

Report No.: 23090695HKG-001

VTech Telecommunications Ltd.

Application For Original Grant of 47 CFR Part 15 Certification

Single New of RSS-247 Issue 3 Certification

VoIP Phone

FCC ID: EW780-S212-00

IC: 1135B-80S21200

This report contains the data of 2.4GHz Wi-Fi portion only

2/F., Garment Centre, 576 Castle Peak Road, Kowloon, Hong Kong SAR, China.

 Telephone:
 (852) 2173 8888

 Facsimile:
 (852) 2785 5487

 www.intertek.com

Prepared and Checked by:

Approved by:

Signed on File Leung Chun Ning, Peter Assistant Engineer

Wong Cheuk Ho, Herbert Assistant Supervisor Date: April 24, 2024

Intertek's standard Terms and Conditions can be obtained at our website http://www.intertek.com/terms/.

The test report only allows to be revised within the retention period unless further standard or the requirement was noticed.

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

GENERAL INFORMATION

Grantee:	VTech Telecommunications Ltd.
Grantee Address:	23/F., Tai Ping Industrial Centre, Block 1, 57 Ting Kok Road, Tai Po,
	Hong Kong.
Manufacturer Name:	VTech (Dongguan) Telecommunications Limited
Manufacturer Address:	VTech Science Park, Xia Ling Bei Management Zone, Liaobu, Dongguan, Guangdong, China.
FCC Specification Standard:	FCC Part 15, October 1, 2022 Edition
FCC ID:	EW780-S212-00
FCC Model(s):	D815
IC Specification Standard:	RSS-247 Issue 3, August 2023 RSS-Gen Issue 5 Amendment 2, February 2021
IC:	1135B-80S21200
HVIN:	35-400509BS
PMN:	D815
Type of EUT:	Spread Spectrum Transmitter
Description of EUT:	VoIP Phone
Brand Name:	VTech
Sample Receipt Date:	September 27, 2023
Date of Test:	October 12, 2023 to January 12, 2024
Report Date:	April 24, 2024
Environmental Conditions:	Temperature: +10 to 40°C
	Relative Humidity: 10 to 90%
Conclusion:	Test was conducted by client submitted sample. The submitted sample as received complied with the 47 CFR Part 15 / RSS-247 Issue 3 Certification.
	This report contains the data of 2.4GHz Wi-Fi portion only

Page 2 of 63

SUMMARY OF TEST RESULT

Test Items	FCC Part 15 Section	RSS-247 / RSS- Gen [#] Section	Test Engineer	Results
Antenna Requirement	15.203	7.1.2#	N/A	Complied
Max. Conducted Output Power (Peak)	15.247(b)(3)&(4)	5.4(4)	Rain Wang	Complied
Min. 6dB RF Bandwidth	15.247(a)(2)	5.2(1)	Rain Wang	Complied
Max. Power Density (Average)	15.247(e)	5.2(2)	Rain Wang	Complied
Out of Band Antenna Conducted Emission	15.247(d)	5.5	Rain Wang	Complied
Radiated Emission in Restricted Bands and Spurious Emissions	15.247(d), 15.209 & 15.109	5.5	Fire Huo	Complied
AC Power Line Conducted Emission	15.207 & 15.107	7.2.4 [#]	Linson Xie	Complied

Note: Pursuant to FCC Part 15 Section 15.215(c), the 20dB bandwidth of the emission was contained within the frequency band designated (mentioned as above) which the EUT operated. The effects, if any, from frequency sweeping, frequency hopping, other modulation techniques and frequency stability over expected variations in temperature and supply voltage were considered.

For all technical data, which can be referred to Annex B – Report cover sheet. For electronic filing, the Annex B – Report cover sheet is saved with filename: Annex B.pdf.

The equipment under test is found to be complying with the following standards:

FCC Part 15, October 1, 2022 Edition RSS-247 Issue 3, August 2023 RSS-Gen Issue 5 Amendment 2, February 2021

TABLE OF CONTENTS

EXHIBIT 1	GENERAL DESCRIPTION	5
1.1	Product Description	5
1.2	Test Methodology	
1.3	Test Facility	
1.4	Related Submittal(s) Grants	
EXHIBIT 2	SYSTEM TEST CONFIGURATION	7
2.1	Justification	7
2.2	EUT Exercising Software	8
2.3	Details of EUT and Description of Accessories	9
2.4	Measurement Uncertainty	
EXHIBIT 3	TEST RESULTS	10
3.1	Maximum Conducted (Peak) Output Power at Antenna Terminals	10
3.1 3.2	Maximum Conducted (Peak) Output Power at Antenna Terminals Minimum 6dB RF Bandwidth	
		12
3.2	Minimum 6dB RF Bandwidth	12 19
3.2 3.3	Minimum 6dB RF Bandwidth Minimum Power Spectral Density Out of Band Conducted Emissions	12 19 26
3.2 3.3 3.4	Minimum 6dB RF Bandwidth Minimum Power Spectral Density	12 19 26 42
3.2 3.3 3.4 3.5	Minimum 6dB RF Bandwidth Minimum Power Spectral Density Out of Band Conducted Emissions Field Strength Calculation	12 19 26 42 43
3.2 3.3 3.4 3.5 3.6	Minimum 6dB RF Bandwidth Minimum Power Spectral Density Out of Band Conducted Emissions Field Strength Calculation Transmitter Radiated Emissions in Restricted Bands and Spurious Emissions	12 26 42 43 55

EXHIBIT 1 GENERAL DESCRIPTION

1.1 Product Description

The D815 (35-400509BS) is a VoIP Phone.

The Equipment Under Test (EUT) operates at frequency range of 2412 MHz to 2462 MHz with 11 channels.

For IEEE 802.11b mode, it operates at frequency range of 2412.000 MHz to 2462.000 MHz with 11 channels. It transmits via Direct-sequence spread spectrum (DSSS) modulation. Maximum bit rate can be up to 11Mbps.

For IEEE 802.11g mode, it operates at frequency range of 2412.000 MHz to 2462.000 MHz with 11 channels. It transmits via Orthogonal Frequency Division Multiplexing (OFDM) modulation. Maximum bit rate can be up to 54Mbps.

For IEEE 802.11n (with 20 MHz bandwidth) mode, it operates at frequency range of 2412.000 MHz to 2462.000 MHz with 11 channels. It transmits via Orthogonal Frequency Division Multiplexing (OFDM) modulation. Maximum bit rate can support up to 65Mbps.

The EUT is powered by 100-240VAC 50/60Hz 0.3A or 100-240VAC 50/60Hz 0.5A adaptor.

The antenna(s) used in the EUT is integral, and the test sample is a prototype. Peak Antenna Gain: 1dBi

The circuit description is saved with filename: descri.pdf.

1.2 Test Methodology

Both AC power line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.10 (2013). Preliminary radiated scans and all radiated measurements were performed in radiated emission test sites. All Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "Justification Section" of this Application. Antenna port conducted measurements were performed according to ANSI C63.10 (2013) and KDB Publication No. 558074 D01 v05r02 (April 02, 2019) All other measurements were made in accordance with the procedures in 47 CFR Part 2 and RSS-Gen Issue 5 Amendment 2, February 2021.

1.3 Test Facility

The radiated emission (15.209) test site are at Workshop No. 3, G/F., World-Wide Industrial Centre, 43-47 Shan Mei Street, Fo Tan, Sha Tin, N.T., Hong Kong SAR, China. This test facility and site measurement data have been fully placed on file with the FCC and Industry Canada No.: 2042H, CABID is "HKAP01".

The radiated emission (except 15.209) test site and antenna port conducted measurement facility used to collect the radiated data and conductive data are at Shenzhen UnionTrust Quality and Technology Co., Ltd. at 16/F., Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China 518109. This test facility and site measurement data have been fully placed on file with the FCC and Industry Canada No.: 21600, CABID "HKAP01", "CN0023".

TEST REPORT

1.4 Related Submittal(s) Grants

This is a single application for certification of a transceiver (WiFi Portion).

EXHIBIT 2 SYSTEM TEST CONFIGURATION

2.1 Justification

For radiated emissions testing, the equipment under test (EUT) was setup to transmit / receive continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, all cables (if any) were manipulated to produce worst case emissions.

The EUT was powered by 120VAC during test.

For the measurements, the EUT was attached to a plastic stand if necessary and placed on the wooden turntable at 0.8m height from the ground plane for emission testing at or below 1GHz and 1.5m for emission measurements above 1GHz. If the EUT attached to peripherals, they were connected and operational (as typical as possible).

The signal was maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization were varied during the search for maximum signal level. The antenna height was varied from 1 to 4 meters. Radiated emissions were taken at three meters unless the signal level was too low for measurement at that distance. If necessary, a pre-amplifier was used and/or the test was conducted at a closer distance.

For any intentional radiator powered by AC power line, measurements of the radiated signal level of the fundamental frequency component of the emission was performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage.

Radiated emission measurement for transmitter were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

Emission that are directly caused by digital circuits in the transmit path and transmitter portion were measured, and the limit are according to FCC Part 15 Section 15.209 / RSS-247 2.5. Digital circuitries used to control additional functions other than the operation of the transmitter are subject to FCC Part 15 Section 15.109 / RSS-247 Section 5.5 Limits.

2.1 Justification (Cont'd)

Detector function for radiated emissions was in peak mode. Average readings, when required, were taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings. A detailed description for the calculation of the average factor can be found in section 4.8.3.

Determination of pulse desensitization was made according to *Hewlett Packard Application Note 150-2, Spectrum Analysis… Pulsed RF.* The effective period (Teff) was referred to Exhibit 4.8.3. With the resolution bandwidth 1MHz and spectrum analyzer IF bandwidth 3dB, the pulse desensitization factor was 0dB.

For AC power line-conducted emission test, the EUT along with its peripherals were placed on a 1.0m(W)x1.5m(L) and 0.8m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane. The EUT was connected to power mains through a line impedance stabilization network (LISN), which provided 500hm coupling impedance for measuring instrument. The LISN housing, measuring instrument case, reference ground plane, and vertical ground plane were bounded together. The excess power cable between the EUT and the LISN was bundled.

All connecting cables of EUT and peripherals were manipulated to find the maximum emission.

Different data rates have been tested. Worst case is reported only.

Different adaptors have been used for testing. Worst case is reported only.

All relevant operation modes have been tested, and the worst-case data is included in this report.

All data rates were tested under normal mode of WiFi. Only the worst-case data is shown in the report for DSSS and OFDM.

2.2 EUT Exercising Software

The EUT exercise program (Tera Terms Version 4.106) used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use.

TEST REPORT

2.3 Details of EUT and Description of Accessories

Details of EUT:

An AC/DC Adaptor (provided with the unit) was used to power the device. Their descriptions are listed below.

- (1) An AC adaptor (Model: NBS12E050200UV; Brand Name: MASS POWER; Input: 100-240VAC 50/60Hz 0.3A; Output: 5.0VDC 2.0A 10.0W) (Provided by Applicant)
- (2) An AC adaptor (Model: VT07EUS05200; Brand Name: VTPL; Input: 100-240VAC 50/60Hz 0.5A; Output: 5.0VDC 2.0A 10.0W) (Provided by Applicant)

Description of Accessories:

Not Applicable

2.4 Measurement Uncertainty

Decision Rule for compliance: For FCC/IC standard, the measured value must be within the limits of applicable standard without accounting for the measurement uncertainty. For EN/IEC/HKTA/HKTC standard, conformity rules will be used as per standard directly excepted EN/IEC 61000-3-2, EN/IEC 61000-3-2, HKTA1004, HKCA1008, HKTA1019, HKTA1020, HKTA1041 and HKTA1044.

Uncertainty and Compliance - Unless the standard specifically states that measured values are to be extended by the measurement uncertainty in determining compliance, all compliance determinations are based on the actual measured value.

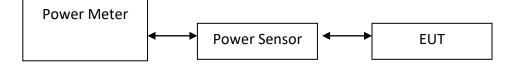

TEST REPORT

EXHIBIT 3 TEST RESULTS

3.1 Maximum Conducted (Peak) Output Power at Antenna Terminals

RF Conduct Measurement Test Setup

The figure below shows the test setup, which is utilized to make these measurements.

The antenna port of the EUT was connected to the input of a spectrum analyzer.

The antenna power of the EUT was connected to the input of a power meter. Power was read directly and cable loss correction was added to the reading to the obtain power at the EUT antenna terminals. The measurement procedure 8.3.2.3 was used.

] The EUT should be configured to transmit continuously (at a minimum duty cycle of 98%) at full power over the measurement duration. The measurement procedure AVG1 was used.

IEEE 802.11b (DSSS, 1 Mbps) Peak Antenna Gain = 1 dBi

Frequency (MHz)	Output in dBm	Output in mW
Low Channel: 2412	19.27	84.53
Middle Channel: 2437	19.06	80.54
High Channel: 2462	18.67	73.62

IEEE 802.11g (OFDM, 6 Mbps) Peak Antenna Gain = 1 dBi

Frequency (MHz)	Output in dBm	Output in mW
Low Channel: 2412	23.80	239.88
Middle Channel: 2437	23.41	219.28
High Channel: 2462	23.18	207.97

IEEE 802.11n (20MHz) (OFDM, MCS0) Peak Antenna Gain = 1 dBi

Frequency (MHz)	Output in dBm	Output in mW
Low Channel: 2412	23.37	217.27
Middle Channel: 2437	22.96	197.70
High Channel: 2462	22.63	183.23

3.1 Maximum Conducted (Peak) Output Power at Antenna Terminals (Cont'd)

Cable loss: 0.5 dB External Attenuation: 0 dB

Cable loss, external attenuation:

included in OFFSET function added to SA raw reading

IEEE 802.11b (DSSS, 1 Mbps) Max. Conducted (Peak) Output Level = 19.27 dBm

IEEE 802.11g (OFDM, 6 Mbps) Max. Conducted (Peak) Output Level = 23.80 dBm

IEEE 802.11n (20MHz) (OFDM, MCS0) Max. Conducted (Peak) Output Level = 23.37 dBm


Limits:

1W (30dBm) for antennas with gains of 6dBi or less.

3.2 Minimum 6dB RF Bandwidth

The figure below shows the test setup, which is utilized to make these measurements.

The antenna port of the EUT was connected to the input of a spectrum analyzer. The EBW measurement procedure was used. A PEAK output reading was taken, a DISPLAY line was drawn 6dB lower than PEAK level. The 6dB bandwidth was determined from where the channel output spectrum intersected the display line.

IEEE 802.11b (DSSS, 1 Mbps)

Frequency (MHz)	6dB Bandwidth (MHz)
Low Channel: 2412	10.11
Middle Channel: 2437	10.10
High Channel: 2462	10.11

IEEE 802.11g (OFDM, 6 Mbps)

Frequency (MHz)	6dB Bandwidth (MHz)
Low Channel: 2412	16.54
Middle Channel: 2437	16.54
High Channel: 2462	16.52

IEEE 802.11n (20MHz) (OFDM, MCSO)

Frequency (MHz)	6dB Bandwidth (MHz)
Low Channel: 2412	17.65
Middle Channel: 2437	17.71
High Channel: 2462	17.68

Limits:

6dB bandwidth shall be at least 500kHz.

The plots of 6dB RF bandwidth are saved as below.

TEST REPORT

PLOTS OF 6dB RF BANDWIDTH

802.11b, Lowest Channel

802.11b, Middle Channel



TEST REPORT

PLOTS OF 6dB RF BANDWIDTH

802.11b, Highest Channel

TEST REPORT

PLOTS OF 6dB RF BANDWIDTH

802.11g, Lowest Channel

Agilent Spectrum Analyzer - Occupied BW		SENSE:INT SOURCE OFF Center Freq: 2.412000 → Trig: Free Run #Atten: 36 dB	ALIGNAUTO 1000 GHz Avg Hold: 100/100	09:33:26 AMOct 20, 2023 Radio Std: None Radio Device: BTS
Ref Offset 11.1 dB 10 dB/div Ref 36.10 dBm				
26.1				
6.10	www.www.		umun and and and and and and and and and an	4
-13.9		V I		hand and a
-23.9				- Marine Marine Marine
-43.9				
Center 2.412 GHz #Res BW 100 kHz		#VBW 300 k	(Hz	Span 30 MHz Sweep 3.333 ms
Occupied Bandwidth		Total Power	23.0 dBm	
16	.496 MHz			
Transmit Freq Error	-3.085 kHz	OBW Power	99.00 %	
x dB Bandwidth	16.54 MHz	x dB	-6.00 dB	
MSG			STATUS	

802.11g, Middle Channel

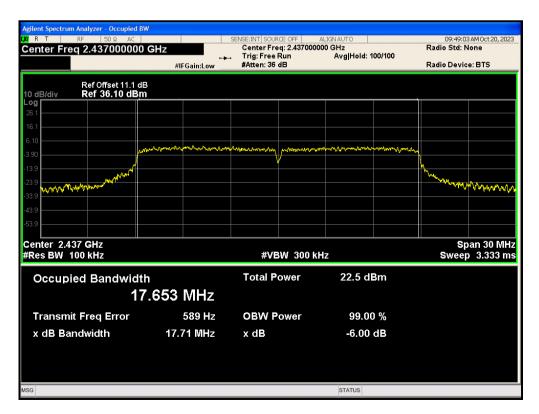
Aglient Spectrum Analyzer - Occupied BW WR R T RE 500 AC Center Freq 2.4370000000 C	GHz #IFGain:Low	SENSE:INT SOUR Center Fre Trig: Free #Atten: 36	q: 2.43700000 Run	IGNAUTO 0 GHz Avg Hold: 1	00/100		09:36:49 Radio Std: N Radio Device	
Ref Offset 11.1 dB 10 dB/div Ref 36.10 dBm						- <u>-</u>		
26.1								
6.10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mmmmm	manna	an and the second	m	×		
-13.9			/			l.	M., .	
-23.9							www.hour	and the party
-43.9								
Center 2.437 GHz #Res BW 100 kHz		#VE	W 300 kH	z				an 30 MHz) 3.333 ms
Occupied Bandwidth		Total P	ower	22.6 di	3m			
16.	490 MHz							
Transmit Freq Error	-916 Hz	OBW P	ower	99.00	1%			
x dB Bandwidth	16.54 MHz	x dB		-6.00	dB			
MSG				STATUS				

TEST REPORT

PLOTS OF 6dB RF BANDWIDTH

802.11g, Highest Channel

Agilent Spectrum Analyzer - Occupied BW W R T RF 50.0 AC Center Freq 2.462000000 C	GHz #IFGain:Low	SENSE:INT SOURCE OFF Center Freq: 2.462000 , Trig: Free Run #Atten: 36 dB	ALIGNAUTO 000 GHz Avg Hold: 100/100	09:39:04 AMOct 20, 2023 Radio Std: None Radio Device: BTS
Ref Offset 11.1 dB 10 dB/div Ref 36.10 dBm				
26.1				
6.10	,~,,,,;~,^,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	and the state of t	any marine and the second second	м
-3.90				how have a
-23.9 -33.9				mar Mar Marker
-43.9				
Center 2.462 GHz #Res BW 100 kHz		#VBW 300 k	Hz	Span 30 MHz Sweep 3.333 ms
Occupied Bandwidth		Total Power	22.3 dBm	
16.	499 MHz			
Transmit Freq Error	-4.698 kHz	OBW Power	99.00 %	
x dB Bandwidth	16.52 MHz	x dB	-6.00 dB	
MSG			STATUS	


TEST REPORT

PLOTS OF 6dB RF BANDWIDTH

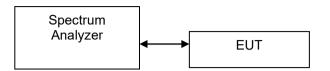
802.11n (20MHz), Lowest Channel

Agilent Spectrum Analyzer - Occupied BW		SENSE:INT SOURCE OFF Center Freq: 2.412000 → Trig: Free Run #Atten: 36 dB	ALIGNAUTO 000 GHz Avg Hold: 100/100	09:42:06 AM Oct 20, 2023 Radio Std: None Radio Device: BTS
Ref Offset 11.1 dB 10 dB/div Ref 36.10 dBm				
26.1 16.1				
6.10 -3.90	mannente	mmmm mmm	and the second second second	Mng
-13.9 -23.9 -33.9				
-33.9				
Center 2.412 GHz				Span 30 MHz
#Res BW 100 kHz		#VBW_300 k	:Hz	Sweep 3.333 ms
Occupied Bandwidth		Total Power	22.8 dBm	
17	.646 MHz			
Transmit Freq Error	2.948 kHz	OBW Power	99.00 %	
x dB Bandwidth	17.65 MHz	x dB	-6.00 dB	
MSG			STATUS	

802.11n (20MHz), Middle Channel

TEST REPORT

PLOTS OF 6dB RF BANDWIDTH


802.11n (20MHz), Highest Channel

Agilent Spectrum Analyzer - Occupied BV IX R T RF 50 Q AC Center Freq 2.462000000		SENSE:INT SOURCE OFF Center Freq: 2.462000 Trig: Free Run #Atten: 36 dB	ALIGNAUTO 1000 GHz Avg Held: 100/100	09:51:33 AM Oct 20, 2023 Radio Std: None Radio Device: BTS
Ref Offset 11.1 dE 10 dB/div Ref 36.10 dBm				
26.1				
6.10	water production and a second dama	have write	www.log	~~
-13.9		V		Mundan and
-23.9 -33.9 -33.9				mannan
-53.9				
Center 2.462 GHz #Res BW 100 kHz		#VBW 300 k	(Hz	Span 30 MHz Sweep 3.333 ms
Occupied Bandwidt		Total Power	22.2 dBm	
17	.653 MHz			
Transmit Freq Error	-419 Hz	OBW Power	99.00 %	
x dB Bandwidth	17.68 MHz	x dB	-6.00 dB	
MSG			STATUS	

3.3 Minimum Power Spectral Density

The figure below shows the test setup, which is utilized to make these measurements.

Antenna output of the EUT was coupled directly to spectrum analyzer. The measurement procedure 10.2 PKPSD was used. If an external attenuator and/or cable was used, these losses are compensated for using the OFFSET function of the analyser.

IEEE 802.11b (DSSS, 1 Mbps)

Frequency (MHz)	PSD in 3kHz (dBm)
Low Channel: 2412	-12.770
Middle Channel: 2437	-13.302
High Channel: 2462	-13.770

IEEE 802.11g (OFDM, 6 Mbps)

Frequency (MHz)	PSD in 3kHz (dBm)
Low Channel: 2412	-11.219
Middle Channel: 2437	-11.470
High Channel: 2462	-11.823

IEEE 802.11n (20MHz) (OFDM, MCSO)

Frequency (MHz)	PSD in 3kHz (dBm)
Low Channel: 2412	-10.052
Middle Channel: 2437	-10.446
High Channel: 2462	-10.715

Cable Loss: 0.5dB

Limit: 8dBm in 3kHz

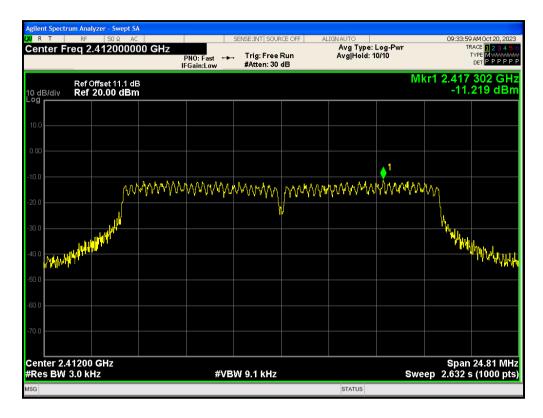
The plots of power spectral density are as below.

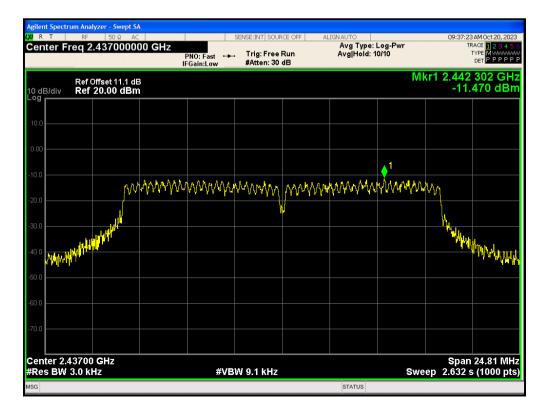
PLOTS OF POWER SPECTRAL DENSITY

802.11b, Lowest channel

802.11b, Middle channel

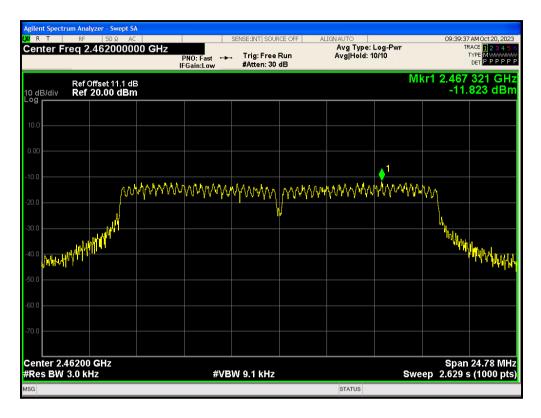
PLOTS OF POWER SPECTRAL DENSITY


802.11b, Highest channel

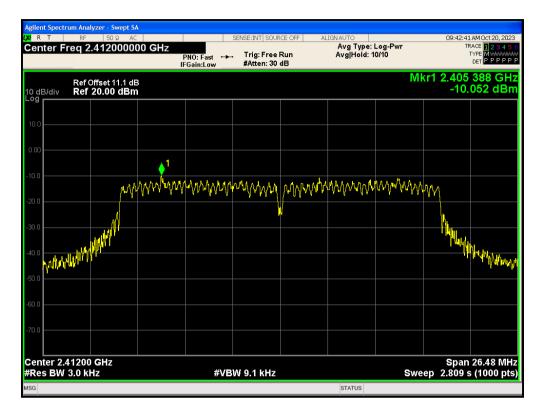


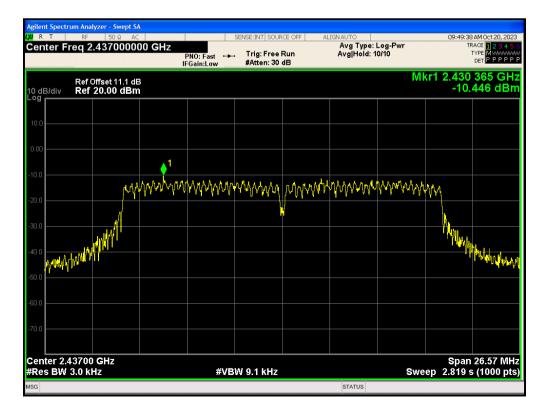
PLOTS OF POWER SPECTRAL DENSITY

802.11g, Lowest channel


802.11g, Middle channel

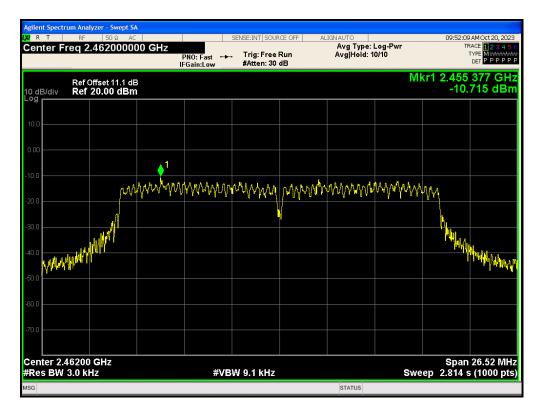
PLOTS OF POWER SPECTRAL DENSITY


802.11g, Highest channel

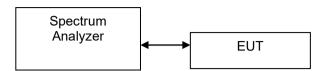


PLOTS OF POWER SPECTRAL DENSITY

802.11n (20MHz), Lowest channel


802.11n (20MHz), Middle channel

PLOTS OF POWER SPECTRAL DENSITY


802.11n (20MHz), Highest channel

3.4 Out of Band Conducted Emissions

The figure below shows the test setup, which is utilized to make these measurements.

For IEEE 802.11b/g/n20MHz, the maximum conducted (peak) output power was used to demonstrate compliance as described in 9.1. Then the display line (in red) shown in the following plots denotes the limit at 20dB below maximum measured in-band peak PSD level in 100 KHz bandwidth for IEEE 802.11b/g/n20MHz.

The measurement procedures under sections 11 of KDB558074 D01 v05r02 (April 2, 2019) were used.

Furthermore, delta measurement technique for measuring bandedge emissions was incorporated in the test of the edge at 2483.5MHz.

Limits:


All spurious emission and up to the tenth harmonic was measured and they were found to be at least 20dB below the maximum measured in-band peak PSD level for IEEE 802.11b/g/n20MHz.

The plots of out of band conducted emissions are as below.

PLOTS OF OUT OF BAND CONDUCTED EMISSIONS

802.11b, Lowest Channel, PSD in 100k

802.11b, Lowest Channel, Bandedge

LXI R T	m Analyzer - Swept RF 50 Ω eq 2.3750000	AC 000 GHz Pi	NO East T	:INT SOURCE OFF rig: Free Run Atten: 36 dB		e: Log-Pwr d: 100/100	TRAC TYP	10ct 20, 2023 E 1 2 3 4 5 6 E MWWWW T P P P P P P
10 dB/div Log	Ref Offset 11.1 Ref 25.00 dB					M	lkr1 2.398 -30.95	53 GHz 58 dBm
15.0 5.00 -5.00 -15.0 -25.0						1.2	Marine Contraction of the Contra	-12.69 dBm
-35.0 -45.0		19	news frys her to the Aleran	glaphildsmgtine.or.Walled	and a man of the second		hanna han Hanna hanna	IN SAMO
Start 2.310 #Res BW 1			#VBW 3	00 kHz		Sweep	Stop 2.44) 12.47 ms ('	000 GHz 1001 pts)
MKR MODE TRC 1 N 1 2 N 1 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - -		× 2.398 53 GHz 2.400 00 GHz	¥ -30,958 dBn -32,289 dBn		FUNCTION WIDTH	FL	UNCTION VALUE	
MSG					STATUS			

PLOTS OF OUT OF BAND CONDUCTED EMISSIONS

802.11b, Lowest Channel, Plot

RT		50 Ω AC			SENSE:I	INT SOURC	E OFF	ALIGN AUTO				09:22:06	5 AM Oct 20, 20
enter Fr	req 12.5	150000	I	PNO: Fast Gain:Low		g: Free R ten: 24 di			Type: Hold: 1	Log-Pwr 0/10			TYPE MWWW DET PPPP
dB/div	Ref Offse Ref 25.	t 11.1 dB 0 0 dBm									Mkr1	24.3 -44.	20 2 GI 495 dB
0													
													-12.69
0													
~ I													
.0			te dura i			ده بد	the of the second subset	and a state of the	the state of	And the second state of the state			
	a de se de la companya de la company										uit i deni t		
			alaa Shirayada waxaa dhada										
o o art 30 N	/IHz 100 kHz			#\	VBW 30							Stop	25.00 G (40000 p
art 30 IV es BW	100 kHz			Y	(0 KHz		FUNCTION WID	H			Stop 387 s (25.00 G (40000 p
art 30 M es BW	100 kHz		4.320 2 GHz	Y		0 KHz		FUNCTION WID	H		ep 2.:	Stop 387 s (25.00 G (40000 p
art 30 IV es BW	100 kHz			Y	(0 KHz		FUNCTION WIDT			ep 2.:	Stop 387 s (25.00 G (40000 p
art 30 IV es BW	100 kHz			Y	(0 KHz		FUNCTION WID			ep 2.:	Stop 387 s (25.00 G (40000 p
art 30 IV es BW	100 kHz			Y	(0 KHz		FUNCTION WID			ep 2.:	Stop 387 s (25.00 G (40000 p
art 30 M es BW	100 kHz			Y	(0 KHz		FUNCTION WIDT			ep 2.:	Stop 387 s (25.00 G (40000 p
art 30 IV es BW	100 kHz			Y	(0 KHz		FUNCTION WIDT			ep 2.:	Stop 387 s (25.00 G (40000 p
art 30 IV es BW	100 kHz			Y	(0 KHz		FUNCTION WIDT			ep 2.:	Stop 387 s (25.00 Gi

PLOTS OF OUT OF BAND CONDUCTED EMISSIONS

802.11b, Middle Channel, PSD in 100k


802.11b, Middle Channel, Plot

Agilent Spect	r <mark>um Analyzer - Swep</mark> RF 50 Ω	t SA		SENSE:INT SOUR	CE OFF AL	IGNAUTO		09:26:05	AM Oct 20, 2023
Center F	req 12.51500		PNO: Fast 🔸		Run	Avg Type: Avg Hold: 1		TF	ACE 12345 (TYPE MWWWW DET PPPPF
10 dB/div Log	Ref Offset 11.1 Ref 25.00 dE	dB 3m					N	1kr1 24.9 -44.	35 7 GHz 472 dBm
15.0									
5.00									
-5.00									
-15.0									-13.24 dBn
-25.0									
-35.0	R								1
-45.0					alda (a. <mark>) a alla (a sua birt</mark>		ala sun alah tu a		
-55.0					فالغور ومعاهلة ويتورونه الا	A STREET, STREE	هم <u>بيانه و کار اور اس مور ال</u>		
Start 30 I #Res BW	MHz 100 kHz		#VB	W 300 kHz			Swee	Stop p 2.387 s	25.00 GHz (40000 pts
MSG						STATUS			

PLOTS OF OUT OF BAND CONDUCTED EMISSIONS

802.11b, Highest Channel, PSD in 100k

802.11b, Highest Channel, Bandedge

Agilent Spectrum Analyzer - Swept SA (4) R T RF 50.Ω AC Center Freq 2.495000000 GHz	PNO: Fast Tr	INT SOURCE OFF ig: Free Run tten: 36 dB	ALIGNAUTO Avg Typ Avg Hold	≘: Log-Pwr : 100/100	09:31:15 AM C TRACE TYPE DET	Det 20, 2023 123456 MWWWWW PPPPPPP
Ref Offset 11.1 dB 10 dB/div Ref 25.00 dBm				Μ	kr2 2.483 5 -42.13	0 GHz 7 dBm
15.0						
-5.00						-13.72 dBm
-25.0	2 Mar 2	~~~~	พ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ			والاستانات الم
-45.0 -55.0 -65.0						
Start 2.44000 GHz #Res BW 100 kHz	#VBW 30	00 kHz		Sweep	Stop 2.550 10.53 ms (1	00 GHz 001 pts)
MKR MODE TRC SCL X	Y	FUNCTION	FUNCTION WIDTH	FUI	NCTION VALUE	^
2 N 1 f 2.483 50 GH 3 - - - - 4 - - - - 5 - - - - - 6 - - - - - - 7 - <td< td=""><td>Iz -42.137 dBm</td><td></td><td></td><td></td><td></td><td></td></td<>	Iz -42.137 dBm					
8 9 10 11 ≰						
MSG			STATUS			

PLOTS OF OUT OF BAND CONDUCTED EMISSIONS

802.11b, Highest Channel, Plot

		lyzer - Swept SA										
R T enter F	_{RF} req 1	50 Ω AC 2.5150000	000 GHz	PNO: Fast • FGain:Low	📕 Tri	INT SOURCE OF ig: Free Run ten: 24 dB	+ AL	IGN AUTO Avg Type Avg Hold:	: Log-Pwr 10/10	09	0:31:48 AM Oct 20 TRACE 1 2 TYPE MW DET P P	345 www.
) dB/div og r	Ref Ref	Offset 11.1 dE ` 25.00 dB m	3							Mkr1 2	4.973 8 (44.098 d	GH IBr
5.0												
.00												
5.0											-13	3.72 dl
5.0												
5.0												
5.0								يله ف اطلاع أوجعا معامر وله .	an and house building			y i i
5.0												
5.0							a aller an aller	a you a share and a start of the start of th		And the second sec		
	au-						an i Britan Ailan	ر بر می به محمد با تعامیل مشاهد که بر بر بر بی رو ا				0
tart 30 N		kHz		#\	/BW 30	0 kHz		a province and a second se			Stop 25.00 7 s (40000	GH) pt
5.0 tart 30 N Res BW	100	;		Y		O KHZ	FUNC	TION WIDTH			Stop 25.00 7 s (40000	GH) pt
tart 30 M Res BW R MODE TF 1 N 1 2	100	;	× 24.973 8 GHz	Y			FUNC			s veep 2.38	Stop 25.00 7 s (40000	GI-) pt
art 30 N Res BW R MODE TR N 1 2 3 4	100	;		Y			FUNC	TION WIDTH		s veep 2.38	Stop 25.00 7 s (40000	GI-) pt
Cart 30 N Res BW R MODE TF 1 N 1 3 3 4 5 5 5 6	100	;		Y			FUNC	TION WIDTH		s veep 2.38	Stop 25.00 7 s (40000	GI) pt
tart 30 M Res BW Res BW 1 N 1 2 3 3 4 5 4 5 6 6 7 7 7 8 9	100	;		Y			FUNC	TION WIDTH		s veep 2.38	Stop 25.00 7 s (40000	GH) pt
art 30 M Res BW R MODE TF N 1 2 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	100	;		Y			FUNC	TION WIDTH		s veep 2.38	Stop 25.00 7 s (40000	GH) pt

PLOTS OF OUT OF BAND CONDUCTED EMISSIONS

802.11g, Lowest Channel, PSD in 100k

802.11g, Lowest Channel, Bandedge

Agilent Spectr	<mark>um Anal</mark> RF	<mark>lyzer - Swept SA</mark> 50 Ω AC			SENSE:INT S		AL	IGNAUTO			00/34/3	34 AM Oct 20, 202
		.37500000	00 GHz	PNO: Fast ↔ FGain:Low		ee Run		Avg Typ Avg Hold				TYPE MWWW DET P P P P
10 dB/div	Ref (Ref	Offset 11.1 dE 25.00 dBm	3							М	kr2 2.40 -24	00 00 GH .345 dBr
15.0 5.00												
5.00												-17.00 dE
25.0								- Aler Marth	and T		[\] ∕n _{frvi}	harroug
45.0 1	4-4-qk	w.r.d.a.umv	hat fearer and	yanagati di mangkatin	mahrimm	where have a fu	an aller the	~~~				
65.0												
itart 2.31 Res BW				#VB	W 300 k	Hz				Sweep	Stop 2 12.47 m	.44000 GH s (1001 pt
1 MODE TP	RC SCL	>	< 2.400 00 GHz	Y -24,345		FUNCTION	FUNCT	ION WIDTH		FU	NCTION VALUE	
3 4 5				-24.040								
6 7 8												
9												
SG								STATUS				<u> </u>

PLOTS OF OUT OF BAND CONDUCTED EMISSIONS

802.11g, Lowest Channel, Plot

RT RF 50	Swept SA	SENSEI	NT SOURCE OFF	ALIGN AUTO		09:35:07 AM Oct 20, 3
enter Freq 12.51	5000000 GHz	N0 East ⊶ Tri	g: Free Run ten: 24 dB		e: Log-Pwr : 10/10	TRACE 123 TYPE MWW DET P P P
Ref Offset dB/div Ref 25.00	11.1 dB 0 dBm				M	kr1 24.221 5 G -43.730 dl
5.0						
00						
.0						-17.0
.0						
.0						
.0					. 10	
	والمارية والمستحد والمحاصف والمستحد والمعا	ويستعيده والاستعالي المرجع والملاط	and the state of the second second			
art 30 MHz		#VBW 30	0 kHz		Sweep	Stop 25.00 C 2.387 s (40000)
art 30 MHz Res BW 100 kHz	× 24.221.5 GHz	Y	0 kHz FUNCTION	FUNCTION WIDTH		Stop 25.00 G 2.387 s (40000) NCTION VALUE
art 30 MHz les BW 100 KHz R MODE TRC SCL N 1 f	× 24.221 5 GHz			FUNCTION WIDTH		2.387 s (40000
art 30 MHz tes BW 100 KHz R MODE TRC, SCL N 1 f		Y		FUNCTION WIDTH		2.387 s (40000
art 30 MHz tes BW 100 KHz R MODELTRC SCL N 1 f		Y		FUNCTION WIDTH		2.387 s (40000
art 30 MHz tes BW 100 kHz R MODE TRC SCL N 1 f		Y		FUNCTION WIDTH		2.387 s (40000
art 30 MHz Res BW 100 KHz R MODE TRC SCL		Y		FUNCTION WIDTH		2.387 s (40000

PLOTS OF OUT OF BAND CONDUCTED EMISSIONS

802.11g, Middle Channel, PSD in 100k

802.11g, Middle Channel, Plot

	um Analyzer - Swept								
X R T Center Fi	RF 50Ω A req 12.515000	0000 GHz	PNO: Fast 🔸	SENSE:INT SOUR Trig: Free Atten: 24 o	Run	LIGN AUTO Avg Type: Avg Hold: 1	0/10	TF	AMOct 20, 2023 RACE 1 2 3 4 5 TYPE MWWWW DET P P P P P
0 dB/div	Ref Offset 11.1 c Ref 25.00 dBi	IB n					I	Vlkr1 24.9 -43.	28 8 GH 729 dBr
15.0									
5.00									
5.00									
15.0									-17.31 d
25.0									
35.0									
15.0						s		en la presidente en la constante en la constant	Lander the little
5.0 <mark>Potetine</mark>				aller alle der der der der der der der der der de	ladar di pasili di malia Napara ni bitang	an an airte a thirth an	in the second	an a	and the second
5.0									
tart 30 N Res BW	/IHz 100 kHz		#VB	W 300 kHz			Swe	Stop ep 2.387 s	25.00 GH (40000 pt
SG						STATUS			

PLOTS OF OUT OF BAND CONDUCTED EMISSIONS

802.11g, Highest Channel, PSD in 100k

802.11g, Highest Channel, Bandedge

Ref Offset 11.1 dB dB/div Ref 25.00 dBm				MI	kr2 2.483 50 GI -35.877 dB
.00					
50 50 50 50 50 50 50 50	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Milenter generation	yerthy calcury yated as		47.63
tart 2.44000 GHz Res BW 100 kHz	#VBW 30	00 kHz		Sweep	Stop 2.55000 G 10.53 ms (1001 p
KR MODE TRC SCL X 1 1 1 1 1 2 N 1 1 1 1 2 N 1	y z _35.877 dBm	FUNCTION	FUNCTION WIDTH		ICTION VALUE

PLOTS OF OUT OF BAND CONDUCTED EMISSIONS

802.11g, Highest Channel, Plot

		lyzer - Swept SA									
R T enter Fr	_{RF} req 1	50 Ω AC 2.5150000	000 GHz	PNO: Fast FGain:Low		INT SOURCE C ig: Free Run ten: 24 dB		IGN AUTO Avg Type: Avg Hold:		09:40	D:45 AM Oct 20, 20 TRACE 1 2 3 4 TYPE MWWW DET P P P P
dB/div	Ref (Ref	Offset 11.1 dE 25.00 dBm	8							Mkr1 24. -4	959 4 GH 4.135 dB
'9 5.0											
.0											-17.63 (
.0											
i.0										الطور المتطفا والمروي بطور	Marilla, and property in the
.0											
5.0			Also Hitl Also a travia								
 art 30 N		i Hz	Alexa dina katan perunda Alexa dina katan perunda	#\	VBW 30	0 KHz				Sto	op 25.00 Gł s (40000 p
i.0 i.0 art 30 IV Res BW	100 k	×) Y	(DO KHZ	N FUNCT	ION WIDTH	Swe	Sto	s (40000 pi
art 30 IV es BW	100 k	×	4.959 4 GHz) Y			N FUNCT	ION WIDTH	Swe	Sto ep 2.387	s (40000 pi
art 30 M R MODE TR N 1	100 k	×) Y	(N FUNCT		Swe	Sto ep 2.387	s (40000 pi
i.0 i.0 art 30 IV Res BW	100 k	×) Y	(N FUNCT		Swe	Sto ep 2.387	s (40000 pi
art 30 W les BW R Mode TR N 1	100 k	×) Y	(N FUNCT		Swe	Sto ep 2.387	s (40000 pi
art 30 M Res BW	100 k	×) Y	(N FUNCT		Swe	Sto ep 2.387	s (40000 pi

PLOTS OF OUT OF BAND CONDUCTED EMISSIONS

802. 11n (20MHz), Lowest Channel, PSD in 100k

	rum Analyzer - Swept SA							
Center F	RF 50 Ω AC req 2.41200000	0 GHz PNO: Fa IFGain:Lo	sense:INT sou st Trig: Free w #Atten: 36	Run	IGN AUTO Avg Type: Lo Avg Hold: 100	g-Pwr /100	09:42:55 AM Oct 2 TRACE 1 2 TYPE MM DET P P	345
10 dB/div	Ref Offset 11.1 dB Ref 25.00 dBm					Mkr3	2.406 626 3.171 c	GHz dBm
15.0								
5.00		3						
5.00	- Junan	ymen han han han han han han han han han ha	vmunamaa	mmm	mm Maran Maran	www.www.	}	
15.0	mon						h	
25.0							Mury	J.A.P
35.0								
15.0								
i5.0								
Res BW	41200 GHz 100 kHz		#VBW 300 kH;	2		Sweep 2	Span 26.48 .533 ms (1001	MH 1 pt
SG					STATUS			

802. 11n (20MHz), Lowest Channel, Bandedge

LXIRT	um Analyzer - Swept SA RF 50 Ω AC req 2.375000000) GHz PNO: Fast IFGain:Low	SENSE:INT SOU	Run	LIGN AUTO Avg Type: Lo Avg Hold: 100		09:43:16 AM Oct 20, 2023 TRACE 2 3 4 5 6 TYPE M WWWW DET P P P P F
10 dB/div Log	Ref Offset 11.1 dB Ref 25.00 dBm					Mkr	1 2.397 88 GHz -24.943 dBm
15.0 5.00						pannanapaana	~
-15.0 -25.0 -35.0					1 7	<u>}</u>	-16.83 dBm
-45.0	Rhadealadar halannakatan me	holden - Lunden - Marchan Marchan - Mar Marchan - Marchan - Marcha	๛ฃฃ๛๛๚๛๚๛๛๚๛๛	and the second sec			······································
Start 2.31 #Res BW		#	VBW 300 kH	z		Sweep 1	Stop 2.44000 GHz 2.47 ms (1001 pts)
MKR MODE TR 1 N 1 2 N 1 3 4	f 2.3	397 88 GHz -24.	Y FU 943 dBm 851 dBm	NCTION FUNC	TION WIDTH	FUNCTI	ON VALUE
5 6 7 8 9 10							
11 KING					STATUS		×

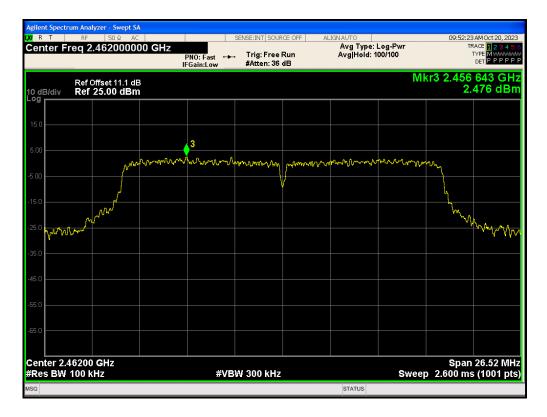
PLOTS OF OUT OF BAND CONDUCTED EMISSIONS

802.11n (20MHz), Lowest Channel, Plot

		yzer - Swept SA											
X R T Center Fi	_{RF} req 1:	50 Q AC 2.5150000		PNO: Fast FGain:Low	🛶 Tri	int sour ig: Free l ten: 24 c	Run	ALI	GNAUTO Avg Ty; Avg Hol	d: 10/10	wr		19 AM Oct 20, 202 TRACE 1 2 3 4 5 TYPE MWWW DET P P P P P
10 dB/div	Ref (Ref	0ffset 11.1 dE 25.00 dBm									N		891 9 GH .624 dBr
15.0 5.00													
5.00													-16.83 dB
25.0													
35.0 45.0										at 1 14.1			
-65.0					un olivit.				and a second		and a second second	ne alder sonder sonder son	
tart 30 N Res BW		Hz		#\	VBW 30	0 kHz					Swee	Stop p 2.387 s	o 25.00 GH (40000 pts
MKR MODE TR	RC SCL	>2	3.891 9 GHz	-44.6	24 dBm	FUN	CTION	FUNCT	ION WIDTH		FL	JNCTION VALUE	
3 4 5													
6 7 8													
9 10 11 11 11 11 11 11 11 11 11 11 11 11													
SG						1111			STATUS				<u>></u>

PLOTS OF OUT OF BAND CONDUCTED EMISSIONS

802.11n (20MHz), Middle Channel, PSD in 100k


802.11n (20MHz), Middle Channel, Plot

LXI R T	rum Analyzer - Swept S RF 50 Ω A	C		SENSE:INT SOUR	CE OFF AL	IGNAUTO	og Pwr		AM Oct 20, 2023
Center F	req 12.515000	Р	NO: Fast 🔸	Trig: Free l Atten: 24 d		Avg Hold: 1	0/10	1	
10 dB/div Log	Ref Offset 11.1 d Ref 25.00 dBr						N	1kr1 24.3 -43.	18 3 GH: 910 dBn
15.0									
5.00									
-5.00									
-15.0									
-25.0									-17.17 dBi
-35.0									
-45.0									↓ 1
-55.0	and the second strength of the second	A. Marsh Mandalana J	الديرية المستقل الماس	والمتقاول المراجع والمحاط	linda ya adama dala		di sa katatan k		
-65.0		a all a star all a sea all a s		Labely Long a House of South	The state of the second se		.4.		
Start 30 M #Res BW			#VB	W 300 kHz			Swee	Stop p 2.387 s	25.00 GHz (40000 pts
MSG						STATUS			

PLOTS OF OUT OF BAND CONDUCTED EMISSIONS

802.11n (20MHz), Highest Channel, PSD in 100k

802.11n (20MHz), Highest Channel, Bandedge

Agilent Spectrum Analyzer - Swept SA R T RF 50Ω AC Center Freg 2.495000000 GHz		INT SOURCE OFF	ALIGNAUTO Avg Type	: Log-Pwr	09:52:43 AM Oct 20, 2 TRACE 1 2 3 4
		ig: Free Run tten: 36 dB	Avg Hold:	100/100	
Ref Offset 11.1 dB 10 dB/div Ref 25.00 dBm				M	kr2 2.483 50 G -34.954 dE
15.0 5.00					
-5.00					-47.52
-25.0	mmummer 2				
-45.0		LA MANAGERAN	ษาณากฎหารไหวสร้างการเป็นได้ระได้	hangel-haran-eki	- Marine Marine Marine Contraction
-65.0					
Start 2.44000 GHz #Res BW 100 kHz	#VBW 30	00 kHz		Sweep	Stop 2.55000 G 10.53 ms (1001 p
MKR MODE TRC SCL X	Y	FUNCTION	FUNCTION WIDTH	FUI	NCTION VALUE
2 N 1 f 2.483 50 GH 3 - - - - 4 - - - - 5 - - - - -	lz -34.954 dBm				
6 7 8 9					
MSG			STATUS		

PLOTS OF OUT OF BAND CONDUCTED EMISSIONS

802.11n (20MHz), Highest Channel, Plot

Agilent Spectrum Analyzer - Swept SA	SENSE:INT SOU	RCE OFF ALIGN AUTO	09:53:17 AMOct 20	1 2023
Center Freq 12.515000000 GHz	PNO: Fast +++ Trig: Free FGain:Low Atten: 24	Avg Ty Run Avg Hol	pe: Log-Pwr TRACE	3 4 5 6
Ref Offset 11.1 dB 10 dB/div Ref 25.00 dBm			Mkr1 24.999 4 0 -43.605 d	GHz IBm
15.0 5.00				
-5.00				. <u>52 dBm</u>
-25.0				<u> </u>
-45.0				
-65.0			Oton 25.00	011-
#Res BW 100 kHz	#VBW 300 kHz		Stop 25.00 Sweep 2.387 s (40000) pts
MKR MODE TRC SCL X 1 N 1 f 24.999 4 GHz 3 4 5		CTION FUNCTION WIDTH	FUNCTION VALUE	
6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9				
				>

3.5 Field Strength Calculation

The field strength is calculated by adding the reading on the Spectrum Analyzer to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitization and average factors (when specified limit is in average and measurements are made with peak detectors). A sample calculation is included below.

FS = RA + AF + CF - AG + PD + AV

Where	FS	=	Field Strength in dBμV/m
	RA	=	Receiver Amplitude (including preamplifier) in $dB\mu V$
	CF	=	Cable Attenuation Factor in dB
	AF	=	Antenna Factor in dB
	AG	=	Amplifier Gain in dB
	PD	=	Pulse Desensitization in dB
	AV	=	Average Factor in -dB

In the radiated emission table which follows, the reading shown on the data table may reflects the preamplifier gain. An example of the calculations, where the reading does not reflect the preamplifier gain, follows:

FS = RA + AF + CF - AG + PD + AV

Example:

Assume a receiver reading of 62.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29.0 dB is subtracted. The pulse desensitization factor of the spectrum analyzer is 0.0 dB, and the resultant average factor is -10.0 dB. The net field strength for comparison to the appropriate emission limit is 32.0 dB μ V/m. This value in dB μ V/m is converted to its corresponding level in μ V/m.

RA	=	62.0 dBμV
AF	=	7.4 dB
CF	=	1.6 dB
AG	=	29.0 dB
PD	=	0.0 dB
AV	=	-10.0 dB
FS	=	62.0 + 7.4 + 1.6 - 29.0 + 0.0 + -10.0) = 32.0 dBµV/m

Level in μ V/m = Common Antilogarithm [(32.0 dB μ V/m)/20] = 39.8 μ V/m

3.6 Transmitter Radiated Emissions in Restricted Bands and Spurious Emissions

Data is included of the worst-case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included.

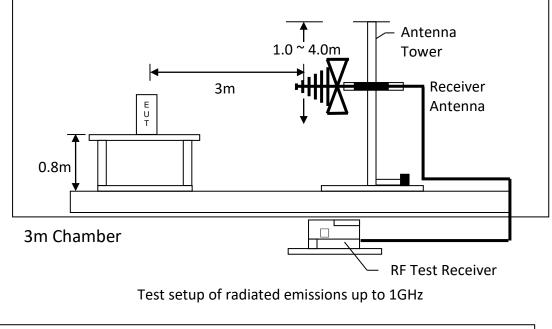
The data on the following pages list the significant emission frequencies, the limit and the margin of compliance.

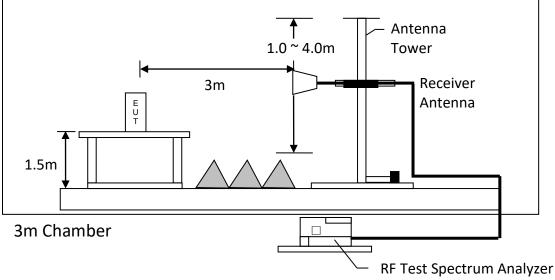
3.6.1 Radiated Emission Configuration Photograph

Worst Case Restricted Band Radiated Emission at 875.050 MHz.

The worst case radiated emission configuration photographs are saved with filename: Setup Photos.pdf

3.6.2 Radiated Emission Data


The data in tables 1-10 list the significant emission frequencies, the limit and the margin of compliance.


Judgement – Passed by 0.7 dB margin

3.6.3 Radiated Emission Test Setup

The figure below shows the test setup, which is utilized to make these measurements.

Test setup of radiated emissions above 1GHz

TEST REPORT

RADIATED EMISSION DATA

Tabl	e 1: 802.11b_ Cha	nnel 1:						
No.	Frequency (MHz)	Reading (dBµV)	Correction factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Antenna Polaxis
1	4824	58.03	-1.54	56.49	74.00	-17.51	Peak	Horizontal
2	4824	41.25	-1.54	39.71	54.00	-14.29	Average	Horizontal
3	7236	40.17	2.29	42.46	74.00	-31.54	Peak	Horizontal
4	7236	28.25	2.29	30.54	54.00	-23.46	Average	Horizontal
5	4824	56.98	-1.54	55.44	74.00	-18.56	Peak	Vertical
6	4824	39.70	-1.54	38.16	54.00	-15.84	Average	Vertical
7	7236	41.00	2.29	43.29	74.00	-30.71	Peak	Vertical
8	7236	28.41	2.29	30.70	54.00	-23.30	Average	Vertical
IEEE	802.11b_ Cha	nnel 6:						
1	4874	50.17	-1.47	48.70	74.00	-25.30	Peak	Horizontal
2	4874	42.08	-1.47	40.61	54.00	-13.39	Average	Horizontal
3	7311	39.56	2.32	41.88	74.00	-32.12	Peak	Horizontal
4	7311	28.18	2.32	30.50	54.00	-23.50	Average	Horizontal
5	4874	60.78	-1.47	59.31	74.00	-14.69	Peak	Vertical
6	4874	42.42	-1.47	40.95	54.00	-13.05	Average	Vertical
7	7311	40.48	2.32	42.80	74.00	-31.20	Peak	Vertical
8	7311	28.01	2.32	30.33	54.00	-23.67	Average	Vertical
IEEE	802.11b_ Cha	nnel 11:						
1	4924	50.17	-1.47	48.70	74.00	-25.30	Peak	Horizontal
2	4924	34.33	-1.47	32.86	54.00	-21.14	Average	Horizontal
3	7386	39.56	2.32	41.88	74.00	-32.12	Peak	Horizontal
4	7386	27.95	2.32	30.27	54.00	-23.73	Average	Horizontal
5	4924	48.37	-1.41	46.96	74.00	-27.04	Peak	Vertical
6	4924	31.96	-1.41	30.55	54.00	-23.45	Average	Vertical
7	7386	38.89	2.36	41.25	74.00	-32.75	Peak	Vertical
8	7386	26.36	2.36	28.72	54.00	-25.28	Average	Vertical

Notes: 1. Peak detector is used for the emission measurement.

- 2. Average detector is used for the average data of emission measurement.
- 3. All measurements were made at 3 meters.
- 4. Negative value in the margin column shows emission below limit.
- 5. Horn antenna is used for the emission over 1000MHz.
- 6. Emissions within the restricted band meets the requirement of FCC Part 15 Section 15.205 / RSS-Gen Section 8.10.
- 7. Correct Factor = Antenna Factor + Cable Loss Amplifier Gain, the value was added to Original Receiver Reading by the software automatically.

TEST REPORT

RADIATED EMISSION DATA

Tabl	e 2: 802.11g_ Cha	nnel 1:						
No.	Frequency (MHz)	Reading (dBμV)	Correction factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Antenna Polaxis
1	4824	49.10	-1.54	47.56	74.00	-26.44	Peak	Horizontal
2	4824	38.34	-1.54	36.80	54.00	-17.20	Average	Horizontal
3	7236	40.09	2.29	42.38	74.00	-31.62	Peak	Horizontal
4	7236	28.13	2.29	30.42	54.00	-23.58	Average	Horizontal
5	4824	48.22	-1.54	46.68	74.00	-27.32	Peak	Vertical
6	4824	38.49	-1.54	36.95	54.00	-17.05	Average	Vertical
7	7236	40.82	2.29	43.11	74.00	-30.89	Peak	Vertical
8	7236	28.52	2.29	30.81	54.00	-23.19	Average	Vertical
IEEE	802.11g_ Cha	nnel 6:						
1	4874	54.45	-1.47	52.98	74.00	-21.02	Peak	Horizontal
2	4874	42.48	-1.47	41.01	54.00	-12.99	Average	Horizontal
3	7311	40.12	2.32	42.44	74.00	-31.56	Peak	Horizontal
4	7311	28.72	2.32	31.04	54.00	-22.96	Average	Horizontal
5	4874	53.77	-1.47	52.30	74.00	-21.70	Peak	Vertical
6	4874	42.34	-1.47	40.87	54.00	-13.13	Average	Vertical
7	7311	41.18	2.32	43.50	74.00	-30.50	Peak	Vertical
8	7311	28.46	2.32	30.78	54.00	-23.22	Average	Vertical
IEEE	802.11g_ Cha	nnel 11:						
1	4924	50.23	-1.41	48.82	74.00	-25.18	Peak	Horizontal
2	4924	32.99	-1.41	31.58	54.00	-22.42	Average	Horizontal
3	7386	38.57	2.36	40.93	74.00	-33.07	Peak	Horizontal
4	7386	26.43	2.36	28.79	54.00	-25.21	Average	Horizontal
5	4924	49.88	-1.41	48.47	74.00	-25.53	Peak	Vertical
6	4924	32.79	-1.41	31.38	54.00	-22.62	Average	Vertical
7	7386	38.88	2.36	41.24	74.00	-32.76	Peak	Vertical
8	7386	26.36	2.36	28.72	54.00	-25.28	Average	Vertical

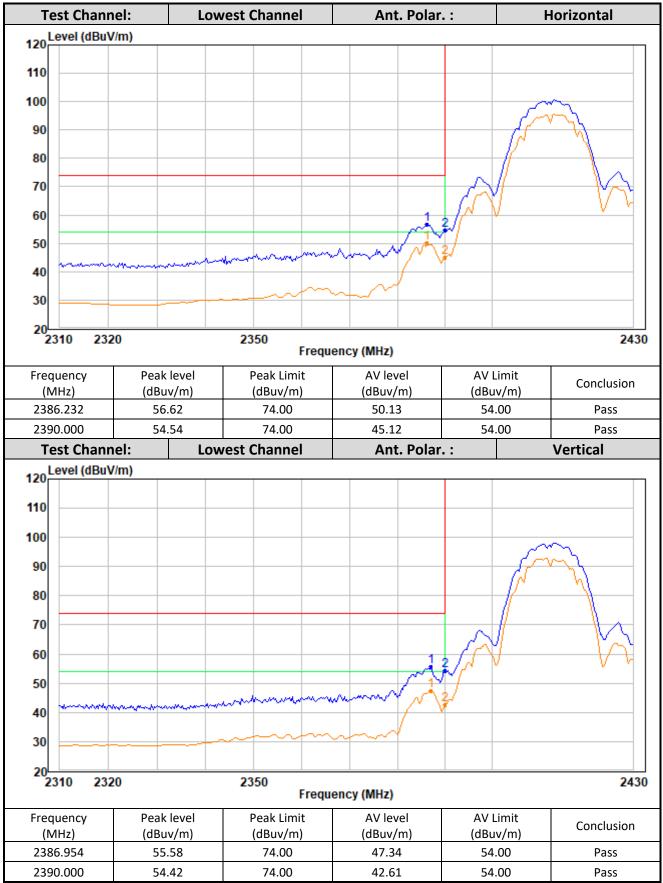
Notes: 1. Peak detector is used for the emission measurement.

- 2. Average detector is used for the average data of emission measurement.
- 3. All measurements were made at 3 meters.
- 4. Negative value in the margin column shows emission below limit.
- 5. Horn antenna is used for the emission over 1000MHz.
- 6. Emissions within the restricted band meets the requirement of FCC Part 15 Section 15.205 / RSS-Gen Section 8.10.
- 7. Correct Factor = Antenna Factor + Cable Loss Amplifier Gain, the value was added to Original Receiver Reading by the software automatically.

TEST REPORT

RADIATED EMISSION DATA

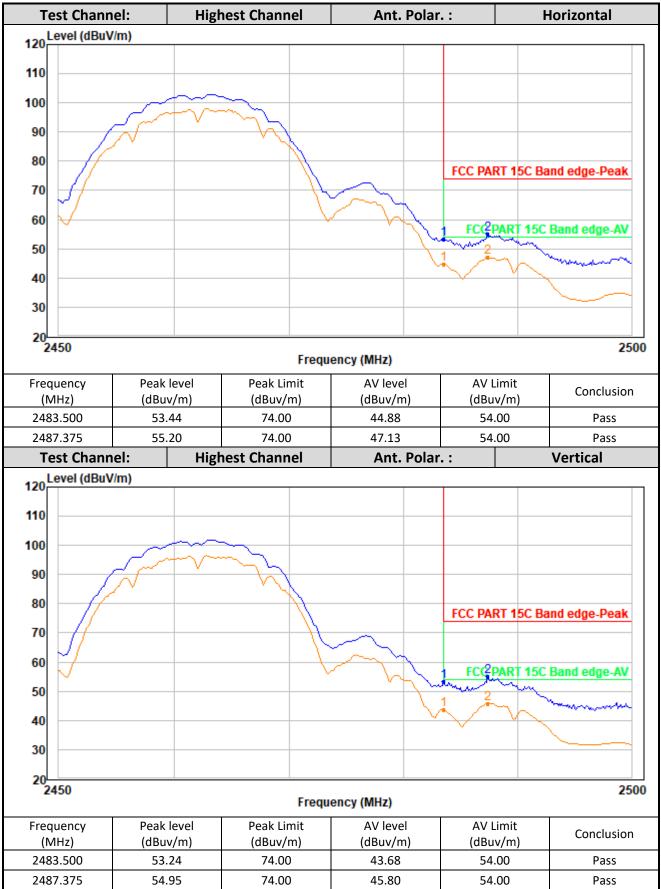
	Table 3: IEEE 802.11n-HT20_ Channel 1:											
No.	Frequency (MHz)	Chainer Reading (dBµV)	Correction factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Antenna Polaxis				
1	4824	48.00	-1.54	46.46	74.00	-27.54	Peak	Horizontal				
2	4824	36.34	-1.54	34.80	54.00	-19.20	Average	Horizontal				
3	7236	40.67	2.29	42.96	74.00	-31.04	Peak	Horizontal				
4	7236	28.08	2.29	30.37	54.00	-23.63	Average	Horizontal				
5	4824	48.55	-1.54	47.01	74.00	-26.99	Peak	Vertical				
6	4824	36.16	-1.54	34.62	54.00	-19.38	Average	Vertical				
7	7236	40.47	2.29	42.76	74.00	-31.24	Peak	Vertical				
8	7236	28.19	2.29	30.48	54.00	-23.52	Average	Vertical				
IEEE	802.11n-HT20	_ Channel	6:									
1	4874	54.33	-1.47	52.86	74.00	-21.14	Peak	Horizontal				
2	4874	38.84	-1.47	37.37	54.00	-16.63	Average	Horizontal				
3	7311	40.97	2.32	43.29	74.00	-30.71	Peak	Horizontal				
4	7311	27.95	2.32	30.27	54.00	-23.73	Average	Horizontal				
5	4874	55.32	-1.47	53.85	74.00	-20.15	Peak	Vertical				
6	4874	39.36	-1.47	37.89	54.00	-16.11	Average	Vertical				
7	7311	41.82	2.32	44.14	74.00	-29.86	Peak	Vertical				
8	7311	28.29	2.32	30.61	54.00	-23.39	Average	Vertical				
IEEE	802.11n-HT20	_ Channel :	11:									
1	4924	49.34	-1.41	47.93	74.00	-26.07	Peak	Horizontal				
2	4924	32.21	-1.41	30.80	54.00	-23.20	Average	Horizontal				
3	7386	39.62	2.36	41.98	74.00	-32.02	Peak	Horizontal				
4	7386	27.09	2.36	29.45	54.00	-24.55	Average	Horizontal				
5	4924	47.25	-1.41	45.84	74.00	-28.16	Peak	Vertical				
6	4924	31.51	-1.41	30.10	54.00	-23.90	Average	Vertical				
7	7386	38.16	2.36	40.52	74.00	-33.48	Peak	Vertical				
8	7386	26.50	2.36	28.86	54.00	-25.14	Average	Vertical				


Notes: 1. Peak detector is used for the emission measurement.

- 2. Average detector is used for the average data of emission measurement.
- 3. All measurements were made at 3 meters.
- 4. Negative value in the margin column shows emission below limit.
- 5. Horn antenna is used for the emission over 1000MHz.
- 6. Emissions within the restricted band meets the requirement of FCC Part 15 Section 15.205 / RSS-Gen Section 8.10.
- 7. Correct Factor = Antenna Factor + Cable Loss Amplifier Gain, the value was added to Original Receiver Reading by the software automatically.

RADIATED EMISSION DATA (BAND EDGE MEASUREMENTS)

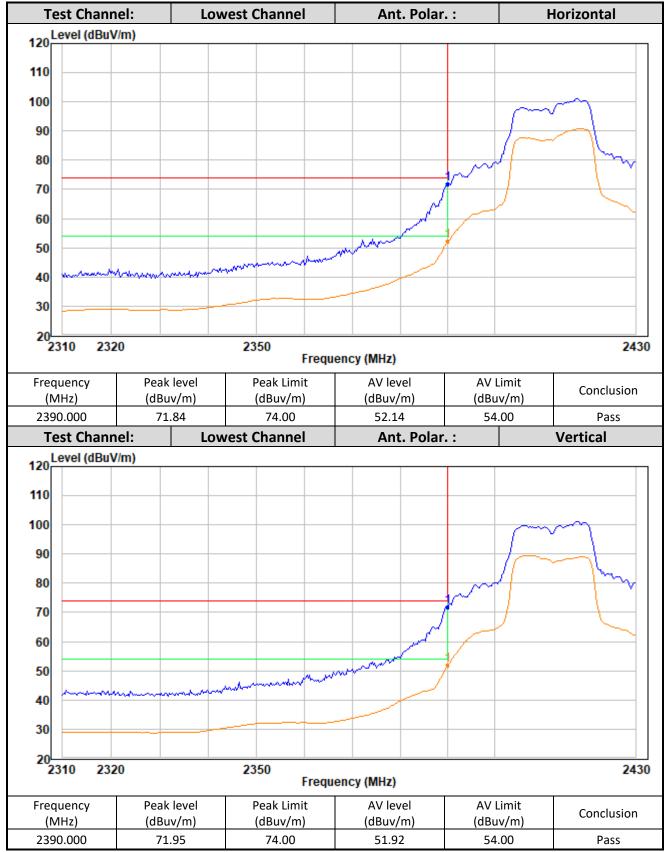
Table 4, IEEE 802.11b



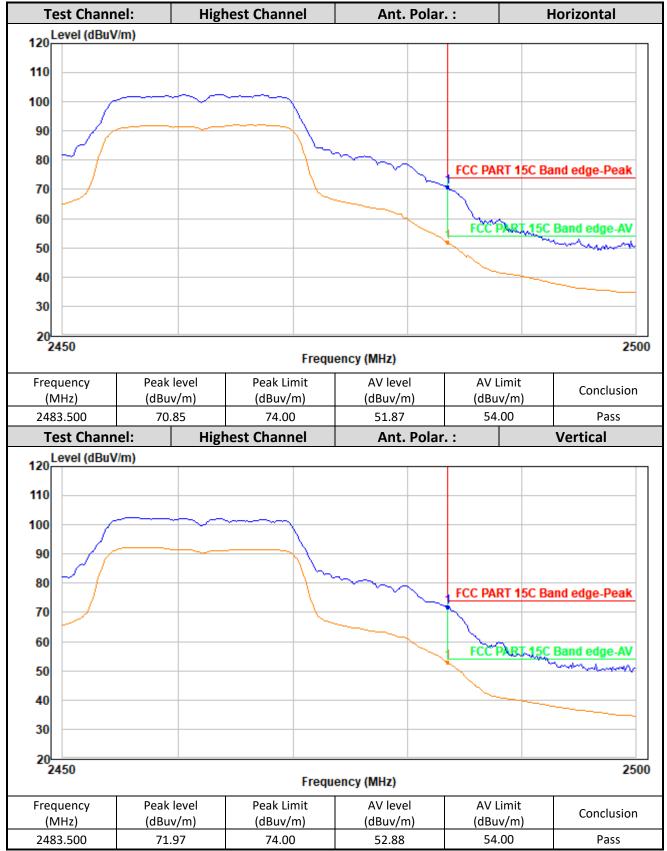
intertek

TEST REPORT

RADIATED EMISSION DATA (BAND EDGE MEASUREMENTS)

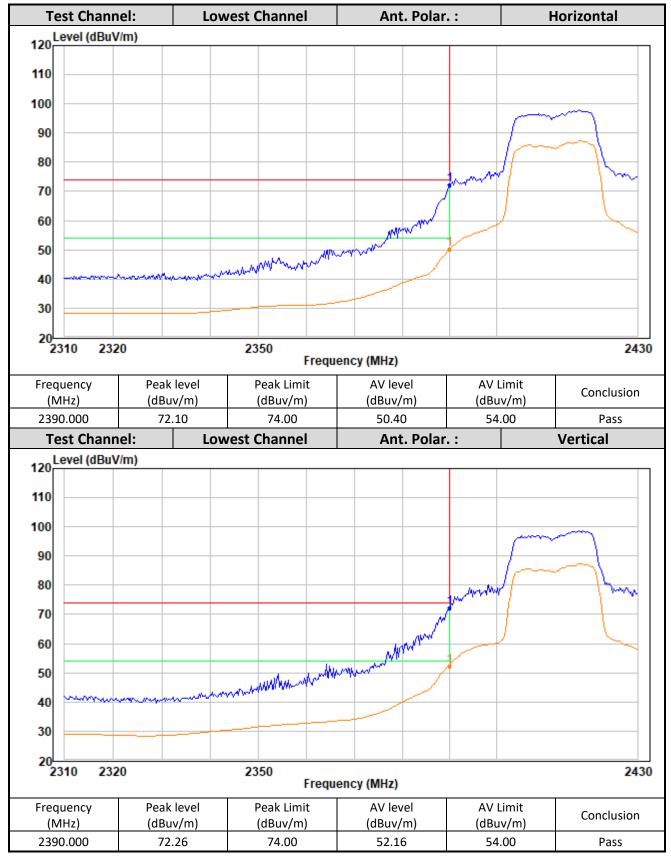

Table 5, IEEE 802.11b

RADIATED EMISSION DATA (BAND EDGE MEASUREMENTS)

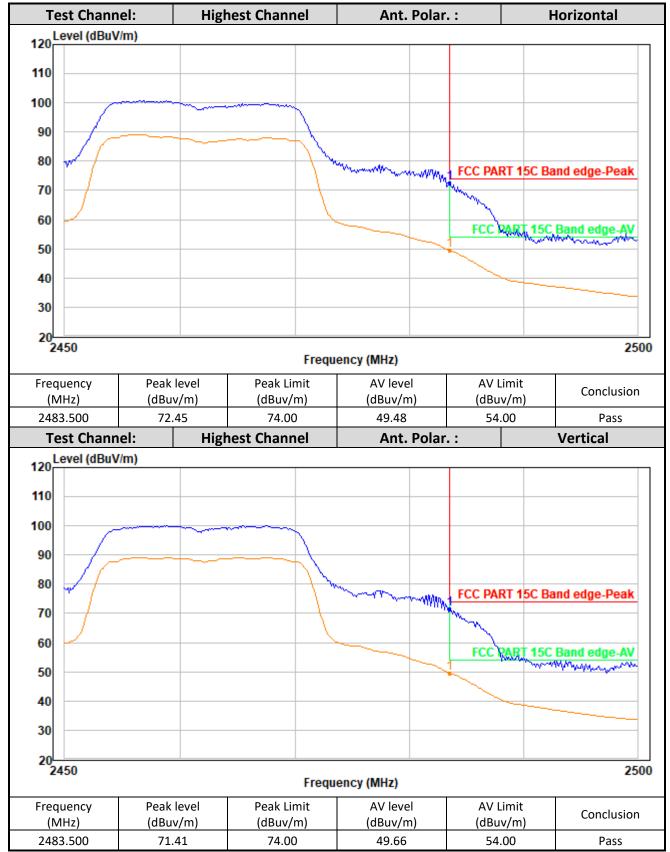

Table 6, IEEE 802.11g

TEST REPORT

RADIATED EMISSION DATA (BAND EDGE MEASUREMENTS)


Table 7, IEEE 802.11g

RADIATED EMISSION DATA (BAND EDGE MEASUREMENTS)


Table 8, IEEE 802.11n-HT20

RADIATED EMISSION DATA (BAND EDGE MEASUREMENTS)

Table 9, IEEE 802.11n-HT20

RADIATED EMISSION DATA

Mode: Charging+Wi-Fi Link

Table 10

			Pre-	Antenna	Net	Limit	
	Frequency	Reading	amp	Factor	at 3m	at 3m	Margin
Polarization	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
Н	31.213	27.9	16	10.0	21.9	40.0	-18.1
V	48.794	23.1	16	11.0	18.1	40.0	-21.9
V	124.939	38.5	16	14.0	36.5	43.5	-7.0
V	145.915	34.4	16	14.0	32.4	43.5	-11.1
V	215.513	32.0	16	17.0	33.0	43.5	-10.5
Н	249.463	34.3	16	20.0	38.3	46.0	-7.7
Н	374.956	24.5	16	24.0	32.5	46.0	-13.5
Н	500.086	24.0	16	26.0	34.0	46.0	-12.0
V	625.095	24.3	16	29.0	37.3	46.0	-8.7
Н	750.050	31.1	16	30.0	45.1	46.0	-0.9
Н	875.050	29.3	16	32.0	45.3	46.0	-0.7

Notes: 1. Peak and Quasi-Peak detector are used for the emission measurement.

- 2. All measurements were made at 3 meters.
- 3. Negative value in the margin column shows emission below limit.
- 4. Emissions within the restricted band meets the requirement of FCC Part 15 Section 15.205 / RSS-Gen Section 8.10.
- 5. Measurement Uncertainty is ±5.3dB at a level of confidence of 95%.

TEST REPORT

3.7 Transmitter Duty Cycle Calculation

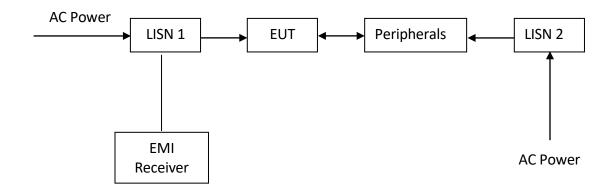
Not Applicable – No average factor is required

- 3.8 AC Power Line Conducted Emission
- Not Applicable EUT is only powered by battery for operation.

EUT connects to AC power line. Emission Data is listed in following pages.

- Base Unit connects to AC power line and has transmission. Handset connects to AC power line but has no transmission. Emission Data of Base Unit is listed in following pages.
- 3.8.1 AC Power Line Conducted Emission Configuration Photograph

Worst Case Line-Conducted Configuration at 0.4200 MHz.


The worst-case line conducted configuration photographs are attached in the Appendix and saved with filename: Setup Photos.pdf.

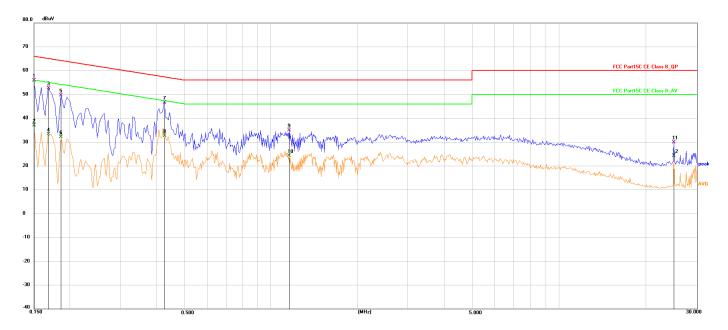
3.8.2 AC Power Line Conducted Emission Data

The plot(s) and data in the following pages list the significant emission frequencies, the limit and the margin of compliance.

Passed by 8.5 dB margin

3.8.3 Conducted Emission Test Setup

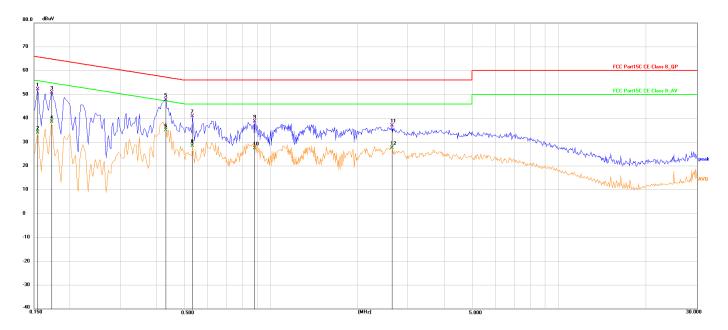
The EUT along with its peripherals were placed on a $1.0m(W) \times 1.5m(L)$ and 0.8m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane. The EUT was connected to power mains through a line impedance stabilization network (LISN), which provided 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room. The excess power cable between the EUT and the LISN was bundled.


All connecting cables of EUT and peripherals were moved to find the maximum emission.

TEST REPORT

AC POWER LINE CONDUCTED EMISSION

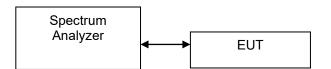
Worst Case: Charging+Wi-Fi Link (N)



No.	Frequency (MHz)	Reading (dBuV)	Correction factor (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Remark
1	0.1500	45.81	10.02	55.83	66.00	-10.17	QP
2	0.1500	26.91	10.02	36.93	56.00	-19.07	Average
3	0.1680	42.59	10.02	52.61	65.06	-12.45	QP
4	0.1680	23.30	10.02	33.32	55.06	-21.74	Average
5	0.1860	39.65	10.00	49.65	64.21	-14.56	QP
6	0.1860	22.16	10.00	32.16	54.21	-22.05	Average
7	0.4244	36.56	10.01	46.57	57.36	-10.79	QP
8	0.4244	22.53	10.01	32.54	47.36	-14.82	Average
9	1.1580	24.90	10.04	34.94	56.00	-21.06	QP
10	1.1580	14.22	10.04	24.26	46.00	-21.74	Average
11	25.0034	18.65	11.29	29.94	60.00	-30.06	QP
12	25.0034	12.87	11.29	24.16	50.00	-25.84	Average

AC POWER LINE CONDUCTED EMISSION

Worst Case: Charging+Wi-Fi Link (L1)



No.	Frequency (MHz)	Reading (dBuV)	Correction factor (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Remark
1	0.1545	42.11	10.03	52.14	65.75	-13.61	QP
2	0.1545	24.00	10.03	34.03	55.75	-21.72	Average
3	0.1725	40.82	10.03	50.85	64.84	-13.99	QP
4	0.1725	28.43	10.03	38.46	54.84	-16.38	Average
5	0.4290	37.69	10.02	47.71	57.27	-9.56	QP
6	0.4290	24.92	10.02	34.94	47.27	-12.33	Average
7	0.5325	30.90	10.02	40.92	56.00	-15.08	QP
8	0.5325	18.39	10.02	28.41	46.00	-17.59	Average
9	0.8790	28.65	10.03	38.68	56.00	-17.32s	QP
10	0.8790	17.30	10.03	27.33	46.00	-18.67	Average
11	2.6295	26.88	10.10	36.98	56.00	-19.02	QP
12	2.6295	17.42	10.10	27.52	46.00	-18.48	Average

OCCUPIED BANDWIDTH

The figure below shows the test setup, which is utilized to make these measurements.

Occupied Bandwidth Results: (IEEE 802.11b)

Frequency (MHz)		Occupied Bandwidth (MHz)
Low Channel:	2412	15.095
Middle Channel:	2437	15.092
High Channel:	2462	15.088

Occupied Bandwidth Results: (IEEE 802.11g)

Frequency (MHz)		Occupied Bandwidth (MHz)
Low Channel:	2412	16.772
Middle Channel:	2437	16.815
High Channel:	2462	16.805

Occupied Bandwidth Results: (IEEE 802.11n (20MHz))

Frequency (MHz)		Occupied Bandwidth (MHz)
Low Channel:	2412	17.820
Middle Channel:	2437	17.847
High Channel:	2462	17.854

The plots of occupied bandwidth are saved as below.

TEST REPORT

PLOTS OF OCCUPIED BANDWIDTH

802.11b, Lowest Channel

Center Freq 2.412000000	GHz #IFGain:Low	SENSE:INT SOURCE OFF Center Freq: 2.412000 Trig: Free Run #Atten: 26 dB	ALIGNAUTO 000 GHz Avg Hold: 100/100	09:19:53 AM Oct 20, 202 Radio Std: None Radio Device: BTS
Ref Offset 11.1 di 10 dB/div Ref 31.10 dBn				Mkr2 2.419518 GH: -3.5335 dBn
_og 21.1				
11.1			····· 2	
1.10	- line		2 min and 2	
18.90	<u></u>		×	M.
28.9				
38.9				- John Marine Ma
48.9				
58.9				
Center 2.412 GHz #Res BW 300 kHz		#VBW 910 k	Hz	Span 30 MH Sweep 1.333 m
Occupied Bandwidt	h	Total Power	21.5 dBm	
15	5.095 MHz			
Transmit Freq Error	-27.207 kHz	OBW Power	99.00 %	
x dB Bandwidth	18.75 MHz	x dB	-26.00 dB	
15G			STATUS	

802.11b, Middle Channel

glient Spectrum Analyzer - Occupied B R T RF 50 Q AC ienter Freq 2.437000000		SENSE:INT SOURCE OFF Center Freq: 2.4370000 . Trig: Free Run #Atten: 26 dB	ALIGNAUTO 100 GHz Avg Hold: 100/100	09:24:43 AM Oct 20, 2023 Radio Std: None Radio Device: BTS
Ref Offset 11.1 di 0 dB/div Ref 31.10 dBn			1	Wkr2 2.444515 GHz -4.3172 dBm
og				
1.10	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
				M.
				- warm
8.9				
enter 2.437 GHz Res BW 300 kHz		#VBW 910 k	Hz	Span 30 MH Sweep 1.333 m
Occupied Bandwidt		Total Power	20.8 dBm	
15	5.092 MHz			
Transmit Freq Error	-28.743 kHz	OBW Power	99.00 %	
x dB Bandwidth	18.76 MHz	x dB	-26.00 dB	

802.11b, Highest Channel

1		~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~	Mkr	-4.7	9512 GH 7793 dBr
1	······\/	~~~~	·····_	~~	2	1	
2		~~~~		m	2 My	<u>\</u>	
					M	1	
						4	~~~~
						~~	
	#VBV	V 910 ki	łz				pan 30 MH p 1.333 m
	Total Po	wer	20.3 di	Зm			
88 MHz							
-28.599 kHz	OBW Po	wer	99.00) %			
18.74 MHz	x dB		-26.00	dB			
	-28.599 kHz	Total Po 88 MHz -28.599 kHz OBW Po	Total Power 88 MHz -28.599 kHz OBW Power	88 MHz -28.599 kHz OBW Power 99.00	Total Power 20.3 dBm 88 MHz -28.599 kHz OBW Power 99.00 % 18.74 MHz x dB -26.00 dB	Total Power 20.3 dBm 88 MHZ -28.599 kHz OBW Power 99.00 % 18.74 MHz x dB -26.00 dB	#VBW 910 kHz Sweet Total Power 20.3 dBm 88 MHz

TEST REPORT

PLOTS OF OCCUPIED BANDWIDTH

802.11g, Lowest Channel

0 dBddw Ref 31.10 dBm 10 dBddw Ref 31.10 dBm 211 111 111 111 111 111 111 11	o Device: BTS
221 221 221 221 221 221 221 221	2.420364 GH -0.74323 dB
Center 2.412 CH2 Res BW 910 kHz Cocupied Bandwidth 16.772 MHz	
A control of the second	
Center 2.412 GHz RRes BW 300 KHz #VBW 910 KHz Occupied Bandwidth Total Power 22.7 dBm 16.772 MHz	
22 chief 2.412 CH2 Res BW 300 kH2 #VBW 910 kH2 Coccupied Bandwidth Total Power 22.7 dBm 16.772 MH2	Putter autor
Center 2.412 GHz Res BW 300 kHz Coccupied Bandwidth 16.772 MHz	
Res BW 300 kHz #VBW 910 kHz Res BW 300 kHz 2.7 dBm Occupied Bandwidth Total Power 22.7 dBm 16.772 MHz	
Occupied Bandwidth Total Power 22.7 dBm 16.772 MHz	
16.772 MHz	Span 30 MI Sweep 1.333 n
Transmit Freq Error -19.078 kHz OBW Power 99.00 %	
x dB Bandwidth 25.07 MHz x dB -26.00 dB	

802.11g, Middle Channel

gilent Spectrum Analyzer - Occupied E	w			
R T RF 50 Q AC Center Freq 2.437000000) GHz	Center Freq: 2.4370000	ALIGN AUTO	09:36:38 AM Oct 20, 2023 Radio Std: None
	#IFGain:Low	. Trig: Free Run #Atten: 26 dB	Avg Hold: 100/100	Radio Device: BTS
Ref Offset 11.1 d 0 dB/div Ref 31.10 dBr				Mkr2 2.445388 GHz -1.8850 dBm
21.1				
11.1	¹	and the second second		¢ ²
3.90				
16.9 When we have a start				and the second second second
18.9				
8.9				
8.9				
enter 2.437 GHz Res BW 300 kHz		#VBW 910 k	Hz	Span 30 MH Sweep 1.333 m
Occupied Bandwidt	:h	Total Power	22.2 dBm	
10	6.815 MHz			
Transmit Freq Error	-18.344 kHz	OBW Power	99.00 %	
x dB Bandwidth	24.86 MHz	x dB	-26.00 dB	
			STATUS	

802.11g, Highest Channel

R T RF SD Q AS enter Freq 2.462000000	GHz //IFGain:Low	SENSE:INT SOURCE OFF Center Freq: 2.4620000 Trig: Free Run #Atten: 26 dB	ALIGNAUTO 000 GHz Avg Hold: 100/100	09:38:53 AM Oct 20, 203 Radio Std: None Radio Device: BTS
Ref Offset 11.1 df 0 dB/div Ref 31.10 dBn				Mkr2 2.47037 GH -2.3711 dBr
1.1	Junior	and the state of t	manterioraliser	2
90 5.9 7.10 6.9				And the second s
89				
enter 2.462 GHz Res BW 300 kHz		#VBW 910 k	Hz	Span 30 MH Sweep 1.333 m
Occupied Bandwidt	^h 6.805 MHz	Total Power	21.9 dBm	
Transmit Freq Error	-29.366 kHz	OBW Power	99.00 %	
x dB Bandwidth	25.40 MHz	x dB	-26.00 dB	
3			STATUS	

TEST REPORT

802.11n (20MHz), Lowest Channel

enter Freq 2.412000000		SENSE:INT SOURCE OFF Center Freq: 2.412000 Trig: Free Run #Atten: 26 dB	0000 GHz Avg Hold: 100/100	Radio Std: None Radio Device: BTS
	#IFGain:Low	#Atten: 26 dB		
Ref Offset 11.1 dB 0 dB/div Ref 31.10 dBm				Mkr2 2.420904 GH -1.3076 dBr
og 21.1				
11.1				2
L10	and the second	and the second	and the half and a second s	~ * *
.90				
18.9 Withmany and a start of the				The state of the street of the
18.9				1.1
18.9				
8.9				
Center 2.412 GHz Res BW 300 kHz		#VBW 9101	kHz	Span 30 MH Sweep 1.333 m
			22.6 dBm	
Occupied Bandwidth		Total Power	22.6 dBm	
1/	.820 MHz			
Transmit Freq Error	-5.221 kHz	OBW Power	99.00 %	
	22.74 MHz	x dB	-26.00 dB	
x dB Bandwidth				
x dB Bandwidth				
x dB Bandwidth				

802.11n (20MHz), Middle Channel

Ilent Spectrum Analyzer - Occupied BV R T RF 50.0 AC	y	SENSE: INT SOURCE OFF	ALIGNAUTO	09:48:52 AM Oct 20, 202
enter Freq 2.437000000	GHz #IEGain:l ow	Center Freq: 2.43 Trig: Free Run #Atten: 26 dB	7000000 GHz Avg Hold: 100/100	Radio Std: None Radio Device: BTS
Ref Offset 11.1 dE				Mkr2 2.445916 GH -1.1939 dBi
Pg	ر. باله مورو ^م العام (عارض معامر)			2
10 90 83 84 Mandharyony/MyAron Million				and the second s
39 11 11 11 11 11 11 11 11 11 11 11 11 11				
enter 2.437 GHz				Span 30 MH
Res BW 300 kHz		#VBW 91	l0 kHz	Sweep 1.333 n
Occupied Bandwidth 17	.847 MHz	Total Power	22.1 dBm	
Transmit Freq Error	-4.508 kHz	OBW Power	99.00 %	
x dB Bandwidth	23.09 MHz	x dB	-26.00 dB	
1			STATUS	

802.11n (20MHz), Highest Channel

Aglient Spectrum Analyzer - Occupied BW Carley R T RE 50.0 AC Center Freq 2.462000000		SENSE:INT SOURCE OFF Center Freq: 2.462000 . Trig: Free Run #Atten: 26 dB	ALIGNAUTO 000 GHz Avg Held: 100/100	09:51:23 AM Oct 20, 2023 Radio Std: None Radio Device: BTS
Ref Offset 11.1 dB 10 dB/div Ref 31.10 dBm Log				Mkr2 2.470925 GHz -2.1208 dBm
21.7	frankter andere and	the second second		2
-8.90 -18.9 -28.9				Manual provided by the last and by the last an
-38.9 -48.9 -68.9				
Center 2.462 GHz #Res BW 300 kHz		#VBW 910 k	Hz	Span 30 MHz Sweep 1.333 ms
Occupied Bandwidth 17	854 MHz	Total Power	21.8 dBm	
Transmit Freq Error	848 Hz	OBW Power	99.00 %	
x dB Bandwidth	23.18 MHz	x dB	-26.00 dB	
MSG			STATUS	

EXHIBIT 4 EQUIPMENT LIST

1) Radiated Emissions Test

Radiated Emission Test - 3M Chamber							
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date	Cal. Due date	
	3m Chamber & Accessory Equipment	ETS-Lindgren	3m	Euroshiedpn- CT001270- 1317	11-Nov-2023	10-Nov-2026	
\boxtimes	Broadband Antenna	ETS-Lindgren	3142E	00201566	30-Oct-2023	29-Oct-2024	
\boxtimes	6dB Attenuator	Talent	RA6A5-N-18	18103001	30-Oct-2023	29-Oct-2024	
\boxtimes	Pre-amplifier	HP	8447F	2805A02960	31-Oct-2023	30-Oct-2024	
	Receiver	ROHDE & SCHWARZ	ESIB26	100114	27-Oct-2023	26-Oct-2024	
	Double-Ridged Waveguide Horn Antenna (Pre-amplifier) 高频	ETS- LINDGREN	3117-PA	00201541	16- Apr-2023	15- Apr-2025	
\boxtimes	Pre-amplifier	ETS-Lindgren	00118385	00201874	31-Oct-2023	30-Oct-2024	
	Multi device Controller	ETS-Lindgren	7006-001	00160105	N/A	N/A	
\boxtimes	Test Software	Audix	e3	Software Version: 9.160323		0323	

Equipment	Signal and Spectrum Analyzer (10Hz to 40GHz)	Biconical Antenna (30MHz to 300MHz)	EMI Test Receiver 7GHz
Registration No.	EW-3016	EW-3242	EW-3603
Manufacturer	ROHDESCHWARZ	EMCO	ROHDESCHWARZ
Model No.	FSV40	3110C	ESR7
Calibration Date	December 13, 2022	May 26, 2021	December 06, 2022
Calibration Due Date	March 13, 2024	February 26, 2024	March 06, 2024

Equipment	Log Periodic Antenna	14m Double Shield RF Cable (20MHz to 6GHz)
Registration No.	EW-3243	EW-2074
Manufacturer	EMCO	RADIALL
Model No.	3148B	N(m)-RG142-BNC(m)
		L=14M
Calibration Date	June 03, 2021	December 10, 2021
Calibration Due Date	March 30, 2024	March 10, 2024

EXHIBIT 4 EQUIPMENT LIST (CONT'D)

2) Conducted Emissions Test

Conducted Emission Test							
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date	Cal. Due date	
\boxtimes	LISN	R&S	ESH2-Z5	860014/024	27-Oct-2023	26-Oct-2024	
\boxtimes	LISN	ETS-Lindgren	3816/2SH	00201088	27-Oct-2023	26-Oct-2024	
\boxtimes	ISN	Schwarzbeck	NTFM 8158	NTFM 8158#113	27-Oct-2023	26-Oct-2024	
\boxtimes	Receiver	R&S	ESR7	101181	27-Oct-2023	26-Oct-2024	
\boxtimes	Pulse Limiter	R&S	ESH3-Z2	0357.8810.54	27-Oct-2023	26-Oct-2024	
	Shielding room	ETS-Lindgren	843	Euroshiedpn- CT001270- 1246	5-Nov-2021	4-Nov-2024	
\boxtimes	Test Software	EZ-EMC	EZ-CON	Software Version: EMC-CON 3A1.1			

3) Control Software for Radiated Emission

Software Information	
Software Name	EMC32
Manufacturer	ROHDESCHWARZ
Software version	10.50.40

4) RF test

RF test							
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date	Cal. Due date	
\boxtimes	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	2023-04-14	2024-04-13	
\boxtimes	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430035	2023-10-27	2024-10-26	
\boxtimes	EXG-B RF Analog Signal Generator	KEYSIGHT	N5171B	MY53051777	2023-10-27	2024-10-26	
\boxtimes	MXG X-Series RF Vector Signal Generator	KEYSIGHT	N5182B	MY51350267	2023-10-27	2024-10-26	
\boxtimes	Temp & Humidity chamber	Votisch	VT4002	58566133290020	2023-04-14	2024-04-13	

END OF TEST REPORT