

FCC RADIO TEST REPORT

FCC ID	: 2AEM4-9471214
Equipment	: Wireless Router
Brand Name	: eero
Model Name	: PA10001
Applicant	: eero LLC 660 3rd St Fl 4, San Francisco, California, 94107, United States
Manufacturer	: eero LLC 660 3rd St Fl 4, San Francisco, California, 94107, United States
Standard	: FCC Part 15 Subpart C §15.247

The product was received on Sep. 23, 2024 and testing was performed from Oct. 01, 2024 to Nov. 27, 2024. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu

Sporton International Inc. Wensan Laboratory

No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

Page Number: 1 of 24Issue Date: Dec. 17, 2024Report Version: 02

Table of Contents

Hist	t <mark>ory</mark> o	f this test report	3
Sur	nmary	/ of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Location	6
	1.4	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in Test Configuration and System	9
	2.5	EUT Operation Test Setup	9
	2.6	Measurement Results Explanation Example	10
3	Test	Result	11
	3.1	6dB and 99% Bandwidth Measurement	11
	3.2	Output Power Measurement	12
	3.3	Power Spectral Density Measurement	13
	3.4	Conducted Band Edges and Spurious Emission Measurement	14
	3.5	Radiated Band Edges and Spurious Emission Measurement	15
	3.6	AC Conducted Emission Measurement	20
	3.7	Antenna Requirements	22
4	List o	of Measuring Equipment	23
5	Meas	surement Uncertainty	24
Арр	endix	A. Conducted Test Results	
Арр	endix	B. AC Conducted Emission Test Result	
App	endix	C. Radiated Spurious Emission Test Data	

Appendix D. Duty Cycle Plots

History of this test report

Report No.	Version	Description	Issue Date
FR492020C	01	Initial issue of report	Dec. 12, 2024
FR492020C	02	Revise antenna gain This report is an updated version, replacing the report issued on Dec. 12, 2024.	Dec. 17, 2024

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(2)	6dB Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth	Pass	-
3.2	15.247(b)(3) 15.247(b)(4)	Output Power	Pass	-
3.3	15.247(e)	Power Spectral Density	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	Pass	1.81 dB under the limit at 2483.54 MHz
3.6	15.207	AC Conducted Emission	Pass	21.67 dB under the limit at 0.56 MHz
3.7	15.203	Antenna Requirement	Pass	-

Conformity Assessment Condition:

 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.

2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Yun Huang Report Producer: Lucy Wu

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature				
General Specs				
Bluetooth-LE, IEEE 802.15.4, Wi-F	i 2.4GHz 802.11b/g/	n/ax/be and Wi-Fi 5GHz 802.11a/n/ac/ax/be.		
Antenna Type				
WLAN:				
<ant. 0="">: Dipole Antenna</ant.>				
<ant. 1="">: Dipole Antenna</ant.>				
Bluetooth-LE: Dipole Antenna				
IEEE 802.15.4: Dipole Antenna				
	Antenna infor	mation		
2400 MHz ~ 2483.5 MHz	Peak Gain (dBi)	3.02		

Remark: The EUT's information above is declared by manufacturer. Please refer to Disclaimer in report summary.

1.2 Modification of EUT

No modifications made to the EUT during the testing.

1.3 Testing Location

Test Site	Sporton International Inc. EMC & Wireless Communications Laboratory		
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978		
Tost Sito No	Sporton Site No.		
Test Sile No.	CO05-HY (TAF Code: 1190)		
Remark	The AC Conducted Emission test item subcontracted to Sporton International Inc. EMC & Wireless Communications Laboratory.		

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	Sporton International Inc. Wensan Laboratory		
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Test Site No.	Sporton Site No. TH05-HY, 03CH23-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW3786

1.4 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 15.247 Meas Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	11	2405	19	2445
	12	2410	20	2450
	13	2415	21	2455
2400 2482 E MH-	14	2420	22	2460
2400-2463.5 IVITZ	15	2425	23	2465
	16	2430	24	2470
	17	2435	25	2475
	18	2440	26	2480

2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower).
- b. AC power line Conducted Emission was tested under maximum output power.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases			
Test Item	Data Rate / Modulation			
	Bluetooth – LE / GFSK			
Conductod	Mode 1: IEEE 802.15.4 Tx CH11_2405 MHz			
	Mode 2: IEEE 802.15.4 Tx CH18_2440 MHz			
Test Cases	Mode 3: IEEE 802.15.4 Tx CH25_2475 MHz			
	Mode 4: IEEE 802.15.4 Tx CH26_2480 MHz			
	Mode 1: IEEE 802.15.4 Tx CH11_2405 MHz			
Radiated	Mode 2: IEEE 802.15.4 Tx CH18_2440 MHz			
Test Cases	Mode 3: IEEE 802.15.4 Tx CH25_2475 MHz			
	Mode 4: IEEE 802.15.4 Tx CH26_2480 MHz			
AC Conducted	Made 1, JEEE 202 15 4 Link + AC Adoptor (Luwahara, 45W, Turo, A)			
Emission	Node 1 .IEEE 602.15.4 Link + AC Adapter (Luxshare_45W_Type A)			
Remark: For radiation spurious emission, the modulation and the data rate picked for testing				
determined by the Max. RF conducted power.				

2.3 Connection Diagram of Test System

2.4 Support Unit used in Test Configuration and System

ltem	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Notebook	DELL	Latitude 3420	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
2.	PC	msi	PRO DP1 80A7	FCC DoC	N/A	Unshielded, 1.8m
3.	PC	msi	Aegis-B918	FCC DoC	N/A	Unshielded, 1.8m
4.	Button	SmartThings	IM6001-BTP01	2AF4S-IM6001-BTP01	N/A	N/A

2.5 EUT Operation Test Setup

The RF test items, utility "RadioControlConsole v4.0.0.0" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW).
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the emission bandwidth and set the Video bandwidth (VBW) \ge 3 * RBW.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of 6dB Bandwidth

Please refer to Appendix A.

3.1.6 Test Result of 99% Occupied Bandwidth

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5 MHz, the limit for output power is 30 dBm. If transmitting antenna of directional gain greater than 6 dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

- 1. For Average Power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G
- 2. The RF output of EUT is connected to the power meter by RF cable and attenuator.
- 3. The path loss is compensated to the results for each measurement.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

3.2.5 Test Result of Average Output Power

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8 dBm in any 3 kHz band at any time interval of continuous transmission.

3.3.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth (VBW) = 10 kHz. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6 dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100 kHz is a reference level and is used as 20 dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

Spectrum Analyzer

3.3.5 Test Result of Power Spectral Density

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 30 dB down from the highest emission level within the authorized band.

3.4.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.4.3 Test Procedure

- 1. The testing follows the ANSI C63.10 Section 11.11.3 Emission level measurement.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

3.4.5 Test Result of Conducted Band Edges Plots

Please refer to Appendix A.

3.4.6 Test Result of Conducted Spurious Emission Plots

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.5.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.12.1 Radiated emission measurements.
- 2. The EUT is arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 4. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 7. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".
- 8. Use the following spectrum analyzer settings:

For average measurement:

The procedure for method trace averaging is as follows:

- a) RBW = 1 MHz.
- b) VBW \geq [3 × RBW].
- c) Detector = RMS (power averaging), if [span / (# of points in sweep)] ≤ RBW / 2. Satisfying this condition can require increasing the number of points in the sweep or reducing the span. If the condition is not satisfied, then the detector mode shall be set to peak.
- d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging.
- e) Sweep time = auto.

- f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, then the number of traces shall be increased by a factor of 1 / D, where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.)
- g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:
 - If power averaging (rms) mode was used in the preceding step e), then the correction factor is [10 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB shall be added to the measured emission levels.
 - ii. If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.

3.5.4 Test Setup

For radiated test below 30MHz

Spectrum Analyzer / Receiver

For radiated test from 30MHz to 1GHz

Metal Full Soldered Ground Plane

1.5m

For radiated test above 18GHz

Spectrum Analyzer / Receiver

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site -

semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.5.7 Duty Cycle

Please refer to Appendix D.

3.5.8 Test Result of Radiated Spurious Emission (30 MHz ~ 10th Harmonic)

3.6 AC Conducted Emission Measurement

3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of omission (MHz)	Conducted limit (dBµV)		
Frequency of emission (MHZ)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

*Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.6.3 Test Procedures

- 1. The EUT is placed 0.4 meter away from the conducting wall of the shielding room, and is kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both Line and Neutral shall be tested in order to find out the maximum conducted emission.
- 7. The frequency range from 150 kHz to 30 MHz is scanned.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.6.4 Test Setup

3.6.5 Test Result of AC Conducted Emission

3.7 Antenna Requirements

3.7.1 Standard Applicable

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of § 15.211, 15.213, 15.217, 15.219, 15.221, or § 15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

3.7.2 Antenna Anti-Replacement Construction

Unique (non-standard) antenna connector.

List of Measuring Equipment 4

Instrument	Brand Name	Model No.	Serial No.	Characteristics	racteristics Calibration Date		Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Aug. 29, 2024	Nov. 14, 2024~ Nov. 27, 2024	Aug. 28, 2025	Radiation (03CH23-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00802N1D01N- 06	47020 & 06	30MHz~1GHz	Oct. 05, 2024	Nov. 14, 2024~ Nov. 27, 2024	Oct. 04, 2025	Radiation (03CH23-HY)
Amplifier	SONOMA	310N	421580	9kHz~1GHz	Jul. 14, 2024	Nov. 14, 2024~ Nov. 27, 2024	Jul. 13, 2025	Radiation (03CH23-HY)
Amplifier	EMEC	EM01G18GA	060878	N/A	Sep. 27, 2024	Nov. 14, 2024~ Nov. 27, 2024	Sep. 26, 2025	Radiation (03CH23-HY)
Double Ridged Guide Horn Antenna	RFSPIN	DRH18-E	LE2C05A18EN	1GHz~18GHz	Jun. 20, 2024	Nov. 14, 2024~ Nov. 27, 2024	Jun. 19, 2025	Radiation (03CH23-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	1224	18GHz-40GHz	Jun. 24, 2024	Nov. 14, 2024~ Nov. 27, 2024	Jun. 23, 2025	Radiation (03CH23-HY)
Preamplifier	EMEC	EM18G40G	060873	18GHz~40GHz	Sep. 02, 2024	Nov. 14, 2024~ Nov. 27, 2024	Sep. 01, 2025	Radiation (03CH23-HY)
Signal Analyzer	Keysight	N9010B	MY62170337	N/A	Aug. 21, 2024	Nov. 14, 2024~ Nov. 27, 2024	Aug. 20, 2025	Radiation (03CH23-HY)
Hygrometer	TECPEL	DTM-303A	TP210001	N/A	Oct. 24, 2024	Nov. 14, 2024~ Nov. 27, 2024	Oct. 23, 2025	Radiation (03CH23-HY)
Controller	EMEC	EM1000	N/A	Control Turn table & Ant Mast	N/A	Nov. 14, 2024~ Nov. 27, 2024	N/A	Radiation (03CH23-HY)
Antenna Mast	ChainTek	MBS-520-1	N/A	1m~4m	N/A	Nov. 14, 2024~ Nov. 27, 2024	N/A	Radiation (03CH23-HY)
Turn Table	ChainTek	T-200-S-1	N/A	0~360 Degree	N/A	Nov. 14, 2024~ Nov. 27, 2024	N/A	Radiation (03CH23-HY)
Software	Audix	E3 6.09824_20191 22	RK-002348	N/A	N/A	Nov. 14, 2024~ Nov. 27, 2024	N/A	Radiation (03CH23-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803951/2	9kHz~30MHz	Mar. 06, 2024	Nov. 14, 2024~ Nov. 27, 2024	Mar. 05, 2025	Radiation (03CH23-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	804395/2	N/A	Nov. 27, 2023	Nov. 14, 2024~ Nov. 25, 2024	Nov. 26, 2024	Radiation (03CH23-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	804395/2	N/A	Nov. 26, 2024	Nov. 26, 2024~ Nov. 27, 2024	Nov. 25, 2025	Radiation (03CH23-HY)
RF Cable	EMC	EMC101Y	231115/231119 /231122	N/A	Nov. 27, 2023	Nov. 14, 2024~ Nov. 25, 2024	Nov. 26, 2024	Radiation (03CH23-HY)
RF Cable	EMC	EMC101Y	231115/231119 /231122	N/A	Nov. 26, 2024	Nov. 26, 2024~ Nov. 27, 2024	Nov. 25, 2025	Radiation (03CH23-HY)
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Nov. 07, 2023	Oct. 01, 2024~ Oct. 31, 2024	Nov. 06, 2024	Conducted (TH05-HY)
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Nov. 01, 2024	Nov. 01, 2024~ Nov. 25, 2024	Oct. 31, 2025	Conducted (TH05-HY)
Power Sensor	DARE	RPR3006W	15I00041SNO 10 (NO:248)	10MHz~6GHz	Jan. 10, 2024	Oct. 01, 2024~ Nov. 25, 2024	Jan. 09, 2025	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101566	10Hz~40GHz	Aug. 23, 2024	Oct. 01, 2024~ Nov. 25, 2024	Aug. 22, 2025	Conducted (TH05-HY)
Switch Control Mainframe	Burgeon	ETF-058	EC1300485 (BOX4)	N/A	Apr. 08, 2024	Oct. 01, 2024~ Nov. 25, 2024	Apr. 07, 2025	Conducted (TH05-HY)
Software	Sporton	BTWIFI_Final_v ersion_241028	N/A	Conducted Other Test Item	N/A	Oct. 01, 2024~ Nov. 25, 2024	N/A	Conducted (TH05-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Nov. 25, 2024	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9kHz~3.6GHz	Dec. 06, 2023	Nov. 25, 2024	Dec. 05, 2024	Conduction (CO05-HY)
Hygrometer	Testo	608-H1	34913912	N/A	Oct. 14, 2024	Nov. 25, 2024	Oct. 13, 2025	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Nov. 14, 2024	Nov. 25, 2024	Nov. 13, 2025	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32	N/A	N/A	N/A	Nov. 25, 2024	N/A	Conduction (CO05-HY)
Pulse Limiter	SCHWARZBE CK	VTSD 9561-F N	00691	N/A	Jul. 30, 2024	Nov. 25, 2024	Jul. 29, 2025	Conduction (CO05-HY)
LISN Cable	MVE	RG-400	MQT24082501	N/A	Oct. 15, 2024	Nov. 25, 2024	Oct. 14, 2025	Conduction (CO05-HY)

TEL: 886-3-327-0868 FAX : 886-3-327-0855 Report Template No.: BU5-FR15CBT4.0 Version 2.4

: 23 of 24 Page Number Issue Date Report Version : 02

: Dec. 17, 2024

5 Measurement Uncertainty

Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)

Measuring Uncertainty for a Level of Confidence	2 7 dP
of 95% (U = 2Uc(y))	3.7 dB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	e e dP
of 95% (U = 2Uc(y))	0.5 08

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 6000 MHz)

Measuring Uncertainty for a Level of Confidence	
of 95% (U = 2Uc(y))	4.0 UD

Uncertainty of Radiated Emission Measurement (6000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	A C dP
of 95% (U = 2Uc(y))	4.0 UB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	E 2 dB
of 95% (U = 2Uc(y))	5.3 UB

Report Number : FR492020C

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Sylvia Li	Temperature:	21~25	°C
Test Date:	2024/10/1~2024/11/25	Relative Humidity:	51~54	%

	<u>TEST RESULTS DATA</u> 6dB and 99% Occupied Bandwidth										
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail			
802.15.	4 250K	1	11	2405	2.210	1.549	0.50	Pass			
802.15.	4 250K	1	18	2440	2.210	1.557	0.50	Pass			
802.15.	4 250K	1	25	2475	2.212	1.558	0.50	Pass			
802.15.	4 250K	1	26	2480	2.215	1.550	0.50	Pass			

<u>TEST RESULTS DATA</u> <u>Average Power Table</u>											
Mod.	Data Rate	Ντx	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail	
802.15.4	250K	1	11	2405	19.40	30.00	3.02	22.42	36.00	Pass	
802.15.4	250K	1	18	2440	19.20	30.00	3.02	22.22	36.00	Pass	
802.15.4	250K	1	25	2475	19.10	30.00	3.02	22.12	36.00	Pass	
802.15.4	250K	1	26	2480	2.90	30.00	3.02	5.92	36.00	Pass	

TEST RESULTS DAT	<u>'A</u>
Peak Power Density	/

Mod.	Data Rate	Ντx	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail
802.15.4	250K	1	11	2405	16.59	4.45	3.02	8.00	Pass
802.15.4	250K	1	18	2440	16.47	4.74	3.02	8.00	Pass
802.15.4	250K	1	25	2475	16.46	4.59	3.02	8.00	Pass
802.15.4	250K	1	26	2480	-0.90	-13.39	3.02	8.00	Pass

6dB Bandwidth

99% Occupied Bandwidth

Power Spectral Density (dBm/3kHz)

Band Edge and Conducted Spurious Emission

Appendix B. AC Conducted Emission Test Results

Toot Engineer	Calvin Wang	Те	emperature :	23~26 ℃
Test Engineer.		R	Relative Humidity :	45~55%

EUT Information

Report NO :

492020

Test Voltage : Phase : 120Vac/60Hz Line

FullSpectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.154500		29.06	55.75	26.69	L1	OFF	19.8
0.154500	38.97		65.75	26.78	L1	OFF	19.8
0.199500		25.82	53.63	27.81	L1	OFF	19.8
0.199500	32.71		63.63	30.92	L1	OFF	19.8
0.305250		23.83	50.10	26.27	L1	OFF	19.8
0.305250	25.77		60.10	34.33	L1	OFF	19.8
0.561750		24.33	46.00	21.67	L1	OFF	19.8
0.561750	26.18		56.00	29.82	L1	OFF	19.8
2.649750		24.22	46.00	21.78	L1	OFF	19.9
2.649750	25.60		56.00	30.40	L1	OFF	19.9
10.842000		26.86	50.00	23.14	L1	OFF	20.3
10.842000	28.88		60.00	31.12	L1	OFF	20.3

EUT Information

Report NO :

492020

Test Voltage : Phase : 120Vac/60Hz Neutral

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.154500		28.91	55.75	26.84	Ν	OFF	19.8
0.154500	37.25		65.75	28.50	Ν	OFF	19.8
0.208500		25.27	53.27	28.00	Ν	OFF	19.8
0.208500	29.01		63.27	34.26	Ν	OFF	19.8
0.276000		24.31	50.94	26.63	Ν	OFF	19.8
0.276000	25.95		60.94	34.99	Ν	OFF	19.8
0.372750		23.44	48.44	25.00	Ν	OFF	19.8
0.372750	24.58		58.44	33.86	Ν	OFF	19.8
1.970250		23.82	46.00	22.18	Ν	OFF	19.9
1.970250	25.11		56.00	30.89	Ν	OFF	19.9
10.428000		26.62	50.00	23.38	Ν	OFF	20.3
10.428000	28.54		60.00	31.46	Ν	OFF	20.3

FullSpectrum

Appendix C. Radiated Spurious Emission Test Data

Tost Engineer :	Leo Li, Karl Hou and Lucifor Jiang	Temperature :	21.7~22.5°C
Test Engineer .		Relative Humidity :	51~57%

Note symbol

-L	Low channel location
-R	High channel location

C1. Radiated Spurious Emission Test Modes

Modo	Band	Antonna Modulation Channel Frequence		Frequency	Data	вп	Bomork	
Wode	(MHz)	Antenna	wodulation	Glialillei	Frequency	Rate	ΝŪ	Remark
Mode 1	2400-2483.5	2	IEEE 802.15.4	11	2405	250kbps	-	-
Mode 2	2400-2483.5	2	IEEE 802.15.4	17	2435	250kbps	-	-
Mode 3	2400-2483.5	2	IEEE 802.15.4	25	2475	250kbps	-	-
Mode 4	2400-2483.5	2	IEEE 802.15.4	26	2480	250kbps	-	-
Mode 5	2400-2483.5	2	IEEE 802.15.4	26	2480	250kbps	-	SHF
Mode 6	2400-2483.5	2	IEEE 802.15.4	26	2480	250kbps	-	LF

C2. Summary of each worse mode

Mode	Modulation	Ch	Freq.	Level	Limit	Margin	Pol	Peak	Result	RII	Remark
Mode	Modulation	011.	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	1 01.	Avg.	Result NO	NO	Remark
4	IEEE 802.15.4	11	2340.97	46.47	54.00	-7.53	V	Avg.	Pass	-	Band Edge
I	IEEE 802.15.4	11	4810.00	45.66	74.00	-28.34	Н	Peak	Pass	•	Harmonic
C	IEEE 802.15.4	17	2370.86	47.27	54.00	-6.73	V	Avg.	Pass	-	Band Edge
2	IEEE 802.15.4	17	7305.00	40.14	54.00	-13.86	V	Avg.	Pass	-	Harmonic
0	IEEE 802.15.4	25	2483.58	45.75	54.00	-8.25	V	Avg.	Pass	-	Band Edge
5	IEEE 802.15.4	25	7425.00	39.69	54.00	-14.31	V	Avg.	Pass	-	Harmonic
4	IEEE 802.15.4	26	2483.54	52.19	54.00	-1.81	V	Avg.	Pass	-	Band Edge
4	IEEE 802.15.4	26	7440.00	39.73	54.00	-14.27	V	Avg.	Pass	-	Harmonic
5	IEEE 802.15.4	26	18452.03	41.80	74.00	-32.20	Н	Peak	Pass	-	SHF
6	IEEE 802.15.4	26	956.35	33.57	46.00	-12.43	V	Peak	Pass	-	LF

Appendix D. Duty Cycle Plots

Band	Duty Cycle(%)	T(us)	Duty Factor(dB)
IEEE 802.15.4	100.00	-	0.00

