TEST REPORT Report No.: BCTC2108406800E Applicant: Shenzhen Creality 3D Technology Co., Ltd. Product Name: 3D Printer Model/Type reference: HALOT-LITE Tested Date: 2021-08-10 to 2021-08-23 Issued Date: 2021-08-23 Shenzhen BC Testing Co., Ltd. No.: BCTC/RF-EMC-005 Page: 1 of 60 / / / / / Edition: A. # FCC ID: 2AXH6HALOT-LITE Product Name: 3D Printer Trademark: CREALITY Model/Type Ref.: HALOT-LITE Prepared For: Shenzhen Creality 3D Technology Co., Ltd. Address: 18F, JinXiuHongDu Building, Meilong Blvd., Longhua Dist., Shenzhen, China 518131 Manufacturer: Shenzhen Creality 3D Technology Co., Ltd. Address: 18F, JinXiuHongDu Building, Meilong Blvd., Longhua Dist., Shenzhen, China 518131 Prepared By: Shenzhen BCTC Testing Co., Ltd. 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan Address: 1st Road, Tangwei, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China Sample Received Date: 2021-08-10 Sample tested Date: 2021-08-10 to 2021-08-23 Issue Date: 2021-08-23 Report No.: BCTC2108406800E Test Standards FCC Part15.247 ANSI C63.10-2013 Test Results PASS Remark: This is WIFI-2.4GHz band radio test report. Tested by: Willem Wong Willem Wang/Project Handler Approved by: Zero Zhou/Reviewer The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client. No.: BCTC/RF-EMC-005 Page: 2 of 60 / / / / / / Édition: A:3 # **TABLE OF CONTENT** | Test I | Report Declaration | Page | |--------|---|------| | 1. | VERSION | 5 | | 2. | TEST SUMMARY | 6 | | 3. | MEASUREMENT UNCERTAINTY | | | 4. | PRODUCT INFORMATION AND TEST SETUP | | | 4.1 | Product Information | 8 | | 4.2 | Test Setup Configuration | 8 | | 4.3 | Support Equipment | 9 | | 4.4 | Channel List | | | 4.5 | Test Mode | 10 | | 4.6 | table of parameters of text software setting | 10 | | 5. | TEST FACILITY AND TEST INSTRUMENT USED | 11 | | 5.1 | Test Facility | 11 | | 5.2 | Test Instrument Used | | | 6. | CONDUCTED EMISSIONS | 13 | | 6.1 | Block Diagram Of Test Setup | 13 | | 6.2 | Limit | 13 | | 6.3 | Test procedure | 13 | | 6.4 | EUT operating Conditions | 13 | | 6.5 | Test Result | 14 | | 7. | RADIATED EMISSIONS | 16 | | 7.1 | Block Diagram Of Test Setup | | | 7.2 | Limit | | | 7.3 | Test procedure | | | 7.4 | EUT operating Conditions | | | 7.5 | Test Result | | | 8. | RADIATED BAND EMISSION MEASUREMENT AND RESTRICTED BAN | | | | OPERATION | | | 8.1 | Block Diagram Of Test Setup | | | 8.2 | <u>Limit</u> | 26 | | 8.3 | Test procedure | 27 | | 8.4 | EUT operating Conditions Test Result | 27 | | 8.5 | Test Result | 28 | | 9. | POWER SPECTRAL DENSITY TEST | 29 | | 9.1 | Block Diagram Of Test Setup | 29 | | 9.2 | Limit | 29 | | 9.3 | Test procedure | | | 9.4 | EUT operating Conditions | | | 9.5 | Test Result | 30 | | 10. | BANDWIDTH TEST | 36 | No.: BCTC/RF-EMC-005 Page: 3 of 60 / / / / Edition: A | | Report No.: | BCTC2108406800F | |--|-------------|-----------------| |--|-------------|-----------------| | 10.1 | Block Diagram Of Test Setup | . 36 | |------|--|------------| | 10.2 | | | | 10.3 | Test procedure | . 36 | | 10.4 | | | | 10.5 | | . 37 | | 11. | PEAK OUTPUT POWER TEST | . 43 | | 11.1 | Block Diagram Of Test Setup | | | 11.2 | Limit | . 43 | | 11.3 | Test procedure | . 43 | | 11.4 | EUT operating Conditions | . 43 | | 11.5 | | | | 12. | 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE | . 45 | | 12.1 | Block Diagram Of Test Setup | . 45 | | 12.2 | Limit | . 45 | | 12.3 | Test procedure | . 45 | | 12.4 | EUT operating Conditions | . 45 | | 12.5 | Test Result | . 46 | | 13. | DUTY CYCLE OF TEST SIGNAL | . 52 | | 13.1 | Standard requirement | | | 13.2 | Formula | . 52 | | 13.3 | | | | 13.4 | Test Result | . 52 | | 14. | ANTENNA REQUIREMENT | . 55 | | 14.1 | Limit | | | 14.1 | Test Result | | | 15. | EUT PHOTOGRAPHS | . 56 | | 16 | ELIT TEST SETUD DUOTOCDADUS | 5 0 | (Note: N/A means not applicable) No.: BCTC/RF-EMC-005 Page: 4 of 60 Edition: A.3 # 1. VERSION | Report No. | Issue Date | Description | Approved | |-----------------|------------|-------------|----------| | BCTC2108406800E | 2021-08-23 | Original | Valid | | | | | | No.: BCTC/RF-EMC-005 # 2. TEST SUMMARY The Product has been tested according to the following specifications: | No. | Test Parameter | Clause
No | Results | |-----|-----------------------------------|---------------|---------| | 1 | Conducted Emission | 15.207 | PASS | | 2 | 6dB Bandwidth | 15.247 (a)(2) | PASS | | 3 | Peak Output Power | 15.247 (b) | PASS | | 4 | Radiated Spurious Emission | 15.247 (d) | PASS | | 5 | Power Spectral Density | 15.247 (e) | PASS | | 6 | Restricted Band of Operation | 15.205 | PASS | | 7 | Band Edge (Out of Band Emissions) | 15.247 (d) | PASS | | 8 | Antenna Requirement | 15.203 | PASS | No.: BCTC/RF-EMC-005 # 3. MEASUREMENT UNCERTAINTY Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2. | No. | Item | Uncertainty | |-----|--|-------------| | 1 | 3m chamber Radiated spurious emission(30MHz-1GHz) | U=4.3dB | | 2 | 3m chamber Radiated spurious emission(9KHz-30MHz) | U=3.7dB | | 3 | 3m chamber Radiated spurious emission(1GHz-18GHz) | U=4.5dB | | 4 | 3m chamber Radiated spurious emission(18GHz-40GHz) | U=3.34dB | | 5 | Conducted Emission (150kHz-30MHz) | U=3.20dB | | 6 | Conducted Adjacent channel power | U=1.38dB | | 7 | Conducted output power uncertainty Above 1G | U=1.576dB | | 8 | Conducted output power uncertainty below 1G | U=1.28dB | | 9 | humidity uncertainty | U=5.3% | | 10 | Temperature uncertainty | U=0.59°C | No.: BCTC/RF-EMC-005 Page: 7 of 60 / / / / Edition: A. ## 4. PRODUCT INFORMATION AND TEST SETUP ## 4.1 Product Information Model/Type Ref.: HALOT-LITE Model differences: N/A Hardware Version: N/A Software Version: N/A Operation Frequency: 802.11b/g/n20MHz:2412~2462 MHz Bit Rate of Transmitter 802.11b:11/5.5/2/1 Mbps 802.11g:54/48/36/24/18/12/9/6Mbps 802.11n Up to 75Mbps Type of Modulation: WIFI: OFDM/DSSS Number Of Channel 802.11b/g/n20MHz:11 CH Antenna installation: WIFI: FPCB antenna Antenna Gain: WIFI: 2.54dBi Ratings: AC 100-240V 50/60Hz # 4.2 Test Setup Configuration See test photographs attached in *EUT TEST SETUP PHOTOGRAPHS* for the actual connections between Product and support equipment. #### Conducted Emission: E-1 AC EUT ## Radiated Spurious Emission E-1 AC EUT No.: BCTC/RF-EMC-005 Page: 8 of 60 / / / / / Édition: A:3 # 4.3 Support Equipment | No. | Device Type | Brand | Model | Series
No. | Data
Cable | Remark | |-----|-------------|----------|----------------|---------------|---------------|--------| | E-1 | 3D Printer | CREALITY | HALOT-
LITE | N/A | EUT | E-1 | #### Notes: - 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test. - 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use. ## 4.4 Channel List | | Channel List for 802.11b/g/n(20) | | | | | | | | |---------|----------------------------------|---------|--------------------|---------|--------------------|--|--|--| | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | | | | | 01 | 2412 | 02 | 2417 | 03 | 2422 | | | | | 04 | 2427 | 05 | 2432 | 06 | 2437 | | | | | 07 | 2442 | 08 | 2447 | 09 | 2452 | | | | | 10 | 2457 | 11 | 2462 | 1 | · · / | | | | No.: BCTC/RF-EMC-005 Page: 9 of 60 / / / Edition: A. 4.5 Test Mode # Report No.: BCTC2108406800E To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively. | Pretest Mode | Description | | |--------------|--------------------------|--| | Mode 1 | 802.11b CH1/ CH6/ CH11 | | | Mode 2 | 802.11g CH1/ CH6/ CH11 | | | Mode 3 | 802.11n20 CH1/ CH6/ CH11 | | | Mode 4 | Link Mode | | | Radiated Emission | | | | |-----------------------------|-----------|--|--| | Final Test Mode Description | | | | | Mode 4 | Link Mode | | | | For Radiated Emission | | | | | |-------------------------------|--------------------------|--|--|--| | Final Test Mode Description | | | | | | Mode 1 | 802.11b CH1/ CH6/ CH11 | | | | | Mode 2 802.11g CH1/ CH6/ CH11 | | | | | | Mode 3 | 802.11n20 CH1/ CH6/ CH11 | | | | #### Note: (1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported. # 4.6 table of parameters of text software setting During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters | Test software
Version | | CMD | | |--------------------------|----------|----------|----------| | Frequency | 2412 MHz | 2437 MHz | 2462 MHz | | Parameters | DEF | DEF | DEF | No. : BCTC/RF-EMC-005 Page: 10 of 60 / / / / Edition : A. # 5. TEST FACILITY AND TEST INSTRUMENT USED # 5.1 Test Facility All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address:1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Tangwei, Fuhai
Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards. FCC Test Firm Registration Number: 712850 IC Registered No.: 23583 5.2 Test Instrument Used | Conducted emissions Test | | | | | | |--------------------------|--------------|----------|----------------|--|--------------| | Equipment | Manufacturer | Model# | Serial# | Last Cal. | Next Cal. | | Receiver | R&S | ESR3 | 102075 | May 28, 2021 | May 27, 2022 | | LISN | R&S | ENV216 | 101375 | May 28, 2021 | May 27, 2022 | | ISN | HPX | ISN T800 | S1509001 | May 28, 2021 | May 27, 2022 | | Software | Frad | EZ-EMC | EMC-CON
3A1 | <u>, </u> | / \ | | RF conducted test | | | | | | |------------------------------------|--------------|---------|----------------|--------------|--------------| | Equipment | Manufacturer | Model# | Serial# | Last Cal. | Next Cal. | | Power Metter | Keysight | E4419B | | May 28, 2021 | May 27, 2022 | | Power Sensor
(AV) | Keysight | E9 300A | | May 28, 2021 | May 27, 2022 | | Signal Analyzer
20kHz-26.5GHz | KEYSIGHT | N9020A | MY4910006
0 | May 28, 2021 | May 27, 2022 | | Spectrum
Analyzer
9kHz-40GHz | R&S | FSP40 | 100363 | May 28, 2021 | May 27, 2022 | No.: BCTC/RF-EMC-005 Page: 11 of 60 / / / Edition: A. | Radiated emissions Test (966 chamber) | | | | | | |---|-----------------|-------------------|-------------------|---------------|---------------| | Equipment | Manufacturer | Model# | Serial# | Last Cal. | Next Cal. | | 966
chamber | ChengYu | 966 Room | 966 | Jun. 06. 2020 | Jun. 05, 2023 | | Receiver | R&S | ESR3 | 102075 | May 28, 2021 | May 27, 2022 | | Receiver | R&S | ESRP | 101154 | May 28, 2021 | May 27, 2022 | | Amplifier | Schwarzbeck | BBV9718 | 9718-309 | May 28, 2021 | May 27, 2022 | | Amplifier | Schwarzbeck | BBV9744 | 9744-0037 | May 28, 2021 | May 27, 2022 | | TRILOG
Broadband
Antenna | schwarzbeck | VULB
9163 | VULB9163
-942 | Jun. 01, 2021 | May 31, 2022 | | Horn
Antenna | SCHWARZBE
CK | BBHA9120
D | 1541 | Jun. 02, 2021 | Jun. 01, 2022 | | Horn
Antenna
(18GHz-40
GHz) | SCHWARZBE
CK | BBHA9170 | 822 | Jun. 15, 2021 | Jun. 14, 2022 | | Amplifier
(18GHz-40
GHz) | MITEQ | TTA1840-3
5-HG | 2034381 | May 28, 2021 | May 27, 2022 | | Loop
Antenna
(9KHz-30M
Hz) | SCHWARZBE
CK | FMZB1519
B | 014 | Jun. 02, 2021 | Jun. 01, 2022 | | RF cables1
(9kHz-30MH
z) | Huber+Suhnar | 9kHz-30M
Hz | B1702988-
0008 | May 28, 2021 | May 27, 2022 | | RF cables2
(30MHz-1G
Hz) | Huber+Suhnar | 30MHz-1G
Hz | 1486150 | May 28, 2021 | May 27, 2022 | | RF cables3
(1GHz-40G
Hz) | Huber+Suhnar | 1GHz-40G
Hz | 1607106 | May 28, 2021 | May 27, 2022 | | Power
Metter | Keysight | E4419B | | May 28, 2021 | May 27, 2022 | | Power
Sensor (AV) | Keysight | E9 300A | | May 28, 2021 | May 27, 2022 | | Signal
Analyzer
20kHz-26.5
GHz | KEYSIGHT | N9020A | MY491000
60 | May 28, 2021 | May 27, 2022 | | Spectrum
Analyzer
9kHz-40G
Hz | R&S | FSP40 | 100363 | May 28, 2021 | May 27, 2022 | | Software | Frad | EZ-EMC | FA-03A2
RE | | 1 | No.: BCTC/RF-EMC-005 Page: 12 of 60 / / / Edition: A. ## 6. CONDUCTED EMISSIONS ## 6.1 Block Diagram Of Test Setup #### 6.2 Limit | FREQUENCY (MHz) | Limit (dBuV) | | | |----------------------|--------------|-----------|--| | TREGOLINGT (IVII 12) | Quas-peak | Average | | | 0.15 -0.5 | 66 - 56 * | 56 - 46 * | | | 0.50 -5.0 | 56.00 | 46.00 | | | 5.0 -30.0 | 60.00 | 50.00 | | #### Notes: - 1. *Decreasing linearly with logarithm of frequency. - 2. The lower limit shall apply at the transition frequencies. # 6.3 Test procedure | Receiver Parameters | Setting | |---------------------|---| | Attenuation | 10 dB / / / / | | Start Frequency | \ \ \ \ \ 0.15 MHz / / / / | | Stop Frequency | 30 MHz//////////////////////////////////// | | IF Bandwidth | 9 kHz / / / / / / / / / / / / / / / / / / / | - a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N). - b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band. - c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record. # 6.4 EUT operating Conditions The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data. No.: BCTC/RF-EMC-005 Page: 13 of 60 / / / Edition: A.3 # 6.5 Test Result | Temperature: | 26 ℃ | Relative Humidity: | 54% | |----------------|-------------|--------------------|--------| | Pressure: | 101kPa | Phase : | L | | Test Voltage : | AC120V/60Hz | Test Mode: | Mode 4 | ## Remark: All readings are Quasi-Peak and Average values. Factor = Insertion Loss + Cable Loss. | No. Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | |---------|---------|------------------|-------------------|------------------|-------|--------|----------| | | MHz | | dB | dBuV | dBu∀ | dB | Detector | | 1 | 0.3030 | 22.90 | 9.61 | 32.51 | 60.16 | -27.65 | QP | | 2 | 0.3030 | 16.85 | 9.61 | 26.46 | 50.16 | -23.70 | AVG | | 3 | 0.5100 | 22.36 | 9.62 | 31.98 | 56.00 | -24.02 | QP | | 4 * | 0.5100 | 19.89 | 9.62 | 29.51 | 46.00 | -16.49 | AVG | | 5 | 1.0230 | 16.75 | 9.63 | 26.38 | 56.00 | -29.62 | QP | | 6 | 1.0230 | 13.90 | 9.63 | 23.53 | 46.00 | -22.47 | AVG | | 7 | 3.3630 | 12.33 | 9.67 | 22.00 | 56.00 | -34.00 | QP | | 8 | 3.3630 | 2.62 | 9.67 | 12.29 | 46.00 | -33.71 | AVG | | 9 | 9.5055 | 22.10 | 9.79 | 31.89 | 60.00 | -28.11 | QP | | 10 | 9.5055 | 12.78 | 9.79 | 22.57 | 50.00 | -27.43 | AVG | | 11 | 24.0000 | 10.36 | 9.74 | 20.10 | 60.00 | -39.90 | QP | | 12 | 24.0000 | 4.68 | 9.74 | 14.42 | 50.00 | -35.58 | AVG | Page: 14 of 60 No.: BCTC/RF-EMC-005 Edition: A.3 | Temperature: | 26 ℃ | Relative Humidity: | 54% | |----------------|-------------|--------------------|--------| | Pressure: | 101kPa | Phase : | N | | Test Voltage : | AC120V/60Hz | Test Mode: | Mode 4 | #### Remark: - All readings are Quasi-Peak and Average values. Factor = Insertion Loss + Cable Loss. | No. Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | |---------|---------|------------------|-------------------|------------------|-------|--------|----------| | | MHz | | dB | dBu∀ | dBu∀ | dB | Detector | | 1 | 0.2083 | 33.65 | 9.61 | 43.26 | 63.27 | -20.01 | QP | | 2 | 0.2083 | 24.50 | 9.61 | 34.11 | 53.27 | -19.16 | AVG | | 3 | 0.5074 | 22.43 | 9.62 | 32.05 | 56.00 | -23.95 | QP | | 4 * | 0.5074 | 20.26 | 9.62 | 29.88 | 46.00 | -16.12 | AVG | | 5 | 1.0211 | 19.16 | 9.63 | 28.79 | 56.00 | -27.21 | QP | | 6 | 1.0211 | 14.78 | 9.63 | 24.41 | 46.00 | -21.59 | AVG | | 7 | 6.9141 | 19.96 | 9.74 | 29.70 | 60.00 | -30.30 | QP | | 8 | 6.9141 | 8.79 | 9.74 | 18.53 | 50.00 | -31.47 | AVG | | 9 | 12.6489 | 22.19 | 9.79 | 31.98 | 60.00 | -28.02 | QP | | 10 | 12.6489 | 10.10 | 9.79 | 19.89 | 50.00 | -30.11 | AVG | | 11 | 22.5353 | 19.81 | 9.74 | 29.55 | 60.00 | -30.45 | QP | | 12 | 22.5353 | 9.92 | 9.74 | 19.66 | 50.00 | -30.34 | AVG | | | | | | | | | | No.: BCTC/RF-EMC-005 # 7. RADIATED EMISSIONS # 7.1 Block Diagram Of Test Setup (A) Radiated Emission Test-Up Frequency Below 30MHz (B) Radiated Emission Test-Up Frequency 30MHz~1GHz No.: BCTC/RF-EMC-005 Page: 16 of 60 / / / Edition: A ## (C) Radiated Emission Test-Up Frequency Above 1GHz #### 7.2 Limit 20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed. | Frequency | Field Strength | Distance | Field Strength Limit at 3m Distance | | | |---------------|----------------|----------|-------------------------------------|--------------------------------------|--| | (MHz) | uV/m | (m) | uV/m | dBuV/m | | | 0.009 ~ 0.490 | 2400/F(kHz) | 300 | 10000 * 2400/F(kHz) | 20log ^{(2400/F(kHz))} + 80 | | | 0.490 ~ 1.705 | 24000/F(kHz) | 30 | 100 * 24000/F(kHz) | 20log ^{(24000/F(kHz))} + 40 | | | 1.705 ~ 30 | 30 | 30 | 100 * 30 | 20log ⁽³⁰⁾ + 40 | | | 30 ~ 88 | 100 | 3 | 100 | 20log ⁽¹⁰⁰⁾ | | | 88 ~ 216 | 150 | 3 | 150 | 20log ⁽¹⁵⁰⁾ | | | 216 ~ 960 | 200 | 3 | 200 | 20log ⁽²⁰⁰⁾ | | | Above 960 | 500 | 3 | 500 | 20log ⁽⁵⁰⁰⁾ | | ### LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz) | FREQUENC | Limit (dBuV/m) (at 3M) | | | , , , | |------------|------------------------|----|--------|-------| | Y (MHz) | PEAK | A۷ | 'ERAGE | | | Above 1000 | 74 | | 54 | | #### Notes: - (1) The limit for radiated test was performed according to FCC PART 15C. - (2) The tighter limit applies at the band edges. - (3) Emission level (dBuV/m)=20log Emission level (uV/m). No.: BCTC/RF-EMC-005 Page: 17 of 60 / / / / Edition: A. #### FREQUENCY RANGE OF RADIATED MEASUREMENT (a) For an intentional radiator the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in this paragraph: - (1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower. - (2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower. - (3) If the intentional radiator operates
at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower, unless specified otherwise elsewhere in the rules. - (4) If the intentional radiator operates at or above 95 GHz: To the third harmonic of the highest fundamental frequency or to 750 GHz, whichever is lower, unless specified otherwise elsewhere in the rules. - (5) If the intentional radiator contains a digital device, regardless of whether this digital device controls the functions of the intentional radiator or the digital device is used for additional control or function purposes other than to enable the operation of the intentional radiator, the frequency range shall be investigated up to the range specified in paragraphs (a) (1)through (4) of this section or the range applicable to the digital device, as shown in paragraph (b)(1) of this section, whichever is the higher frequency range of investigation. ## 7.3 Test procedure | Receiver Parameter | Setting | |--------------------|-------------------| | Attenuation | Auto : | | 9kHz~150kHz | RBW 200Hz for QP | | 150kHz~30MHz | RBW 9kHz for QP | | 30MHz~1000MHz | RBW 120kHz for QP | | Spectrum Parameter | Setting | |--------------------|--| | 1-25GHz | RBW 1 MHz /VBW 1 MHz for Peak,
RBW 1 MHz / VBW 10Hz for Average | Below 1GHz test procedure as below: - a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. No. : BCTC/RF-EMC-005 Page: 18 of 60 / / / / / Edition : A. - d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. - f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. #### Above 1GHz test procedure as below: - a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. - b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. - e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. - f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. - g.Test the EUT in the lowest channel, the middlest channel, the Highest channel. #### Note: Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported. # 7.4 EUT operating Conditions The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data. No. : BCTC/RF-EMC-005 Page: 19 of 60 / / / / / Edition : A. #### Below 30MHz | Temperature: | 26 ℃ | Relative Humidtity: | 24% | |--------------|-------------|---------------------|--------------| | Pressure: | 101 kPa | Test Voltage: | AC 120V/60Hz | | Test Mode: | Mode 4 | Polarization : | | | Freq. | Reading | Limit | Margin | State | |-------|----------|----------|--------|-------| | (MHz) | (dBuV/m) | (dBuV/m) | (dB) | P/F | | | | | | PASS | | | | | | PASS | ## Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported. Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits(dBuv) + distance extrapolation factor. No.: BCTC/RF-EMC-005 Between 30MHz - 1GHz | Temperature: | 26℃ | Relative Humidtity: | 54% | |--------------|---------|---------------------|--------------| | Pressure: | 101 kPa | Test Voltage: | AC 120V/60Hz | | Test Mode: | Mode 4 | Polarization: | Horizontal | Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. | No. | Mł | c. Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | |-----|----|----------|------------------|-------------------|------------------|-------|--------|----------| | | | MHz | dBu∀ | dB | dBu∀/m | dB/m | dB | Detector | | 1 | | 149.9708 | 53.57 | -19.49 | 34.08 | 43.50 | -9.42 | QP | | 2 | | 179.9765 | 47.81 | -17.07 | 30.74 | 43.50 | -12.76 | QP | | 3 | ļ | 601.4265 | 46.59 | -5.98 | 40.61 | 46.00 | -5.39 | QP | | 4 | ļ | 780.0273 | 42.39 | -2.31 | 40.08 | 46.00 | -5.92 | QP | | 5 | * | 840.0116 | 44.60 | -1.02 | 43.58 | 46.00 | -2.42 | QP | | 6 | ļ | 900.0074 | 40.74 | 0.46 | 41.20 | 46.00 | -4.80 | QP | No.: BCTC/RF-EMC-005 Page: 21 of 60 / / / / Edition: A.3 | Temperature: | 26 ℃ | Relative Humidtity: | 54% | |--------------|-------------|---------------------|--------------| | Pressure: | 101 kpa | Test Voltage: | AC 120V/60Hz | | Test Mode: | Mode 4 | Polarization : | Vertical | Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. | No. | Mł | c. Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | |-----|----|----------|------------------|-------------------|------------------|-------|--------|----------| | | | MHz | dBu∀ | dB | dBu∀/m | dB/m | dB | Detector | | 1 | | 64.8997 | 48.16 | -17.35 | 30.81 | 40.00 | -9.19 | QP | | 2 | | 114.5146 | 45.61 | -17.11 | 28.50 | 43.50 | -15.00 | QP | | 3 | | 150.0108 | 55.19 | -19.49 | 35.70 | 43.50 | -7.80 | QP | | 4 | | 180.0165 | 50.44 | -17.06 | 33.38 | 43.50 | -10.12 | QP | | 5 | * | 661.1505 | 44.71 | -4.55 | 40.16 | 46.00 | -5.84 | QP | | 6 | | 782.3453 | 40.77 | -2.27 | 38.50 | 46.00 | -7.50 | QP | No.: BCTC/RF-EMC-005 Page: 22 of 60 / / / Edition: A. # Between 1GHz – 25GHz **802.11b** | Polar | Frequency | Reading
Level | Correct
Factor | Measure-
ment | Limits | Over | Detector | |-------|-----------|------------------|-------------------|------------------|--------------|--------|----------| | (H/V) | (MHz) | (dBuV/m) | (dB) | (dBuV/m) | (dBuV/
m) | (dB) | Туре | | | | Low | v channel:2 | 412MHz | | | | | V | 4824.00 | 53.33 | -0.43 | 52.90 | 74.00 | -21.10 | PK | | V | 4824.00 | 44.40 | -0.43 | 43.97 | 54.00 | -10.03 | AV | | V | 7236.00 | 45.73 | 8.31 | 54.04 | 74.00 | -19.96 | PK | | V | 7236.00 | 35.81 | 8.31 | 44.12 | 54.00 | -9.88 | AV | | Н | 4804.00 | 51.43 | -0.43 | 51.00 | 74.00 | -23.00 | PK | | Н | 4804.00 | 41.85 | -0.43 | 41.42 | 54.00 | -12.58 | AV | | Н | 7236.00 | 43.76 | 8.31 | 52.07 | 74.00 | -21.93 | PK | | Н | 7236.00 | 35.17 | 8.31 | 43.48 | 54.00 | -10.52 | AV | | | | | le channel: | 2437MHz | | | _ | | V | 4874.00 | 50.55 | -0.38 | 50.17 | 74.00 | -23.83 | PK | | V | 4874.00 | 42.26 | -0.38 | 41.88 | 54.00 | -12.12 | AV | | V | 7311.00 | 43.15 | 8.83 | 51.98 | 74.00 | -22.02 | PK | | V | 7311.00 | 34.94 | 8.83 | 43.77 | 54.00 | -10.23 | AV | | Н | 4874.00 | 46.27 | -0.38 | 45.89 | 74.00 | -28.11 | PK | | Н | 4874.00 | 35.68 | -0.38 | 35.30 | 54.00 | -18.70 | AV | | Н | 7311.00 | 40.70 | 8.83 | 49.53 | 74.00 | -24.47 | PK | | Η | 7311.00 | 33.33 | 8.83 | 42.16 | 54.00 | -11.84 | AV | | | | | n channel:2 | | : | | / | | V | 4924.00 | 51.69 | -0.32 | 51.37 | 74.00 | -22.63 | PK | | V | 4924.00 | 42.45 | -0.32 | 42.13 | 54.00 | -11.87 | AV | | V | 7386.00 | 42.71 | 9.35 | 52.06 | 74.00 | -21.94 | PK | | V | 7386.00 | 32.83 | 9.35 | 42.18 | 54.00 | -11.82 | AV | | Н | 4924.00 | 50.65 | -0.32 | 50.33 | 74.00 | -23.67 | PK | | Н | 4924.00 | 40.29 | -0.32 | 39.97 | 54.00 | -14.03 | AV | | Н | 7386.00 | 41.36 | 9.35 | 50.71 | 74.00 | -23.29 | PK | | Н | 7386.00 | 34.17 | 9.35 | 43.52 | 54.00 | -10.48 | AV | #### Remark: 1.Emission Level = Meter Reading + Factor, Factor = Antenna Factor + Cable Loss - Pre-amplifier. Over= Emission Level - Limit - 2.If peak below the average limit, the average emission was no test. - 3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB - 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported. - 5.All the Modulation are test, the worst mode is 802.11b, the data recording in the report. No.: BCTC/RF-EMC-005 Page: 23 of 60 / / / / Edition: A.3 802.11g | Polar | Frequency | Reading
Level | Correct
Factor |
Measure-
ment | Limits | Over | Detector | |-------|-----------|------------------|-------------------|------------------|--------------|--------|----------| | (H/V) | (MHz) | (dBuV/m) | (dB) | (dBuV/m) | (dBuV/
m) | (dB) | Туре | | | | Lov | v channel:2 | 412MHz | | | | | V | 4824.00 | 54.65 | -0.43 | 54.22 | 74.00 | -19.78 | PK | | V | 4824.00 | 43.73 | -0.43 | 43.30 | 54.00 | -10.70 | AV | | V | 7236.00 | 47.19 | 8.31 | 55.50 | 74.00 | -18.50 | PK | | V | 7236.00 | 36.45 | 8.31 | 44.76 | 54.00 | -9.24 | AV | | Н | 4804.00 | 51.39 | -0.43 | 50.96 | 74.00 | -23.04 | PK | | Н | 4804.00 | 41.04 | -0.43 | 40.61 | 54.00 | -13.39 | AV | | Н | 7236.00 | 45.44 | 8.31 | 53.75 | 74.00 | -20.25 | PK | | Н | 7236.00 | 38.19 | 8.31 | 46.50 | 54.00 | -7.50 | AV | | | | | le channel: | 2437MHz | | | | | V | 4874.00 | 53.20 | -0.38 | 52.82 | 74.00 | -21.18 | PK | | V | 4874.00 | 45.89 | -0.38 | 45.51 | 54.00 | -8.49 | AV | | V | 7311.00 | 45.29 | 8.83 | 54.12 | 74.00 | -19.88 | PK | | V | 7311.00 | 35.91 | 8.83 | 44.74 | 54.00 | -9.26 | AV | | Н | 4874.00 | 48.69 | -0.38 | 48.31 | 74.00 | -25.69 | PK | | Н | 4874.00 | 38.07 | -0.38 | 37.69 | 54.00 | -16.31 | AV | | Н | 7311.00 | 44.16 | 8.83 | 52.99 | 74.00 | -21.01 | PK | | Н | 7311.00 | 36.98 | 8.83 | 45.81 | 54.00 | -8.19 | AV | | | | | n channel:2 | | : | | / | | V | 4924.00 | 55.02 | -0.32 | 54.70 | 74.00 | -19.30 | PK | | V | 4924.00 | 45.04 | -0.32 | 44.72 | 54.00 | -9.28 | AV | | V | 7386.00 | 48.91 | 9.35 | 58.26 | 74.00 | -15.74 | PK | | V | 7386.00 | 38.73 | 9.35 | 48.08 | 54.00 | -5.92 | AV | | Н | 4924.00 | 53.94 | -0.32 | 53.62 | 74.00 | -20.38 | PK | | Н | 4924.00 | 44.48 | -0.32 | 44.16 | 54.00 | -9.84 | AV | | Н | 7386.00 | 47.28 | 9.35 | 56.63 | 74.00 | -17.37 | PK | | Н | 7386.00 | 38.98 | 9.35 | 48.33 | 54.00 | -5.67 | AV | #### Remark: 1.Emission Level = Meter Reading + Factor, Factor = Antenna Factor + Cable Loss - Pre-amplifier. Over= Emission Level - Limit - 2.If peak below the average limit, the average emission was no test. - 3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB - 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported. - 5.All the Modulation are test, the worst mode is 802.11b, the data recording in the report. No.: BCTC/RF-EMC-005 Page: 24 of 60 / / / Edition: A.3 802.11n20 | | 002.111120 | | | | | | | |-------|------------|------------------|-------------------|------------------|--------------|--------|----------| | Polar | Frequency | Reading
Level | Correct
Factor | Measure-
ment | Limits | Over | Detector | | (H/V) | (MHz) | (dBuV/m) | (dB) | (dBuV/m) | (dBuV/
m) | (dB) | Туре | | | | Low | / channel:2 | 412MHz | | | | | V | 4824.00 | 52.01 | -0.43 | 51.58 | 74.00 | -22.42 | PK | | V | 4824.00 | 43.61 | -0.43 | 43.18 | 54.00 | -10.82 | AV | | V | 7236.00 | 41.65 | 8.31 | 49.96 | 74.00 | -24.04 | PK | | V | 7236.00 | 30.70 | 8.31 | 39.01 | 54.00 | -14.99 | AV | | Н | 4804.00 | 48.57 | -0.43 | 48.14 | 74.00 | -25.86 | PK | | Н | 4804.00 | 37.82 | -0.43 | 37.39 | 54.00 | -16.61 | AV | | Н | 7236.00 | 40.38 | 8.31 | 48.69 | 74.00 | -25.31 | PK | | Н | 7236.00 | 32.40 | 8.31 | 40.71 | 54.00 | -13.29 | AV | | | | Midd | le channel: | 2437MHz | | | | | V | 4874.00 | 48.24 | -0.38 | 47.86 | 74.00 | -26.14 | PK | | V | 4874.00 | 41.64 | -0.38 | 41.26 | 54.00 | -12.74 | AV | | V | 7311.00 | 38.16 | 8.83 | 46.99 | 74.00 | -27.01 | PK | | V | 7311.00 | 28.58 | 8.83 | 37.41 | 54.00 | -16.59 | AV | | Н | 4874.00 | 47.01 | -0.38 | 46.63 | 74.00 | -27.37 | PK | | Н | 4874.00 | 37.97 | -0.38 | 37.59 | 54.00 | -16.41 | AV | | Н | 7311.00 | 36.49 | 8.83 | 45.32 | 74.00 | -28.68 | PK | | Н | 7311.00 | 27.77 | 8.83 | 36.60 | 54.00 | -17.40 | AV | | | | Higl | n channel:2 | 462MHz | | | | | V | 4924.00 | 49.72 | -0.32 | 49.40 | 74.00 | -24.60 | PK | | V | 4924.00 | 41.32 | -0.32 | 41.00 | 54.00 | -13.00 | AV | | V | 7386.00 | 40.95 | 9.35 | 50.30 | 74.00 | -23.70 | PK | | V | 7386.00 | 31.90 | 9.35 | 41.25 | 54.00 | -12.75 | AV | | Н | 4924.00 | 48.01 | -0.32 | 47.69 | 74.00 | -26.31 | PK | | Н | 4924.00 | 37.22 | -0.32 | 36.90 | 54.00 | -17.10 | AV | | Н | 7386.00 | 38.03 | 9.35 | 47.38 | 74.00 | -26.62 | PK | | Н | 7386.00 | 29.40 | 9.35 | 38.75 | 54.00 | -15.25 | AV | #### Remark: 1.Emission Level = Meter Reading + Factor, Factor = Antenna Factor + Cable Loss - Pre-amplifier. Over= Emission Level - Limit - 2.If peak below the average limit, the average emission was no test. - 3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB - 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported. - 5.All the Modulation are test, the worst mode is 802.11b, the data recording in the report. No.: BCTC/RF-EMC-005 Page: 25 of 60 / / / / Edition: A.3 # 8. RADIATED BAND EMISSION MEASUREMENT AND RESTRICTED BANDS OF OPERATION # 8.1 Block Diagram Of Test Setup Radiated Emission Test-Up Frequency Above 1GHz #### 8.2 Limit ### FCC Part15 C Section 15.209 and 15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below: | MHz | MHz | MHz | GHz | |--------------------------|---------------------|---------------|------------------| | 0.090-0.110 | 16.42-16.423 | 399.9-410 | 4.5-5.15 | | ¹ 0.495-0.505 | 16.69475-16.69525 | 608-614 | 5.35-5.46 | | 2.1735-2.1905 | 16.80425-16.80475 | 960-1240 | 7.25-7.75 | | 4.125-4.128 | 25.5-25.67 | 1300-1427 | 8.025-8.5 | | 4.17725-4.17775 | 37.5-38.25 | 1435-1626.5 | 9.0-9.2 | | 4.20725-4.20775 | 73-74.6 | 1645.5-1646.5 | 9.3-9.5 | | 6.215-6.218 | 74.8-75.2 | 1660-1710 | 10.6-12.7 | | 6.26775-6.26825 | 108-121.94 | 1718.8-1722.2 | 13.25-13.4 | | 6.31175-6.31225 | 123-138 | 2200-2300 | 14.47-14.5 | | 8.291-8.294 | 149.9-150.05 | 2310-2390 | 15.35-16.2 | | 8.362-8.366 | 156.52475-156.52525 | 2483.5-2500 | 17.7-21.4 | | 8.37625-8.38675 | 156.7-156.9 | 2690-2900 | 22.01-23.12 | | 8.41425-8.41475 | 162.0125-167.17 | 3260-3267 | 23.6-24.0 | | 12.29-12.293 | 167.72-173.2 | 3332-3339 | 31.2-31.8 | | 12.51975-12.52025 | 240-285 | 3345.8-3358 | 36.43-36.5 | | 12.57675-12.57725 | 322-335.4 | 3600-4400 | (²) | | 13.36-13.41 | | | | LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz) | FREQUENC | Limit (dBuV/m) (at 3M) | | | | |------------|------------------------|---------|--|--| | Y (MHz) | PEAK | AVERAGE | | | | Above 1000 | 74 | 54 | | | #### Notes: (1) The limit for radiated test was performed according to FCC PART 15C. (2) The tighter limit applies at the band edges. No.: BCTC/RF-EMC-005 Page: 26 of 60 / / / / Edition: A.3 (3)Emission level (dBuV/m)=20log Emission level (uV/m). ## 8.3 Test procedure | Receiver Parameter | Setting | |---------------------------------------|--| | Attenuation | Auto | | Start Frequency | 2300MHz | | Stop Frequency | 2520 | | RB / VB (emission in restricted band) | 1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average | Above 1GHz test procedure as below: - a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. - b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. - e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. - f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. - g.Test the EUT in the lowest channel, the Highest channel. #### Note: Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported. # 8.4 EUT operating Conditions The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data. No. : BCTC/RF-EMC-005 Page: 27 of 60 / / / / Edition : A. # 8.5 Test Result Report No.: BCTC2108406800E | | Polar
(H/V) | Frequency
(MHz) | Reading
Level | Correct
Factor | Measure-
ment
(dBuV/m) | Lim
(dBu | | Result | |---------|----------------|--------------------|------------------|-------------------|------------------------------|-------------|-------|--------| | | () | (| (dBuV/m) | (dB) | PK | PK | AV | | | | | | Low | Channel 2 | 2412MHz | | | | | | Н | 2390.00 | 56.73 | -6.70 | 50.03 | 74.00 | 54.00 | PASS | | | Н | 2400.00 | 48.38 | -6.71 | 41.67 | 74.00 | 54.00 | PASS | | | V | 2390.00 | 57.65 | -6.70 | 50.95 | 74.00 | 54.00 | PASS | | 802.11b | V | 2400.00 | 50.61 | -6.71 | 43.90 | 74.00 | 54.00 | PASS | | 002.110 | | | | Channel 2 | 2462MHz | | | | | | Н | 2483.50 | 56.25 | -6.79 | 49.46 | 74.00 | 54.00 | PASS | | | Н | 2485.00 | 49.46 | -6.81 | 42.65 | 74.00 | 54.00 | PASS | | | V | 2483.50 | 57.03 | -6.79 | 50.24 | 74.00 | 54.00 | PASS | | | V | 2485.00 | 49.87 | -6.81 | 43.06 | 74.00 | 54.00 | PASS | | | | , | | Channel 2 |
2412MHz | | | | | | Н | 2390.00 | 56.48 | -6.70 | 49.78 | 74.00 | 54.00 | PASS | | | Н | 2400.00 | 48.03 | -6.71 | 41.32 | 74.00 | 54.00 | PASS | | | V | 2390.00 | 55.85 | -6.70 | 49.15 | 74.00 | 54.00 | PASS | | 802.11g | V | 2400.00 | 47.50 | -6.71 | 40.79 | 74.00 | 54.00 | PASS | | 002.119 | | , | | Channel 2 | | | | | | | Н | 2483.50 | 56.91 | -6.79 | 50.12 | 74.00 | 54.00 | PASS | | | Н | 2485.00 | 47.97 | -6.81 | 41.16 | 74.00 | 54.00 | PASS | | | V | 2483.50 | 54.32 | -6.79 | 47.53 | 74.00 | 54.00 | PASS | | | V | 2485.00 | 46.54 | -6.81 | 39.73 | 74.00 | 54.00 | PASS | | | | | | Channel 2 | | | | | | | Н | 2390.00 | 56.45 | -6.70 | 49.75 | 74.00 | 54.00 | PASS | | | Н | 2400.00 | 48.20 | -6.71 | 41.49 | 74.00 | 54.00 | PASS | | | V | 2390.00 | 56.73 | -6.70 | 50.03 | 74.00 | 54.00 | PASS | | 802.11 | V | 2400.00 | 48.89 | -6.71 | 42.18 | 74.00 | 54.00 | PASS | | n20 | | <u> </u> | | Channel 2 | | | 1/// | | | | Н | 2483.50 | 54.78 | -6.79 | 47.99 | 74.00 | 54.00 | PASS | | | Н | 2500.00 | 48.78 | -6.81 | 41.97 | 74.00 | 54.00 | PASS | | | V | 2483.50 | 56.56 | -6.79 | 49.77 | 74.00 | 54.00 | PASS | | Damanla | V | 2500.00 | 47.90 | -6.81 | 41.09 | 74.00 | 54.00 | PASS | #### Remark: 1. Emission Level = Meter Reading + Factor, Factor = Antenna Factor + Cable Loss - Pre-amplifier. Over= Emission Level - Limit - 2. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit. - 3 In restricted bands of operation, The spurious emissions below the permissible value more than 20dB - 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported. No.: BCTC/RF-EMC-005 Page: 28 of 60 / / / Edition: A.3 ## 9. POWER SPECTRAL DENSITY TEST # 9.1 Block Diagram Of Test Setup | EUT | SPECTRUM | |-----|----------| | | ANALYZER | #### 9.2 Limit | FCC Part15 (15.247) , Subpart C | | | | | | |---------------------------------|---------------------------|------------------------|--------------------------|--------|--| | Section | Test Item | Limit | Frequency
Range (MHz) | Result | | | 15.247 | Power Spectral
Density | 8 dBm
(in any 3KHz) | 2400-2483.5 | PASS | | LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz) ## 9.3 Test procedure - 1. Set analyzer center frequency to DTS channel center frequency. - 2. Set the span to 1.5 times the DTS bandwidth. - 3. Set the RBW to: 3 kHz - 4. Set the VBW \geq 3 x RBW. - 5. Detector = peak. - 6. Sweep time = auto couple. - 7. Trace mode = max hold. - 8. Allow trace to fully stabilize. - 9. Use the peak marker function to determine the maximum amplitude level within the RBW. - 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat. # 9.4 EUT operating Conditions The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss No. : BCTC/RF-EMC-005 Page: 29 of 60 / / / / Edition : A.3 # 9.5 Test Result | Temperature: | 26℃ | Relative Humidity: | 54% | |--------------|-----------|--------------------|--------------| | Pressure: | 101kPa | Test Voltage : | AC 120V/60Hz | | Test Mode : | TX b Mode | | | | Frequency | Power Spectral
Density(dBm/3kHz) | Limit
(dBm/3kHz) | Result | |-----------|-------------------------------------|---------------------|--------| | 2412 MHz | -11.198 | 8 | PASS | | 2437 MHz | -8.811 | 8 | PASS | | 2462 MHz | -10.247 | 8 | PASS | ## **TX CH01** No.: BCTC/RF-EMC-005 Page: 30 of 60 / / / / Edition: A.3 #### **TX CH06** #### **TX CH11** | Temperature: | 26℃ | Relative Humidity: | 54% | |--------------|-----------|--------------------|--------------| | Pressure: | 101kPa | Test Voltage : | AC 120V/60Hz | | Test Mode : | TX g Mode | | | | Frequency | Power Spectral
Density(dBm/3kHz) | Limit
(dBm/3kHz) | Result | |-----------|-------------------------------------|---------------------|--------| | 2412 MHz | -20.182 | 8 | PASS | | 2437 MHz | -17.354 | 8 | PASS | | 2462 MHz | -16.971 | 8 | PASS | #### **TX CH01** No. : BCTC/RF-EMC-005 Page: 32 of 60 / / / / Edition : A.3 #### **TX CH06** #### **TX CH11** No. : BCTC/RF-EMC-005 Page: 33 of 60 / / / / Edition : A.3 | Temperature: | 26 ℃ | Relative Humidity: | 54% | |--------------|----------------|--------------------|--------------| | Pressure: | 101kPa | Test Voltage : | AC 120V/60Hz | | Test Mode : | TX n Mode(20M) | | | | Frequency | Power Spectral
Density(dBm/3kHz) | Limit
(dBm/3kHz) | Result | |-----------|-------------------------------------|---------------------|--------| | 2412 MHz | -20.437 | 8 | PASS | | 2437 MHz | -17.116 | 8 | PASS | | 2462 MHz | -15.754 | 8 | PASS | ## **TX CH01** No. : BCTC/RF-EMC-005 Page: 34 of 60 / / / / Edition : A.3 #### **TX CH06** #### **TX CH11** No. : BCTC/RF-EMC-005 Page: 35 of 60 / / / / Edition : A.3 ## 10. BANDWIDTH TEST # 10.1 Block Diagram Of Test Setup | EUT | SPECTRUM | |-----|----------| | | ANALYZER | #### 10.2 Limit | | FCC Part15 (15.247), Subpart C | | | | | | |--------------|--------------------------------|------------------------------|--------------------------|--------|--|--| | Section | Test Item | Limit | Frequency Range
(MHz) | Result | | | | 15.247(a)(2) | Bandwidth | >= 500KHz
(6dB bandwidth) | 2400-2483.5 | PASS | | | # 10.3 Test procedure - 1. Set RBW = 100 kHz. - 2. Set the video bandwidth (VBW) \geq 3 x RBW. - 3. Detector = Peak. - 4. Trace mode = max hold. - 5. Sweep = auto couple. - 6. Allow the trace to stabilize. - 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. # 10.4 EUT operating Conditions The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss No.: BCTC/RF-EMC-005 Page: 36 of 60 / / / / Edition: A.3 ### 10.5 Test Result | Temperature: | 26℃ | Relative Humidity: | 54% | |--------------|-----------|--------------------|--------------| | Pressure: | 101kPa | Test Voltage : | AC 120V/60Hz | | Test Mode : | TX b Mode | | | | Frequency
(MHz) | 6dB bandwidth
(MHz) | Limit
(kHz) | Result | |--------------------|------------------------|----------------|--------| | 2412 | 9.04 | 500 | Pass | | 2437 | 9.09 | 500 | Pass | | 2462 | 8.59 | 500 | Pass | ### **TX CH 01** No.: BCTC/RF-EMC-005 Page: 37 of 60 / / / / | Edition: A.3 No. : BCTC/RF-EMC-005 Page: 38 of 60 / / / / Edition : A.3 | Temperature: | 26℃ | Relative Humidity: | 54% | |--------------|-----------|--------------------|--------------| | Pressure: | 101kPa | Test Voltage : | AC 120V/60Hz | | Test Mode : | TX g Mode | | | | Frequency
(MHz) | 6dB bandwidth
(MHz) | Limit
(kHz) | Result | |--------------------|------------------------|----------------|--------| | 2412 | 16.37 | 500 | Pass | | 2437 | 16.35 | 500 | Pass | | 2462 | 16.37 | 500 | Pass | ### **TX CH 01** No.: BCTC/RF-EMC-005 Page: 39 of 60 Edition: A.3 #### **TX CH 11** | SENSE:INT | ALIGN AUTO | Center Freq: 2.462000000 GHz | Trig: Free Run | Avg|Hold:>10/10 | #Atten: 30 dB 05:57:41 PM Aug 21, 2021 Radio Std: None Trace/Detecto #IFGain:Low Radio Device: BTS Clear Write Average Max Hold Min Hold Span 30 MHz Sweep 2.933 ms Center 2.462 GHz #Res BW 100 kHz #VBW 300 kHz **Occupied Bandwidth** Auto Man 16.440 MHz **OBW Power** -10.696 kHz **Transmit Freq Error** 99.00 % x dB Bandwidth -6.00 dB 16.37 MHz x dB No. : BCTC/RF-EMC-005 Page: 40 of 60 / / / / Edition : A.3 | Temperature: | 26 ℃ | Relative Humidity: | 54% | |--------------|----------------|--------------------|--------------| | Pressure: | 101kPa | Test Voltage : | AC 120V/60Hz | | Test Mode : | TX n Mode(20M) | | | | Frequency
(MHz) | 6dB bandwidth
(MHz) | Limit
(kHz) | Result | |--------------------|------------------------|----------------|--------| | 2412 | 17.34 | 500 | Pass | | 2437 | 17.29 | 500 | Pass | | 2462 | 17.57 | 500 | Pass | ### **TX CH 01** No. : BCTC/RF-EMC-005 Page: 41 of 60 / / / / / Edition : A.3 #### **TX CH 06** ### 11. PEAK OUTPUT POWER TEST ### 11.1 Block Diagram Of Test Setup POWER METER #### 11.2 Limit | FCC Part15 (15.247) , Subpart C | | | | | |---------------------------------|----------------------|-----------------|--------------------------|--------| | Section | Test Item | Limit | Frequency Range
(MHz) | Result | | 15.247(b)(3) | Peak Output
Power | 1 watt or 30dBm | 2400-2483.5 | PASS | ### 11.3 Test procedure a. The EUT was directly connected to the Power meter # 11.4 EUT operating Conditions The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss No. : BCTC/RF-EMC-005 Page: 43 of 60 / / / Edition : A. # 11.5 Test Result | Temperature: | 26 ℃ | Relative Humidity: | 54% | |--------------|-------------|--------------------|--------------| | Pressure: | 101kPa | Test Voltage : | AC 120V/60Hz | | Test Mode | Frequency | Maximum Conducted Output Power(PK) | LIMIT | |-----------|-----------|------------------------------------|-------| | | (MHz) | (dBm) | dBm | | | 2412 | 11.848 | 30 | | 802.11b | 2437 | 13.818 | 30 | | | 2462 | 13.643 | 30 | | | 2412 | 10.430 | 30 | | 802.11g | 2437 | 12.337 | 30 | | | 2462 | 12.049 | 30 | | | 2412 | 10.026 | 30 | | 802.11n20 | 2437 | 12.741 | 30 | | | 2462 | 12.635 | 30 | No.: BCTC/RF-EMC-005 Page: 44 of 60 / / Edition: A. ### 12. 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE ### 12.1 Block Diagram Of Test Setup | EUT | SPECTRUM | |-----|----------| | | ANALYZER | #### 12.2 Limit In any 100 kHz bandwidth outside
the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. ### 12.3 Test procedure Using the following spectrum analyzer setting: - a) Set the RBW = 100KHz. - b) Set the VBW = 300KHz. - c) Sweep time = auto couple. - d) Detector function = peak. - e) Trace mode = max hold. - f) Allow trace to fully stabilize.. ### 12.4 EUT operating Conditions The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss No.: BCTC/RF-EMC-005 Page: 45 of 60 / / / Edition: A.3 ### 12.5 Test Result | Temperature: | 26 ℃ | Relative Humidity: | 54% | |--------------|-------------|--------------------|--------------| | Pressure: | 101kPa | Test Voltage : | AC 120V/60Hz | 802.11b: Band Edge, Left Side 802.11b: Band Edge, Right Side No.: BCTC/RF-EMC-005 Page: 46 of 60 / / / / Edition: A.3 802.11g: Band Edge, Left Side 802.11g: Band Edge, Right Side 802.11n-HT20: Band Edge, Left Side 802.11n-HT20: Band Edge, Right Side #### CONDUCTED EMISSION MEASUREMENT #### 802.11b ### Low Channel 2412MHz #### Middle Channel 2437MHz #### High Channel 2462MHz No. : BCTC/RF-EMC-005 Page: 49 of 60 / / / / Edition : A.3 802.11g #### Low Channel 2412MHz #### Middle Channel 2437MHz ### High Channel 2462MHz No. : BCTC/RF-EMC-005 Page: 50 of 60 / / / / Edition : A.3 #### 802.11n20 #### Middle Channel 2437MHz #### High Channel 2462MHz No. : BCTC/RF-EMC-005 Page: 51 of 60 / / / / Edition : A.3 ## 13. DUTY CYCLE OF TEST SIGNAL ### 13.1 Standard requirement Pre-analysis Check: While conducting average power measurement, duty cycle of each mode shall be checked to ensure its duty cycle in order to compensate for the loss due to insufficient ratio of duty cycle. All duty cycle is pre-scanned, and result as obtained below shows only the most representative ones where duty cycle is conducted as the given transmission with given virtual operation that expresses the percentage. #### 13.2 Formula Duty Cycle = Ton / (Ton+Toff) ### 13.3 Test procedure - 1.Set span = Zero - 2. RBW = 8MHz - 3. VBW = 8MHz, - 4. Detector = Peak #### 13.4 Test Result | | Duty Cycle | Duty Fator
(dB) | |---------------|------------|--------------------| | 802.11b | 1 \ \ \ | 0 | | 802.11g | , 1 , \ \ | 0 | | 802.11n(HT20) | 1, 1, 1, 1 | 0 | No. : BCTC/RF-EMC-005 Page: 52 of 60 / / / / / Edition : A 802.11b No. : BCTC/RF-EMC-005 Page: 53 of 60 / / / / Edition : A.3 ### 14. ANTENNA REQUIREMENT #### 14.1 Limit 15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. #### 14.1 Test Result The EUT antenna is FPCB antenna, The antenna gain is 2.54dBi,fulfill the requirement of this section. No.: BCTC/RF-EMC-005 ## 15. EUT PHOTOGRAPHS ### **EUT Photo 1** ### **EUT Photo 2** No.: BCTC/RF-EMC-005 Page: 56 of 60 / / / Edition: A. ### **EUT Photo 3** ### **EUT Photo 4** No.: BCTC/RF-EMC-005 Page: 57 of 60 / / / Edition: A. # 16. EUT TEST SETUP PHOTOGRAPHS ### **Conducted emissions** No.: BCTC/RF-EMC-005 ### Radiated Measurement Photos No.: BCTC/RF-EMC-005 Page: 59 of 60 / / Edition: A.3 ### **STATEMENT** - 1. The equipment lists are traceable to the national reference standards. - 2. The test report can not be partially copied unless prior written approval is issued from our lab. - 3. The test report is invalid without stamp of laboratory. - 4. The test report is invalid without signature of person(s) testing and authorizing. - 5. The test process and test result is only related to the Unit Under Test. - 6. The quality system of our laboratory is in accordance with ISO/IEC17025. - 7.If there is any objection to report, the client should inform issuing laboratory within 15 days from the date of receiving test report. #### Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Tangwei, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China TEL: 400-788-9558 P.C.: 518103 FAX: 0755-33229357 Website: http://www.chnbctc.com E-Mail: bctc@bctc-lab.com.cn **** END **** No. : BCTC/RF-EMC-005 Page: 60 of 60 / / / / / Edition : A.