

HCT CO., LTD.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811

TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

HAC RF Emission TEST REPORT

KYOCERA CORPORATION

1-34, Sanyo-cho, Daito-Shi, Osaka, 574-8501, JAPAN

Date of Issue:

Mar. 14, 2014

Test Report No.:

HCT-A-1403-F006

Test Site: HCT CO., LTD.

FCC ID: V65C6530

APPLICANT: KYOCERA CORPORATION

Application Type

Certification

EUT Type

GSM/ WCDMA Phone with Bluetooth/ WLAN

Tx Frequency

: 824.20 - 848.80 MHz (GSM850)

1 850.20 - 1 909.80 MHz (GSM1900)

826.4 - 846.6 MHz (WCDMA850)

1712.4 - 1752.6 (WCDMA1700)

1 852.4 - 1 907.6 MHz (WCDMA1900)

2412.0 - 2462.0 MHz (2.4GHz WLAN)

Trade Name/Model(s)

: KYOCERA CORPORATION / C6530N

FCC Classification

Licensed Portable Transmitter Held to Ear (PCE)

FCC Rule Part(s)

\$20.19

HAC Standard

ANSI C63.19-2011

Hearing Aid Near-Field Category: **M3**

This wireless portable device has been shown to be hearing-aid compatible under the above rated category, specified in ANSI/IEEE Std. C63.19-2011 and had been tested in accordance with the specified measurement procedures. Hearing-Aid Compatibility is based on the assumption that all production units will be designed electrically identical to the device tested in this report.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

HCT Co., Ltd. Certifies that no party to this application has been denied FCC benefits pursuant to section 5301 of the Anti- Drug Abuse Act of 1998, 21 U.S. C. 862.

Report prepared by

: Young-Seok Yoo

Test Engineer of SAR Part

Approved by

: Dong-Seob Kim

Manager of SAR Part

This report only relates to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

Version

Rev	DATE	DESCRIPTION
	Mar. 14, 2014	First Approval Report

Table of Contents

1. APPLICANT / EUT DESCRIPTION	4
2. HAC MEASUREMENT SET- UP	6
3. SYSTEM SPECIFICATIONS	7
4. EUT ARRANGEMENT	9
5. SYSTEM VALIDATION	10
6. MODULATION INTERFERENCE FACTOR	12
7. RF CONDUCTED POWER MEASUREMENTS	14
8. TEST PROCEDURE	15
9. ANSI/IEEE C63.19 PERFORMANCE CATEGORIES	17
10. MEASUREMENT UNCERTAINTIES	18
11. HAC TEST DATA SUMMARY	19
12. HAC TEST EQUIPMENT LIST	21
13. CONCLUSION	22

Appendix A_HAC TEST PLOTS

Appendix B_TEST SET-UP PHOTO

Appendix C_DIPOLE VALIDATION PLOTS

Appendix D_PROBE CALIBRATION DATA

Appendix E_DIPOLE CALIBRATION DATA

HCT CO., LTD.
74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811
TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

3 of 22

HAC MEASUREMENT REPORT

1. APPLICANT / EUT DESCRIPTION

1.1 Applicant

Company Name: KYOCERA CORPORATION

Address: 1-34, Sanyo-cho, Daito-Shi, Osaka, 574-8501, JAPAN

• Tel. / Fax: +82-2-368-8972

1.2 EUT Description

• EUT Type: GSM/WCDMA Phone with Bluetooth/WLAN

• Trade Name: KYOCERA CORPORATION

Model(s): C6530NFCC ID: V65C6530

Serial Number(s): #1

• Tx Frequency: 824.20 - 848.80 MHz (GSM850)

1 850.20 -1 909.80 MHz (GSM1900) 826.4 - 846.6 MHz (WCDMA850), 1 712.4 - 1 752.6 MHz (WCDMA1700) 1 852.4 - 1 907.6 MHz (WCDMA1900) 2 412.0 - 2 462.0 MHz (2.4GHz WLAN)

• FCC Classification: Licensed Portable Transmitter Held to Ear (PCE)

• FCC Rule Part(s): § 20.19(b); §6.3(v), §7.3(v)

Modulation(s): GSM850, GSM1900, WCDMA850, WCDMA1700, WCDMA1900

Antenna Type: Integral Antenna
 Date(s) of Tests: Mar. 05, 2014
 Place of Tests: HCT CO., LTD.

Icheon, Kyoung ki-Do, KOREA

• Report Serial No.: HCT-A-1403-F006

Max E-Field Emission: GSM1900 512ch, 1850.2 MHz = 32.92 dBV/m (M3)

Air-Interface	Band (MHz)	Туре	HAC Tested	Simultaneous Transmissions Note: Not to be tested	concurrent HAC Tested or not Tested	Reduced Power 20.19(C)(1)	Voice over Digital Transport OTT Capability	WiFi Low Power	
	850	VO	Yes	Yes: BT, WLAN	Not tested ¹	N/A	N/A	N/A	
GSM	1900	VO	res	Tes. BT, WLAIN	Not tested	N/A	N/A	IN/A	
GSIM	GPRS	DT	N/A	Yes: BT, WLAN	N/A	N/A	Yes	N/A	
	EDGE	DT	N/A	Yes: BT, WLAN	N/A	N/A	Yes	N/A	
	850	VO							
MCDMA	1700	VO	Yes	Yes: BT, WLAN	Not tested ¹	N/A	N/A	N/A	
WCDMA	1900	VO							
	HSPA	DT	N/A	Yes: BT, WLAN	N/A	N/A	Yes	N/A	
WLAN	2450	DT	NO	Yes: GSM, WCDMA	N/A	N/A	Yes	N/A	
ВТ	2450	DT	NO	Yes: GSM or WCDMA	N/A	N/A	N/A	N/A	

Type Transport

1. Non-concurrent mode was found to be the Worst Case mode

VO=Voice Only

DT= Digital Data-Not intended for CMRS Service

HCT CO., LTD.
74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401

5 of 22

2. HAC MEASUREMENT SET-UP

These measurements are performed using the DASY5 automated dosimetric assessment system. It is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland. It consists of high precision robotics system (Staubli), robot controller, Pentium IV computer, near-field probe, probe alignment sensor. The robot is a six-axis industrial robot performing precise movements.

A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The PC consists of the HP Pentium IV 3.0 GHz computer with Windows XP system and HAC Measurement Software DASY5, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

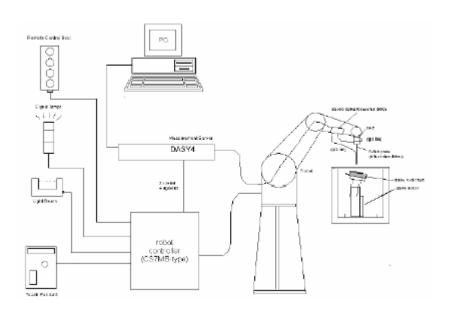


Figure 1. HAC Test Measurement Set-up

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

3. SYSTEM SPECIFICATIONS

3.1 Probe

3.1.1 E-Field Probe Description

Construction	One dipole parallel, two dipoles normal to probe axis Built-in shielding against static charges	
Calibration	In air from 100 MHz to 3.0 GHz (absolute accuracy \pm 6.0 %, k = 2)	
Frequency	100 MHz to > 6 GHz; Linearity: \pm 0.2 dB (100 MHz to 3 GHz)	
Directivity	± 0.2 dB in air (rotation around probe axis) ± 0.4 dB in air (rotation normal to probe axis)	MR
Dynamic Range	2 V/m to > 1000 V/m (M3 or better device readings fall well below diode compression point)	
Linearity	± 0.2 dB	
Dimensions	Overall length: 330 mm (Tip: 16 mm) Tip diameter: 8 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.5 mm	[E-Field Probe]

3.2 Phantom & Device Holder

Figure 2. HAC Phantom & Device Holder

The Test Arch phantom should be positioned horizontally on a stable surface. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

The devices can be easily, accurately, and repeatable positioned according to the FCC specifications.

3.3 Robotic System Specifications

Specifications

POSITIONER: Stäubli Unimation Corp. Robot Model: TX90 XLspeag

Repeatability: 0.02 mm

No. of axis: 6

Data Acquisition Electronic (DAE) System

Cell Controller

Processor: Core i7
Clock Speed: 3.0 GHz
Operating System: Windows 7
Data Card: DASY5 PC-Board

Data Converter

Features: Signal Amplifier, multiplexer, A/D converter, and control logic

Software: DASY5 software

Connecting Lines: Optical downlink for data and status info. Optical uplink for commands and clock

PC Interface Card

Function: 24 bit (64 MHz) DSP for real time processing

Link to DAE

16 bit A/D converter for surface detection system

serial link to robot

direct emergency stop output for robot

4. EUT ARRANGEMENT

4.1 WD RF Emission Measurements Reference and Plane

Figure 3. Illustrate the references and reference plane that shall be used in the WD emissions measurement.

- The grid is 5 cm by 5 cm area that is divided into 9 evenly sized blocks or sub-grids.
- The grid is centered on the audio frequency output transducer of the WD (speaker or T-coil).
- The grid is in a reference plane, which is defined as the planar area that contains the highest point in the area of the phone that normally rests against the user's ear. It is parallel to the centerline of the receiver area of the phone and is defined by the points of the receiver-end of the WD handset, which, in normal handset use, rest against the ear.
- The measurement plane is parallel to, and 1.5 cm in front of, the reference plane.

Figure 3. WD reference and plane for RF emission measurements

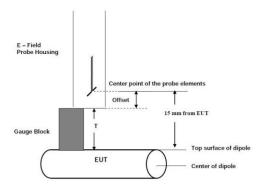


Figure 4. Gauge Block with E-Field Probe

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

HCT CO., LTD.

5. SYSTEM VALIDATION

The test setup was validated when configured and verified periodically thereafter to ensure proper function. The procedure is a validation procedure using dipole antennas for which the field levels were computed by FDTD modeling.

5.1 Validation Procedure

Place a dipole antenna meeting the requirements given in ANSI-C63.19 in the position normally occupied by the WD. The dipole antenna serves as a known source for an electrical and magnetic output. Position the E-field probe so that:

- the probes and their cables are parallel to the coaxial feed of the dipole antenna
- the probe cables and the coaxial feed of the dipole antenna approach the measurement area from opposite directions; and
- the probes are 15 mm from the surface of the dipole elements.

Scan the length of the dipole with E-field probe and record the maximum values for each. Compare the readings to expected values.

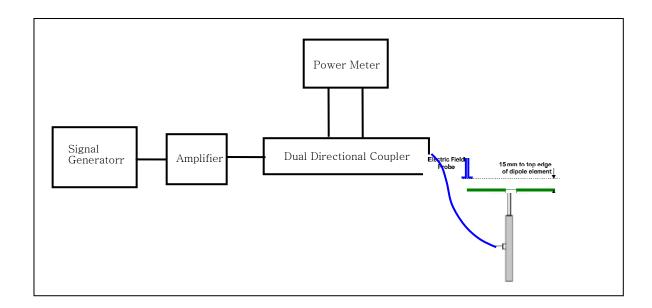


Figure 5. Dipole Validation SET-UP

5.2 Validation Result

5.2.1 E-Field Scan

Mode	Freq. [MHz]	Input Power [dBm]	Measured Value [V/m]	Target Value [V/m] SPEAG	Deviation [%]
CW	835	20	104.8	105.75	- 0.90
CW	1 880	20	90.57	91.25	- 0.75

Notes:

- Deviation (%) = 100 * (Measured value minus Target value) divided by Target value.
 ANSI-C63.19 requires values to be within 25 % of their targets. 12 % is deviation and 13 % is measurement uncertainty.
- 2) The maximum E-field was evaluated and compared to the target values provided by SPEAG in the calibration certificate of specific dipoles.
- 3) Please refer to the attachment for detailed measurement data and plot.

6. Modulation interference factor

For any specific fixed and repeatable modulated signal, a modulation interference factor (MIF, expressed in dB) may be developed that relates its interference potential to its steady-state rms signal level or average power level. This factor is a function only of the audio-frequency amplitude modulation characteristics of the signal and is the same for field-strength and conducted power measurements. It is important to emphasize that the MIF is valid only for a specific repeatable audio-frequency amplitude modulation characteristic. Any change in modulation characteristic requires determination and application of a new MIF.

6.1 Modulation Interference Factor

6.1.1 E-Field

Mode	Freq. [MHz]	Channel	MIF
		128	3.630
GSM850	835	190	3.630
		251	3.630
		512	3.630
GSM1900	1 880	661	3.630
		810	3.630

Mode	Freq. [MHz]	Channel	MIF
		4132	- 27.23
WCDMA850	835	4183	- 27.23
		4233	- 27.23
		1312	- 27.23
WCDMA1700	1 880	1412	- 27.23
		1512	- 27.23
		9262	- 27.23
WCDMA1900	1 880	9400	- 27.23
		9538	- 27.23

Note: MIF values are provided by the manufacturer(SPEAG).

We used the MIF file with UID number(10021-CAA, 10011-CAA).

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

HCT CO., LTD.

6.2.1. Analysis of RF Air interface Technologies

1. An analysis was performed, following the guidance of 4.3 and 4.4 of the ANSI standard, of the RF air interface technologies being evaluated. The factors that will affect the RF interference Potential were evaluated, and the worst case operating modes were identified and used in the evaluation. A WD's interference potential is a function both of the WD's average near-field field strength and of the signal's audio-frequency amplitude modulation characteristics. Per 4.4, RF air interface technologies that have low power have been found to produce sufficiently low RF interference potential, so it is possible to exempt them from the product testing specified in Clause 5 of the ANSI standard. An RF air interface technology of a device is exempt from testing When its average antenna input power plus its MIF is ≤ 17dBm for all of its operating modes.

The worst case MIF plus the worst case average antenna input power for all modes are investigated below to determine the testing requirements for this device.

6.2.2.Analysis of RF Air interface Technologies

Air Interface	Maximum Average Power (dBm)	Worst Case MIF (dB)	Total (Power + MIF, dB)	C63.19 Testing Required
GSM	31.9	3.630	35.53	Yes
UMTS-RMC	24.01	- 27.23	-3.22	No
UMTS-AMR	24.00	- 27.23	-3.23	No

Table 1. Max. Power + MIF calculations for Low Power Exemptions

6.2.3.Low-Power Exemption Conclusions

Per ANSI C63.19-2011, RF Emissions testing for this device is required only for GSM voice modes. All other applicable air interfaces are exempt.

7. RF Conducted Power Measurements

Sample pre-testing of the various modes were performed at the worst case probe location as part of subset testing justification. See below for measured conducted power for applicable device modes:

7.1 Handset Measured Conducted Powers

Maximum Average Output Power Measurement for FCC ID: V65C6522

		Voice		GPRS	S Data		EDGE Data				
Donal	Channal	GSM	GPRS	GPRS	GPRS	GPRS	EDGE	EDGE	EDGE	EDGE	
Band	Channel	(dBm)	1 TX Slot	2 TX Slot	3 TX Slot	4 TX Slot	1 TX Slot	2 TX Slot	3 TX Slot	4 TX Slot	
			(dBm)								
CCM	128	31.90	31.73	30.63	28.80	28.14	27.42	26.20	24.45	23.71	
GSM 850	190	31.85	31.76	30.72	28.82	28.18	27.43	26.20	24.46	23.75	
030	251	31.83	31.82	30.70	28.84	28.15	27.43	26.19	24.47	23.73	
CCM	512	30.98	31.00	28.99	27.46	26.59	26.54	26.39	24.29	23.42	
1900	661	31.05	31.07	29.09	27.58	26.69	26.53	26.41	24.32	23.42	
1900	810	31.05	31.07	29.10	27.57	26.71	26.57	26.44	24.36	23.44	

Table 2. Maximum average GSM Conducted output powers (Burst-Average)

3GPP Release	Mode	3GPP 34.121 Subtest			MPR	
Version	Wode		UL 4132 DL 4357	UL 4183 DL 4408	UL 4233 DL 4458	Target
99	WCDMA	12.2 kbps RMC	24.00	23.90	23.97	-
99	WCDMA	12.2 kbps AMR	23.99	23.86	24.00	-
3GPP		3GPP 34.121		AWS Band [dBm]		
Release		Subtest			MPR	
Version	Mode		UL 1312 DL 1537	UL 1412 DL 1637	UL 1512 DL 1737	Target
99	WCDMA	12.2 kbps RMC	23.97	23.97	23.98	-
99	WCDMA	12.2 kbps AMR	23.91	23.96	23.97	-
3GPP		3GPP 34.121		D00 D		
Release	Mada	Subtest		PCS Band [dBm]		MPR
Version	Mode		UL 9262 DL 9662	UL 9400 DL 9800	UL 9538 DL 9938	Target
99	WCDMA	12.2 kbps RMC	23.98	24.01	23.98	-
99	WCDMA	12.2 kbps AMR	22.94	23.95	23.92	-

Table 3. Maximum average WCDMA Conducted output powers

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

HCT CO., LTD.

8. TEST PROCEDURE

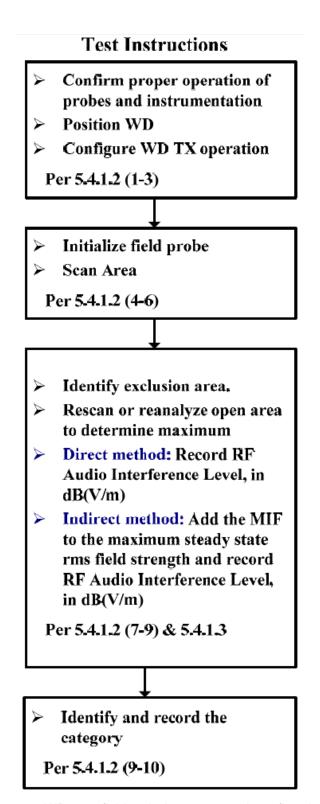


Figure 6. WD near-field emission automated test flowchart

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

HCT CO., LTD.

The evaluation was performed with the following procedure:

 Confirm proper operation of the field probe, probe measurement system and other instrumentation and the positioning system.

- Position the WD in its intended test position. The measurement should be performed at a distance 1.5
 - from the probe elements so the gauge block can simplify this positioning.
- 3. Configure the WD normal operation for maximum rated RF output power, at the desired channel and other operating parameters, as intended for the test.
- 4. The center sub-grid shall be centered on the center of the WD output (acoustic or T-Coil output), as appropriate.
- 5. A Surface calibration was performed before each setup change to ensure repeatable spacing and proper maintenance of the measurement plane using the HAC Phantom.
- 6. Locate the field probe at reference location and measure the field strength.
- 7. Scan the entire 5 cm by 5 cm region at 5 mm increments and record the reading at each measurement point.
- 8. Identify the maximum field reading within the non-excluded sub-grids identified in Step 7.
- 9. Move the probe to the location of maximum scan measurement and then 360° rotating the probe to align it for the maximum reading at that position.
- 10. Locate the field probe at the reference location and measure the field strength for drift evaluation.
 If conducted power deviations of more than 5 % occurred, the tests were repeated.
- 11. Convert the maximum field strength reading identified in Step 8 to V/m or A/m, as appropriate. For probes which require a probe modulation factor, this conversion shall be done using the appropriate probe modulation.
- 12. Repeat Step 1 through Step 11 for both the E field measurements.

9. ANSI/IEEE C63.19 PERFORMANCE CATEGORIES

The EUT must meet the following M3 or M4 category:

Category	Telephone RF Parameters				
Near Field Category	E-Field Emissions CW dB [V/m]				
	Frequency < 960 MHz				
M1	50 to 55				
M2	45 to 50				
M3	40 to 45				
M4	< 40				
	Frequency > 960 MHz				
M1	40 to 45				
M2	35 to 40				
M3	30 to 35				
M4	< 30				

Table 4. Telephone near-field categories in linear units

10. MEASUREMENT UNCERTAINTIES

10.1 E-Field

						0	0 , 1	(0, 111 ,40)	150	Note/ Commen
	Error Description	Uncertainty [%]	Probability Distribution	Divisor	ci [E]	Standard Uncertainty [E]	Stand Uncert^2	(Stand Uncert^2) X (ci^2)	Vi & Veff	
	Measurement system									
	Probe Calibration	5.1 %	Normal	1.00	1	5.1 %	26.01	26.01	00	
	Axial Isotropy	4.7 %	Rectangular	1.73	1	2.7 %	7.36	7.36	00	
	Sensor Displacement	16.5 %	Rectangular	1.73	1	9.5 %	90.75	90.75	00	
	Boundary effect	2.4 %	Rectangular	1.73	1	1.4 %	1.92	1.92	00	
	Linearity	4.7 %	Rectangular	1.73	1	2.7 %	7.36	7.36	00	
	Scaling to peak Envelope Power	2.0 %	Rectangular	1.73	1	1.2 %	1.33	1.33	00	
	System Detection limits	1.0 %	Rectangular	1.73	1	0.6 %	0.33	0.33	00	
	Readout Electronics	0.3 %	Normal	1.00	1	0.3 %	0.09	0.09	00	
	Response time	0.8 %	Rectangular	1.73	1	0.5 %	0.21	0.21	00	
0	Integration time	2.6 %	Rectangular	1.73	1	1.5 %	2.25	2.25	00	
1	RF Ambient Conditions	3.0 %	Rectangular	1.73	1	1.7 %	3.00	3.00	00	
2	RF Reflections	1.2 %	Rectangular	1.73	1	0.7 %	0.50	0.50	00	
3	Probe positioner	1.2 %	Rectangular	1.73	1	0.7 %	0.48	0.48	00	
4	Probe positionering	4.7 %	Rectangular	1.73	1	2.7 %	7.36	7.36	00	
5	Extrap. And Interpolation	1.0 %	Rectangular	1.73	1	0.6 %	0.33	0.33	00	
	Test Sample Related									1
6	Device Positioning Vertical	4.7 %	Rectangular	1.73	1	2.7 %	7.36	7.36	00	
7	Device Positioning Lateral	1.0 %	Rectangular	1.73	1	0.6 %	0.33	0.33	00	
В	Device Holder and Phantom	2.4 %	Rectangular	1.73	1	1.4 %	1.92	1.92	00	
9	Test Sample	0.4 %	Normal	1.00	1	0.4 %	0.16	0.16	9	0.17 dB
0	Power drift	3.0 %	Rectangular	1.73	1	1.7 %	3.00	3.00	00	
	PMF Calculations	•								1
1	Power Sensor	1.0 %	Rectangular	1.73	1	0.6 %	0.32	0.32	00	
2	Dual Directional Coupler	1.0 %	Rectangular	1.73	1	0.6 %	0.32	0.32	00	
	Phantom and Setup Related									1
3	Phantom Thickness	2.4 %	Rectangular	1.73	1	1.4 %	1.92	1.92	00	
	Combined standard Uncertainty [%]					12.8 %		164.64		0.523 dB
	Expanded standard Uncertainty [k = 2 , Confidence 95 %]									-

Table 5. Uncertainties (E-Field)

Notes:

1. Worst-Case uncertainty budget for HAC free field assessment according to ANSI-C 63.19[1]. The budget is valid for the frequency range 800 MHz-3 GHz and represents a worst-Case analysis. For specific test sand configurations, the uncertainty could be considerably smaller. Some of the parameters are dependent on the user situations and need adjustment according to the actual laboratory conditions.

2. * Uncertainty specifications from Schmidt & Partner Engineering AG (not site specific)

11. HAC TEST DATA SUMMARY

11. 1 E-Field Measurement Results (GSM850 / GSM1900)

Ambient TEMPERATURE (°C): 21.4

S/N: #1

Mode	Ch.	Back light	Battery	Antenna	Conducted Power [dBm]	Time Avg. Field [V/m]	Peak Field [dBV/m]	FCC Limit [dBV/m]	FCC MARGIN [dB]	MIF	RESULT	Exclusion Block
GSM850	128	off	Standard	Intenna	31.90	52.14	37.97	45	-7.03	3.630	M4	none
GSM850	190	off	Standard	Intenna	31.85	45.83	36.85	45	-8.15	3.630	M4	none
GSM850	251	off	Standard	Intenna	31.83	49.45	37.51	45	-7.49	3.630	M4	none
GSM1900	512	off	Standard	Intenna	30.98	29.15	32.92	35	-2.08	3.630	МЗ	none
GSM1900	661	off	Standard	Intenna	31.05	27.74	32.49	35	-2.51	3.630	МЗ	none
GSM1900	810	off	Standard	Intenna	31.05	26.47	32.09	35	-2.91	3.630	МЗ	none

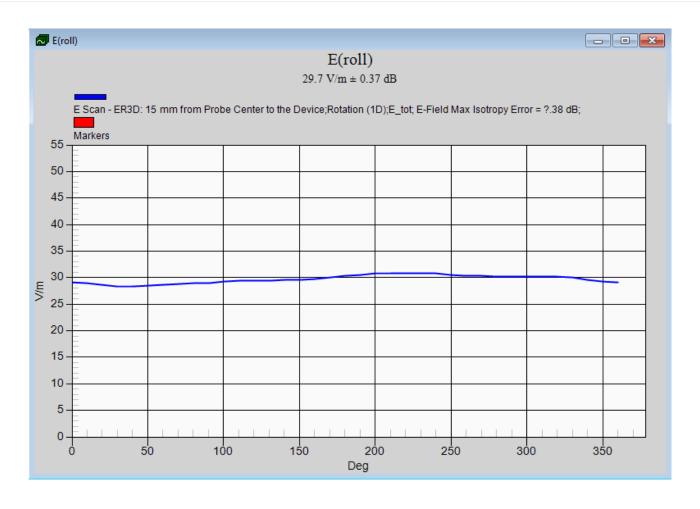
NOTES:

1	All modes	ot operation	were investigated	l and the worst.	case are reported

2. Battery TypeImage: Standard Image: Im

4. Test Signal Call Mode ☐ Manual Test cord ☒ Base Station Simulator

5. SAR Measurement System ☑ SPEAG


11.2 Worst-case Configuration Evaluation

Ambient TEMPERATURE (°C): 21.4

S/N: #1

Peak Reading 360° Probe Rotation at Azimuth axis

Mode	Ch.	Back light	Battery	Antenna	Conducted Power [dBm]	Time Avg. Field [V/m]	Peak Field [dBV/m]	FCC Limit [dBV/m]	FCC MARGIN [dB]	MIF	RESULT	Exclusion Block
GSM1900	512	off	Standard	Intenna	30.98	30.88	33.42	35	-1.58	3.63	МЗ	none

Worst-Case Probe Rotation about Azimuth axis

12. HAC TEST EQUIPMENT LIST

Manufacturer	Type / Model	S/N	Calib. Date	Calib. Interval	Calib. Due
Staubli	Robot TX90 XLspeag	F11/5K3RA1/A/01	N/A	N/A	N/A
Staubli	Staubli Robot Controller		N/A	N/A	N/A
Staubli	Staubli Teach Pendant (Joystick)		N/A	N/A	N/A
HP	Pavilion t000_puffer	KRJ51201TV	N/A	N/A	N/A
SPEAG	SPEAG HAC Phantom	-	N/A	N/A	N/A
SPEAG	Light Alignment Sensor	265	N/A	N/A	N/A
SPEAG	DAE4	869	Sep. 30, 2013	Annual	Sep. 30, 2014
SPEAG	E-Field Probe	2343	Mar. 15, 2013	Annual	Mar. 15, 2014
SPEAG	Validation Dipole CD835V2	1024	Mar. 15, 2013	Annual	Mar. 15, 2014
SPEAG	Validation Dipole CD1880V2	1019	Mar. 15, 2013	Annual	Mar. 15, 2014
Agilent	Power Meter(F) E4419B	MY41291386	Nov. 01, 2013	Annual	Nov. 01, 2014
Agilent	Power Sensor(G) 8481	MY41090870	Oct. 30, 2013	Annual	Oct. 30, 2014
HP	Signal Generator 8664A	3744A02069	Nov. 04, 2013	Annual	Nov. 04, 2014
Agilent	Base Station E5515C	GB44400269	Feb. 10, 2014	Annual	Feb. 10, 2015

NOTE:

The probe was calibrated by SPEAG, by the waveguide technique procedure. Dipole Validation measurement is performed by HCT Lab. before each test.

13. CONCLUSION

The HAC measurement indicates that the EUT complies with the HAC limits of the ANSI-C63.19-2011.

These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise Laboratory measures were taken to assure repeatability of the tests.