

Page 1 of 38

TEST REPORT

- Product **Trade mark** Model/Type reference **Serial Number Report Number** FCC ID Date of Issue **Test Standards Test result**
- uKit Robot
- UBTECH
- EREI101, EREwxyy 2
- N/A
- EED32L00034602
- : 2AHJX-UKITERE
- : Apr. 02, 2019
- : 47 CFR Part 15Subpart C
- : PASS

Prepared for:

UBTECH ROBOTICS CORP LTD

16th and 22nd Floor, Block C1, Nanshan I Park, No.1001 Xueyuan Road, Nanshan District, Shenzhen City, P.R.CHINA

2 Version

Version No.	Date	<u> </u>	Description	/
00	Apr. 02, 2019		Original	
	10	12	12	1
		(cS)		

3 Test Summary

Page 3 of 38

Test Summary			
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

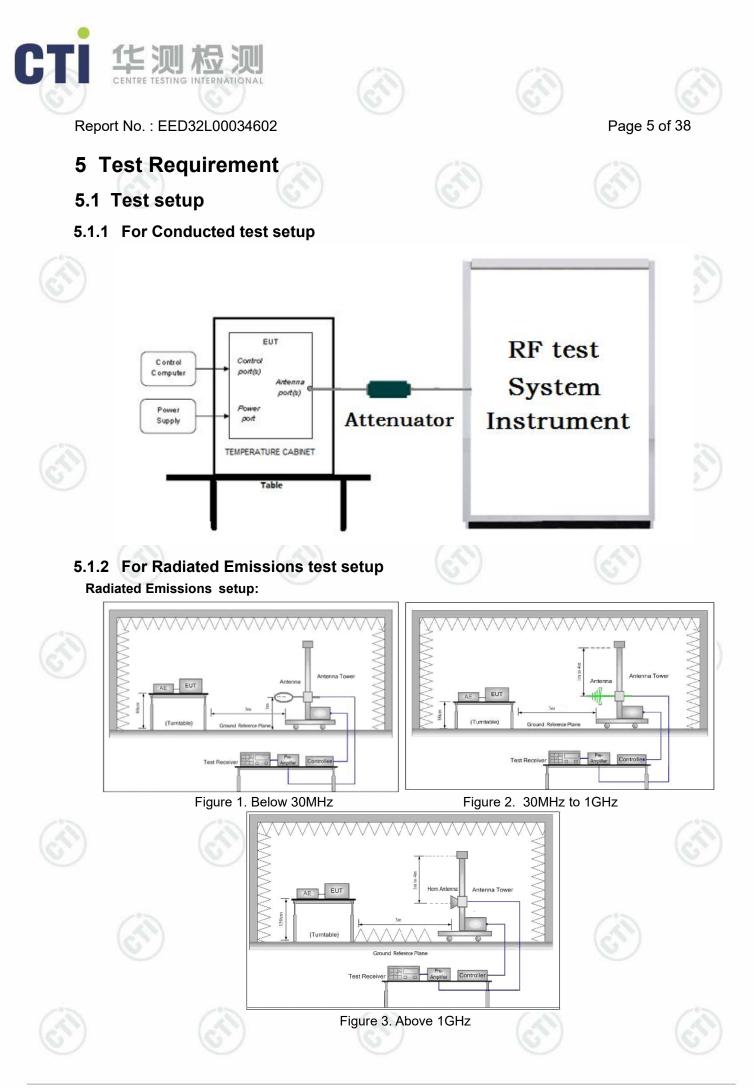
Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

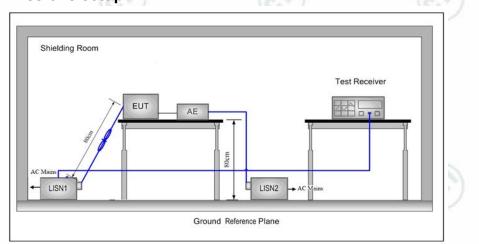
The tested sample(s) and the sample information are provided by the client.

Model No.: EREI101, EREwxyy

Only the model EREI101 was tested, EREwxyy (" w "can be a-z, indicating the product version; "x" can be 0-9, indicating the product attributes.). All models are identical in interior structure, electrical circuits and components, only different from model name and color.



COVER PAGE		
2 VERSION		•••••
3 TEST SUMMARY		
CONTENT	••••••	<u></u>
5 TEST REQUIREMENT		
5.1 TEST SETUP		
5.1.1 For Conducted test setup		
5.1.2 For Radiated Emissions test setup		
5.1.3 For Conducted Emissions test setup		
5.2 TEST ENVIRONMENT		
5.3 TEST CONDITION		
GENERAL INFORMATION		
6.1 CLIENT INFORMATION		
6.2 GENERAL DESCRIPTION OF EUT		
6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD		
6.4 DESCRIPTION OF SUPPORT UNITS		
6.5 TEST LOCATION		
6.6 Deviation from Standards 6.7 Abnormalities from Standard Conditions		
6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER		
6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)		
PEQUIPMENT LIST		
RADIO TECHNICAL REQUIREMENTS SPECIFICATION		
Appendix A): 6dB & 99% Occupied Bandwidth		10
Appendix B): Conducted Peak Output Power		
Appendix C): Band-edge for RF Conducted Emissions		
Appendix D): RF Conducted Spurious Emissions		
Appendix E): Power Spectral Density		
Appendix F): Antenna Requirement		
Appendix G): AC Power Line Conducted Emission		
Appendix H): Restricted bands around fundamental frequency (Radiated) Appendix I): Radiated Spurious Emissions		
PHOTOGRAPHS OF TEST SETUP		
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS		



Page 6 of 38

Report No. : EED32L00034602

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

	•			
Operating Environment	for RF test:	S	S	e
Temperature:	26°C			
Humidity:	50% RH			100
Atmospheric Pressure:	101kPa	6	0	
(6.5)	657	5		CC /

5.3 Test Condition

Test channel:

TestMade	THE THE	RF Channel			
Test Mode	Tx (Low(L)	Middle(M)	High(H)	
GESK	2402MHz ~2480 MHz	Channel 1	Channel 20	Channel 40	
GFSK	2402MH2 ~2480 MH2	2402MHz	2440MHz	2480MHz	
TX mode:	The EUT transmitted the continue	us signal at the s	pecific channel(s	s).	
Charging mode:	Charging the EUT through charge	er.	G	2	

6 General Information

6.1 Client Information

Applicant:	UBTECH ROBOTICS CORP LTD
Address of Applicant:	16th and 22nd Floor, Block C1, Nanshan I Park, No.1001 Xueyuan Road, Nanshan District, Shenzhen City, P.R.CHINA
Manufacturer:	UBTECH ROBOTICS CORP LTD
Address of Manufacturer:	16th and 22nd Floor, Block C1, Nanshan I Park, No.1001 Xueyuan Road, Nanshan District, Shenzhen City, P.R.CHINA
Factory:	UBTECH ROBOTICS CORP LTD BAOAN BRANCH
Address of Factory:	1-2 Floor, B Block, Huilongda Industry Park, Shilongzai, Shiyan Street, Baoan District, Shenzhen City, P.R.CHINA

Page 7 of 38

6.2 General Description of EUT

uKit Robot EREI101, ERE EREI101	wxyy
	wxyy
EREIIVI	
UBTECH	
BT 4.2 Dual mo	ode, 2402-2480MHz
AC Adapter	Model: PS1012-096HIB100 Input: 100-240V~ 50/60Hz, 0.4A Output: 9.6V1.0A
Battery	Rechargeable Lithium-ion Ploymer Battery:1800mAh 7.4V
V2.1(manufact	urer declare)
V1.1.13(manuf	acturer declare)
Feb. 26, 2019	
Mar. 11, 2019 1	to Mar. 28, 2019
	JBTECH 3T 4.2 Dual mo AC Adapter Battery V2.1(manufact V1.1.13(manuf Feb. 26, 2019

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	4.0
Modulation Technique:	DSSS
Modulation Type:	GFSK
Number of Channel:	40
Test Power Grade:	N/A
Test Software of EUT:	BLUETOOL_MI_1.9.2.0(manufacturer declare)
Antenna Type:	PCB printed Antenna
Antenna Gain:	0dBi
Test Voltage:	AC 120V, 60Hz

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at: Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

None.

6.8 Other Information Requested by the Customer

Page 9 of 38

Report No. : EED32L00034602

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	RF power, conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
3	Padiated Spurious omission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%
		Contract.



7 Equipment List

			system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-01-2019	02-29-2020
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019	02-29-2020
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019	02-29-2020
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398-0 02		01-09-2019	01-08-2020
High-pass filter	MICRO-TRO NICS	SPA-F-63029-4		01-09-2019	01-08-2020
DC Power	Keysight	E3642A	MY54426035	03-01-2019	02-29-2020
PC-1	Lenovo	R4960d		03-01-2019	02-29-2020
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019	02-29-2020
RF control unit	JS Tonscend	JS0806-2	15860006	03-01-2019	02-29-2020
RF control unit	JS Tonscend	JS0806-1	15860004	03-01-2019	02-29-2020
RF control unit	JS Tonscend	JS0806-4	158060007	03-01-2019	02-29-2020
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-01-2019	02-29-2020
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-12-2018	10-11-2019

Page 11 of 38

Report No. : EED32L00034602

	(Conducted dist	urbance Tes	st	
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019
Temperature/ Humidity Indicator	Defu	TH128	/	07-02-2018	07-01-2019
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-29-2020
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020
LISN	R&S	ENV216	100098	05-10-2018	05-10-2019
LISN	schwarzbeck	NNLK8121	8121-529	05-10-2018	05-10-2019
Voltage Probe	R&S	ESH2-Z3 0299.7810.5 6	100042	06-13-2017	06-11-2020
Current Probe	R&S	EZ-17 816.2063.03	100106	05-30-2018	05-29-2019
ISN	TESEQ	ISN T800	30297	01-06-2019	01-15-2020

Ì

		emi/full-anecho	Serial	Cal. date	Cal. Due date
Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-21-2018	12-20-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-30-2018	07-29-2019
Microwave Preamplifier	Agilent	8449B	3008A024 25	08-21-2018	08-20-2019
Microwave Preamplifier	Tonscend	EMC051845 SE	980380	01-16-2019	01-15-2020
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-18 69	04-25-2018	04-23-2021
Horn Antenna	ETS-LINDGRE N	3117	00057410	06-05-2018	06-03-2021
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	374	06-05-2018	06-04-2021
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041.604 1	08-08-2018	08-07-2019
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019
Receiver	R&S	ESCI7	100938-0 03	11-23-2018	11-22-2019
Multi device Controller	maturo	NCD/070/107 11112		01-09-2019	01-08-2020
LISN	schwarzbeck	NNBM8125	81251547	05-11-2018	05-10-2019
LISN	schwarzbeck	NNBM8125	81251548	05-11-2018	05-10-2019
Signal Generator	Agilent	E4438C	MY45095 744	03-01-2019	02-29-2020
Signal Generator	Keysight	E8257D	MY53401 106	03-01-2019	02-29-2020
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-12-2018	10-11-2019
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-29-2020
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020
Cable line Cable line	Fulai(3M) Fulai(3M)	SF106 SF106	5216/6A 5217/6A	01-09-2019 01-09-2019	01-08-2020
Capie line Communication test					
Set High-pass filter	R&S Sinoscite	CMW500 FL3CX03WG 18NM12-039 8-002		01-18-2019 01-09-2019	01-17-2020 01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F-63029 -4		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395- 001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396- 002		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394- 001		01-09-2019	01-08-2020

Page 13 of 38

	Manufac	3M full-anech		Cal data	Cal Due date
Equipment	Manufac turer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscen d	JS36-RSE	10166	06-20-2018	06-19-2019
Receiver	Keysight	N9038A	MY57290136	03-28-2018 03-27-2019	03-27-2019 03-25-2020
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-28-2018 03-27-2019	03-27-2019 03-25-2020
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-28-2018 03-27-2019	03-27-2019 03-25-2020
Loop Antenna	Schwarz beck	FMZB 1519B	1519B-075	04-25-2018	04-23-2021
Loop Antenna	Schwarz beck	FMZB 1519B	1519B-076	04-25-2018	04-23-2021
TRILOG Broadband Antenna	Schwarz beck	VULB 9163	9163-1148	04-25-2018	04-23-2021
Horn Antenna	Schwarz beck	BBHA 9170	9170-832	04-25-2018	04-23-2021
Horn Antenna	Schwarz beck	BBHA 9170	9170-829	04-25-2018	04-23-2021
Communication Antenna	Schwarz beck	CLSA 0110L	1014	02-15-2018	02-14-2019
Biconical antenna	Schwarz beck	VUBA 9117	9117-381	04-25-2018	04-23-2021
Horn Antenna	ETS- LINDGR EN	3117	00057407	07-10-2018	07-08-2021
Preamplifier	EMCI	EMC184055SE	980596	06-20-2018	06-19-2019
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020
Preamplifier	EMCI	EMC001330	980563	06-20-2018	06-19-2019
Preamplifier	Agilent	8449B	3008A02425	08-21-2018	08-20-2019
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	05-02-2018	05-01-2019
Signal Generator	KEYSIG HT	E8257D	MY53401106	03-13-2018	03-12-2019
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-15-2021
Filter bank	JS Tonscen d	JS0806-F	188060094	04-10-2018	04-08-2021
Cable line	Times	SFT205- NMSM-2.50M	394812-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205- NMSM-2.50M	394812-0002	01-09-2019	01-08-2020
Cable line	Times	SFT205- NMSM-2.50M	394812-0003	01-09-2019	01-08-2020
Cable line	Times	SFT205- NMSM-2.50M	393495-0001	01-09-2019	01-08-2020
Cable line	Times	EMC104- NMNM-1000	SN160710	01-09-2019	01-08-2020
Cable line	Times	SFT205- NMSM-3.00M	394813-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205- NMNM-1.50M	381964-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205- NMSM-7.00M	394815-0001	01-09-2019	01-08-2020
Cable line	Times	HF160-KMKM- 3.00M	393493-0001	01-09-2019	01-08-2020

Page 14 of 38

Report No. : EED32L00034602

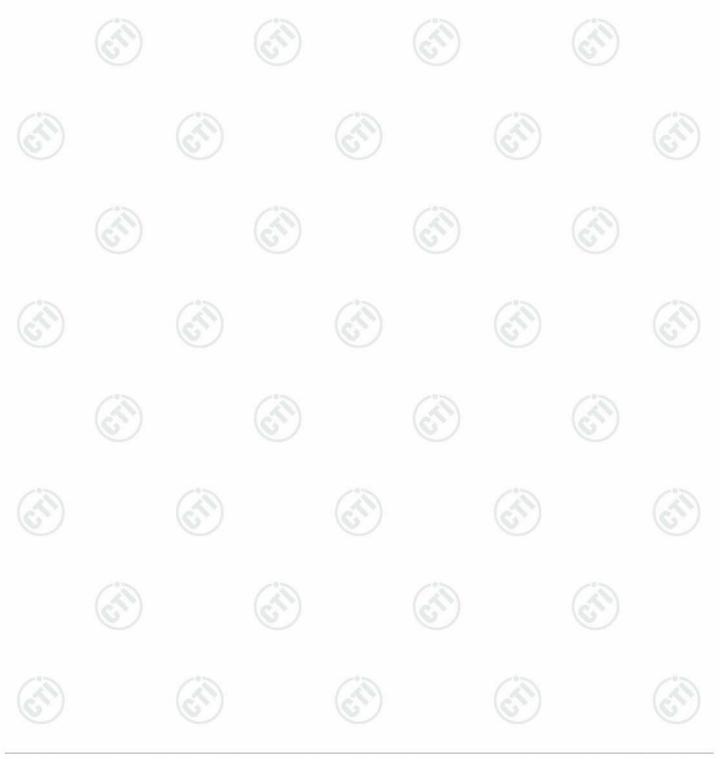
8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

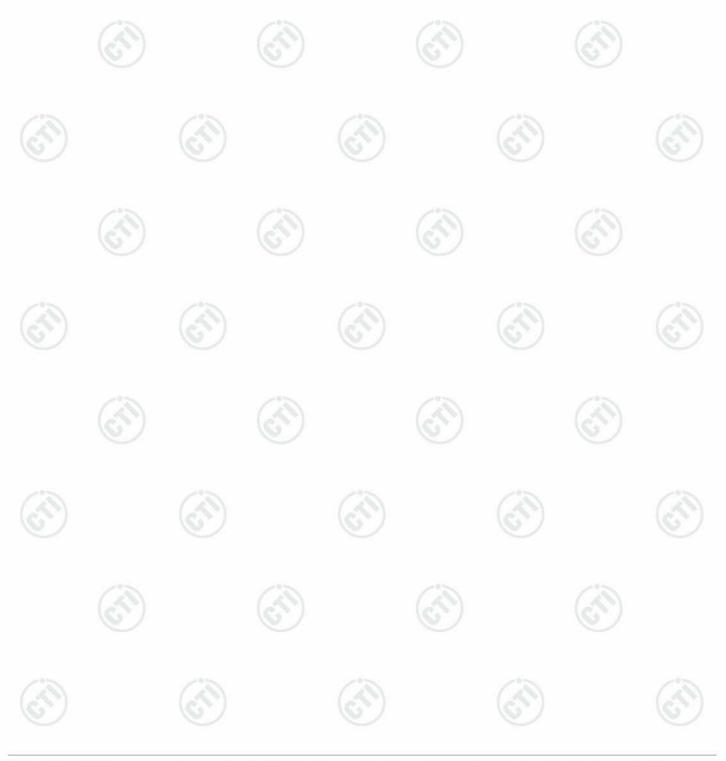


Appendix A): 6dB & 99% Occupied Bandwidth

	Test Resu	lt		I A A A A A A A A A A A A A A A A A A A	
	Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
12	BLE	LCH	0.5047	1.1068	PASS
SE.	BLE	МСН	0.5054	1.1075	PASS
Y	BLE	НСН	0.5055	1.1073	PASS

Page 16 of 38

Test Graphs

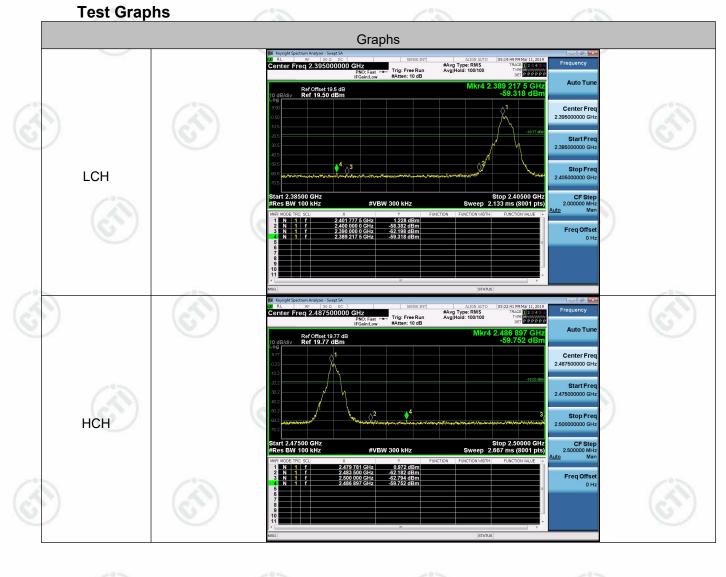


Page 17 of 38

Appendix B): Conducted Peak Output Power

Test	Result	U I		U	
Mod	le	Channel	Cor	nduct Peak Power[dBm]	Verdict
BLE		LCH	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.353	PASS
BLE	= (e	МСН	(25)	1.685	PASS
BLE		НСН		1.014	PASS

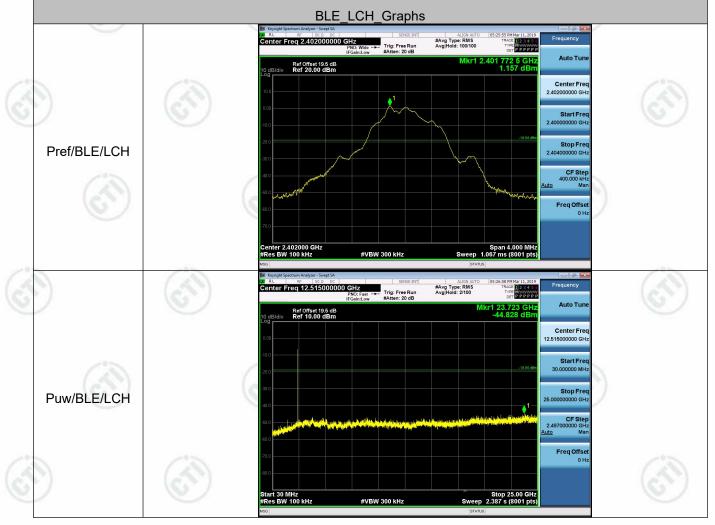
Page 18 of 38



Page 19 of 38

Appendix C): Band-edge for RF Conducted Emissions

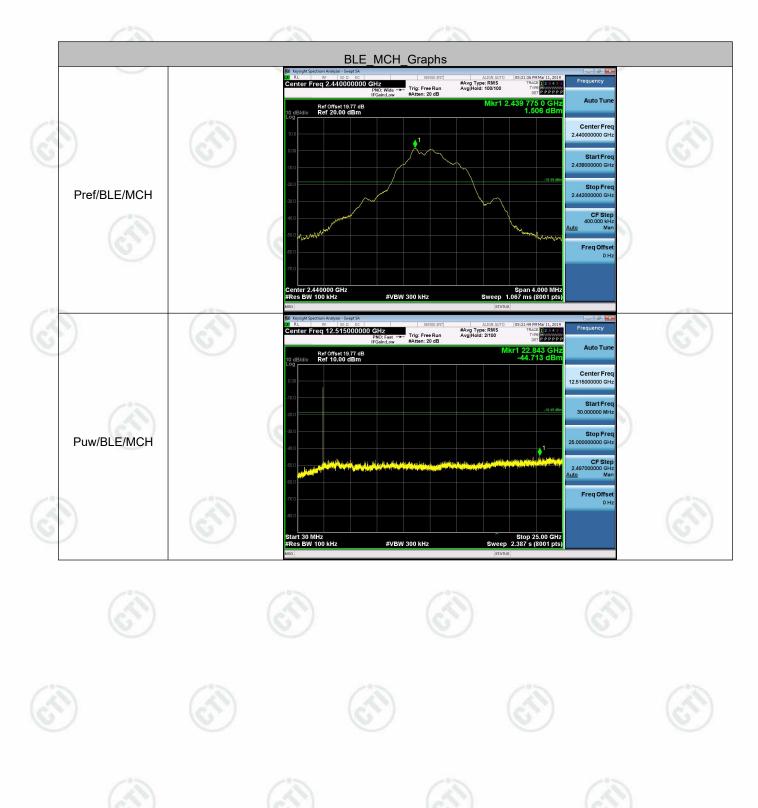
	Resu	It Table	V		V	
1	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
6	BLE	LCH	1.228	-59.318	-18.77	PASS
N.	BLE	нсн	0.972	-59.752	-19.03	PASS



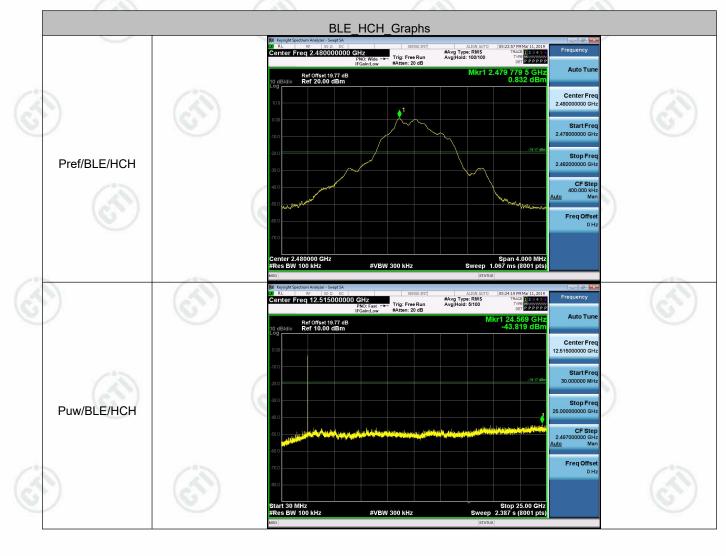
Page 20 of 38

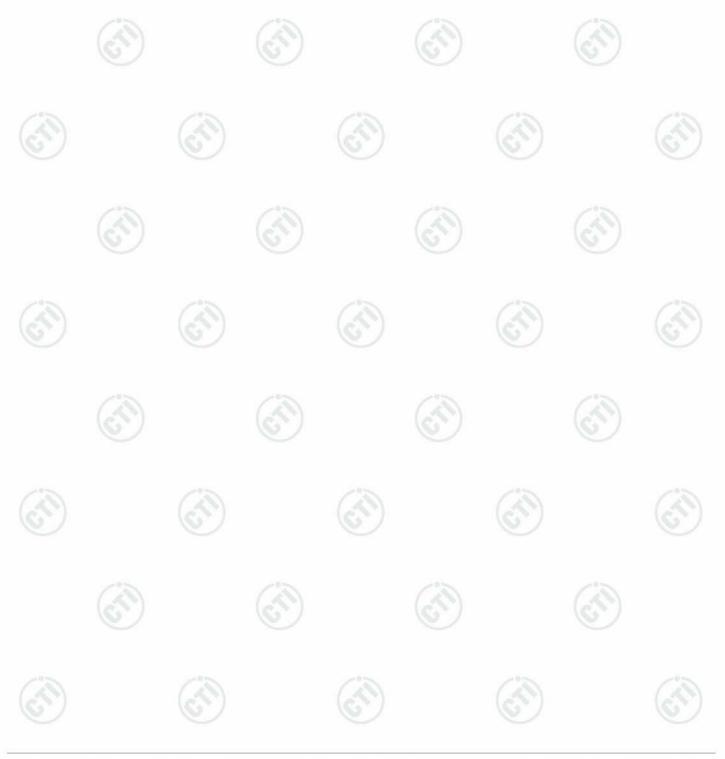
Appendix D): RF Conducted Spurious Emissions

F	Result T	Table 📃		V	0
N	lode	Channel	Pref [dBm]	Puw[dBm]	Verdict
E I	BLE	LCH	1.157	<limit< td=""><td>PASS</td></limit<>	PASS
) i	BLE	МСН	1.506	<limit< td=""><td>PASS</td></limit<>	PASS
1	BLE	НСН	0.832	<limit< td=""><td>PASS</td></limit<>	PASS



Page 21 of 38





Page 23 of 38

Appendix E): Power Spectral Density

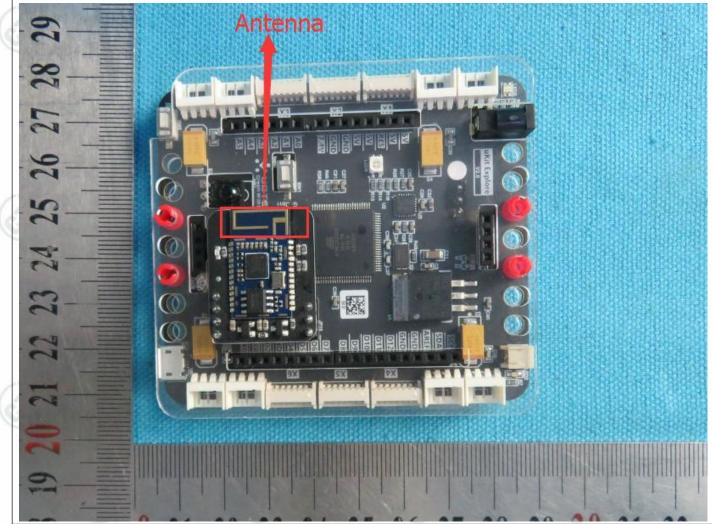
	Result Ta	ble	V		6
	Mode	Channel	PSD [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
12	BLE	LCH	-15.474	8	PASS
6	BLE	мсн	-15.075	8	PASS
X	BLE	НСН	-15.690	8	PASS

Page 24 of 38

Test Graphs

Appendix F): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

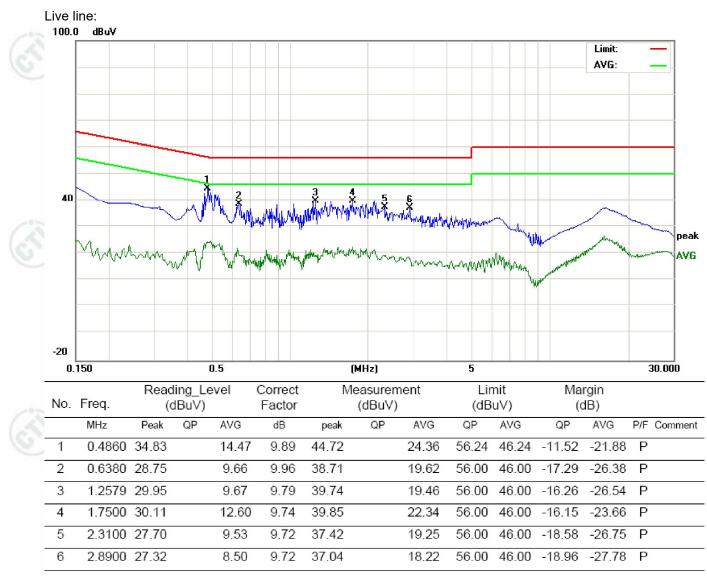
EUT Antenna:

The antenna is PCB printed Antenna and no consideration of replacement. The best case gain of the antenna is 0dBi.

Page 26 of 38

Appendix G): AC Power Line Conducted Emission

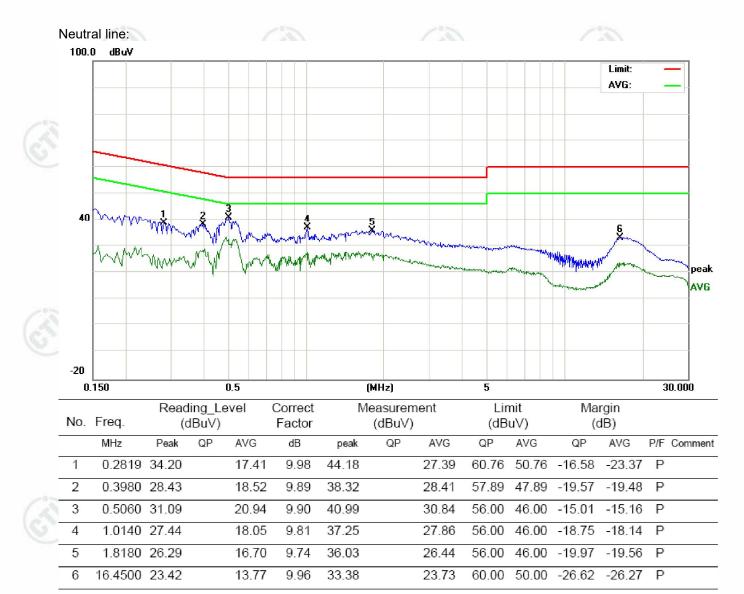
		0.01.41.1		
Test Procedure:	Test frequency range :150KHz			
	1)The mains terminal disturban	-		
	2) The EUT was connected to			
	Stabilization Network) whic power cables of all other u			
	which was bonded to the g			
	for the unit being measure	-		
	multiple power cables to a s	single LISN provided t	he rating of the LISN	l was no
	exceeded.			
	3)The tabletop EUT was place			-
	reference plane. And for flo		ent, the EUT was pl	laced on
	horizontal ground reference			
	4) The test was performed with EUT shall be 0.4 m from the			
	reference plane was bonde			
	1 was placed 0.8 m from t		-	
	ground reference plane for	or LISNs mounted of		d refere
	· · · · · · · · · · · · · · · · · · ·	etween the closest po		
	All other units of the EUT a	•		
	All other units of the EUT a LISN 2.	nd associated equipn	nent was at least 0.8	3 m from
	All other units of the EUT a LISN 2. 5) In order to find the maximum	nd associated equipn n emission, the relativ	nent was at least 0.8 re positions of equipt	3 m from ment and
	All other units of the EUT a LISN 2.	nd associated equipn n emission, the relativ	nent was at least 0.8 re positions of equipt	3 m from ment and
Limit:	All other units of the EUT a LISN 2. 5) In order to find the maximum of the interface cables r	nd associated equipn n emission, the relativ nust be changed a	nent was at least 0.8 re positions of equip according to ANSI	3 m from ment and
Limit:	All other units of the EUT a LISN 2. 5) In order to find the maximum of the interface cables r	nd associated equipn n emission, the relativ must be changed a Limit (c	nent was at least 0.8 re positions of equip ccording to ANSI IBµV)	3 m from ment and
Limit:	All other units of the EUT a LISN 2. 5) In order to find the maximum of the interface cables r conducted measurement. Frequency range (MHz)	nd associated equipn n emission, the relativ must be changed a Limit (c Quasi-peak	nent was at least 0.8 re positions of equip ccording to ANSI IBµV) Average	3 m from ment and
Limit:	All other units of the EUT a LISN 2. 5) In order to find the maximum of the interface cables r conducted measurement.	nd associated equipn n emission, the relativ must be changed a Limit (c	nent was at least 0.8 re positions of equip ccording to ANSI IBµV)	3 m from ment and
Limit:	All other units of the EUT a LISN 2. 5) In order to find the maximum of the interface cables r conducted measurement. Frequency range (MHz)	nd associated equipn n emission, the relativ must be changed a Limit (c Quasi-peak	nent was at least 0.8 re positions of equip ccording to ANSI IBµV) Average	3 m from ment and
Limit:	All other units of the EUT a LISN 2. 5) In order to find the maximum of the interface cables r conducted measurement. Frequency range (MHz) 0.15-0.5	nd associated equipn n emission, the relativ must be changed a Limit (c Quasi-peak 66 to 56*	nent was at least 0.8 re positions of equip ccording to ANSI IBµV) Average 56 to 46*	3 m from ment and
Limit:	All other units of the EUT a LISN 2. 5) In order to find the maximum of the interface cables r conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly	nd associated equipn n emission, the relativ must be changed a Limit (c Quasi-peak 66 to 56* 56 60	nent was at least 0.8 re positions of equip ccording to ANSI IBµV) Average 56 to 46* 46 50	3 m from ment and C63.10
Limit:	All other units of the EUT a LISN 2. 5) In order to find the maximum of the interface cables r conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly w MHz to 0.50 MHz.	nd associated equipn n emission, the relativ must be changed a Limit (c Quasi-peak 66 to 56* 56 60 with the logarithm of	nent was at least 0.8 re positions of equip ccording to ANSI IBµV) Average 56 to 46* 46 50 the frequency in the	3 m from ment and C63.10
	All other units of the EUT a LISN 2. 5) In order to find the maximum of the interface cables r conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly of MHz to 0.50 MHz. NOTE : The lower limit is applied	nd associated equipn n emission, the relativ must be changed a Limit (c Quasi-peak 66 to 56* 56 60 with the logarithm of cable at the transition	nent was at least 0.8 re positions of equip ccording to ANSI IBµV) Average 56 to 46* 46 50 the frequency in the	3 m from ment and C63.10
Limit: Charging mode: Test Ambient:	All other units of the EUT a LISN 2. 5) In order to find the maximum of the interface cables r conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly w MHz to 0.50 MHz.	nd associated equipn n emission, the relativ must be changed a Limit (c Quasi-peak 66 to 56* 56 60 with the logarithm of cable at the transition rger.	nent was at least 0.8 re positions of equip ccording to ANSI IBµV) Average 56 to 46* 46 50 the frequency in the	3 m from ment and C63.10



Page 27 of 38

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

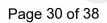


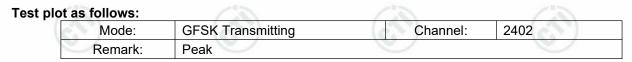
Page 28 of 38

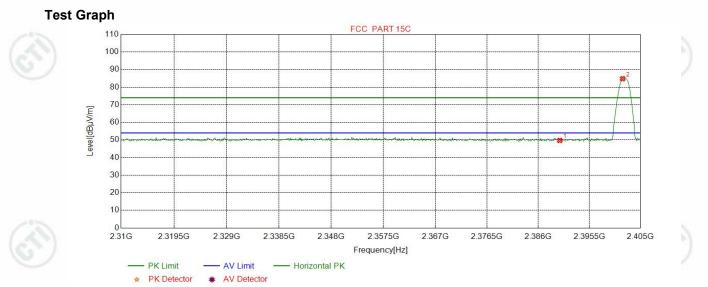
Notes:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

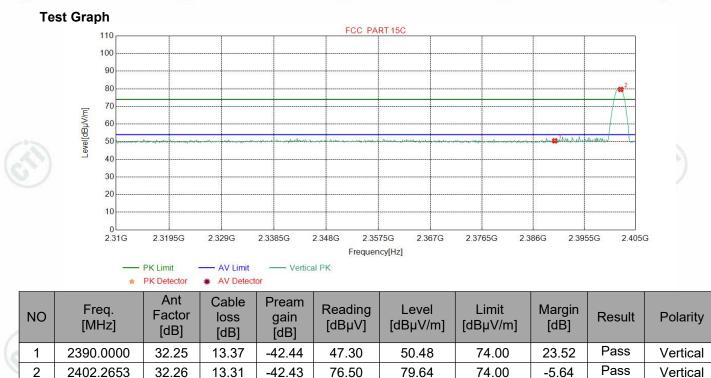
2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.






Appendix H): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
		Peak	1MHz	3MHz	Peak	100
) 	Above 1GHz	Peak	1MHz	10Hz	Average	6
Test Procedure:	 Below 1GHz test proceduation a. The EUT was placed of at a 3 meter semi-anered determine the position b. The EUT was set 3 meters are a series of the sector of the sector	on the top of a rot choic camber. The of the highest ra- eters away from to op of a variable-he varied from one re- im value of the fiel tenna are set to re- mission, the EUT d to heights from grees to 360 degrees to mwas set to Per- hum Hold Mode. end of the restrict opliance. Also me trum analyzer plo	e table wa diation. he interfer eight anter meter to fo eld strength nake the n was arran 1 meter to ees to find ak Detect ted band c easure any	ence-recei nna tower. our meters n. Both hor neasureme ged to its 4 meters a the maxin Function a	360 degrees t ving antenna above the gro rizontal and v ent. worst case ar and the rotata num reading. nd Specified ne transmit s in the restric	, wh ouncertic and th able
	 Above 1GHz test proced g. Different between abore to fully Anechoic Channel 18GHz the distance is h. Test the EUT in the left. i. The radiation measure Transmitting mode, and 	ure as below: ve is the test site nber change form 1 meter and table owest channel, the ements are perfor ad found the X ax	a table 0.8 e is 1.5 me ne Highest med in X, is positioni	meter to 1 ter). t channel Y, Z axis p ing which i	.5 meter(Abo positioning for t is worse cas	ove
	j. Repeat above procedu	ures unui all frequ	encies me	easured wa	as complete.	
Limit:	Frequency	Limit (dBuV/	m @3m)	Rei		
Limit:	Frequency 30MHz-88MHz	Limit (dBµV/			mark	
Limit:	30MHz-88MHz	40.0		Quasi-pe	mark eak Value	
Limit:	30MHz-88MHz 88MHz-216MHz	40.0 43.5		Quasi-pe Quasi-pe	mark eak Value eak Value	
Limit:	30MHz-88MHz	40.0 43.5 46.0		Quasi-pe Quasi-pe Quasi-pe	mark eak Value eak Value eak Value	C.
Limit:	30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz	40.0 43.5	(ê	Quasi-pe Quasi-pe Quasi-pe Quasi-pe	mark eak Value eak Value eak Value eak Value	Ċ
Limit:	30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	40.0 43.5 46.0 54.0	Ċ	Quasi-pe Quasi-pe Quasi-pe Quasi-pe Averag	mark eak Value eak Value eak Value	C.
Limit: Test Ambient:	30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz	40.0 43.5 46.0 54.0 54.0	Ċ	Quasi-pe Quasi-pe Quasi-pe Quasi-pe Averag	mark eak Value eak Value eak Value eak Value ge Value Value	C



NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	46.56	49.74	74.00	24.26	Pass	Horizontal
2	2401.6708	32.26	13.31	-42.43	81.69	84.83	74.00	-10.83	Pass	Horizontal

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

Appendix I): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
(0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
(A)	Above 1GHz	Peak	1MHz	3MHz	Peak	
\bigcirc	Above IGHZ	Peak	1MHz	10Hz	Average	
Test Procedure:	-	·	•	÷	·	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic
- camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

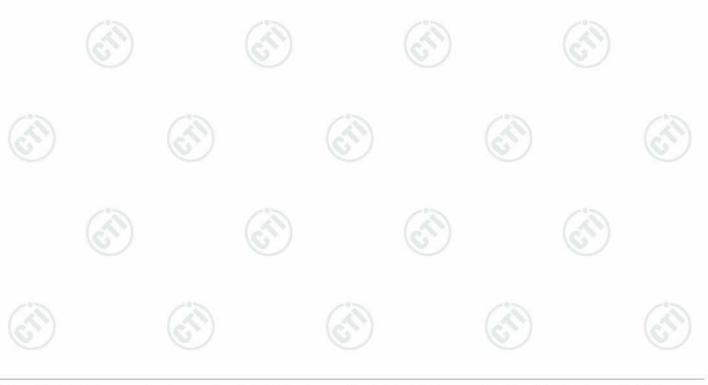
Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

J. Repeat above procedures until all requercies measured was complete.	j.	Repeat above procedures until all frequencies measured was complete.
--	----	--

Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)				
	0.009MHz-0.490MHz	2400/F(kHz)	-	- 0.5	300	- 6 -			
	0.490MHz-1.705MHz	24000/F(kHz)	-		30				
2	1.705MHz-30MHz	30	-		30	6			
	30MHz-88MHz	100	40.0	Quasi-peak	3				
	88MHz-216MHz	150	43.5	Quasi-peak	3				
	216MHz-960MHz	200	46.0	Quasi-peak	3				
6	960MHz-1GHz	500	54.0	Quasi-peak	3				
	Above 1GHz	500	54.0	Average	3	1			
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.								
Test Ambient:	Temp.: 24°C	Humid.: 56%	6	Press.	: 101kPa	~			

Page 33 of 38


Report No. : EED32L00034602

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

	1.00		551011 8			ACAS I ACAS I					
	Mode	e:		GFSK Tra	ansmitting			Channel:		2480	
	Rem	ark:		QP							
2	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
U.	1	37.8578	11.61	0.69	-32.11	33.27	13.46	40.00	26.54	Pass	Horizontal
	2	67.5428	9.64	0.94	-32.05	31.44	9.97	40.00	30.03	Pass	Horizontal
	3	120.0250	9.20	1.30	-32.07	37.83	16.26	43.50	27.24	Pass	Horizontal
	4	192.0062	10.14	1.62	-31.96	43.30	23.10	43.50	20.40	Pass	Horizontal
	5	375.0635	14.85	2.31	-31.88	32.29	17.57	46.00	28.43	Pass	Horizontal
	6	687.5318	19.70	3.14	-32.06	37.59	28.37	46.00	17.63	Pass	Horizontal

	Mode	e:	GFSK Tra	Insmitting			Channel:		2480		
4	Rem	ark:		QP							
2	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
Γ	1	52.5063	12.80	0.82	-32.10	35.96	17.48	40.00	22.52	Pass	Vertical
	2	67.4457	9.66	0.93	-32.04	40.14	18.69	40.00	21.31	Pass	Vertical
	3	120.0250	9.20	1.30	-32.07	40.80	19.23	43.50	24.27	Pass	Vertical
	4	208.8859	11.13	1.71	-31.94	45.85	26.75	43.50	16.75	Pass	Vertical
	5	320.9321	13.66	2.12	-31.82	34.54	18.50	46.00	27.50	Pass	Vertical
<u>.</u>	6	625.0575	19.20	2.97	-31.98	33.75	23.94	46.00	22.06	Pass	Vertical

Remark : All the channels are tested, only the worst data were reported.

Transmitter Emission above 1GHz

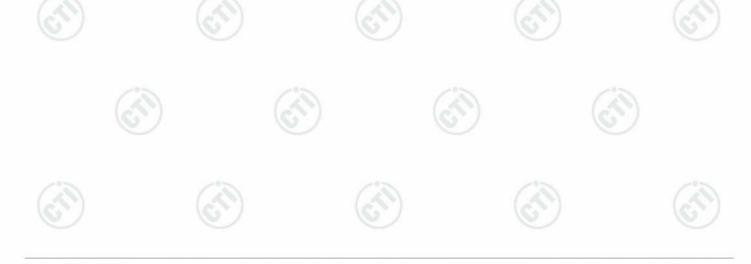
Mode	e:	GFSK T	ransmitt	ing			Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1595.8596	29.03	3.07	-42.89	52.65	41.86	74.00	32.14	Pass	Н	PK
2	2871.9872	33.00	4.30	-42.20	50.71	45.81	74.00	28.19	Pass	Н	PK
3	4804.0000	34.50	4.55	-40.66	49.85	48.24	74.00	25.76	Pass	Н	PK
4	7206.0000	36.31	5.81	-41.02	44.35	45.45	74.00	28.55	Pass	Н	PK
5	9608.0000	37.64	6.63	-40.76	41.99	45.50	74.00	28.50	Pass	Н	PK
6	12010.0000	39.31	7.60	-41.21	43.11	48.81	74.00	25.19	Pass	Н	PK
7	1388.8389	28.29	2.88	-42.69	51.65	40.13	74.00	33.87	Pass	V	PK
8	1973.8974	31.53	3.44	-42.62	55.51	47.86	74.00	26.14	Pass	V	PK
9	2992.5993	33.19	4.53	-42.13	50.93	46.52	74.00	27.48	Pass	V	PK
10	4804.0000	34.50	4.55	-40.66	45.30	43.69	74.00	30.31	Pass	V	PK
11	7206.0000	36.31	5.81	-41.02	43.85	44.95	74.00	29.05	Pass	V	PK
12	9608.0000	37.64	6.63	-40.76	42.65	46.16	74.00	27.84	Pass	V	PK
				•		1			•	1	1

Mode	e:	GFSK T	Fransmitt	ing			Channel:		2440			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1598.4598	29.05	3.07	-42.90	53.42	42.64	74.00	31.36	Pass	Н	PK	
2	2835.1835	32.94	4.23	-42.21	51.64	46.60	74.00	27.40	Pass	Н	PK	
3	4880.0000	34.50	4.80	-40.60	44.38	43.08	74.00	30.92	Pass	Н	PK	
4	7320.0000	36.42	5.85	-40.92	44.40	45.75	74.00	28.25	Pass	Н	PK	
5	9760.0000	37.70	6.73	-40.62	42.16	45.97	74.00	28.03	Pass	Н	PK	
6	12200.0000	39.42	7.67	-41.17	42.38	48.30	74.00	25.70	Pass	Н	PK	
7	1405.8406	28.31	2.91	-42.69	51.38	39.91	74.00	34.09	Pass	V	PK	
8	1955.8956	31.41	3.43	-42.64	53.65	45.85	74.00	28.15	Pass	V	PK	
9	4880.0000	34.50	4.80	-40.60	44.26	42.96	74.00	31.04	Pass	V	PK	
10	7320.0000	36.42	5.85	-40.92	43.98	45.33	74.00	28.67	Pass	V	PK	
11	9760.0000	37.70	6.73	-40.62	41.95	45.76	74.00	28.24	Pass	V	PK	
12	12200.0000	39.42	7.67	-41.17	42.58	48.50	74.00	25.50	Pass	V	PK	

Page 35 of 38

Report No. : EED32L00034602

	100			1000			The second		20-		
Mode):	GFSK 1	ransmitt	ing			Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1226.4226	28.13	2.67	-42.87	50.79	38.72	74.00	35.28	Pass	Н	PK
2	1597.2597	29.04	3.07	-42.89	52.07	41.29	74.00	32.71	Pass	Н	PK
3	3010.4007	33.20	4.91	-42.11	50.49	46.49	74.00	27.51	Pass	Н	PK
4	4960.0000	34.50	4.82	-40.53	44.54	43.33	74.00	30.67	Pass	Н	PK
5	7440.0000	36.54	5.85	-40.82	44.90	46.47	74.00	27.53	Pass	Н	PK
6	9920.0000	37.77	6.79	-40.48	42.04	46.12	74.00	27.88	Pass	Н	PK
7	1394.0394	28.29	2.89	-42.68	55.06	43.56	74.00	30.44	Pass	V	PK
8	1913.2913	31.13	3.42	-42.66	54.30	46.19	74.00	27.81	Pass	V	PK
9	3109.8573	33.24	4.69	-42.05	49.81	45.69	74.00	28.31	Pass	V	PK
10	4960.0000	34.50	4.82	-40.53	44.12	42.91	74.00	31.09	Pass	V	PK
11	7440.0000	36.54	5.85	-40.82	44.59	46.16	74.00	27.84	Pass	V	PK
12	9920.0000	37.77	6.79	-40.48	40.95	45.03	74.00	28.97	Pass	V	PK
		1	2			1		2.1			1


Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

2)Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Page 36 of 38

PHOTOGRAPHS OF TEST SETUP Test model No.: EREI101

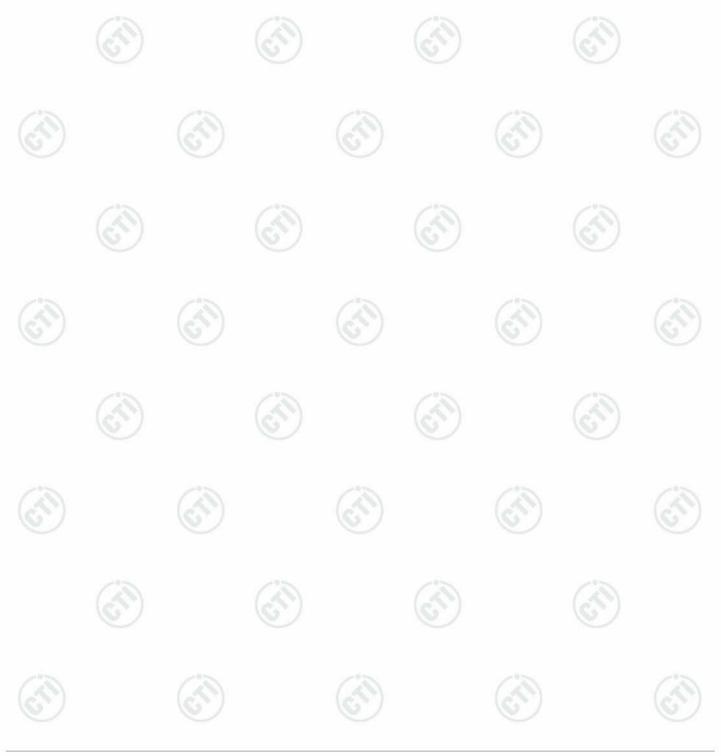
Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(30MHz-1GHz)

Page 37 of 38

Radiated spurious emission Test Setup-3(Above 1GHz)

Conducted Emissions Test Setup



PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No. EED32L00034601 for EUT external and internal photos.

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

