Frequ

		A	Len L
Worse case mode:	8DPSK(3-DH5)		 Image: A start of the start of
Frequency: 2480MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Page 56 of 83

Report No. : EED32J00230701

Note:

1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of $\pi/4DQPSK$ modulation type, the 3-DH5 of data type is the worse case of 8DPSKmodulation type in charge + transmitter mode.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

Appendix L): Radiated Spurious Emissions

Receiver Setup:		2	1		100
	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
A	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
/	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
		Peak	1MHz	3MHz	Peak
	Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

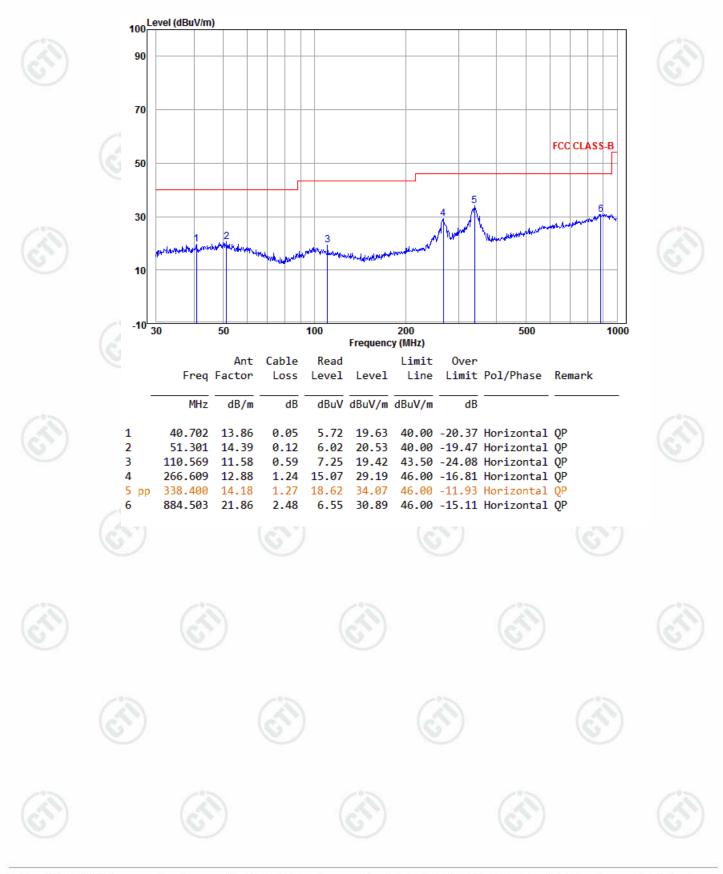
Below 1GHz test procedure as below:

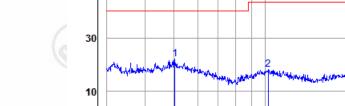
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

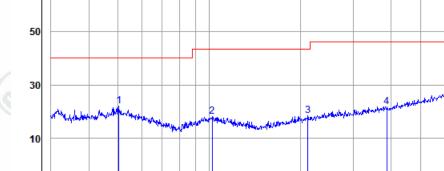
Above 1GHz test procedure as below:

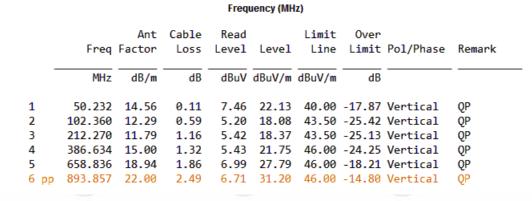
- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)			
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300			
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30			
	1.705MHz-30MHz	30	- /	10	30			
	30MHz-88MHz	100	40.0	Quasi-peak	3			
	88MHz-216MHz	150	43.5	Quasi-peak	3			
	216MHz-960MHz	200	46.0	Quasi-peak	3			
	960MHz-1GHz	500	54.0	Quasi-peak	3			
	Above 1GHz	500	54.0	Average	3			
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.							






Report No. : EED32J00230701 Radiated Spurious Emissions test Data: Radiated Emission below 1GHz



100 Level (dBuV/m)

-10

FCC CLASS-B

Report No. : EED32J00230701 Transmitter Emission above 1GHz

Worse case	Worse case mode: GFSK(1-DH5)		Test o	hannel:	Lowest				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1219.635	30.27	1.89	44.36	47.44	35.24	74.00	-38.76	Pass	Horizontal
1549.344	30.96	2.35	43.94	47.15	36.52	74.00	-37.48	Pass	Horizontal
4804.000	34.69	5.98	44.60	43.60	39.67	74.00	-34.33	Pass	Horizontal
5674.896	35.66	7.11	44.53	46.21	44.45	74.00	-29.55	Pass	Horizontal
7206.000	36.42	6.97	44.77	42.49	41.11	74.00	-32.89	Pass	Horizontal
9608.000	37.88	6.98	45.58	42.09	41.37	74.00	-32.63	Pass	Horizontal
1270.334	30.39	1.97	44.29	47.23	35.30	74.00	-38.70	Pass	Vertical
1561.221	30.99	2.36	43.93	46.70	36.12	74.00	-37.88	Pass	Vertical
4804.000	34.69	5.98	44.60	43.17	39.24	74.00	-34.76	Pass	Vertical
5880.782	35.81	7.32	44.51	45.11	43.73	74.00	-30.27	Pass	Vertical
7206.000	36.42	6.97	44.77	44.64	43.26	74.00	-30.74	Pass	Vertical
9608.000	37.88	6.98	45.58	42.61	41.89	74.00	-32.11	Pass	Vertical

Worse case r	mode:	GFSK(1-DH5)	Test o	hannel:	Middle			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1316.422	30.49	2.04	44.22	46.71	35.02	74.00	-38.98	Pass	Horizontal
1828.125	31.44	2.67	43.66	45.60	36.05	74.00	-37.95	Pass	Horizontal
4882.000	34.85	6.14	44.60	43.81	40.20	74.00	-33.80	Pass	Horizontal
5791.646	35.74	7.23	44.52	45.47	43.92	74.00	-30.08	Pass	Horizontal
7323.000	36.43	6.85	44.87	42.36	40.77	74.00	-33.23	Pass	Horizontal
9764.000	38.05	7.12	45.55	41.14	40.76	74.00	-33.24	Pass	Horizontal
1323.141	30.51	2.05	44.22	46.46	34.80	74.00	-39.20	Pass	Vertical
1894.450	31.54	2.74	43.59	45.95	36.64	74.00	-37.36	Pass	Vertical
4882.000	34.85	6.14	44.60	45.58	41.97	74.00	-32.03	Pass	Vertical
5880.782	35.81	7.32	44.51	45.28	43.90	74.00	-30.10	Pass	Vertical
7323.000	36.43	6.85	44.87	43.16	41.57	74.00	-32.43	Pass	Vertical
9764.000	38.05	7.12	45.55	40.99	40.61	74.00	-33.39	Pass	Vertical

Page 61 of 83

Worse case mode:		GFSK(1-DH5)		Test ch	Test channel:				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1201.149	30.23	1.86	44.38	47.46	35.17	74.00	-38.83	Pass	Horizontal
1777.646	31.36	2.61	43.70	46.81	37.08	74.00	-36.92	Pass	Horizontal
4960.000	35.02	6.29	44.60	42.63	39.34	74.00	-34.66	Pass	Horizontal
6267.190	36.04	7.37	44.53	45.29	44.17	74.00	-29.83	Pass	Horizontal
7440.000	36.45	6.73	44.97	43.39	41.60	74.00	-32.40	Pass	Horizontal
9920.000	38.22	7.26	45.52	41.96	41.92	74.00	-32.08	Pass	Horizontal
1201.149	30.23	1.86	44.38	47.46	35.17	74.00	-38.83	Pass	Vertical
1605.554	31.07	2.42	43.88	46.41	36.02	74.00	-37.98	Pass	Vertical
4960.000	35.02	6.29	44.60	42.44	39.15	74.00	-34.85	Pass	Vertical
5865.832	35.80	7.31	44.51	45.20	43.80	74.00	-30.20	Pass	Vertical
7440.000	36.45	6.73	44.97	43.02	41.23	74.00	-32.77	Pass	Vertical
9920.000	38.22	7.26	45.52	41.82	41.78	74.00	-32.22	Pass	Vertical
2)	(6	<u>()</u>		(5)	2)	(ć.	S) -		(\mathcal{A})
Worse case	mode:	π/4DQ	PSK(2-DH5	5) Test c	hannel:	Lowest			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis

	(MHz)	Factor (dB/m)	Loss (dB)	Gain (dB)	Level (dBµV)	(dBµV/m)	(dBµV/m)	Limit (dB)	Result	Polaxis
	1309.737	30.48	2.03	44.23	46.55	34.83	74.00	-39.17	Pass	Horizontal
	1702.361	31.24	2.53	43.78	45.87	35.86	74.00	-38.14	Pass	Horizontal
	4804.000	34.69	5.98	44.60	43.22	39.29	74.00	-34.71	Pass	Horizontal
e în	5836.044	35.78	7.28	44.52	44.94	43.48	74.00	-30.52	Pass	Horizontal
3	7206.000	36.42	6.97	44.77	42.05	40.67	74.00	-33.33	Pass	Horizontal
2	9608.000	37.88	6.98	45.58	41.98	41.26	74.00	-32.74	Pass	Horizontal
	1286.606	30.43	1.99	44.26	47.20	35.36	74.00	-38.64	Pass	Vertical
	1948.245	31.62	2.79	43.55	45.84	36.70	74.00	-37.30	Pass	Vertical
	4804.000	34.69	5.98	44.60	42.67	38.74	74.00	-35.26	Pass	Vertical
	6412.427	36.12	7.33	44.54	45.71	44.62	74.00	-29.38	Pass	Vertical
	7206.000	36.42	6.97	44.77	43.11	41.73	74.00	-32.27	Pass	Vertical
	9608.000	37.88	6.98	45.58	42.49	41.77	74.00	-32.23	Pass	Vertical

Report No.					hannali	Middle		Page 62 of 83		
Worse case					hannel:	Middle	-			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1254.268	30.35	1.94	44.31	46.75	34.73	74.00	-39.27	Pass	Horizonta	
1605.554	31.07	2.42	43.88	46.78	36.39	74.00	-37.61	Pass	Horizonta	
4882.000	34.85	6.14	44.60	43.55	39.94	74.00	-34.06	Pass	Horizonta	
6445.156	36.13	7.32	44.55	44.83	43.73	74.00	-30.27	Pass	Horizonta	
7323.000	36.43	6.85	44.87	42.43	40.84	74.00	-33.16	Pass	Horizonta	
9764.000	38.05	7.12	45.55	40.00	39.62	74.00	-34.38	Pass	Horizonta	
1270.334	30.39	1.97	44.29	46.57	34.64	74.00	-39.36	Pass	Vertical	
1715.411	31.26	2.55	43.77	46.54	36.58	74.00	-37.42	Pass	Vertical	
4882.000	34.85	6.14	44.60	43.30	39.69	74.00	-34.31	Pass	Vertical	
5821.207	35.77	7.26	44.52	45.31	43.82	74.00	-30.18	Pass	Vertical	
7323.000	36.43	6.85	44.87	42.80	41.21	74.00	-32.79	Pass	Vertical	
9764.000	38.05	7.12	45.55	40.94	40.56	74.00	-33.44	Pass	Vertical	
2)	G	$\langle \rangle$		6	2)	6	(2)		(\mathcal{A})	
Worse case	mode:	π/4DQ	PSK(2-DH5	i) Test c	hannel:	Highest				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenn Polaxis	
1273.572	30.40	1.97	44.28	46.44	34.53	74.00	-39.47	Pass	Horizonta	
1837.456	31.46	2.68	43.65	46.51	37.00	74.00	-37.00	Pass	Horizonta	
								Deve	Horizonta	
4960.000	35.02	6.29	44.60	42.64	39.35	74.00	-34.65	Pass		
4960.000 6428.771	35.02 36.12	6.29 7.33	44.60 44.54	42.64 45.90	39.35 44.81	74.00 74.00	-34.65 -29.19	Pass Pass		
									Horizonta	
6428.771	36.12	7.33	44.54	45.90	44.81	74.00	-29.19	Pass	Horizont Horizont	
6428.771 7440.000	36.12 36.45	7.33 6.73	44.54 44.97	45.90 43.21	44.81 41.42	74.00 74.00	-29.19 -32.58	Pass Pass	Horizonta Horizonta Horizonta	
6428.771 7440.000 9920.000	36.12 36.45 38.22	7.33 6.73 7.26	44.54 44.97 45.52	45.90 43.21 42.10	44.81 41.42 42.06	74.00 74.00 74.00	-29.19 -32.58 -31.94	Pass Pass Pass	Horizonta Horizonta Horizonta Vertical Vertical	
6428.771 7440.000 9920.000 1257.465	36.12 36.45 38.22 30.36	7.33 6.73 7.26 1.95	44.54 44.97 45.52 44.30	45.90 43.21 42.10 47.00	44.81 41.42 42.06 35.01	74.00 74.00 74.00 74.00	-29.19 -32.58 -31.94 -38.99	Pass Pass Pass Pass	Horizonta Horizonta Horizonta Vertical	
6428.771 7440.000 9920.000 1257.465 1828.125	36.12 36.45 38.22 30.36 31.44	7.33 6.73 7.26 1.95 2.67	44.54 44.97 45.52 44.30 43.66	45.90 43.21 42.10 47.00 46.46	44.81 41.42 42.06 35.01 36.91	74.00 74.00 74.00 74.00 74.00	-29.19 -32.58 -31.94 -38.99 -37.09	Pass Pass Pass Pass Pass	Horizonta Horizonta Horizonta Vertical	
6428.771 7440.000 9920.000 1257.465 1828.125 4960.000	36.12 36.45 38.22 30.36 31.44 35.02	7.33 6.73 7.26 1.95 2.67 6.29	44.54 44.97 45.52 44.30 43.66 44.60	45.90 43.21 42.10 47.00 46.46 42.96	44.81 41.42 42.06 35.01 36.91 39.67	74.00 74.00 74.00 74.00 74.00 74.00	-29.19 -32.58 -31.94 -38.99 -37.09 -34.33	Pass Pass Pass Pass Pass Pass	Horizonta Horizonta Vertical Vertical	

Report No.	: EED32J	002307	01					Page 63 of 83	
Worse case mode: 8DPSK(3-DH5)				Test cl	nannel:	Lowest	Lowest		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1121.367	30.03	1.73	44.50	47.26	34.52	74.00	-39.48	Pass	Horizonta
1510.402	30.89	2.30	43.99	46.87	36.07	74.00	-37.93	Pass	Horizonta
4804.000	34.69	5.98	44.60	43.20	39.27	74.00	-34.73	Pass	Horizonta
5865.832	35.80	7.31	44.51	45.64	44.24	74.00	-29.76	Pass	Horizonta
7206.000	36.42	6.97	44.77	41.71	40.33	74.00	-33.67	Pass	Horizonta
9608.000	37.88	6.98	45.58	41.31	40.59	74.00	-33.41	Pass	Horizonta
1329.894	30.52	2.06	44.21	46.53	34.90	74.00	-39.10	Pass	Vertical
1746.251	31.31	2.58	43.73	46.52	36.68	74.00	-37.32	Pass	Vertical
4804.000	34.69	5.98	44.60	42.78	38.85	74.00	-35.15	Pass	Vertical
6412.427	36.12	7.33	44.54	45.28	44.19	74.00	-29.81	Pass	Vertical
7206.000	36.42	6.97	44.77	42.52	41.14	74.00	-32.86	Pass	Vertical
9608.000	37.88	6.98	45.58	42.14	41.42	74.00	-32.58	Pass	Vertical
)	($\langle \cdot \rangle$	1	(5	2)	6	(2)	1	(\mathcal{S})
Worse case	mode:	8DPSK	(3-DH5)	Test ch	nannel:	Middle	Middle		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1360.714	30.59	2.10	44.17	46.23	34.75	74.00	-39.25	Pass	Horizonta
1832.785	31.45	2.67	43.65	46.90	37.37	74.00	-36.63	Pass	Horizonta
4882.000	34.85	6.14	44.60	44.13	40.52	74.00	-33.48	Pass	Horizonta
5850.919	35.79	7.29	44.51	45.85	44.42	74.00	-29.58	Pass	Horizonta
7323.000	36.43	6.85	44.87	42.10	40.51	74.00	-33.49	Pass	Horizonta

62	5850.919	35.79	7.29	44.51	45.85	44.42	74.00	-29.58	Pass	Horizontal
5	7323.000	36.43	6.85	44.87	42.10	40.51	74.00	-33.49	Pass	Horizontal
2	9764.000	38.05	7.12	45.55	40.87	40.49	74.00	-33.51	Pass	Horizontal
	1280.072	30.41	1.98	44.27	46.51	34.63	74.00	-39.37	Pass	Vertical
	1837.456	31.46	2.68	43.65	46.22	36.71	74.00	-37.29	Pass	Vertical
	4882.000	34.85	6.14	44.60	43.61	40.00	74.00	-34.00	Pass	Vertical
	5850.919	35.79	7.29	44.51	46.08	44.65	74.00	-29.35	Pass	Vertical
	7323.000	36.43	6.85	44.87	44.11	42.52	74.00	-31.48	Pass	Vertical
	9764.000	38.05	7.12	45.55	40.55	40.17	74.00	-33.83	Pass	Vertical

Report No.	. : EED32J	002307	01	C.		6		Page 64 of 83	
Worse case	Worse case mode: 8DPSK(3-DH5)			Test ch	nannel:	Highest			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1319.777	30.50	2.04	44.22	46.44	34.76	74.00	-39.24	Pass	Horizontal
1693.716	31.22	2.52	43.79	46.88	36.83	74.00	-37.17	Pass	Horizontal
1856.261	31.48	2.70	43.63	46.67	37.22	74.00	-36.78	Pass	Horizontal
4960.000	35.02	6.29	44.60	43.10	39.81	74.00	-34.19	Pass	Horizontal
7440.000	36.45	6.73	44.97	43.35	41.56	74.00	-32.44	Pass	Horizontal
9920.000	38.22	7.26	45.52	43.48	43.44	74.00	-30.56	Pass	Horizontal
1222.743	30.28	1.90	44.35	46.62	34.45	74.00	-39.55	Pass	Vertical
1851.542	31.48	2.69	43.63	45.88	36.42	74.00	-37.58	Pass	Vertical
4960.000	35.02	6.29	44.60	42.66	39.37	74.00	-34.63	Pass	Vertical
5880.782	35.81	7.32	44.51	45.67	44.29	74.00	-29.71	Pass	Vertical
7440.000	36.45	6.73	44.97	43.69	41.90	74.00	-32.10	Pass	Vertical
9920.000	38.22	7.26	45.52	43.23	43.19	74.00	-30.81	Pass	Vertical
20				(4	10	64	112	1	(A)

Note:

1) Through Pre-scan transmitting mode with all kind of modulation and all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor- Antenna Factor-Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

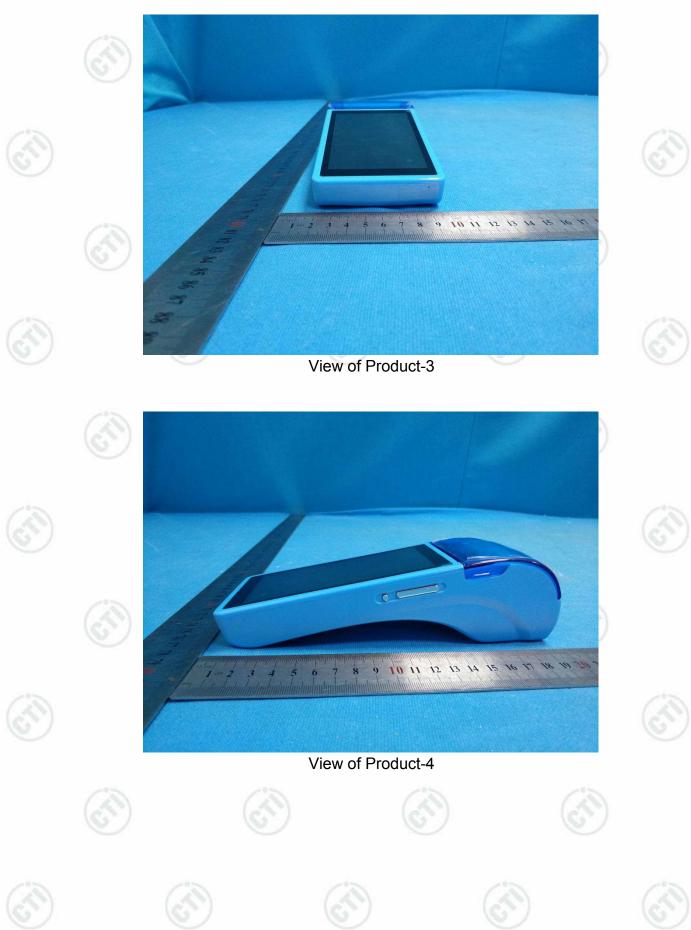
Test model No.: AP02

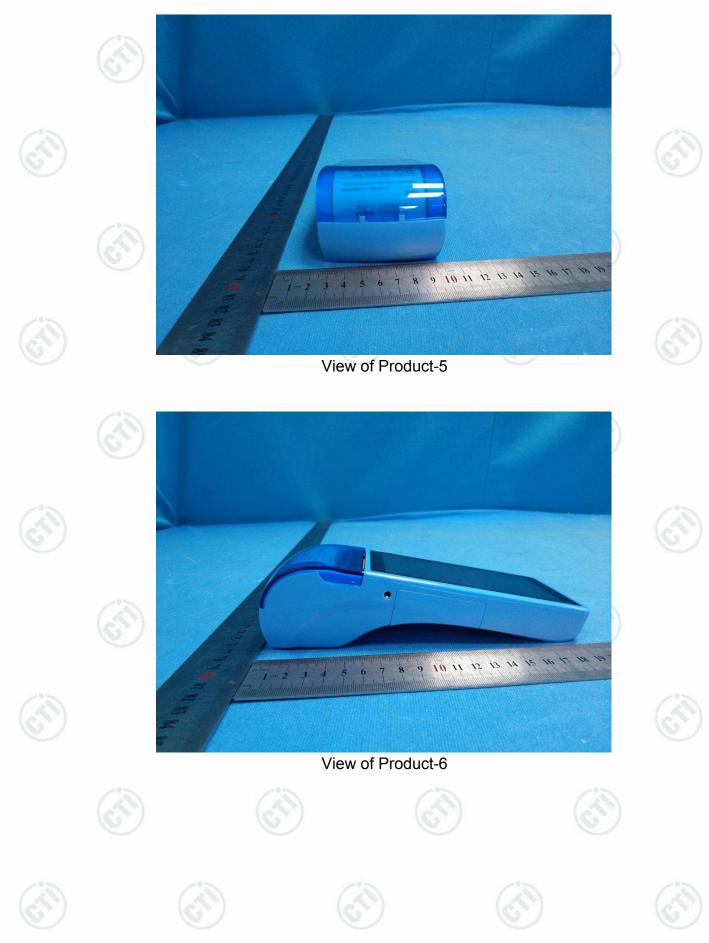
Radiated spurious emission Test Setup-1(Below 30MHz)

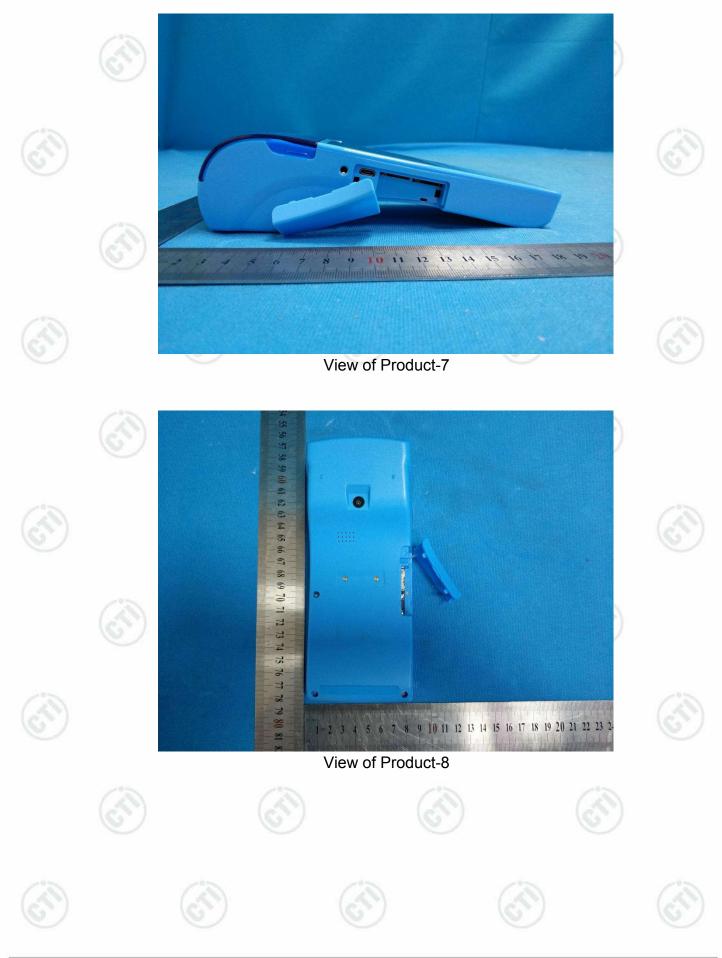
Radiated spurious emission Test Setup-2(Below 1G)

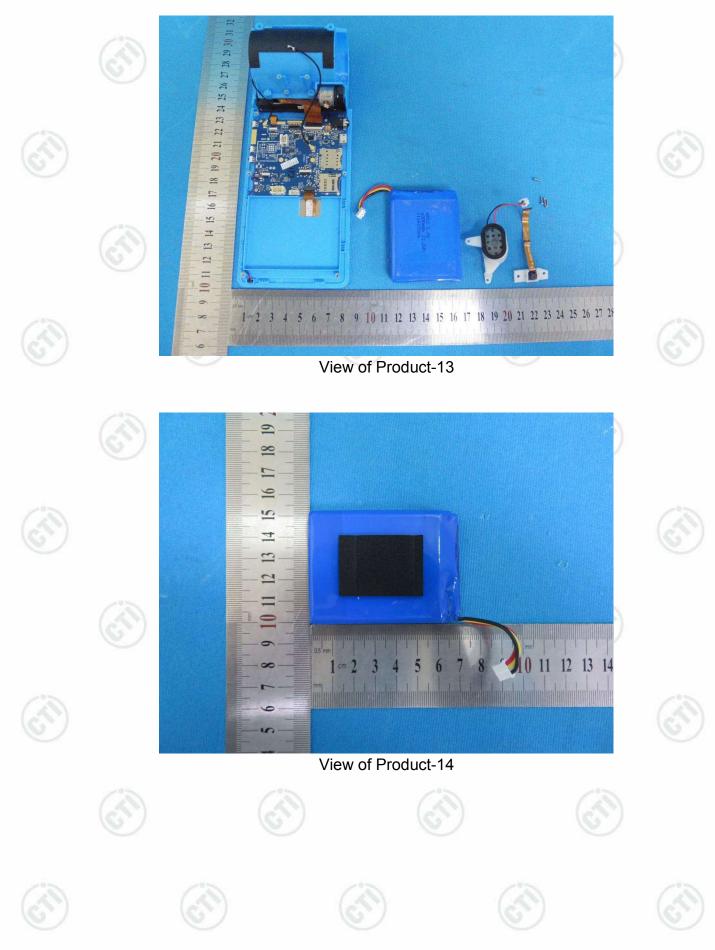
Radiated spurious emission Test Setup-3(Above 1G)

Conducted Emissions Test Setup









Page 73 of 83

