FCC RF Test Report APPLICANT : Motorola Mobility LLC EQUIPMENT : Mobile Cellular Phone BRAND NAME : Motorola MODEL NAME : XT2415-1, XT2415-3, XT2415-5, XT2415V FCC ID : IHDT56AN5 STANDARD : 47 CFR Part 2, 90(R) CLASSIFICATION : PCS Licensed Transmitter Held to Ear (PCE) TEST DATE(S) : Sep. 23, 2023 ~ Oct. 18, 2023 We, Sporton International Inc. (Kunshan), would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.26 and shown compliance with the applicable technical standards. This report contains data that were produced under subcontract by Sporton International Inc. (ShenZhen) The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Kunshan), the test report shall not be reproduced except in full. JasonJia Approved by: Jason Jia ### Sporton International Inc. (Kunshan) No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China Sporton International Inc. (Kunshan) TEL: +86-512-57900158 FCC ID: IHDT56AN5 Page Number : 1 of 23 Report Issued Date : Oct. 25, 2023 Report Version : Rev. 01 Report No.: FG391202D ### **TABLE OF CONTENTS** | RE | VISIO | ON HISTORY | 3 | |----|------------|--|----| | SU | ММА | RY OF TEST RESULT | 4 | | 1 | GEN | IERAL DESCRIPTION | 5 | | - | | Applicant | | | | 1.1
1.2 | Manufacturer | | | | 1.3 | Feature of Equipment Under Test | | | | 1.4 | Maximum ERP Power, and Emission Designator | | | | 1.5 | Specification of Accessory | | | | 1.6 | Testing Site | | | | 1.7 | Test Software | | | | 1.8 | Applied Standards | | | 2 | TES | T CONFIGURATION OF EQUIPMENT UNDER TEST | 8 | | | 2.1 | Test Mode | 8 | | | 2.2 | Connection Diagram of Test System | 9 | | | 2.3 | Support Unit used in test configuration and system | 9 | | | 2.4 | Measurement Results Explanation Example | | | | 2.5 | Frequency List of Low/Middle/High Channels | 10 | | 3 | CON | IDUCTED TEST ITEMS | 11 | | | 3.1 | Measuring Instruments | | | | 3.2 | Conducted Output Power and ERP | | | | 3.3 | Peak-to-Average Ratio | | | | 3.4 | Occupied Bandwidth | | | | 3.5 | Conducted Band Edge Measurement | | | | 3.6
3.7 | Emission Mask Conducted Spurious Emission Measurement | | | | 3.8 | Frequency Stability Measurement | | | 4 | | NATED TEST ITEMS | | | • | 4.1 | Measuring Instruments | _ | | | 4.2 | Test Setup | | | | 4.3 | Test Result of Radiated Test | | | | 4.4 | Radiated Spurious Emission Measurement | | | 5 | LIST | OF MEASURING EQUIPMENT | 22 | | 6 | MEA | SUREMENT UNCERTAINTY | 23 | | ΑP | PEND | DIX A. TEST RESULTS OF CONDUCTED TEST | | | ΑP | PEND | DIX B. TEST RESULTS OF RADIATED TEST | | | ΑP | PEND | DIX C. TEST SETUP PHOTOGRAPHS | | ## **REVISION HISTORY** | REPORT NO. | VERSION | DESCRIPTION | ISSUED DATE | |------------|---------|-------------------------|---------------| | FG391202D | Rev. 01 | Initial issue of report | Oct. 25, 2023 | **Sporton International Inc. (Kunshan)** TEL: +86-512-57900158 FCC ID: IHDT56AN5 Page Number : 3 of 23 Report Issued Date : Oct. 25, 2023 Report Version : Rev. 01 Report No.: FG391202D ### **SUMMARY OF TEST RESULT** | Report
Section | FCC Rule | Description | Limit | Result | Remark | | |-------------------|---------------------------|-----------------------------|-------------------------------------|----------------|-------------|--| | 3.2 | §2.1046 | Conducted Output Power | _ | Reporting only | - | | | 0.2 | §90.542 (a)(7) | Effective Radiated Power | ERP < 3Watt | PASS | - | | | 3.3 | - | Peak-to-Average Ratio | _ | Reporting only | - | | | 3.4 | §2.1049 | Occupied Bandwidth | _ | Reporting only | - | | | 3.5 | §2.1053 | Conducted Band Edge | D () | PASS | | | | 3.5 | §90.543 (e)(2)(3) | Measurement | Refer standard | PASS | - | | | 3.6 | §2.1051 | Emission Mask | Mask B | PASS | _ | | | 3.0 | §90.210(n) | LITII33IOTI WASK | WIASK D | 1700 | | | | 3.7 | §2.1053 | Conducted Spurious Emission | < 43+10log ₁₀ (P[Watts]) | PASS | - | | | 5.7 | §90.543 (e)(3) | Conducted Opunous Emission | C 45+10l0g10(1 [vvalt5]) | 1700 | | | | 3.8 | §2.1055 | Frequency Stability | < ±1.25 ppm | PASS | _ | | | 3.0 | §90.539 (e) | Temperature & Voltage | < ±1.23 ppm | 1 700 | - | | | | §2.1053 | | | | Under limit | | | 4.4 | §2.1033
§90.543 (e)(3) | Radiated Spurious Emission | < 43+10log ₁₀ (P[Watts]) | PASS | 21.73 dB at | | | 7.7 | §90.543 (e)(3) | Tadiated Opunious Linission | - +0+1010y10(1 [vvalts]) | 1 700 | 1576.500 | | | | 390.343 (1) | | | | MHz | | #### **Conformity Assessment Condition:** - 1. The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account. - 2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty" #### Disclaimer: The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity. TEL: +86-512-57900158 FCC ID: IHDT56AN5 Page Number : 4 of 23 Report Issued Date : Oct. 25, 2023 Report Version : Rev. 01 Report No.: FG391202D #### **General Description** 1 #### 1.1 **Applicant** #### **Motorola Mobility LLC** 222 W, Merchandise Mart Plaza, Chicago IL 60654 USA #### 1.2 **Manufacturer** #### **Motorola Mobility LLC** 222 W, Merchandise Mart Plaza, Chicago IL 60654 USA #### **Feature of Equipment Under Test** 1.3 | | Product Feature | |---------------------------------|--| | Equipment | Mobile Cellular Phone | | Brand Name | Motorola | | Model Name | XT2415-1, XT2415-3, XT2415-5, XT2415V | | FCC ID | IHDT56AN5 | | Tx Frequency | LTE Band 14: 788 MHz ~ 798 MHz | | Rx Frequency | LTE Band 14: 758 MHz ~ 768 MHz | | Bandwidth | 5MHz / 10MHz | | Maximum Output Power to Antenna | Ant.0: 22.77dBm | | Maximum Output Fower to Antenna | Ant.4: 22.29dBm | | Antenna Gain | Ant.0 : FPC_IFA Antenna -4.90 dBi | | | Ant.4: FPC_IFA Antenna -6.80 dBi | | Type of Modulation | QPSK / 16QAM / 64QAM | | IMELO - de | Conducted: 357534480029799/357534480029807 | | IMEI Code | Radiation: 357534480040630/357534480040648 | | HW Version | DVT2 | | SW Version | UUD34.38 | | EUT Stage | Identical Prototype | #### Remark: - The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description. - The four model names are only for market segment purpose, there is no other difference. 2. - The maximum ERP of Antenna 0 is shown in the report. Sporton International Inc. (Kunshan) Page Number : 5 of 23 TEL: +86-512-57900158 Report Issued Date : Oct. 25, 2023 FCC ID: IHDT56AN5 Report Version : Rev. 01 Report Template No.: BU5-FGLTE Version 2.0 ### 1.4 Maximum ERP Power, and Emission Designator | LTE | E Band 14 | C | PSK | 16QAM/64QAM | | | |-------------|-----------------------------|--------------------------------------|---------|-------------------|------------------------------------|--| | BW
(MHz) | Frequency
Range
(MHz) | Maximum Emission Designator (99%OBW) | | Maximum
ERP(W) | Emission
Designator
(99%OBW) | | | 5 | 790.5~795.5 | 0.0368 | 4M50G7D | 0.0312 | 4M48W7D | | | 10 | 793 | 0.0373 | 9M03G7D | 0.0316 | 8M99W7D | | ### 1.5 Specification of Accessory | Accessories Information | | | | | | | | | |-------------------------|------------|--------------------|------------|------------|--|--|--|--| | AC Adapter 1 | Brand Name | Motorola(Salcomp) | Model Name | MC-101 | | | | | | AC Adapter 2 | Brand Name | Motorola(Chenyang) | Model Name | MC-101 | | | | | | AC Adapter 3 Brand Name | | Motorola(AOHAI) | Model Name | MC-101 | | | | | | Battery 1 | Brand Name | Motorola (ATL) | Model Name | QA50 | | | | | | USB Cable 1 | Brand Name | WASHIN | Model Name | S928D98335 | | | | | | USB Cable 2 | Brand Name | Saibao | Model Name | S928D98333 | | | | | | USB Cable 3 | Brand Name | Saibao | Model Name | S928D98334 | | | | | ### 1.6 Testing Site Sporton International Inc. (Kunshan) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02. | Test Firm | Sporton International Ir | Sporton International Inc. (Kunshan) | | | | | | | |--------------------|--|--------------------------------------|------------------|--|--|--|--|--| | | No. 1098, Pengxi North Road, Kunshan Economic Development Zone | | | | | | | | | Test Site Location | Jiangsu Province 215300 People's Republic of China | | | | | | | | | | TEL: +86-512-57900158 | | | | | | | | | | Sporton Site No. | FCC Designation No. | FCC Test Firm | | | | | | | Test Site No. | Sporton Site No. | rec besignation No. | Registration No. | | | | | | | | TH01-KS | CN1257 | 314309 | | | | | | Sporton International Inc. (Kunshan) Page Number : 6 of 23 TEL: +86-512-57900158 Report Issued Date : Oct. 25, 2023 FCC ID: IHDT56AN5 Report Version : Rev. 01 Report Template No.: BU5-FGLTE Version 2.0 Sporton International Inc. (ShenZhen) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.01. | Test Firm | Sporton International Inc. (| Sporton International Inc. (ShenZhen) | | | | | | | | |--------------------|--|---------------------------------------|-----------------------------------|--|--|--|--|--|--| | Test Site Location | 101, 1st Floor, Block B, Building 1, No. 2, Tengfeng 4th Road, Fenghuang Community, Fuyong Street, Baoan District, Shenzhen City, Guangdong Province 518103 People's Republic of China TEL: +86-755-86066985 | | | | | | | | | | Test Site No. | Sporton Site No. | FCC Designation No. | FCC Test Firm
Registration No. | | | | | | | | | 03CH01-SZ | CN1256 | 421272 | | | | | | | Test data subcontracted: Radiated Spurious Emission test case in section 4.4 of this report. #### 1.7 Test Software | Item | Site | Manufacture | Name | Version | | | |------|-----------|-------------|-------------------------------------|-------------|--|--| | 1. | TH01-KS | | FCC LTE_Ver2.0
Auto_china_210503 | 2.0 | | | | 2. | 03CH01-SZ | AUDIX | E3 | 6.2009-8-24 | | | ### 1.8 Applied Standards According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards: - 47 CFR Part 2, Part 90(R) - ANSI C63.26 - KDB 971168 D01 Power Meas License Digital Systems v03r01 - KDB 412172 D01 Determining ERP and EIRP v01r01 #### Remark: - 1. All test items were verified and recorded according to the standards and without any deviation during the test. - 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report. **Sporton International Inc. (Kunshan)** TEL: +86-512-57900158 FCC ID: IHDT56AN5 Page Number : 7 of 23 Report Issued Date : Oct. 25, 2023 Report Version : Rev. 01 Report No.: FG391202D # 2 Test Configuration of Equipment Under Test ### 2.1 Test Mode Antenna port conducted and radiated test items listed below are performed according to KDB 971168 D01 Power Meas License Digital Systems v03r01 with maximum output power. Radiated measurements are performed by rotating the EUT in three different orthogonal test planes to find the maximum emission. | Conducted Test Cases | Band | Bandwidth (MHz) | | | | | Modulatio | n | RB# | | | Test Channel | | | | | |--------------------------|--|-----------------|---|---|----|----|-----------|---------|-------|-------|---|--------------|------|---|---|---| | | | 1.4 | 3 | 5 | 10 | 15 | 20 | QPSK | 16QAM | 64QAM | 1 | Half | Full | L | М | Н | | Max. Output | 14 | - | - | ٧ | - | - | - | ٧ | ٧ | ٧ | ٧ | ٧ | ٧ | ٧ | ٧ | ٧ | | Power | 14 | • | - | | ٧ | ı | - | ٧ | ٧ | ٧ | ٧ | ٧ | V | | ٧ | | | Peak-to-Average
Ratio | 14 | - | - | | ٧ | - | - | V | V | V | | | v | | ٧ | | | 26dB and 99% | 14 | - | - | ٧ | | - | - | V | V | | | | V | | ٧ | | | Bandwidth | 14 | - | - | | ٧ | - | - | V | V | | | | V | | ٧ | | | Conducted Band | 14 | - | - | ٧ | | - | - | V | ٧ | V | ٧ | | V | ٧ | | ٧ | | Edge | 14 | - | - | | ٧ | - | - | V | ٧ | V | ٧ | | V | ٧ | | ٧ | | Emission Mask | 14 | - | - | ٧ | | - | - | V | V | ٧ | ٧ | | V | ٧ | ٧ | ٧ | | Emission mask | 14 | - | - | | ٧ | - | - | V | V | ٧ | ٧ | | V | | ٧ | | | Conducted
Spurious | 14 | - | - | ٧ | | - | - | V | | | V | | | ٧ | ٧ | V | | Emission | 14 | - | - | | ٧ | - | - | V | | | v | | | | V | | | Frequency
Stability | 14 | | 1 | ٧ | ٧ | 1 | - | V | | | | | V | | ٧ | | | E.R.P | 14 | - | - | ٧ | | - | - | V | ٧ | V | V | ٧ | ٧ | ٧ | ٧ | ٧ | | L .K.i | 14 | - | - | | ٧ | - | - | ٧ | V | ٧ | V | ٧ | V | | ٧ | | | Radiated | | | | | | | | | | | | | | | | | | Spurious | 14 | | | | | | | Worst C | ase | | | | | ٧ | ٧ | ٧ | | Emission | Note | 3. The device is investigated from 30MHz to 10 times of fundamental signal for radiated spurious emission test under different RB size/offset and modulations in exploratory test. Subsequently, only the worst case emissions are reported. | | | | | | | | | | | | | | | | Sporton International Inc. (Kunshan) TEL: +86-512-57900158 FCC ID: IHDT56AN5 Page Number : 8 of 23 Report Issued Date : Oct. 25, 2023 Report Version : Rev. 01 Report No.: FG391202D ### 2.2 Connection Diagram of Test System ### 2.3 Support Unit used in test configuration and system | Item | Equipment | Trade Name | Model No. | FCC ID | Data Cable | Power Cord | |------|------------------|------------|-----------|--------|------------|-------------------| | 1. | LTE Base Station | Anritsu | MT8820C | N/A | N/A | Unshielded, 1.8 m | | 2. | DC Power Supply | GW INSTEK | GPS-3030D | N/A | N/A | Unshielded, 1.8 m | | 3. | Earphone | N/A | N/A | N/A | N/A | N/A | Sporton International Inc. (Kunshan) TEL: +86-512-57900158 FCC ID: IHDT56AN5 Page Number : 9 of 23 Report Issued Date : Oct. 25, 2023 Report Version : Rev. 01 Report No.: FG391202D ### 2.4 Measurement Results Explanation Example #### For all conducted test items: The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level. The spectrum analyzer offset is derived from RF cable loss and attenuator factor. Offset = RF cable loss + attenuator factor. Following shows an offset computation example with cable loss 4.60 dB Example: $Offset(dB) = RF \ cable \ loss(dB)$ = 4.60 (dB) ### 2.5 Frequency List of Low/Middle/High Channels | LTE Band 14 Channel and Frequency List | | | | | | | | | | |--|------------------------|--------|--------|---------|--|--|--|--|--| | BW [MHz] | Channel/Frequency(MHz) | Lowest | Middle | Highest | | | | | | | 10 | Channel | - | 23330 | - | | | | | | | 10 | Frequency | - | 793 | - | | | | | | | 5 | Channel | 23305 | 23330 | 23355 | | | | | | | 5 | Frequency | 790.5 | 793 | 795.5 | | | | | | Sporton International Inc. (Kunshan) Page Number : 10 of 23 TEL: +86-512-57900158 Report Issued Date : Oct. 25, 2023 FCC ID: IHDT56AN5 Report Version : Rev. 01 Report Template No.: BU5-FGLTE Version 2.0 #### 3 Conducted Test Items ### 3.1 Measuring Instruments See list of measuring instruments of this test report. #### 3.1.1 Test Setup #### 3.1.2 Conducted Output Power # 3.1.3 Peak-to-Average Ratio, Occupied Bandwidth, Conducted Band-Edge, Emission Mask, and Conducted Spurious Emission #### 3.1.4 Frequency Stability #### 3.1.5 Test Result of Conducted Test Please refer to Appendix A. Sporton International Inc. (Kunshan) TEL: +86-512-57900158 FCC ID: IHDT56AN5 Page Number : 11 of 23 Report Issued Date : Oct. 25, 2023 Report Version : Rev. 01 Report No.: FG391202D ### 3.2 Conducted Output Power and ERP #### 3.2.1 Description of the Conducted Output Power Measurement and ERP A base station simulator was used to establish communication with the EUT. Its parameters were set to transmit the maximum power on the EUT. The measured power in the radio frequency on the transmitter output terminals shall be reported. The ERP of mobile transmitters must not exceed 3 Watts for LTE Band 14. According to KDB 412172 D01 Power Approach, $EIRP = P_T + G_T - L_C$, ERP = EIRP - 2.15, where P_T = transmitter output power in dBm G_T = gain of the transmitting antenna in dBi L_C = signal attenuation in the connecting cable between the transmitter and antenna in dB #### 3.2.2 Test Procedures - 1. The testing follows ANSI C63.26 Section 5.2 - 2. The transmitter output port was connected to the system simulator. - 3. Set EUT at maximum power through the system simulator. - 4. Select lowest, middle, and highest channels for each band and different modulation. - 5. Measure and record the power level from the system simulator. TEL: +86-512-57900158 FCC ID: IHDT56AN5 Page Number : 12 of 23 Report Issued Date : Oct. 25, 2023 Report Version : Rev. 01 Report No.: FG391202D ### 3.3 Peak-to-Average Ratio #### 3.3.1 Description of the PAR Measurement Power Complementary Cumulative Distribution Function (CCDF) curves provide a means for characterizing the power peaks of a digitally modulated signal on a statistical basis. A CCDF curve depicts the probability of the peak signal amplitude exceeding the average power level. Most contemporary measurement instrumentation include the capability to produce CCDF curves for an input signal provided that the instrument's resolution bandwidth can be set wide enough to accommodate the entire input signal bandwidth. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB. #### 3.3.2 Test Procedures - 1. The EUT was connected to spectrum and system simulator via a power divider. - 2. Set the CCDF (Complementary Cumulative Distribution Function) option in spectrum analyzer. - 3. The highest RF powers were measured and recorded the maximum PAPR level associated with a probability of 0.1 %. - 4. Record the deviation as Peak to Average Ratio. TEL: +86-512-57900158 FCC ID: IHDT56AN5 Page Number : 13 of 23 Report Issued Date : Oct. 25, 2023 Report Version : Rev. 01 Report No.: FG391202D 3.4 Occupied Bandwidth 3.4.1 Description of Occupied Bandwidth Measurement The occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5% of the total mean transmitted power. The 26 dB emission bandwidth is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 26 dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth equal to approximately 1.0% of the emission bandwidth. 3.4.2 Test Procedures 1. The testing follows ANSI C63.26 Section 5.4 2. The EUT was connected to spectrum analyzer and system simulator via a power divider. 3. The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the spectrum analyzer shall be between two and five times the anticipated OBW. 4. The nominal resolution bandwidth (RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW. 5. Set the detection mode to peak, and the trace mode to max hold. 6. Determine the reference value: Set the EUT to transmit a modulated signal. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace. (this is the reference value) 7. Determine the "-26 dB down amplitude" as equal to (Reference Value – X). 8. Place two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral display such that each marker is at or slightly below the "-X dB down amplitude" determined in step 6. If a marker is below this "-X dB down amplitude" value it shall be placed as close as possible to this value. The OBW is the positive frequency difference between the two markers. 9. Use the 99 % power bandwidth function of the spectrum analyzer and report the measured bandwidth. ### 3.5 Conducted Band Edge Measurement #### 3.5.1 Description of Conducted Band Edge Measurement For operations in the 758-768 MHz and the 788-798 MHz bands - (1) On all frequencies between 769-775 MHz and 799-805 MHz, by a factor not less than 76 + 10 log - (P) dB in a 6.25 kHz band segment, for base and fixed stations. - (2) On all frequencies between 769-775 MHz and 799-805 MHz, by a factor not less than 65 + 10 log - (P) dB in a 6.25 kHz band segment, for mobile and portable stations. - (3) On any frequency between 775-788 MHz, above 805 MHz, and below 758 MHz, by at least 43 + 10 log (P) dB. #### 3.5.2 Test Procedures - 1. The testing follows ANSI C63.26 section 5.7 - 2. The EUT was connected to spectrum analyzer and system simulator via a power divider. - 3. The band edges of low and high channels for the highest RF powers were measured. - 4. Set spectrum analyzer with RMS detector. - The RF fundamental frequency should be excluded against the limit line in the operating frequency band. - 6. Checked that all the results comply with the emission limit line. #### Example: The limit line is derived from 43 + 10log(P)dB below the transmitter power P(Watts) - = P(W)- [43 + 10log(P)] (dB) - = [30 + 10log(P)] (dBm) [43 + 10log(P)] (dB) = -13dBm. Sporton International Inc. (Kunshan) TEL: +86-512-57900158 FCC ID: IHDT56AN5 Page Number : 15 of 23 Report Issued Date : Oct. 25, 2023 Report Version : Rev. 01 Report Template No.: BU5-FGLTE Version 2.0 #### 3.6 Emission Mask #### 3.6.1 Description of Emission Mask <Emission Mask B>. For transmitters that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows: - (1) On any frequency removed from the assigned frequency by more than 50 percent, but not more than 100 percent of the authorized bandwidth: At least 25 dB. - (2) On any frequency removed from the assigned frequency by more than 100 percent, but not more than 250 percent of the authorized bandwidth: At least 35 dB. - (3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 + 10 log (P) dB. #### 3.6.2 Test Procedures - 1. The testing follows ANSI C63.26 section 5.7 - 2. The EUT was connected to spectrum analyzer and system simulator via a power divider. - The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. - 4. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz. - 5. Set spectrum analyzer with RMS detector. - 6. Taking the record of maximum spurious emission. - The RF fundamental frequency should be excluded against the limit line in the operating frequency band. - 8. The limit line is derived from 43 + 10log(P)dB below the transmitter power P(Watts) - = P(W) [43 + 10log(P)] (dB) - = [30 + 10log(P)] (dBm) [43 + 10log(P)] (dB) - = -13dBm. ### 3.7 Conducted Spurious Emission Measurement #### 3.7.1 Description of Conducted Spurious Emission Measurement The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least 43 + 10 log (P) dB. It is measured by means of a calibrated spectrum analyzer and scanned from 30MHz up to a frequency including its 10th harmonic. #### 3.7.2 Test Procedures - 1. The testing follows ANSI C63.26 section 5.7 - 2. The EUT was connected to spectrum analyzer and base station via power divider. - The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. - 4. The middle channel for the highest RF power within the transmitting frequency was measured. - 5. The conducted spurious emission for the whole frequency range was taken. - 6. Make the measurement with the spectrum analyzer's, for under 1GHz RBW = 100kHz, VBW = 300kHz and for above 1GHz RBW = 1MHz, VBW = 3MHz, taking the record of maximum spurious emission. - 7. Set spectrum analyzer with RMS detector. - 8. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. - 9. The limit line is derived from 43 + 10log(P)dB below the transmitter power P(Watts) - = P(W)- [43 + 10log(P)] (dB) - $= [30 + 10\log(P)] (dBm) [43 + 10\log(P)] (dB)$ - = -13dBm. TEL: +86-512-57900158 FCC ID: IHDT56AN5 Page Number : 17 of 23 Report Issued Date : Oct. 25, 2023 Report Version : Rev. 01 Report No.: FG391202D ### 3.8 Frequency Stability Measurement #### 3.8.1 Description of Frequency Stability Measurement The frequency stability shall be measured by variation of ambient temperature and variation of primary supply voltage to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within ±1.25 ppm of the center frequency. #### 3.8.2 Test Procedures for Temperature Variation - The testing follows ANSI C63.26 section 5.6.4 - 2. The EUT was set up in the thermal chamber and connected with the system simulator. - With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute. - 4. With power OFF, the temperature was raised in 10°C step up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute. #### 3.8.3 Test Procedures for Voltage Variation - 1. The testing follows ANSI C63.26 section 5.6.5. - 2. The EUT was placed in a temperature chamber at 20±5°C and connected with the system simulator. - 3. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value for other than hand carried battery equipment. - 4. For hand carried, battery powered equipment, reduce the primary ac or dc supply voltage to the battery operating end point, which shall be specified by the manufacturer. - 5. The variation in frequency was measured for the worst case. TEL: +86-512-57900158 FCC ID: IHDT56AN5 Page Number : 18 of 23 Report Issued Date : Oct. 25, 2023 Report Version : Rev. 01 Report No.: FG391202D ### 4 Radiated Test Items ### 4.1 Measuring Instruments See list of measuring instruments of this test report. ### 4.2 Test Setup #### 4.2.1 For radiated test below 30MHz #### 4.2.2 For radiated test from 30MHz to 1GHz TEL: +86-512-57900158 FCC ID: IHDT56AN5 Page Number : 19 of 23 Report Issued Date : Oct. 25, 2023 Report Version : Rev. 01 Report No.: FG391202D #### 4.2.3 For radiated test above 1GHz ### 4.3 Test Result of Radiated Test The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported. Please refer to Appendix B. Sporton International Inc. (Kunshan) TEL: +86-512-57900158 FCC ID: IHDT56AN5 Page Number : 20 of 23 Report Issued Date : Oct. 25, 2023 Report Version : Rev. 01 Report No.: FG391202D ### 4.4 Radiated Spurious Emission Measurement #### 4.4.1 Description of Radiated Spurious Emission The radiated spurious emission was measured by substitution method according to ANSI C63.26. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least 43 + 10 log (P) dB. For operations in the 758-775 MHz and 788-805 MHz bands, all emissions including harmonics in the band 1559–1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation. #### 4.4.2 Test Procedures - 1. The testing follows ANSI C63.26 Section 5.5 - 2. The EUT was placed on a turntable with 0.8 meter height for frequency below 1GHz and 1.5 meter height for frequency above 1GHz respectively above ground. - 3. The EUT was set 3 meters from the receiving antenna mounted on the antenna tower. - 4. The table was rotated 360 degrees to determine the position of the highest spurious emission. - 5. The height of the receiving antenna is varied between 1m to 4m to search the maximum spurious emission for both horizontal and vertical polarizations. - 6. During the measurement, the system simulator parameters were set to force the EUT transmitting at maximum output power. - 7. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, taking the record of maximum spurious emission. - 8. A horn antenna was substituted in place of the EUT and was driven by a signal generator. - 9. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission. - 10. EIRP (dBm) = S.G. Power Tx Cable Loss + Tx Antenna Gain - 11. ERP (dBm) = EIRP 2.15 - 12. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. The limit line is derived from 43 + 10log(P)dB below the transmitter power P(Watts) - = P(W) [43 + 10log(P)] (dB) - = [30 + 10log(P)] (dBm) [43 + 10log(P)] (dB) - = -13dBm. # 5 List of Measuring Equipment | Instrument | Manufacturer | Model No. | Serial No. | Characteristics | Calibration
Date | Test Date | Due Date | Remark | |------------------------------|--------------|---------------------------|------------------|-----------------|---------------------|---------------------------------|---------------|--------------------------| | Spectrum
Analyzer | R&S | FSV30 | 101338 | 10Hz~30GHz | May 16, 2023 | Oct. 08, 2023
~Oct. 11, 2023 | May 15, 2024 | Conducted (TH01-KS) | | Spectrum
Analyzer | R&S | FSV40 | 101040 | 10Hz~40GHz | Oct. 12, 2022 | Oct. 08, 2023
~Oct. 11, 2023 | Oct. 11, 2023 | Conducted (TH01-KS) | | Power divider | STI | STI08-0055 | 1 | 0.5~40GHz | NCR | Oct. 08, 2023
~Oct. 11, 2023 | NCR | Conducted
(TH01-KS) | | EMI Test
Receiver&SA | Agilent | N9038A | MY5226018
5 | 20Hz~26.5GHz | Dec. 26, 2022 | Sep. 23, 2023
~Oct. 18, 2023 | Dec. 25, 2023 | Radiation
(03CH01-SZ) | | Loop Antenna | R&S | HFH2-Z2 | 100354 | 9kHz~30MHz | Jul. 28, 2022 | Sep. 23, 2023
~Oct. 18, 2023 | Jul. 27, 2024 | Radiation
(03CH01-SZ) | | HF Amplifier | KEYSIGHT | 83017A | MY5327010
5 | 0.5GHz~26.5Ghz | Oct. 19, 2022 | Sep. 23, 2023
~Oct. 18, 2023 | Oct. 18, 2023 | Radiation
(03CH01-SZ | | Bilog Antenna | TeseQ | CBL6112D | 35407 | 30MHz-2GHz | Sep. 28, 2021 | Sep. 23, 2023
~Oct. 18, 2023 | Sep. 27, 2023 | Radiation (03CH01-SZ) | | Double Ridge
Horn Antenna | ETS-Lindgren | 3117 | 00119436 | 1GHz~18GHz | Jul. 08, 2023 | Sep. 23, 2023
~Oct. 18, 2023 | Jul. 07, 2024 | Radiation (03CH01-SZ) | | SHF-EHF Horn | com-power | AH-840 | 101071 | 18Ghz-40GHz | Apr. 08,2023 | Sep. 23, 2023
~Oct. 18, 2023 | Apr. 07,2024 | Radiation
(03CH01-SZ) | | LF Amplifier | Burgeon | BPA-530 | 102209 | 0.01~3000Mhz | Apr. 04, 2023 | Sep. 23, 2023
~Oct. 18, 2023 | Apr. 03, 2024 | Radiation (03CH01-SZ) | | HF Amplifier | MITEQ | AMF-7D-001
01800-30-10 | 1943528 | 1GHz~18GHz | Oct. 19, 2022 | Sep. 23, 2023
~Oct. 18, 2023 | Oct. 18, 2023 | Radiation (03CH01-SZ) | | HF Amplifier | MITEQ | TTA1840-35-
HG | 1871923 | 18GHz~40GHz | Jul. 07, 2023 | Sep. 23, 2023
~Oct. 18, 2023 | Jul. 06, 2024 | Radiation
(03CH01-SZ) | | AC Power
Source | Chroma | 61601 | 6160100019
85 | N/A | Nov. 10, 2022 | Sep. 23, 2023
~Oct. 18, 2023 | Nov. 09, 2023 | Radiation
(03CH01-SZ) | | Turn Table | EM | EM1000 | N/A | 0~360 degree | NCR | Sep. 23, 2023
~Oct. 18, 2023 | NCR | Radiation
(03CH01-SZ) | | Antenna Mast | EM | EM1000 | N/A | 1 m~4 m | NCR | Sep. 23, 2023
~Oct. 18, 2023 | NCR | Radiation
(03CH01-SZ) | NCR: No Calibration Required Sporton International Inc. (Kunshan) TEL: +86-512-57900158 FCC ID: IHDT56AN5 Page Number : 22 of 23 Report Issued Date : Oct. 25, 2023 Report Version : Rev. 01 Report No.: FG391202D ### 6 Measurement Uncertainty The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.26-2015. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance. #### **Uncertainty of Conducted Measurement** | Test Item | Uncertainty | |----------------------------|-------------| | Conducted Power | ±0.46 dB | | Conducted Emissions | ±0.48 dB | | Occupied Channel Bandwidth | ±0.1 % | #### <u>Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)</u> | Measuring Uncertainty for a Level of | 2 40 AD | |--------------------------------------|---------| | Confidence of 95% (U = 2Uc(y)) | 2.48dB | #### **Uncertainty of Radiated Emission Measurement (1 GHz ~ 18 GHz)** | Measuring Uncertainty for a Level of | 3.53dB | |--------------------------------------|--------| | Confidence of 95% (U = 2Uc(y)) | 3.33uB | #### <u>Uncertainty of Radiated Emission Measurement (18 GHz ~ 40 GHz)</u> | Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y)) | 4.02dB | |---|--------| |---|--------| ----- THE END ----- Sporton International Inc. (Kunshan) Page Number : 23 of 23 TEL: +86-512-57900158 Report Issued Date : Oct. 25, 2023 FCC ID: IHDT56AN5 Report Version : Rev. 01 Report Template No.: BU5-FGLTE Version 2.0 # **Appendix A. Test Results of Conducted Test** | Toot Engineer : | | Temperature : | 22~23 ℃ | |-----------------|------------|---------------------|----------------| | Test Engineer : | Simle Wang | Relative Humidity : | 40~42% | # **Conducted Output Power(Average power)** #### Ant.0: | | | | | Power | Power | Power | | |----------|------------|---------|-----------|-------------|-------------|-------------|--| | BW [MHz] | Modulation | RB Size | RB Offset | Low | Middle | High | | | | | | | Ch. / Freq. | Ch. / Freq. | Ch. / Freq. | | | | Chan | nel | | 23330 | | | | | | Frequenc | / (MHz) | | | 793 | | | | 10 | QPSK | 1 | 0 | | 22.77 | | | | 10 | QPSK | 1 | 25 | | 22.75 | | | | 10 | QPSK | 1 | 49 | | 22.70 | | | | 10 | QPSK | 25 | 0 | | 21.80 | | | | 10 | QPSK | 25 | 12 | | 21.68 | | | | 10 | QPSK | 25 | 25 | | 21.65 | | | | 10 | QPSK | 50 | 0 | | 21.78 | | | | 10 | 16QAM | 1 | 0 | | 22.04 | | | | 10 | 16QAM | 1 | 25 | | 21.90 | | | | 10 | 16QAM | 1 | 49 | | 21.87 | | | | 10 | 16QAM | 25 | 0 | | 20.78 | | | | 10 | 16QAM | 25 | 12 | | 20.57 | | | | 10 | 16QAM | 25 | 25 | | 20.65 | | | | 10 | 16QAM | 50 | 0 | | 20.76 | | | | 10 | 64QAM | 1 | 0 | | 20.92 | | | | 10 | 64QAM | 1 | 25 | | 20.92 | | | | 10 | 64QAM | 1 | 49 | | 20.89 | | | | 10 | 64QAM | 25 | 0 | | 19.76 | | | | 10 | 64QAM | 25 | 12 | | 19.48 | | | | 10 | 64QAM | 25 | 25 | | 19.55 | | | | 10 | 64QAM | 50 | 0 | | 19.76 | | | | | Chan | nel | | 23305 | 23330 | 23355 | | | | Frequency | y (MHz) | | 790.5 | 793 | 795.5 | | | 5 | QPSK | 1 | 0 | 22.59 | 22.71 | 22.69 | | | 5 | QPSK | 1 | 12 | 22.67 | 22.58 | 22.58 | | | 5 | QPSK | 1 | 24 | 22.63 | 22.58 | 22.50 | | | 5 | QPSK | 12 | 0 | 21.71 | 21.65 | 21.75 | | | 5 | QPSK | 12 | 7 | 21.48 | 21.65 | 21.61 | | | 5 | QPSK | 12 | 13 | 21.48 | 21.64 | 21.65 | | | 5 | QPSK | 25 | 0 | 21.76 | 21.67 | 21.72 | | | 5 | 16QAM | 1 | 0 | 21.88 | 21.99 | 21.95 | | | 5 | 16QAM | 1 | 12 | 21.89 | 21.84 | 21.78 | | Sporton International Inc. (Kunshan) TEL: +86-512-57900158 FCC ID: IHDT56AN5 | 5 | 16QAM | 1 | 24 | 21.67 | 21.88 | 21.83 | |---|-------|----|----|-------|-------|-------| | 5 | 16QAM | 12 | 0 | 20.60 | 20.77 | 20.63 | | 5 | 16QAM | 12 | 7 | 20.56 | 20.48 | 20.56 | | 5 | 16QAM | 12 | 13 | 20.66 | 20.45 | 20.54 | | 5 | 16QAM | 25 | 0 | 20.58 | 20.66 | 20.64 | | 5 | 64QAM | 1 | 0 | 20.75 | 20.94 | 20.93 | | 5 | 64QAM | 1 | 12 | 20.84 | 20.88 | 20.73 | | 5 | 64QAM | 1 | 24 | 20.71 | 20.79 | 20.80 | | 5 | 64QAM | 12 | 0 | 19.70 | 19.66 | 19.75 | | 5 | 64QAM | 12 | 7 | 19.27 | 19.29 | 19.46 | | 5 | 64QAM | 12 | 13 | 19.42 | 19.51 | 19.54 | | 5 | 64QAM | 25 | 0 | 19.75 | 19.61 | 19.70 | #### Ant.4: | BW [MHz] | Modulation | RB Size | RB Offset | Power
Low | Power
Middle | Power
High | | |----------|------------|---------|-----------|--------------|-----------------|---------------|--| | | | | | Ch. / Freq. | Ch. / Freq. | Ch. / Freq. | | | | Chan | nel | | | 23330 | | | | | Frequency | / (MHz) | | | 793 | | | | 10 | QPSK | 1 | 0 | | 22.29 | | | | 10 | QPSK | 1 | 25 | | 22.28 | | | | 10 | QPSK | 1 | 49 | | 22.22 | | | | 10 | QPSK | 25 | 0 | | 21.18 | | | | 10 | QPSK | 25 | 12 | | 21.14 | | | | 10 | QPSK | 25 | 25 | | 21.12 | | | | 10 | QPSK | 50 | 0 | | 21.29 | | | | 10 | 16QAM | 1 | 0 | | 21.58 | | | | 10 | 16QAM | 1 | 25 | | 21.52 | | | | 10 | 16QAM | 1 | 49 | | 21.50 | | | | 10 | 16QAM | 25 | 0 | | 20.23 | | | | 10 | 16QAM | 25 | 12 | | 20.23 | | | | 10 | 16QAM | 25 | 25 | | 20.21 | | | | 10 | 16QAM | 50 | 0 | | 20.29 | | | | 10 | 64QAM | 1 | 0 | | 20.41 | | | | 10 | 64QAM | 1 | 25 | | 20.39 | | | | 10 | 64QAM | 1 | 49 | | 20.35 | | | | 10 | 64QAM | 25 | 0 | | 19.27 | | | | 10 | 64QAM | 25 | 12 | | 19.25 | | | | 10 | 64QAM | 25 | 25 | | 19.17 | | | | 10 | 64QAM | 50 | 0 | | 19.30 | | | | | Chan | nel | | 23305 | 23330 | 23355 | | | | Frequency | / (MHz) | | 790.5 | 793 | 795.5 | | | 5 | QPSK | 1 | 0 | 22.22 | 22.28 | 22.23 | | | 5 | QPSK | 1 | 12 | 22.16 | 22.21 | 22.24 | | | 5 | QPSK | 1 | 24 | 22.11 | 22.22 | 22.05 | | Sporton International Inc. (Kunshan) TEL: +86-512-57900158 FCC ID: IHDT56AN5 | 5 | QPSK | 12 | 0 | 21.14 | 21.02 | 21.01 | |---|-------|----|----|-------|-------|-------| | 5 | QPSK | 12 | 7 | 21.13 | 20.96 | 21.05 | | 5 | QPSK | 12 | 13 | 20.94 | 21.12 | 20.98 | | 5 | QPSK | 25 | 0 | 21.25 | 21.23 | 21.17 | | 5 | 16QAM | 1 | 0 | 21.58 | 21.57 | 21.45 | | 5 | 16QAM | 1 | 12 | 21.41 | 21.41 | 21.37 | | 5 | 16QAM | 1 | 24 | 21.29 | 21.40 | 21.33 | | 5 | 16QAM | 12 | 0 | 20.21 | 20.14 | 20.20 | | 5 | 16QAM | 12 | 7 | 20.17 | 20.18 | 20.23 | | 5 | 16QAM | 12 | 13 | 20.20 | 20.13 | 20.11 | | 5 | 16QAM | 25 | 0 | 20.27 | 20.13 | 20.27 | | 5 | 64QAM | 1 | 0 | 20.25 | 20.19 | 20.20 | | 5 | 64QAM | 1 | 12 | 20.18 | 20.27 | 20.19 | | 5 | 64QAM | 1 | 24 | 20.18 | 20.37 | 20.29 | | 5 | 64QAM | 12 | 0 | 19.18 | 19.14 | 19.06 | | 5 | 64QAM | 12 | 7 | 19.07 | 19.25 | 19.13 | | 5 | 64QAM | 12 | 13 | 19.12 | 19.10 | 18.97 | | 5 | 64QAM | 25 | 0 | 19.18 | 19.09 | 19.31 | Report No.: FG391202D : A3 of A33 TEL: +86-512-57900158 FCC ID: IHDT56AN5 ### LTE Band 14 # Peak-to-Average Ratio | Mode | | | | | |-----------|---------|-------------|---------|--------| | Mod. | QPSK | Limit: 13dB | | | | RB Size | Full RB | Full RB | Full RB | Result | | Middle CH | 5.36 | 6.20 | 6.35 | PASS | TEL: +86-512-57900158 FCC ID: IHDT56AN5 # Peak-to-Average Ratio | Mode | | | | | | |-----------|---------|------------------|---------|--------|--| | Mod. | QPSK | QPSK 16QAM 64QAM | | | | | RB Size | Full RB | Full RB | Full RB | Result | | | Middle CH | 5.36 | 6.14 | 6.38 | PASS | | Report No.: FG391202D Sporton International Inc. (Kunshan) Page Number : A6 of A33 TEL: +86-512-57900158 FCC ID: IHDT56AN5 # 26dB Bandwidth | Mode | LTE Band 14 : 26dB BW(MHz) | | |-----------|----------------------------|-------| | BW | 5MHz | | | Mod. | QPSK | 16QAM | | Middle CH | 4.95 | 4.85 | | Mode | LTE Band 14 : 26dB BW(MHz) | | | BW | 10MHz | | | Mod. | QPSK | 16QAM | | Middle CH | 9.75 | 9.85 | ## **Occupied Bandwidth** | Mode | LTE Band 14 : 99%OBW(MHz) | | |-----------|---------------------------|-------| | BW | 10MHz | | | Mod. | QPSK | 16QAM | | Middle CH | 4.50 | 4.48 | | Mode | LTE Band 14 : 99%OBW(MHz) | | | BW | 10MHz | | | Mod. | QPSK | 16QAM | | Middle CH | 9.03 | 8.99 | # **Conducted Band Edge** Page Number : A13 of A33 Page Number : A14 of A33 ### **Conducted Spurious Emission** TEL: +86-512-57900158 FCC ID: IHDT56AN5 ### MASK TEL: +86-512-57900158 FCC ID: IHDT56AN5 # Frequency Stability | Test Conditions | | LTE Band 14 (QPSK) / Middle Channel | Limit | |------------------|-------------------|-------------------------------------|-------------| | | Voltage | BW 5MHz | 1.25
ppm | | Temperature (°C) | (Volt) | Deviation
(ppm) | Result | | 50 | Normal Voltage | 0.0017 | | | 40 | Normal Voltage | 0.0030 | | | 30 | Normal Voltage | 0.0015 | | | 20(Ref.) | Normal Voltage | 0.0000 | | | 10 | Normal Voltage | 0.0021 | | | 0 | Normal Voltage | 0.0036 | | | -10 | Normal Voltage | 0.0025 | PASS | | -20 | Normal Voltage | 0.0011 | | | -30 | Normal Voltage | 0.0028 | | | 20 | Maximum Voltage | 0.0031 | | | 20 | Normal Voltage | 0.0013 | | | 20 | Battery End Point | 0.0026 | | TEL: +86-512-57900158 FCC ID: IHDT56AN5 | Test Conditions | | LTE Band 14 (QPSK) / Middle Channel | Limit | |------------------|-------------------|-------------------------------------|-------------| | | Voltage | BW 10MHz | 1.25
ppm | | Temperature (°C) | (Volt) | Deviation
(ppm) | Result | | 50 | Normal Voltage | 0.0023 | | | 40 | Normal Voltage | 0.0018 | | | 30 | Normal Voltage | 0.0034 | | | 20(Ref.) | Normal Voltage | 0.0000 | | | 10 | Normal Voltage | 0.0012 | | | 0 | Normal Voltage | 0.0025 | | | -10 | Normal Voltage | 0.0033 | PASS | | -20 | Normal Voltage | 0.0021 | | | -30 | Normal Voltage | 0.0017 | | | 20 | Maximum Voltage | 0.0033 | | | 20 | Normal Voltage | 0.0045 | | | 20 | Battery End Point | 0.0022 | | #### Note: - 1. Normal Voltage =3.91 V.; Battery End Point (BEP) =3.6 V.; Maximum Voltage =4.45 V. - 2. Note: The frequency fundamental emissions stay within the authorized frequency block. TEL: +86-512-57900158 FCC ID: IHDT56AN5 | LTE Band 14 (G_T - L_C = -4.90 dBi) QPSK For Ant.0 | | | | | | | | | |---|-------------|--------|--------|-----|--------|--|--|--| | Bandwidth | | 5M | | 10M | | | | | | Channel | 23305 23330 | | 23355 | | 23330 | | | | | Channel | (Low) | (Mid) | (High) | | (Mid) | | | | | Frequency | 790.5 | 793 | 795.5 | | 793 | | | | | (MHz) | 790.5 | 793 | 795.5 | | 793 | | | | | Conducted Power (dBm) | 22.59 | 22.71 | 22.69 | | 22.77 | | | | | Conducted Power (Watts) | 0.1816 | 0.1866 | 0.1858 | | 0.1892 | | | | | ERP(dBm) | 15.54 | 15.66 | 15.64 | | 15.72 | | | | | ERP(Watts) | 0.0358 | 0.0368 | 0.0366 | | 0.0373 | | | | | LTE Band 14 (G_T - L_C = -4.90 dBi) 16QAM For Ant.0 | | | | | | | | | |--|-------------|--------|--------|-------|--------|--|--|--| | Bandwidth | | 5M | | 10M | | | | | | Channel | 23305 23330 | | 23355 | 23330 | | | | | | Chainlei | (Low) | (Mid) | (High) | | (Mid) | | | | | Frequency | 790.5 | 793 | 705.5 | | 793 | | | | | (MHz) | 790.5 | 793 | 795.5 | | 793 | | | | | Conducted Power (dBm) | 21.88 | 21.99 | 21.95 | | 22.04 | | | | | Conducted Power (Watts) | 0.1542 | 0.1581 | 0.1567 | | 0.1600 | | | | | ERP(dBm) | 14.83 | 14.94 | 14.90 | | 14.99 | | | | | ERP(Watts) | 0.0304 | 0.0312 | 0.0309 | | 0.0316 | | | | | LTE Band 14 (G_T - L_C = -4.90 dBi) 64QAM For Ant.0 | | | | | | | | | |--|--------|-------------|--------|-------|--------|--|--|--| | Bandwidth | | 5M | | 10M | | | | | | Channel | 23305 | 23305 23330 | | 23330 | | | | | | Channel | (Low) | (Mid) | (High) | | (Mid) | | | | | Frequency | 790.5 | 793 | 795.5 | | 793 | | | | | (MHz) | 790.5 | 793 | 793.3 | | 193 | | | | | Conducted Power (dBm) | 20.75 | 20.94 | 20.93 | | 20.92 | | | | | Conducted Power (Watts) | 0.1189 | 0.1242 | 0.1239 | | 0.1236 | | | | | ERP(dBm) | 13.70 | 13.89 | 13.88 | | 13.87 | | | | | ERP(Watts) | 0.0234 | 0.0245 | 0.0244 | | 0.0244 | | | | # **Appendix B. Test Results of Radiated Test** ### Field Strength of Spurious Radiated | Toot Engineer | HuaCana Liana | Temperature : | 22~25℃ | |-----------------|---------------|---------------------|--------| | Test Engineer : | HuaCong Liang | Relative Humidity : | 48~52% | Pre-scanned harmonic for the different antennas, we choose the worst antenna mode to perform final test and record in the report. | LTE Band 14 / 5MHz / QPSK ANT0 | | | | | | | | | | |--------------------------------|--------------------|----------------|------------------|-------------------------|-------------------------|--------------------------|----------------------|-----------------------------|-----------------------| | Channel | Frequency
(MHz) | ERP
(dBm) | Limit
(dBm) | Over
Limit
(dB) | SPA
Reading
(dBm) | S.G.
Power
(dBm) | TX Cable loss (dB) | TX Antenna
Gain
(dBi) | Polarization
(H/V) | | | 1576.5 | -63.88 | -42.15 | -21.73 | -70.31 | -67.11 | 3.98 | 9.36 | Н | | | 2364.75 | -50.68 | -13 | -37.68 | -61.25 | -54.23 | 4.85 | 10.55 | Н | | Lavvaat | 3153 | -63.18 | -13 | -50.18 | -75.99 | -68.11 | 5.50 | 12.58 | Н | | Lowest | 1576.5 | -65.55 | -42.15 | -23.40 | -72.21 | -68.78 | 3.98 | 9.36 | V | | | 2364.75 | -51.96 | -13 | -38.96 | -62.94 | -55.51 | 4.85 | 10.55 | V | | | 3153 | -62.91 | -13 | -49.91 | -76.28 | -67.84 | 5.50 | 12.58 | V | | | 1581.5 | -65.86 | -42.15 | -23.71 | -72.27 | -69.11 | 4.00 | 9.40 | Н | | | 2372.25 | -50.80 | -13 | -37.80 | -61.34 | -54.37 | 4.88 | 10.60 | Н | | NA: al al la | 3163 | -63.23 | -13 | -50.23 | -76.08 | -68.16 | 5.52 | 12.60 | Н | | Middle | 1581.5 | -65.22 | -42.15 | -23.07 | -71.87 | -68.47 | 4.00 | 9.40 | V | | | 2372.25 | -52.10 | -13 | -39.10 | -63.04 | -55.67 | 4.88 | 10.60 | V | | | 3163 | -62.57 | -13 | -49.57 | -75.99 | -67.50 | 5.52 | 12.60 | V | | | 1586.5 | -66.84 | -42.15 | -24.69 | -73.20 | -70.01 | 4.10 | 9.42 | Н | | | 2379.75 | -49.94 | -13 | -36.94 | -60.44 | -53.52 | 4.90 | 10.63 | Н | | Highest | 3173 | -63.15 | -13 | -50.15 | -76.05 | -68.07 | 5.55 | 12.62 | Н | | | 1586.5 | -66.44 | -42.15 | -24.29 | -73.03 | -69.61 | 4.10 | 9.42 | V | | | 2379.75 | -51.31 | -13 | -38.31 | -62.22 | -54.89 | 4.90 | 10.63 | V | | D 0 | 3173 | -62.75 | -13 | -49.75 | -76.23 | -67.67 | 5.55 | 12.62 | V | Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line. | | LTE Band 14 / 10MHz / QPSK ANT0 | | | | | | | | | |--------------|---------------------------------|----------------|------------------|-------------------------|-------------------------|--------------------------|----------------------|-----------------------------|-----------------------| | Channel | Frequency
(MHz) | ERP
(dBm) | Limit
(dBm) | Over
Limit
(dB) | SPA
Reading
(dBm) | S.G.
Power
(dBm) | TX Cable loss (dB) | TX Antenna
Gain
(dBi) | Polarization
(H/V) | | | 1577 | -64.87 | -42.15 | -22.72 | -71.30 | -68.12 | 4.00 | 9.40 | Н | | | 2365.5 | -51.67 | -13 | -38.67 | -62.24 | -55.24 | 4.88 | 10.60 | Н | | NA: al all a | 3154 | -63.49 | -13 | -50.49 | -76.31 | -68.42 | 5.52 | 12.60 | Н | | Middle | 1577 | -65.54 | -42.15 | -23.39 | -72.19 | -68.79 | 4.00 | 9.40 | V | | | 2365.5 | -51.44 | -13 | -38.44 | -62.41 | -55.01 | 4.88 | 10.60 | V | | | 3154 | -62.96 | -13 | -49.96 | -76.33 | -67.89 | 5.52 | 12.60 | V | Sporton International Inc. (Kunshan) TEL: +86-512-57900158 FCC ID: IHDT56AN5