FCC SAR Test Report FCC ID: RWO-RZ010463 Project No. : 2203E004 Equipment : Gaming Mouse Brand Name : RAZER, Test Model : RZ01-0463 Series Model : RZ01-0463XXXX-XXXX(X can be 0-9 or A-Z) Date of Receipt : Mar. 11, 2022 Date of Test : Mar. 30, 2022 Issued Date : Aug. 08, 2022 Report Version : R02 **Test Sample**: Engineering Sample No.: DG2022031522 **Standard(s)** : Please refer to page 2. **Applicant** : Razer Inc. Address : 9 Pasteur, Suite 100, Irvine, CA92618, USA **Manufacturer** : Razer (Asia-Pacific) Pte.,Ltd. Address: 1 one-north Crescent, #02-01 Singapore 138538 Factory: RAZER TECHNOLOGY AND DEVELOPMENT (SHENZHEN) CO., LTD East Wing, 3rd Floor, Block 2, Phase 1 of Vision Shenzhen Business Address Park Keji South Road, Hi-Tech Industrial Park, Shenzhen 518057, China The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc. Prepared by: Seven Lu Approved by: Herbort Liu IAC-MRA AC TESTING CERT #5123.02 Add: No. 3 Jinshagang 1st Rd. Shixia, Dalang Town, Dongguan City, Guangdong, People's Republic of China Tel: +86-769-8318-3000 Web: www.newbtl.com Standard(s) : **ANSI Std C95.1:1992** Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz. (IEEE Std C95.1-1991) **IEEE Std 1528:2013** Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques KDB447498 D01 General RF Exposure Guidance v06 **KDB248227 D01** 802.11 Wi-Fi SAR v02r02 KDB865664 D01 SAR measurement 100 MHz to 6 GHz v01r04 **KDB865664 D02** SAR Reporting v01r02 KDB690783 D01 SAR Listings on Grants v01r03 #### **Declaration** **BTL** represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s). **BTL**'s reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports. The report must not be used by the client to claim product certification, approval, or endorsement by NIST, A2LA, or any agency of the U.S. Government. This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval. **BTL**'s laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report. BTL is not responsible for the sampling stage, so the results only apply to the sample as received. The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use. # Limitation For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results. | Table of Contents | Page | |--|----------| | REPORT ISSUED HISTORY | 6 | | 1 . GENERAL INFORMATION | 7 | | 1.1 STATEMENT OF COMPLIANCE | 7 | | 1.2 LABORATORY ENVIRONMENT | 7 | | 1.3 GENERAL DESCRIPTION OF EUT | 7 | | 1.4 MAIN TEST INSTRUMENTS | 8 | | 2 . RF EMISSIONS MEASUREMENT | 9 | | 2.1 TEST FACILITY | 9 | | 2.2 MEASUREMENT UNCERTAINTY | 9 | | 3 . SAR MEASUREMENTS SYSTEM CONFIGURATION | 10 | | 3.1 SAR MEASUREMENT SET-UP | 10 | | 3.1.1 TEST SETUP LAYOUT | 10 | | 3.2 DASY5 E-FIELD PROBE SYSTEM 3.2.1 PROBE SPECIFICATION | 11
11 | | 3.2.2 E-FIELD PROBE CALIBRATION | 12 | | 3.2.3 OTHER TEST EQUIPMENT | 13 | | 3.2.4 SCANNING PROCEDURE 3.2.5 SPATIAL PEAK SAR EVALUATION | 14
15 | | 3.2.6 DATA STORAGE AND EVALUATION | 16 | | 3.2.7 DATA EVALUATION BY SEMCAD | 17 | | 4 . SYSTEM VERIFICATION PROCEDURE | 19 | | 4.1 TISSUE VERIFICATION | 19 | | 4.2 SYSTEM CHECK | 20 | | 4.3 SYSTEM CHECK PROCEDURE | 20 | | 5 . SAR MEASUREMENT VARIABILITY AND UNCERTAINTY | 21 | | 5.1 SAR MEASUREMENT VARIABILITY | 21 | | 6 . OPERATIONAL CONDITIONS DURING TEST | 22 | | 6.1 TEST POSITION | 22 | | 7 . TEST RESULT | 23 | | 7.1 CONDUCTED POWER RESULTS | 24 | | 7.1.1 CONDUCTED POWER MEASUREMENTS OF 2.4G | 24 | | 7.2 SAR TEST RESULTS 7.2.1 SAR MEASUREMENT RESULT | 25
25 | | | | | 8 MULTIPLE TRANSMITTER EVALUATION | 26 | | Table of Contents | Page | |---|------| | APPENDIX | 27 | | 1. TEST LAYOUT Appendix A. SAR Plots of System Verification Appendix B. SAR Plots of SAR Measurement Appendix C. Calibration Certificate Appendix D. Photographs of the Test Set-Up | 27 | # **REPORT ISSUED HISTORY** | Report No. | Version | Version Description | | Note | |------------------------|---------|-------------------------------|---------------|---------| | BTL-FCC SAR-1-2203E004 | R00 | Original Report. | Jun. 30, 2022 | Invalid | | BTL-FCC SAR-1-2203E004 | R01 | Modified the comments of TCB. | Aug. 04, 2022 | Invalid | | BTL-FCC SAR-1-2203E004 | R02 | Modified the comments of TCB. | Aug. 08, 2022 | Valid | # 1. GENERAL INFORMATION # 1.1 STATEMENT OF COMPLIANCE | Mode | Highest Reported
Extremity SAR-10g (W/kg) | |----------|--| | 2.4G SRD | 0.023 | Note: The device is in compliance with Specific Absorption Rate (SAR) for general population uncontrolled exposure limits according to the FCC rule §2.1093, the ANSI C95.1:1992/IEEE C95.1:1991, the NCRP Report Number 86 for uncontrolled environment, and had been tested in accordance with the measurement methods and procedures specified in IEEE Std 1528-2013. # 1.2 LABORATORY ENVIRONMENT | Temperature | Min. = 20°C, Max. = 24°C | | | | | | |---|--------------------------|--|--|--|--|--| | Relative humidity | Min. = 30%, Max. = 70% | | | | | | | Ground system resistance | < 0.5Ω | | | | | | | Ambient noise is checked and found very low and in compliance with requirement of standards. | | | | | | | | Reflection of surrounding objects is minimized and in compliance with requirement of standards. | | | | | | | # 1.3 GENERAL DESCRIPTION OF EUT | Equipment | Gaming Mouse | | | | | | |---------------------|------------------|--|--|--|--|--| | Test Model | RZ01-0463 | | | | | | | Series Model | RZ01-0463XXXX-XX | (XX(X can be 0-9 or A-Z) | | | | | | Model Difference(s) | | The system's model name is RZ01-0463XXXX-XXXX (X: Can be 0-9, A-Z), and the system contains a Gaming Mouse (Model name:RZ01-0463) and Dongle (Model name:DGRFG7 or HSD01). | | | | | | Hardware Version | V0.4 | V0.4 | | | | | | Software Version | V1.00.04.00 | V1.00.04.00 | | | | | | Modulation | GFSK | GFSK | | | | | | Operation Frequency | Band TX (MHz) | | | | | | | Range(s) | 2.4G 2403~2479 | | | | | | | Antenna Gain | 2.4G | 1.69 dBi | | | | | #### 1.4 MAIN TEST INSTRUMENTS | Item | Equipment | Manufacturer | Model | Serial No. | Cal. Date | Cal. Interval | |------|-------------------------------|---------------|--------------------------|------------------------|---------------|---------------| | 1 | Data Acquisition Electronics | Speag | DAE4 | 1390 | Dec. 29, 2021 | 1 Year | | 2 | E-field Probe | Speag | EX3DV4 | 7693 | Nov. 03, 2021 | 1 Year | | 3 | System Validation Dipole | Speag | D2450V2 | 919 | May 28, 2021 | 3 Years | | 4 | Twin Sam Phantom | Speag | Twin Sam
Phantom V5.0 | 1469 | N/A | N/A | | 5 | Power Amplifier | Mini-Circuits | ZHL-42W+ | QA1333003 | Dec. 26, 2021 | 1 Year | | 6 | DC Source metter | Iteck | IT6154 | 0061041267682
01001 | Jul. 24, 2021 | 1 Year | | 7 | Signal Analyzer | R&S | FSV7 | 103120 | Jul. 10, 2021 | 1 Year | | 8 | Vector Network Analyzer | Agilent | E5071C | MY46102965 | Feb. 19, 2022 | 1 Year | | 9 | Signal Generator | Agilent | N5172B | MY53050758 | Feb. 19, 2022 | 1 Year | | 10 | Smart Power Sensor | R&S | NRP-Z21 | 102209 | Feb. 19, 2022 | 1 Year | | 11 | 3.5mm Economy Calibration Kit | Agilent | 85052D | MY43252246 | Dec. 14, 2021 | 1 Year | | 12 | Dielectric Assessment Kit | Speag | DAK-3.5 | 1226 | N/A | N/A | | 13 | Directional Coupler | Woken | TS-PCC0M-05 | 0107090019 | Feb. 19, 2022 | 1 Year | | 14 | Coupler | Woken | 0110A05601O-10 | COM5BNW1A2 | Feb. 19, 2022 | 1 Year | | 15 | Digital Themometer | TES | TES-1310 | 210706071 | Dec. 07, 2021 | 1 Year | #### Note: - 1. "N/A" denotes no model name, serial No. or calibration specified. - 2. 1) Per KDB865664 D01 requirements for dipole calibration, the test laboratory has adopted three-year extended calibration interval. Each measured dipole is expected to evaluate with the following criteria at least on annual interval in Appendix C. - a) There is no physical damage on the dipole; - b) System check with specific dipole is within 10% of calibrated value; - c) The most recent return-loss result, measured at least annually, deviates by no more than 20% from the previous measurement; - d) The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within 5Ω from the previous measurement. - 2) Network analyzer probe calibration against air, distilled water and a short block performed before measuring liquid parameters. # 2. RF EMISSIONS MEASUREMENT #### 2.1 TEST FACILITY The test facilities used to collect the test data in this report is SAR room at the location of Room 108, Building 2, No.1, Yile Road, Songshan Lake Zone, Dongguan City, Guangdong, People's Republic of China. BTL's Designation Number for FCC: CN0042. # 2.2 MEASUREMENT UNCERTAINTY Note: Per KDB865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions. ### 3. SAR MEASUREMENTS SYSTEM CONFIGURATION #### 3.1 SAR MEASUREMENT SET-UP The DASY5 system for performing compliance tests consists of the following items: - 1. A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE). - 2. A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system. - A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - 4. A unit to operate the optical surface detector which is connected to the EOC. - 5. The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server. - TheDASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows. - 7. DASY5 software and SEMCAD data evaluation software. - 8. Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc. - 9. The generic twin phantom enabling the testing of left-hand and right-hand usage. - 10. The device holder for handheld mobile phones. - 11. Tissue simulating liquid mixed according to the given recipes. - 12. System validation dipoles allowing to validate the proper functioning of the system. #### 3.1.1 TEST SETUP LAYOUT # 3.2 DASY5 E-FIELD PROBE SYSTEM The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. # 3.2.1 PROBE SPECIFICATION # EX3DV4 | Construction | Symmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE) | |---------------|---| | Calibration | ISO/IEC 17025 calibration service available | | Frequency | 10 MHz to 6 GHz
Linearity: ± 0.2 dB (30 MHz to 6 GHz) | | Directivity | ± 0.3 dB in HSL (rotation around probe axis)
± 0.5 dB in tissue material (rotation normal to probe axis) | | Dynamic Range | 10 μ W/g to > 100 mW/g
Linearity:± 0.2dB | | Dimensions | Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Distance from probe tip to dipole centers: 1.0 mm | **E-field Probe** #### 3.2.2 E-FIELD PROBE CALIBRATION Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than $\pm 10\%$. The spherical isotropy was evaluated and found to be better than ± 0.25 dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees. E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermostat-based temperature probe is used in conjunction with the E-field probe. $$\mathbf{SAR} = \mathbf{C} \frac{\Delta T}{\Delta t}$$ Where: Δt =Exposure time(30 seconds), C =Heat capacity of tissue (brain or muscle), Δ T=Temperature increase due to RF exposure. Or $$SAR = \frac{|E|^2 \sigma}{\rho}$$ Where: σ= Simulated Tissue Conductivity, p=Tissue density (kg/m3). # 3.2.3 OTHER TEST EQUIPMENT # 3.2.3.1. Device Holder for Transmitters **Construction:** Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices (e.g., laptops, cameras, etc.) It is light weight and fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin SAM, ELI and SAM v6.0 Phantoms. Material: POM, Acrylic glass, Foam # 3.2.3.2 Phantom | Model | Twin SAM | |-----------------|--| | Construction | The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 62209-1528-2020. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot. | | Shell Thickness | 2 ± 0.2 mm | | Filling Volume | Approx. 25 liters | | Dimensions | Length:1000mm; Width: 500mm
Height: adjustable feet | | Aailable | Special | #### 3.2.4 SCANNING PROCEDURE The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions. The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. \pm 5 %. The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above \pm 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within \pm 30°.) #### Area Scan The "area scan" measures the SAR above the DUT or verification dipole on a parallel plane to the surface. It is used to locate the approximate location of the peak SAR with 2D spline interpolation. The robot performs a stepped movement along one grid axis while the local electrical field strength is measured by the probe. The probe is touching the surface of the SAM during acquisition of measurement values. The standard scan uses large grid spacing for faster measurement. Standard grid spacing for head measurements is 15 mm in x- and y- dimension (≤2GHz), 12 mm inx- and y- dimension (2-4 GHz) and 10mm in x- and y- dimension (4-6GHz). If a finer resolution is needed, the grid spacing can be reduced. Grid spacing and orientation have no influence on the SAR result. For special applications where the standard scan method does not find the peak SAR within the grid, e.g. mobile phones with flip cover, the grid can be adapted in orientation. #### Zoom Scan A "zoom scan" measures the field in a volume around the 2D peak SAR value acquired in the previous "coarse" scan. This is a fine grid with maximum scan spatial resolution: Δx_{zoom} , $\Delta y_{zoom} \leq 2GHz - \leq 8mm$, 2-4GHz - $\leq 5mm$, and 4-6 GHz- $\leq 4mm$; $\Delta z_{zoom} \leq 3GHz - \leq 5mm$, 3-4 GHz- $\leq 4mm$ and 4-6GHz- $\leq 2mm$ where the robot additionally moves the probe along the z-axis away from the bottom of the Phantom. DASY is also able to perform repeated zoom scans if more than 1 peak is found during area scan. In this document, the evaluated peak 1g and 10g averaged SAR values are shown in the 2D-graphics in Appendix B. Test results relevant for the specified standard (see chapter 1.4.) are shown in table form in chapter 7.2. A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 2 mm steps. This measurement shows the continuity of the liquid and can - depending in the field strength – also show the liquid depth. The following table summarizes the area scan and zoom scan resolutions per FCC KDB 865664D01: | | Maximun Area | Maximun Zoom | Maximun Z | oom Scan spa | atial resolution | Minimum | |--|--------------|---|----------------------|-------------------------|----------------------------------|-------------------| | $ \begin{array}{c} \text{Frequency} & \text{Scan} \\ \text{resolution} \\ (\Delta x_{\text{area}}, \Delta y_{\text{area}}) \end{array} $ | | Scan spatial | Uniform Grid | Gra | ded Grad | zoom scan | | | | resolution $(\Delta x_{Zoom}, \Delta y_{Zoom})$ | $\Delta z_{Zoom}(n)$ | Δz _{Zoom} (1)* | Δz _{Zoom} (n>1)* | volume
(x,y,z) | | ≤2GHz | ≤15mm | ≤8mm | ≤5mm | ≤4mm | $\leq 1.5^*\Delta z_{Zoom}(n-1)$ | ≥30mm | | 2-3GHz | ≤12mm | ≤5mm | ≤5mm | ≪4mm | $\leq 1.5^*\Delta z_{Zoom}(n-1)$ | ≥30mm | | 3-4GHz | ≤12mm | ≤5mm | ≤4mm | ≤3mm | $\leq 1.5^*\Delta z_{Zoom}(n-1)$ | ≥28mm | | 4-5GHz | ≤10mm | ≤4mm | ≤3mm | ≤2.5mm | $\leq 1.5^*\Delta z_{Zoom}(n-1)$ | ≥25mm | | 5-6GHz | ≤10mm | ≤4mm | ≤2mm | ≤2mm | $\leq 1.5^*\Delta z_{Zoom}(n-1)$ | ≥22mm | #### 3.2.5 SPATIAL PEAK SAR EVALUATION The spatial peak SAR - value for 1 and 10 g is evaluated after the Cube measurements have been done. The basis of the evaluation are the SAR values measured at the points of the fine cube grid consisting of $5 \times 5 \times 7$ points (with 8mm horizontal resolution) or $7 \times 7 \times 7$ points (with 5mm horizontal resolution) or $8 \times 8 \times 7$ points (with 4mm horizontal resolution). The algorithm that finds the maximal averaged volume is separated into three different stages. - The data between the dipole center of the probe and the surface of the phantom are extrapolated. This data cannot be measured since the center of the dipole is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is about 1 mm (see probe calibration sheet). The extrapolated data from a cube measurement can be visualized by selecting "Graph Evaluated". - The maximum interpolated value is searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10 g) are computed using the 3d-spline interpolation algorithm. If the volume cannot be evaluated (i.e., if a part of the grid was cut off by the boundary of the measurement area) the evaluation will be started on the corners of the bottom plane of the cube. - All neighboring volumes are evaluated until no neighboring volume with a higher average value is found. # Extrapolation The extrapolation is based on a least square algorithm [W. Gander, Computer mathematic, p.168-180]. Through the points in the first 3 cm along the z-axis, polynomials of order four are calculated. These polynomials are then used to evaluate the points between the surface and the probe tip. The points, calculated from the surface, have a distance of 1 mm from each other. #### Interpolation The interpolation of the points is done with a 3d-Spline. The 3d-Spline is composed of three one-dimensional splines with the "Not a knot"-condition [W. Gander, Computer mathematic, p.141-150] (x, y and z -direction) [Numerical Recipes in C, Second Edition, p.123ff]. #### **Volume Averaging** At First the size of the cube is calculated. Then the volume is integrated with the trapezoidal algorithm. 8000 points (20x20x20) are interpolated to calculate the average. #### **Advanced Extrapolation** DASY5 uses the advanced extrapolation option which is able to compensate boundary effects on E-field probes. #### 3.2.6 DATA STORAGE AND EVALUATION #### 3.2.6.1 Data Storage The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension "DAE". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated. The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages. ### 3.2.7 DATA EVALUATION BY SEMCAD The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software: Probe parameters: Sensitivity Normi, aj0, aj1, aj2 Conversion factor ConvFi Diode compression point Dcpi Device parameters: Frequency f Crest factor cf Media parameters: Conductivity Density These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multi meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as: $$V_i = U_i + U_i^2 \cdot cf / dcp_i$$ With V_i = compensated signal of channel i (i = x, y, z) U_i = input signal of channel i (i = x, y, z) cf = crest factor of exciting field (DASY parameter) dcpi = diode compression point (DASY parameter) From the compensated input signals the primary field data for each channel can be evaluated: E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$ H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1} f + a_{i2} f^2) / f$ With V_i = compensated signal of channel i (i = x, y, z) Norm_i = sensor sensitivity of channel i (i = x, y, z) [mV/(V/m)²] for E-field Probes ConvF = sensitivity enhancement in solution aij = sensor sensitivity factors for H-field probes f = carrier frequency [GHz] Ei = electric field strength of channel i in V/m H_i = magnetic field strength of channel i in A/m The RSS value of the field components gives the total field strength (Hermitian magnitude): $$E_{tot} = (E_X^2 + E_Y^2 + E_Z^2)^{1/2}$$ The primary field data are used to calculate the derived field units. SAR = $$(E_{tot})^2 \cdot \boldsymbol{\sigma} / (\boldsymbol{\rho} \cdot 1000)$$ With SAR = local specific absorption rate in mW/g Etot = total field strength in V/m = conductivity in [mho/m] or [Siemens/m] = equivalent tissue density in g/cm³ Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field. $$P_{pwe} = E_{tot}^{2} / 3770 \text{ or } P_{pwe} = H_{tot}^{2} \cdot 37.7$$ With P_{pwe} = equivalent power density of a plane wave in mW/cm² Etot = total field strength in V/m Htot = total magnetic field strength in A/m #### 4. SYSTEM VERIFICATION PROCEDURE #### 4.1 TISSUE VERIFICATION The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectic parameter are within the tolerances of the specified target values. The measured conductivity and relative permittivity should be within $\pm 5\%$ of the target values. The following materials are used for producing the tissue-equivalent materials. | Tissue
Type | Bactericide | DGBE | HEC | NaCl | Sucrose | Triton
X-100 | Water | Diethylene
Glycol
Mono-
hexylether | |----------------|-------------|------|-----|------|---------|-----------------|-------|---| | Head 2450 | - | 45.0 | - | 0.1 | - | - | 54.9 | - | Salt: 99+% Pure Sodium Chloride; Sugar: 98+% Pure Sucrose; Water: De-ionized, 16M + resistivity HEC: Hydroxyethyl Cellulose; DGBE: 99+% Di(ethylene glycol) butyl ether,[2-(2-butoxyethoxy)ethanol] Triton X-100(ultra pure): Polyethylene glycol mono [4-(1,1,3,3-tetramethylbutyl)phenyl]ether | | Tissue Verification | | | | | | | | | | | |--------|---------------------|--------|--------------|--------------|----------|--------------|--------------|--------------|--------------|--|--| | Tissue | Frequency | Liquid | Conductivity | Permittivity | Targeted | Targeted | Deviation | Deviation | | | | | Туре | (MHz) | Temp. | (σ) | (εr) | | Permittivity | Conductivity | Permittivity | Date | | | | | , | (℃) | () | (- / | (σ) | (εr) | (σ) (%) | (εr) (%) | | | | | Head | 2450 | 22.2 | 1.858 | 39.745 | 1.79 | 39.2 | 3.63 | 1.39 | May 30, 2022 | | | #### Note: - 1)The dielectric parameters of the tissue-equivalent liquid should be measured under similar ambient conditions and within 2 °C of the conditions expected during the SAR evaluation to satisfy protocol requirements. - 2)KDB 865664 was ensured to be applied for probe calibration frequencies greater than or equal to 50MHz of the EUT frequencies. - 3)The above measured tissue parameters were used in the DASY software to perform interpolation via the DASY software to determine actual dielectric parameters at the test frequencies. The SAR test plots may slightly differ from the table above since the DASY rounds to three significant digits. #### 4.2 SYSTEM CHECK The system check is performed for verifying the accuracy of the complete measurement system and performance of the software. The system check is performed with tissue equivalent material according to IEEE 62209-1528-2020 (described above). The following table shows system check results for all frequency bands and tissue liquids used during the tests. | System
Check | Date | Frequency
(MHz) | Targeted
SAR-1g
(W/kg) | Measured
SAR-1g
(W/kg) | normalized
SAR-1g
(W/kg) | Deviation
(%) | Dipole
S/N | |-----------------|--------------|--------------------|------------------------------|------------------------------|--------------------------------|------------------|---------------| | Head | May 30, 2022 | 2450 | 52.10 | 12.50 | 50.00 | -4.03 | 919 | #### 4.3 SYSTEM CHECK PROCEDURE The system check is performed by using a system check dipole which is positioned parallel to the planar part of the SAM phantom at the reference point. The distance of the dipole to the SAM phantom is determined by a plexiglass spacer. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 250mW (below 3GHz) or 100mW (3-6GHz). To adjust this power a power meter is used. The power sensor is connected to the cable before the system check to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the system check to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test. System check results have to be equal or near the values determined during dipole calibration (target SAR in table above) with the relevant liquids and test system (±10 %). #### 5. SAR MEASUREMENT VARIABILITY AND UNCERTAINTY #### **5.1 SAR MEASUREMENT VARIABILITY** Per KDB865664 D01 SAR measurement 100 MHz to 6 GHz, SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. The additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results. - 1) Repeated measurement is not required when the original highest measured SAR is < 2.0W/kg; steps 2) through 4) do not apply. - 2) When the original highest measured SAR is ≥ 2.0W/kg, repeat that measurement once. - 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 3.0 or when the original or repeated measurement is ≥ 3.625 W/kg ($\sim 10\%$ from the 1-g SAR limit). - 4) Perform a third repeated measurement only if the original, first or second repeated measurement is \geq 3.75 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 3.0. The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds. The detailed repeated measurement results are shown in Section 7.2. # 6. OPERATIONAL CONDITIONS DURING TEST # **6.1 TEST POSITION** Only tests Front Face, Left Side and Right Side. The location of the antenna inside EUT is as below. # 7. TEST RESULT Per RSS-102 Issue 5, the SAR evaluation is required if the separation distance between the user and/or bystander and the antenna and/or radiating element of the device is less than or equal to 20 cm, except when the device operates at or below the applicable output power level (adjusted for tune-up tolerance) for the specified separation distance defined in Table 1. Table 1: SAR evaluation – Exemption limits for routine evaluation based on frequency and separation distance | Frequency | Exemption Limits (mW) | | | | | | | | | |-----------|-----------------------|-------------------------------|--------|---------------|---------------|--|--|--|--| | (MHz) | At separation | At separation At separation | | At separation | At separation | | | | | | | distance of | distance of distance | | distance of | distance of | | | | | | | ≤ 5 mm | 10 mm | 15 mm | 20 mm | 25 mm | | | | | | ≤300 | 71 mW | 101 mW | 132 mW | 162 mW | 193 mW | | | | | | 450 | 52 mW | 70 mW | 88 mW | 106 mW | 123 mW | | | | | | 835 | 17 mW | 30 mW | 42 mW | 55 mW | 67 mW | | | | | | 1900 | 7 mW | 10 mW | 18 mW | 34 mW | 60 mW | | | | | | 2450 | 4 mW | 7 mW | 15 mW | 30 mW | 52 mW | | | | | | 3500 | 2 mW | 6 mW | 16 mW | 32 mW | 55 mW | | | | | | 5800 | 1 mW | 6 mW | 15 mW | 27 mW | 41 mW | | | | | | Frequency | Exemption Limits (mW) | | | | | | | | | |-----------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|--|--|--|--| | (MHz) | At separation distance of | | | | | | | 30 mm | 35 mm | 40 mm | 45 mm | ≥50 mm | | | | | | ≤300 | 223 mW | 254 mW | 284 mW | 315 mW | 345 mW | | | | | | 450 | 141 mW | 159 mW | 177 mW | 195 mW | 213 mW | | | | | | 835 | 80 mW | 92 mW | 105 mW | 117 mW | 130 mW | | | | | | 1900 | 99 mW | 153 mW | 225 mW | 316 mW | 431 mW | | | | | | 2450 | 83 mW | 123 mW | 173 mW | 235 mW | 309 mW | | | | | | 3500 | 86 mW | 124 mW | 170 mW | 225 mW | 290 mW | | | | | | 5800 | 56 mW | 71 mW | 85 mW | 97 mW | 106 mW | | | | | # 7.1 CONDUCTED POWER RESULTS # 7.1.1 CONDUCTED POWER MEASUREMENTS OF 2.4G | Mode | Frequency | Data Rate | Max. | Average | | |----------|-----------|-----------|---------|------------|--| | Wiode | (MHz) | (Mbps) | Tune up | Power(dBm) | | | | 2402 | | 4.00 | 3.41 | | | 2.4G SRD | 2441 | 2 | 4.00 | 2.99 | | | | 2480 | | 4.00 | 2.66 | | #### Note: - 1) The Average conducted power of 2.4G is measured with RMS detector. - 2) The tested channel results are marks in bold. - 3) Stand-alone SAR According to the output power measurement result we can draw the conclusion that: Stand-alone SAR are required for 2.4G, because the output power (EIRP Power=4.00dBm+1.69dBm=5.69dBm) of 2.4G transmitter is ≥ (Pmax=4.77dBm). #### 7.2 SAR TEST RESULTS #### **General Notes:** 1) Per KDB447498 D01, all measurement SAR results are scaled to the maximum tune-up tolerance limit to demonstrate compliant. 2) Per KDB447498 D01, testing of other required channels within the operating mode of a frequency band is not required when the reported 10-g SAR for the mid-band or highest output power channel is: 4.0 W/kg, for 10-g respectively, when the transmission band is ≤ 100 MHz. When the maximum output power variation across the required test channels is $> \frac{1}{2}$ dB, instead of the middle channel, the highest output power channel must be used. 3) Per KDB865664 D01, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥ 2.0 W/kg; if the deviation among the repeated measurement is ≤ 20 %, and the measured SAR < 3.625W/kg, only one repeated measurement is required. ### 7.2.1 SAR MEASUREMENT RESULT | Test
No. | Band | Mode | Channel | Test
Position | Separation
Distance
(cm) | Duty Cycle
(%) | Maximum
Tune-up
(dBm) | Conducted
Power
(dBm) | Power
Drift
(dB) | SAR
1g
(W/kg) | SAR
10g
(W/kg) | Reported
10g SAR | |-------------|----------|------|---------|--------------------|--------------------------------|-------------------|-----------------------------|-----------------------------|------------------------|---------------------|----------------------|---------------------| | B01 | 2.4G SRD | 2M | 0 | Front Face | 0 | 100 | 4 | 3.41 | 0.02 | <0.001 | <0.001 | <0.001 | | B02 | 2.4G SRD | 2M | 0 | Rear Face | 0 | 100 | 4 | 3.41 | 0.06 | 0.044 | 0.021 | 0.023 | | B03 | 2.4G SRD | 2M | 0 | Left Side | 0 | 100 | 4 | 3.41 | 0 | <0.001 | <0.001 | <0.001 | | B04 | 2.4G SRD | 2M | 0 | Right Side | 0 | 100 | 4 | 3.41 | 0.01 | 0.025 | 0.011 | 0.012 | | B05 | 2.4G SRD | 2M | 0 | Top Side | 0 | 100 | 4 | 3.41 | -0.02 | <0.001 | <0.001 | <0.001 | | B06 | 2.4G SRD | 2M | 0 | Bottom Side | 0 | 100 | 4 | 3.41 | 0.09 | <0.001 | <0.001 | < 0.001 | | B07 | 2.4G SRD | 2M | 39 | Rear Face | 0 | 100 | 4 | 2.99 | 0.08 | 0.035 | 0.016 | 0.020 | | B08 | 2.4G SRD | 2M | 78 | Rear Face | 0 | 100 | 4 | 2.66 | 0.04 | 0.029 | 0.014 | 0.019 | Note: The value with boldface is the maximum SAR Value of each test band. # **8 MULTIPLE TRANSMITTER EVALUATION** The following tables list information which is relevant for the decision if a simultaneous transmit evaluation is necessary according to FCC KDB 447498 D04 Interim General RF Exposure Guidance v01. The location of the antenna inside the EUT is shown as below picture: Note: The EUT only has one antenna and does not have synchronous transmission function. # **APPENDIX** # 1. TEST LAYOUT # **Specific Absorption Rate Test Layout** Liquid depth in the flat Phantom (≥15cm depth) HSL_2300MHz-2700MHz_Body_19.5cm # Appendix A. SAR Plots of System Verification (PIs See BTL-FCC SAR-1-2203E004_Appendix A.) # Appendix B. SAR Plots of SAR Measurement (PIs See BTL-FCC SAR-1-2203E004_Appendix B.) # Appendix C. Calibration Certificate (PIs See BTL-FCC SAR-1-2203E004_Appendix C.) # Appendix D. Photographs of the Test Set-Up (PIs See BTL-FCC SAR-1-2203E004_Appendix D.) **End of Test Report**