

# Qbic technology Co., Ltd

# **TEST REPORT**

#### **SCOPE OF WORK**

FCC TESTING—TD-1050, TD-10XXX (THE LETTERS "X" IN THE MODEL NO. CAN BE 0 TO 9, A TO Z OR BLANK, FOR MARKETING USE ONLY)

#### **REPORT NUMBER**

171020021SZN-002

#### **ISSUE DATE**

[REVISED DATE]

24 November 2017

[-----]

#### **PAGES**

39

#### **DOCUMENT CONTROL NUMBER**

FCC ID 225\_b © 2017 INTERTEK





1F/2F, Building B, QiaoAn Scientific Technology Park, Shangkeng Community, Guanhu Subdistrict, Longhua District, Shenzhen, P.R. China

Tel: (86 755) 8601 6288 Fax: (86 755) 8601 6751 <u>www.intertek.com</u>

Intertek Report No.: 171020021SZN-002

## **Qbic technology Co., Ltd**

Application For Certification

FCC ID: 2AF82-TD1050H

PANEL PC

Model: TD-1050

Additional Model:TD-10XXX (The letters "X" in the model No. can be 0 to 9, A to Z or blank, for marketing use only)

#### **NFC Transceiver**

Report No.: 171020021SZN-002

We hereby certify that the sample of the above item is considered to comply with the requirements of FCC Part 15, Subpart C for Intentional Radiator, mention 47 CFR [10-1-16]

| Prepared and Checked by: | Approved by:            |
|--------------------------|-------------------------|
| Oinn an Fila             |                         |
| Sign on File             |                         |
| Surel Guo                | Kidd Yang               |
| Engineer                 | Senior Project Engineer |
| -                        | Date: 24 November 2017  |

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

#### Intertek Testing Service Shenzhen Ltd. Longhua Branch

1F/2F, Building B, QiaoAn Scientific Technology Park, Shangkeng Community, Guanhu Subdistrict, Longhua District, Shenzhen, P.R. China. Tel: (86 755) 8601 6288 Fax: (86 755) 8601 6751

Version: 01-November-2017 Page: 1 of 39 FCC ID 225\_b



#### **LIST OF EXHIBITS**

#### INTRODUCTION

EXHIBIT 1: Summary of Tests

EXHIBIT 2: General Description

EXHIBIT 3: System Test Configuration

EXHIBIT 4: Measurement Results

EXHIBIT 5: Equipment Photographs

EXHIBIT 6: Product Labeling

EXHIBIT 7: Technical Specifications

EXHIBIT 8: Instruction Manual

EXHIBIT 9: Confidentiality Request

EXHIBIT 10: Miscellaneous Information

EXHIBIT 11: Test Equipment List

Version: 01-November-2017 Page: 2 of 39 FCC ID 225\_b



### **MEASUREMENT/TECHNICAL REPORT**

# **PANEL PC**

Model: TD-1050

FCC ID: 2AF82-TD1050H

| This report concerns (check one) Original Grant X Class II Change                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Equipment Type: DXX - Part 15 Low Power Communication Device Transmitter                                                                                                                                                                               |
|                                                                                                                                                                                                                                                        |
| Deferred grant requested per 47 CFR 0.457(d)(1)(ii)? Yes NoX                                                                                                                                                                                           |
| If yes, defer until:                                                                                                                                                                                                                                   |
| date                                                                                                                                                                                                                                                   |
| Company Name agrees to notify the Commission by: date                                                                                                                                                                                                  |
| of the intended date of announcement of the product so that the grant can be issued on that date.  Transition Rules Request per 15.37?  Yes NoX                                                                                                        |
| If no, assumed Part 15, Subpart C for intentional radiator - the new 47 CFR [10-01-16] Edition] provision.                                                                                                                                             |
| Report prepared by:                                                                                                                                                                                                                                    |
| Surel Guo Intertek Testing Services Shenzhen Ltd. Longhua Branch 1F/2F, Building B, QiaoAn Scientific Technology Park, Shangkeng Community, Guanhu Subdistrict, Longhua District, Shenzhen, P.R. China Tel: (86 755) 8601 6288 Fax: (86 755) 8601 6751 |

Version: 01-November-2017 Page: 3 of 39 FCC ID 225\_b



## **Table of Contents**

| 1.0                                    | Summary of Test results                                                                                                                                                             | 7                    |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 2.0                                    | General Description                                                                                                                                                                 | 9                    |
| 2.1<br>2.2<br>2.3<br>2.4               | Product Description Related Submittal(s) Grants Test Methodology Test Facility                                                                                                      | 9<br>9               |
| 3.0                                    | System Test Configuration                                                                                                                                                           | 11                   |
| 3.1<br>3.2<br>3.3<br>3.4<br>3.5<br>3.6 | Justification  EUT Exercising Software  Special Accessories  Measurement Uncertainty  Equipment Modification  Support Equipment List and Description                                | 11<br>11<br>11<br>11 |
| 4.0                                    | Measurement Results                                                                                                                                                                 | 14                   |
| 4.1<br>4.2<br>4.3<br>4.4<br>4.5<br>4.6 | Field Strength Calculation Radiated Emission Configuration Photograph Radiated Spurious Emission Conducted Emission Configuration Photograph Conducted Emission Frequency Stability | 15<br>15<br>18<br>18 |
| 5.0                                    | Equipment Photographs                                                                                                                                                               | 25                   |
| 6.0                                    | Product Labelling                                                                                                                                                                   | 27                   |
| 7.0                                    | Technical Specifications                                                                                                                                                            | 29                   |
| 8.0                                    | Instruction Manual                                                                                                                                                                  | 31                   |
| 9.0                                    | Confidentiality Request                                                                                                                                                             | 33                   |
| 9.1<br>9.2<br>9.2                      | Measured Bandwidth Emissions Test Procedures Emissions Test Procedures (cont'd)                                                                                                     | 34                   |
| 10.0                                   | Confidentiality Request                                                                                                                                                             | 37                   |
| 11.0                                   | Test Equipment List                                                                                                                                                                 | 39                   |



# List of attached file

| Exhibit type          | File Description           | Filename             |
|-----------------------|----------------------------|----------------------|
| Test Report           | Test Report                | report.pdf           |
| Test Setup Photo      | Conducted Emission         | conducted photos.pdf |
| Test Setup Photo      | Radiated Emission          | radiated photos.pdf  |
| External Photo        | External Photo             | external photos.pdf  |
| Internal Photo        | Internal Photo             | internal photos.pdf  |
| Block Diagram         | Block Diagram              | block.pdf            |
| Schematics            | Circuit Diagram            | circuit.pdf          |
| Operation Description | Technical Description      | descri.pdf           |
| ID Label/Location     | Label Artwork and Location | label.pdf            |
| User Manual           | User Manual                | manual.pdf           |
| Cover Letter          | Confidentiality Letter     | request.pdf          |
| Cover Letter          | Letter of Agency           | agency.pdf           |

Version: 01-November-2017 Page: 5 of 39 FCC ID 225\_b



# EXHIBIT 1 SUMMARY OF TEST RESULTS

Version: 01-November-2017 Page: 6 of 39 FCC ID 225\_b



TEST REPORT Intertek Report No.: 171020021SZN-002

#### 1.0 **Summary of Test results**

# **PANEL PC**

Model: TD-1050

FCC ID: 2AF82-TD1050H

| TEST SPECIFICATION                                           | REFERENCE                     | RESULTS |
|--------------------------------------------------------------|-------------------------------|---------|
| Maximum Peak Output Power                                    | 15.247(b), (c) / RSS-210 A8.4 | N/A     |
| Hopping Channel Carrier Frequencies Separation               | 15.247(e) / RSS-210 A8.1      | N/A     |
| 20dB Bandwidth of the Hopping Channel                        | 15.247(a) / RSS-210 A8.1      | N/A     |
| Number of Hopping Frequencies                                | 15.247(e) / RSS-210 A8.1      | N/A     |
| Average Time of Occupancy of Hopping Frequency               | 15.247(e) / RSS-210 A8.1      | N/A     |
| Anteann Conducted Spurious Emissions                         | 15.247(d) / RSS-210 A8.5      | N/A     |
| Radiated Spurious Emissions                                  | 15.247(d) / RSS-210 A8.5      | N/A     |
| RF Exposure Compliance                                       | 15.247(i) / RSS-Gen 5.5       | N/A     |
| Transmitter Power Line Conducted Emissions                   | 15.207 / RSS-Gen 7.2.2        | Pass    |
| Transmitter Field Strength                                   | 15.225 / RSS-210 A2.6         | Pass    |
| Transmitter Field Strength                                   | 15.227 / RSS-310 3.8          | N/A     |
| Transmitter Field Strength                                   | 15.229 / RSS-210 A2.7         | N/A     |
| Transmitter Field Strength, Bandwidth and Timing Requirement | 15.231(a) / RSS-210 A1.1.1    | N/A     |
| Transmitter Field Strength, Bandwidth and Timing Requirement | 15.231(e) / RSS-210 A1.1.5    | N/A     |
| Transmitter Field Strength and Bandwidth Requirement         | 15.239 / RSS-210 A2.8         | N/A     |
| Transmitter Field Strength and Bandwidth Requirement         | 15.249 / RSS-210 A2.9         | N/A     |
| Transmitter Field Strength and Bandwidth Requirement         | 15.235 / RSS-310 3.9          | N/A     |
| Receiver / Digital Device Radiated Eissions                  | 15.109 / ICES-003             | N/A     |
| Digital Device Conducted Emissions                           | 15.107 / ICES-003             | N/A     |

Note: 1. The EUT uses integral antennas which in accordance to section 15.203, is considered sufficient to comply with the pervisions of this section.

Version: 01-November-2017 Page: 7 of 39 FCC ID 225\_b

<sup>2.</sup> Pursuant to FCC part 15 Section 15.215(c), the 20 dB bandwidth of the emission was contained within the frequency band designated (13.110–14.010 MHz) which the EUT operated. The effects, if any, from frequency sweeping, frequency hopping, other modulation techniques and frequency stability over excepted variations in temperature and supply voltage were considered.



# EXHIBIT 2 GENERAL DESCRIPTION

Version: 01-November-2017 Page: 8 of 39 FCC ID 225\_b



#### 2.0 General Description

#### 2.1 Product Description

The Equipment Under Test (EUT) is a PANEL PC with NFC function operating at 13.56 MHz. The EUT is powered by AC/DC adaptor through AC120V/50Hz or POE. For more detailed features description, please refer to the user's manual.

Intertek Report No.: 171020021SZN-002

Type of Modulation: ASK

Antenna Type: Integral Antenna

The Models: TD-10XXX (The letters "X" in the model No. can be 0 to 9, A to Z or blank, for marketing use only) are the same as the Model: TD-1050 in hardware and electronic aspect. The difference in model number and appearance serve as marketing strategy.

For electronic filing, the brief circuit description is saved with filename: descri.pdf.

#### 2.2 Related Submittal(s) Grants

This is an application for certification of: NFC transmitter portion Remaining portions are subject to the following procedures:

- 1. Receiver portion of NFC: exempt from technical requirement of this Part.
- 2. Wifi function subject to report: 171020021SZN-001.
- 3. RFID function subject to report: 171020021SZN-003.
- 4. Other Digital Function: Subject to FCC Part 15B DoC.

#### 2.3 Test Methodology

Both AC mains line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.10 (2013). Radiated emission measurement was performed in Semi-anechoic chamber and conducted emission measurement was performed in shield room. For radiated emission measurement, preliminary scans were performed in the semi-anechoic chamber only to determine the worst case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "Justification Section" of this Application. All other measurements were made in accordance with the procedures in part 2 of CFR 47.

#### 2.4 Test Facility

The Semi-Anechoic chamber and shield room used to collect the radiated data and conducted data are Intertek **Testing Services Shenzhen Ltd. Longhua Branch** and located at 1F/2F, Building B, QiaoAn Scientific Technology Park, Shangkeng Community, Guanhu Subdistrict, Longhua District, Shenzhen, P.R. China. This test facility and site measurement data have been fully placed on file with File Number: CN1188.

Version: 01-November-2017 Page: 9 of 39 FCC ID 225\_b



# EXHIBIT 3 SYSTEM TEST CONFIGURATION

Version: 01-November-2017 Page: 10 of 39 FCC ID 225\_b



#### 3.0 System Test Configuration

#### 3.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it), and in the confines as outlined in ANSI C63.10 (2013).

Intertek Report No.: 171020021SZN-002

The EUT was powered by AC/DC adaptor through AC120V/50Hz or POE during the test. Only the worst case data was shown in the report.

For maximizing emissions below 30 MHz, the EUT was rotated through 360°, the centre of the loop antenna was placed 1 meter above the ground, and the antenna polarization was changed. For maximizing emission at and above 30 MHz, the EUT was rotated through 360°, the antenna height was varied from 1 meter to 4 meters above the ground plane, and the antenna polarization was changed. This step by step procedure for maximizing emissions led to the data report in Exhibit 3.0.

The rear of unit shall be flushed with the rear of the table.

The equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). The EUT was mounted to a plastic stand if necessary and placed on the wooden turntable, which enabled the engineer to maximize emissions through its placement in the three orthogonal axes.

#### 3.2 EUT Exercising Software

The EUT exercise program (provided by client) used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use. The worst case configuration is used in all specified testing.

#### 3.3 Special Accessories

There is no special accessories necessary for compliance of this product.

#### 3.4 Measurement Uncertainty

When determining of the test conclusion, the Measurement Uncertainty of test has been considered.

#### 3.5 Equipment Modification

Any modifications installed previous to testing by Qbic technology Co., Ltd will be incorporated in each production model sold / leased in the United States.

No modifications were installed by Intertek Testing Services Shenzhen Ltd. Longhua Branch.

Version: 01-November-2017 Page: 11 of 39 FCC ID 225\_b



# 3.6 Support Equipment List and Description

This product was tested in the following configuration:

### Refer List:

| Description             | Manufacturer | Detail                                                                                              |
|-------------------------|--------------|-----------------------------------------------------------------------------------------------------|
| Adapter                 | KUANTECH     | Model: KSASB0241200150D5<br>Input: AC 100-240V, 50/60Hz, 0.6A<br>Output: DC 12V, 1.5A for main unit |
| Network cable<br>(RJ45) | N/A          | unshielded, Length 500cm                                                                            |
| RJ45 Terminal           | N/A          | N/A                                                                                                 |
| USB Cable               | N/A          | unshielded, Length 150cm                                                                            |
| Earphone                | N/A          | unshielded, Length 150cm                                                                            |
| USB Disk                | SanDisk      | 4GB                                                                                                 |
| USB Disk                | SanDisk      | 4GB                                                                                                 |
| Mini SD Card            | SanDisk      | 1GB                                                                                                 |
| Laptop                  | HP           | Model: 430                                                                                          |
| Hard Disk               | Smart.drive  | HD-001                                                                                              |
| USB Cable               | Smart.drive  | unshielded, Length 155cm                                                                            |

Version: 01-November-2017 Page: 12 of 39 FCC ID 225\_b



# EXHIBIT 4

**MEASUREMENT RESULTS** 

Version: 01-November-2017 Page: 13 of 39 FCC ID 225\_b



#### 4.0 Measurement Results

Data is included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included. (The simultaneous transmission was considered).

Intertek Report No.: 171020021SZN-002

#### 4.1 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any), Average Factor (optional) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG - AV

where  $FS = Field Strength in dB\mu V/m$ 

RA = Receiver Amplitude (including preamplifier) in dBµV

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB AV = Average Factor in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows:

FS = RR + LF

where  $FS = Field Strength in dB\mu V/m$ 

RR = RA - AG - AV in  $dB\mu V$ 

LF = CF + AF in dB

Assume a receiver reading of 52.0 dB $\mu$ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB are added. The amplifier gain of 29 dB and average factor of 5 dB are subtracted, giving a field strength of 27 dB $\mu$ V/m. This value in dB $\mu$ V/m was converted to its corresponding level in  $\mu$ V/m.

 $RA = 52.0 dB\mu V/m$ 

 $AF = 7.4 \text{ dB} \qquad \qquad RR = 18.0 \text{ dB}\mu\text{V}$   $CF = 1.6 \text{ dB} \qquad \qquad LF = 9.0 \text{ dB}$ 

AG = 29.0 dB

AV = 5.0 dBFS = RR + LF

 $FS = 18 + 9 = 27 dB\mu V/m$ 

Level in  $\mu V/m = Common Antilogarithm [(27 dB<math>\mu V/m)/20] = 22.4 \mu V/m$ 

Version: 01-November-2017 Page: 14 of 39 FCC ID 225\_b



TEST REPORT Intertek Report No.: 171020021SZN-002

## 4.2 Radiated Emission Configuration Photograph

For electronic filing, the worst case radiated emission configuration photographs are saved with filename: radiated photos.pdf.

## 4.3 Radiated Spurious Emission

Worst Case Radiated Spurious Emission at 336.035MHz

Judgement: Passed by 3.0dB margin

For the electronic filing, the worst case radiated emission configuration photographs are saved with filename: radiated photos.pdf.

Version: 01-November-2017 Page: 15 of 39 FCC ID 225\_b



Applicant: Qbic technology Co., Ltd

Date of Test: October 30, 2016 Model: TD-1050

Worst Case Operating Mode: Transmitting

#### Radiated Emissions(30MHz - 1000MHz)

| Polarization | Frequency<br>(MHz) | Reading<br>(dBµV) | Pre-<br>Amp<br>Gain<br>(dB) | Antenna<br>Factor<br>(dB) | Net<br>at 3m<br>(dBµV/m) | Limit<br>at 3m<br>(dBµV/m) | Margin<br>(dB) |
|--------------|--------------------|-------------------|-----------------------------|---------------------------|--------------------------|----------------------------|----------------|
| Horizontal   | 191.999            | 43.5              | 20.0                        | 11.3                      | 34.8                     | 43.5                       | -8.7           |
| Horizontal   | 336.035            | 46.2              | 20.0                        | 16.8                      | 43.0                     | 46.0                       | -3.0           |
| Horizontal   | 720.155            | 34.5              | 20.0                        | 24.9                      | 39.4                     | 46.0                       | -6.6           |
| Vertical     | 30.485             | 38.0              | 20.0                        | 10.0                      | 28.0                     | 40.0                       | -12.0          |
| Vertical     | 191.990            | 37.5              | 20.0                        | 11.3                      | 28.8                     | 43.5                       | -14.7          |
| Vertical     | 624.125            | 28.7              | 20.0                        | 24.1                      | 32.8                     | 46.0                       | -13.2          |

NOTES: 1. Quasi-Peak detector is used for frequency below 1GHz.

- All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. All emissions are below the QP limit.

Version: 01-November-2017 Page: 16 of 39 FCC ID 225\_b



Applicant: Qbic technology Co., Ltd

Date of Test: October 30, 2016 Model: TD-1050

Operating Mode: Transmitting

#### Fundamental & Spurious Emission Below 30MHz

| Polarization | Frequency<br>(MHz) | Reading<br>(dBµV) | Pre-<br>Amp<br>Gain<br>(dB) | Antenna<br>Factor<br>(dB) | Net<br>at 3m<br>(dBµV/m) | Peak<br>Limit<br>at 3m<br>(dBµV/m) | Margin<br>(dB) |
|--------------|--------------------|-------------------|-----------------------------|---------------------------|--------------------------|------------------------------------|----------------|
| Vertical     | 13.560             | 68.4              | 0.0                         | 10.8                      | 79.2                     | 124.0                              | -44.8          |
| Vertical     | 27.120             | 23.2              | 0.0                         | 9.5                       | 32.7                     | 69.5                               | -36.8          |

Notes: 1. Peak Detector Data unless otherwise stated.

- 2. All measurements were made at 3 meter. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Loop antenna is used for the emission under 30MHz.
- Limits at 3 meter for radiated emissions below 30 MHz is converted from the Limits at 30 meter according to the Formula: Limits at 3 meter (dBμV/m) = Limits at 30 meter (dBμV/m) + 40 log(30/3)
- 6. Worst case band edge emission is 41.9 dBμV/m (79.2- 37.3) which is below the limit.

Version: 01-November-2017 Page: 17 of 39 FCC ID 225\_b



### 4.4 Conducted Emission Configuration Photograph

For electronic filing, the worst case radiated emission configuration photographs are saved with filename: conducted photos.pdf.

#### 4.5 Conducted Emission

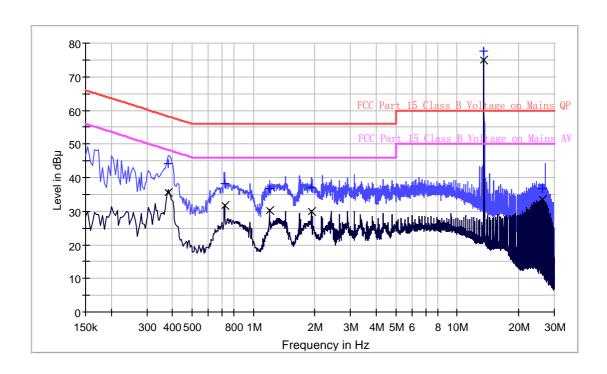
Worst Case Conducted Configuration at 0.15MHz

Judgement: Passed by 12.4dB margin

Version: 01-November-2017 Page: 18 of 39 FCC ID 225\_b



Applicant: Qbic technology Co., Ltd Date of Test: October 30, 2016


Worst Case Operating Mode: Transmitting

Phase: Live

Model: TD-1050

# **Graphic / Data Table**

# Conducted Emissions Pursuant to FCC 15.207: Emissions Requirement



# **Limit and Margin QP**

| Frequency (MHz) | QuasiPeak<br>(dB¦ÌV) | Bandwidth<br>(kHz) | Line | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dB¦ÌV) |
|-----------------|----------------------|--------------------|------|---------------|----------------|------------------|
| 0.382000        | 44.1                 | 9.000              | L1   | 9.7           | 14.1           | 58.2             |
| 0.722000        | 38.3                 | 9.000              | L1   | 9.7           | 17.7           | 56.0             |
| 1.202000        | 36.7                 | 9.000              | L1   | 9.7           | 19.3           | 56.0             |
| 1.922000        | 37.1                 | 9.000              | L1   | 9.7           | 18.9           | 56.0             |
| 13.562000       | 77.7                 | 9.000              | L1   | 10.0          |                |                  |
| 26.170000       | 36.8                 | 9.000              | L1   | 10.7          | 23.2           | 60.0             |

#### **Limit and Margin AV**

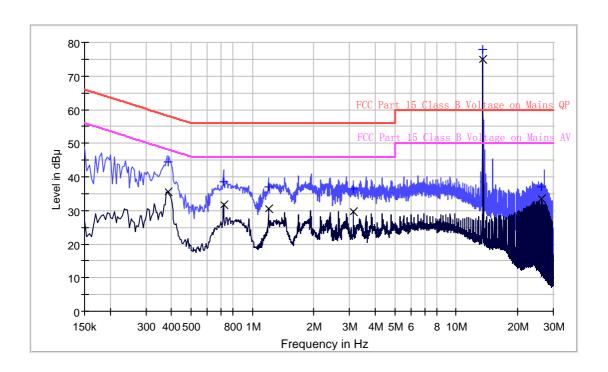
| Frequency (MHz) | Average<br>(dB¦ÌV) | Bandwidth<br>(kHz) | Line | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dB¦ÌV) |  |  |
|-----------------|--------------------|--------------------|------|---------------|----------------|------------------|--|--|
| 0.382000        | 35.6               | 9.000              | L1   | 9.7           | 12.6           | 48.2             |  |  |
| 0.722000        | 31.7               | 9.000              | L1   | 9.7           | 14.3           | 46.0             |  |  |
| 1.202000        | 30.3               | 9.000              | L1   | 9.7           | 15.7           | 46.0             |  |  |
| 1.922000        | 30.0               | 9.000              | L1   | 9.7           | 16.0           | 46.0             |  |  |
| 13.562000       | 74.9               | 9.000              | L1   | 10.0          |                |                  |  |  |
| 26.170000       | 33.4               | 9.000              | L1   | 10.7          | 16.6           | 50.0             |  |  |

Remark: 13.562MHz represents as the fundamental emission.

Version: 01-November-2017 Page: 19 of 39 FCC ID 225\_b



Applicant: Qbic technology Co., Ltd Date of Test: October 30, 2016


Worst Case Operating Mode: Transmitting

Phase: N

Model: TD-1050

# **Graphic / Data Table**

# Conducted Emissions Pursuant to FCC 15.207: Emissions Requirement



# **Limit and Margin QP**

| Frequency<br>(MHz) | QuasiPeak<br>(dB¦ÌV) | Bandwidth<br>(kHz) | Line | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dB¦ÌV) |
|--------------------|----------------------|--------------------|------|---------------|----------------|------------------|
| 0.386000           | 44.4                 | 9.000              | N    | 9.7           | 13.7           | 58.1             |
| 0.722000           | 38.4                 | 9.000              | N    | 9.7           | 17.6           | 56.0             |
| 1.202000           | 36.9                 | 9.000              | N    | 9.7           | 19.1           | 56.0             |
| 3.122000           | 36.5                 | 9.000              | N    | 9.8           | 19.5           | 56.0             |
| 13.562000          | 77.9                 | 9.000              | N    | 10.0          |                |                  |
| 26.170000          | 37.0                 | 9.000              | N    | 10.7          | 23.0           | 60.0             |

# **Limit and Margin AV**

| Frequency | Average | Bandwidth | Line | Corr. | Margin | Limit   |
|-----------|---------|-----------|------|-------|--------|---------|
| (MHz)     | (dB¦ÌV) | (kHz)     |      | (dB)  | (dB)   | (dB¦ÌV) |
| 0.386000  | 35.4    | 9.000     | N    | 9.7   | 12.7   | 48.1    |
| 0.722000  | 31.7    | 9.000     | N    | 9.7   | 14.3   | 46.0    |
| 1.202000  | 30.4    | 9.000     | N    | 9.7   | 15.6   | 46.0    |
| 3.122000  | 29.7    | 9.000     | N    | 9.8   | 16.3   | 46.0    |
| 13.562000 | 75.1    | 9.000     | N    | 10.0  |        |         |
| 26.170000 | 33.5    | 9.000     | N    | 10.7  | 16.5   | 50.0    |

Remark: 13.562MHz represents as the fundamental emission.

Version: 01-November-2017 Page: 20 of 39 FCC ID 225\_b



Applicant: Qbic technology Co., Ltd

Date of Test: October 30, 2016 Model: TD-1050 Worst Case Operating Mode: Transmitting with a dummy load

Phase: Live

# **Graphic / Data Table**

# Conducted Emissions Pursuant to FCC 15.207: Emissions Requirement



# **Limit and Margin QP**

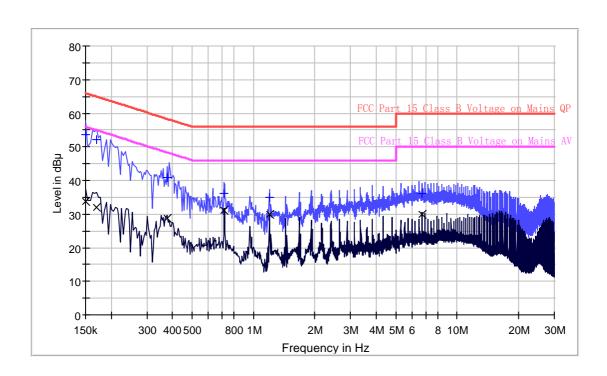
| Frequency<br>(MHz) | QuasiPeak<br>(dB¦ÌV) | Bandwidth<br>(kHz) | Line | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dB¦ÌV) |
|--------------------|----------------------|--------------------|------|---------------|----------------|------------------|
| 0.154000           | 53.2                 | 9.000              | L1   | 9.6           | 12.6           | 65.8             |
| 0.374000           | 40.0                 | 9.000              | L1   | 9.7           | 18.4           | 58.4             |
| 0.722000           | 36.5                 | 9.000              | L1   | 9.7           | 19.5           | 56.0             |
| 1.202000           | 35.2                 | 9.000              | L1   | 9.7           | 20.8           | 56.0             |
| 3.842000           | 35.7                 | 9.000              | L1   | 9.8           | 20.3           | 56.0             |
| 16.086000          | 34.8                 | 9.000              | L1   | 10.1          | 25.2           | 60.0             |

### **Limit and Margin AV**

|                    | <u>.</u>           |                    |      |               |                |                  |
|--------------------|--------------------|--------------------|------|---------------|----------------|------------------|
| Frequency<br>(MHz) | Average<br>(dB¦ÌV) | Bandwidth<br>(kHz) | Line | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dB¦ÌV) |
| 0.154000           | 33.0               | 9.000              | L1   | 9.6           | 22.8           | 55.8             |
| 0.374000           | 29.2               | 9.000              | L1   | 9.7           | 19.2           | 48.4             |
| 0.722000           | 31.6               | 9.000              | L1   | 9.7           | 14.4           | 46.0             |
| 1.202000           | 30.3               | 9.000              | L1   | 9.7           | 15.7           | 46.0             |
| 3.842000           | 29.7               | 9.000              | L1   | 9.8           | 16.3           | 46.0             |
| 16.086000          | 30.5               | 9.000              | L1   | 10.1          | 19.5           | 50.0             |

Version: 01-November-2017 Page: 21 of 39 FCC ID 225\_b




Applicant: Qbic technology Co., Ltd

Date of Test: October 30, 2016 Model: TD-1050 Worst Case Operating Mode: Transmitting with a dummy load

Phase: N

# **Graphic / Data Table**

# Conducted Emissions Pursuant to FCC 15.207: Emissions Requirement



**Limit and Margin QP** 

| Frequency<br>(MHz) | QuasiPeak<br>(dB¦ÌV) | Bandwidth<br>(kHz) | Line | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dB¦ÌV) |
|--------------------|----------------------|--------------------|------|---------------|----------------|------------------|
| 0.150000           | 53.6                 | 9.000              | N    | 9.6           | 12.4           | 66.0             |
| 0.170000           | 52.0                 | 9.000              | N    | 9.6           | 13.0           | 65.0             |
| 0.378000           | 40.8                 | 9.000              | N    | 9.7           | 17.5           | 58.3             |
| 0.718000           | 36.1                 | 9.000              | N    | 9.7           | 19.9           | 56.0             |
| 1.202000           | 35.0                 | 9.000              | N    | 9.7           | 21.0           | 56.0             |
| 6.722000           | 36.1                 | 9.000              | N    | 9.8           | 23.9           | 60.0             |

**Limit and Margin AV** 

| requency | Average                                                           | Bandwidth                                                                                                                                                                             | Line                                                                                                                                                                                                                                                                      | Corr.                                                                                                                                                                                                                                                                                                                       | Margin                                                                                                                                                                                                                                                                                                                                                                                               | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (MHz)    | (dB¦ÌV)                                                           | (kHz)                                                                                                                                                                                 |                                                                                                                                                                                                                                                                           | (dB)                                                                                                                                                                                                                                                                                                                        | (dB)                                                                                                                                                                                                                                                                                                                                                                                                 | (dB¦ÌV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.150000 | 33.7                                                              | 9.000                                                                                                                                                                                 | N                                                                                                                                                                                                                                                                         | 9.6                                                                                                                                                                                                                                                                                                                         | 22.3                                                                                                                                                                                                                                                                                                                                                                                                 | 56.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.170000 | 32.1                                                              | 9.000                                                                                                                                                                                 | N                                                                                                                                                                                                                                                                         | 9.6                                                                                                                                                                                                                                                                                                                         | 22.9                                                                                                                                                                                                                                                                                                                                                                                                 | 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.378000 | 28.8                                                              | 9.000                                                                                                                                                                                 | N                                                                                                                                                                                                                                                                         | 9.7                                                                                                                                                                                                                                                                                                                         | 19.5                                                                                                                                                                                                                                                                                                                                                                                                 | 48.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.718000 | 31.1                                                              | 9.000                                                                                                                                                                                 | N                                                                                                                                                                                                                                                                         | 9.7                                                                                                                                                                                                                                                                                                                         | 14.9                                                                                                                                                                                                                                                                                                                                                                                                 | 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.202000 | 30.1                                                              | 9.000                                                                                                                                                                                 | N                                                                                                                                                                                                                                                                         | 9.7                                                                                                                                                                                                                                                                                                                         | 15.9                                                                                                                                                                                                                                                                                                                                                                                                 | 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6.722000 | 29.9                                                              | 9.000                                                                                                                                                                                 | N                                                                                                                                                                                                                                                                         | 9.8                                                                                                                                                                                                                                                                                                                         | 20.1                                                                                                                                                                                                                                                                                                                                                                                                 | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | (MHz)<br>0.150000<br>0.170000<br>0.378000<br>0.718000<br>1.202000 | (MHz)         (dBilV)           0.150000         33.7           0.170000         32.1           0.378000         28.8           0.718000         31.1           1.202000         30.1 | (MHz)         (dBilV)         (kHz)           0.150000         33.7         9.000           0.170000         32.1         9.000           0.378000         28.8         9.000           0.718000         31.1         9.000           1.202000         30.1         9.000 | (MHz)         (dBilV)         (kHz)           0.150000         33.7         9.000         N           0.170000         32.1         9.000         N           0.378000         28.8         9.000         N           0.718000         31.1         9.000         N           1.202000         30.1         9.000         N | (MHz)         (dBilV)         (kHz)         (dB)           0.150000         33.7         9.000         N         9.6           0.170000         32.1         9.000         N         9.6           0.378000         28.8         9.000         N         9.7           0.718000         31.1         9.000         N         9.7           1.202000         30.1         9.000         N         9.7 | (MHz)         (dBilV)         (kHz)         (dB)         (dB)           0.150000         33.7         9.000         N         9.6         22.3           0.170000         32.1         9.000         N         9.6         22.9           0.378000         28.8         9.000         N         9.7         19.5           0.718000         31.1         9.000         N         9.7         14.9           1.202000         30.1         9.000         N         9.7         15.9 |

Version: 01-November-2017 Page: 22 of 39 FCC ID 225\_b



#### 4.6 Frequency Stability

Procedure: 15.225(e), Part 2.1055.

If required, the operating or transmitting frequency of an intentional radiator should be measured in accordance with the following procedure to ensure that the device operates outside certain precluded frequency bands and within the frequency range. No modulation needs to be supplied to the intentional radiator during these tests, unless modulation is required to produce an output, e.g., single-sideband suppressed carrier transmitters.

Intertek Report No.: 171020021SZN-002

The frequency stability of the transmitter is measured by:

- a) Temperature: The temperature is varied from -20°C to + 50°C using an environmental chamber.
- b) for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20°C.

The frequency tolerance of the carrier signal shall be maintained within +/-0.01% of the operating frequency.

#### Measurement Result:

| Voltage<br>(%) | Power  | Temperature (°C) | Frequency<br>(MHz) | Limit     | Result |
|----------------|--------|------------------|--------------------|-----------|--------|
|                |        | -20              | 13.559634          |           | Pass   |
|                |        | -10              | 13.559628          |           | Pass   |
|                |        | 0                | 13.559631          |           | Pass   |
| 100   120Vac   | 120Vac | 10               | 13.559752          | ±0.01%    | Pass   |
|                |        | 20               | 13.559914          | (±1356Hz) | Pass   |
|                |        | 30               | 13.560024          |           | Pass   |
|                |        | 40               | 13.560030          |           | Pass   |
|                |        | 50               | 13.560028          |           | Pass   |

| Temperature (°C) | Power  | Voltage<br>(%) | Frequency<br>(MHz) | Limit               | Result |
|------------------|--------|----------------|--------------------|---------------------|--------|
|                  |        | 85             | 13.560021          |                     | Pass   |
|                  |        | 90             | 13.559939          |                     | Pass   |
| 20               |        | 95             | 13.559950          | ±0.01%<br>(±1356Hz) | Pass   |
|                  | 120Vac | 100            | 13.560010          |                     | Pass   |
|                  |        | 105            | 13.559993          |                     | Pass   |
|                  |        | 110            | 13.560017          |                     | Pass   |
|                  |        | 115            | 13.559994          |                     | Pass   |

Note: The EUT is supplied by AC/DC adaptor through AC 120V/60Hz.

Version: 01-November-2017 Page: 23 of 39 FCC ID 225\_b



# EXHIBIT 5 EQUIPMENT PHOTOGRAPHS

Version: 01-November-2017 Page: 24 of 39 FCC ID 225\_b



### 5.0 **Equipment Photographs**

For electronic filing, the photographs are saved with filename: external photos.pdf & internal photos.pdf.

Version: 01-November-2017 Page: 25 of 39 FCC ID 225\_b



# **EXHIBIT 6**

# **PRODUCT LABELLING**

Version: 01-November-2017 Page: 26 of 39 FCC ID 225\_b



### 6.0 Product Labeling

For electronic filing, the FCC ID label artwork and location is saved with filename: label.pdf.

Version: 01-November-2017 Page: 27 of 39 FCC ID 225\_b



# EXHIBIT 7 TECHNICAL SPECIFICATIONS

Version: 01-November-2017 Page: 28 of 39 FCC ID 225\_b



### 7.0 <u>Technical Specifications</u>

For electronic filing, the block diagram and circuit diagram are saved with filename: block.pdf and circuit.pdf respectively.

Version: 01-November-2017 Page: 29 of 39 FCC ID 225\_b



# **EXHIBIT 8**

# **INSTRUCTION MANUAL**

Version: 01-November-2017 Page: 30 of 39 FCC ID 225\_b



# 8.0 Instruction Manual

For electronic filing, a preliminary copy of the Instruction Manual is saved with filename: manual.pdf.

Intertek Report No.: 171020021SZN-002

This manual will be provided to the end-user with each unit sold/leased in the United States.

Version: 01-November-2017 Page: 31 of 39 FCC ID 225\_b



## **EXHIBIT 9**

# **MISCELLANEOUS INFORMATION**

Version: 01-November-2017 Page: 32 of 39 FCC ID 225\_b



#### 9.0 Miscellaneous Information

This miscellaneous information includes details of the measured bandwidth.

#### 9.1 Measured Bandwidth

The plot of bandwidth which shows the fundamental emission is confined in the specified band. The emission of the fundamental is 79.2dBuV/m at 3m and it is below the limit of 90.5dBuV/m in the range of (13.410-13.553MHz and 13.567-13.710MHz) and the limit of 80.5dBuV/m in the frequency range of (13.110-13.410MHz and 13.710-14.010MHz). We cannot find any emission higher than the fundamental emission. Therefore, they meet the requirement of Section 15.225(a), (b), (c).

A plot of the worst-case bandwidth as detected in this manner are saved with filename: bw.pdf. And it also shows that the emission is at least 37.3 dB below the carrier level at the band edge (13.110–14.010 MHz). It meets the requirement of Section 15.225 (d).

Pursuant to FCC part 15 Section 15.215(c), the 20dB bandwidth of the emission was contained within the frequency band designated (13.110–14.010 MHz) which the EUT operated. The effects, if any, from frequency sweeping, frequency hopping, other modulation techniques and frequency stability over excepted variations in temperature and supply voltage were considered.

Version: 01-November-2017 Page: 33 of 39 FCC ID 225\_b



#### 9.2 Emissions Test Procedures

The following is a description of the test procedure used by Intertek Testing Services in the measurements of transmitters operating under Part 15, Subpart C rules.

The test set-up and procedures described below are designed to meet the requirements of ANSI C63.10 - 2013.

The transmitting equipment under test (EUT) is placed on a styrene turntable which is four feet in diameter and approximately 0.8 meter in height above the ground plane. During the radiated emissions test, the turntable is rotated and any cables leaving the EUT are manipulated to find the configuration resulting in maximum emissions. The EUT is adjusted through all three orthogonal axes to obtain maximum emission levels. The antenna height and polarization are varied during the testing to search for maximum signal levels.

Detector function for radiated emissions is in peak mode. Detector function for conducted emissions are in QP & AV mode and IFBW setting is 9kHz from the frequency band 150kHz to 30MHz.

The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz up to the 1GHz. For line-conducted emissions, the range scanned is 150kHz to 30MHz.

Version: 01-November-2017 Page: 34 of 39 FCC ID 225\_b



## 9.2 Emissions Test Procedures (cont'd)

The EUT is warmed up for 15 minutes prior to the test.

AC power to the unit is varied from 85% to 115% nominal and variation in the fundamental emission field strength is recorded. If battery powered, a new, fully charged battery is used.

Conducted measurements are made as described in ANSI C63.10 - 2013.

The IF bandwidth used for measurement of radiated signal strength was 10 kHz for emission below 30 MHz and 120 kHz for emission from 30 MHz to 1000 MHz. Where pulsed transmissions of short enough pulse duration warrant, a greater bandwidth is selected according to the recommendations of Hewlett Packard Application Note 150-2. A discussion of whether pulse desensitivity is applicable to this unit is included in this report (See Exhibit 8.2).

Transmitter measurements are normally conducted at a measurement distance of three meters. However, to assure low enough noise floor in the restricted bands, signals are acquired at a distance of one meter or less. All measurements are extrapolated to three meters using inverse scaling, but those measurements taken at a closer distance are so marked.

Version: 01-November-2017 Page: 35 of 39 FCC ID 225\_b



# EXHIBIT 10 CONFIDENTIALITY REQUEST

Version: 01-November-2017 Page: 36 of 39 FCC ID 225\_b



## 10.0 **Confidentiality Request**

For electronic filing, the confidentiality request of the tested EUT is saved with filename: request.pdf.

Version: 01-November-2017 Page: 37 of 39 FCC ID 225\_b



# EXHIBIT 11 TEST EQUIPMENT LIST

Version: 01-November-2017 Page: 38 of 39 FCC ID 225\_b



# 11.0 Test Equipment List

| Equipment No. | Equipment                            | Manufacturer        | Model No.        | Serial No.     | Cal. Date   | Due Date    |
|---------------|--------------------------------------|---------------------|------------------|----------------|-------------|-------------|
| SZ061-12      | BiConiLog<br>Antenna                 | ETS                 | 3142E            | 00166158       | 20-Sep-2017 | 20-Sep-2018 |
| SZ185-01      | EMI Receiver                         | R&S                 | ESCI             | 100547         | 9-Feb-2017  | 9-Feb-2018  |
| SZ061-06      | Active Loop<br>Antenna               | Electro-<br>Metrics | EM-6876          | 217            | 26-May-2017 | 26-May-2018 |
| SZ056-03      | Spectrum<br>Analyzer                 | R&S                 | FSP 30           | 101148         | 1-Jun-2017  | 1-Jun-2018  |
| SZ056-06      | Signal<br>Analyzer                   | R&S                 | FSV 40           | 101101         | 7-Jul-2017  | 7-Jul-2018  |
| SZ181-04      | Preamplifier                         | Agilent             | 8449B            | 3008A024<br>74 | 9-Feb-2017  | 9-Feb-2018  |
| SZ188-01      | Anechoic<br>Chamber                  | ETS                 | RFD-F/A-<br>100  | 4102           | 16-Jan-2017 | 16-Jan-2019 |
| SZ062-02      | RF Cable                             | RADIALL             | RG 213U          | -              | 8-Jul-2017  | 8-Jan-2018  |
| SZ062-05      | RF Cable                             | RADIALL             | 0.04-<br>26.5GHz |                | 16-Sep-2017 | 16-Mar-2018 |
| SZ062-12      | RF Cable                             | RADIALL             | 0.04-<br>26.5GHz |                | 16-Sep-2017 | 16-Mar-2018 |
| SZ067-04      | Notch Filter                         | Micro-Tronics       | BRM50702<br>-02  | -              | 14-Jun-2017 | 14-Jun-2018 |
| SZ185-02      | EMI Test<br>Receiver                 | R&S                 | ESCI             | 100692         | 1-Nov-2016  | 1-Nov-2017  |
| SZ187-01      | Two-Line V-<br>Network               | R&S                 | ENV216           | 100072         | 1-Nov-2016  | 1-Nov-2017  |
| SZ187-02      | Two-Line V-<br>Network               | R&S                 | ENV216           | 100072         | 12-Jul-2017 | 12-Jul-2018 |
| SZ188-03      | Shielding<br>Room                    | ETS                 | RFD-100          | 4100           | 16-Jan-2017 | 16-Jan-2019 |
| SZ016-12      | Temperature<br>& Humidity<br>Chamber | Terchy              | MHK-<br>120NK    | AB0105         | 9-Mar-2017  | 9-Mar-2018  |

Version: 01-November-2017 Page: 39 of 39 FCC ID 225\_b