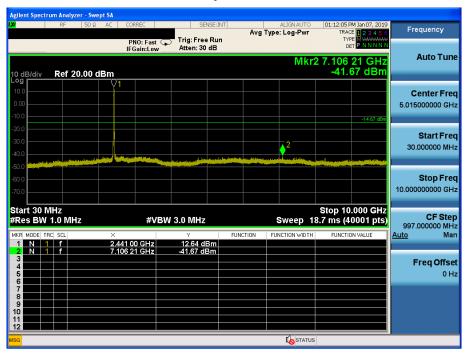
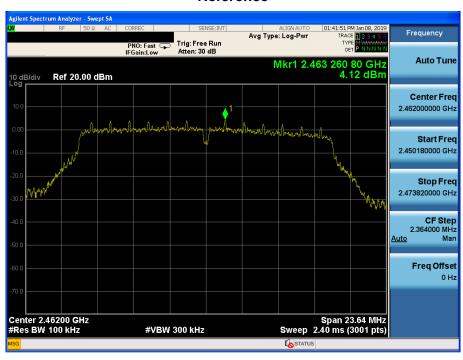
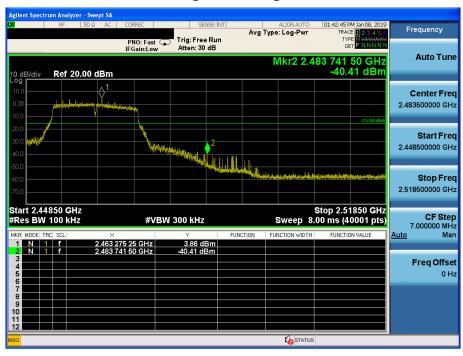


TM 2 & 2437

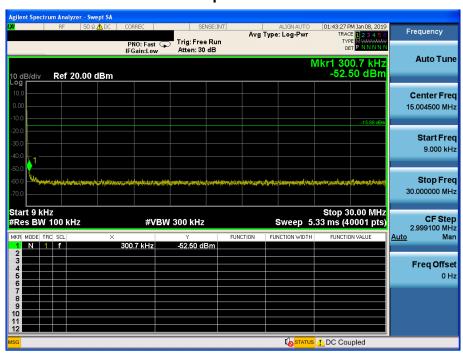

Reference

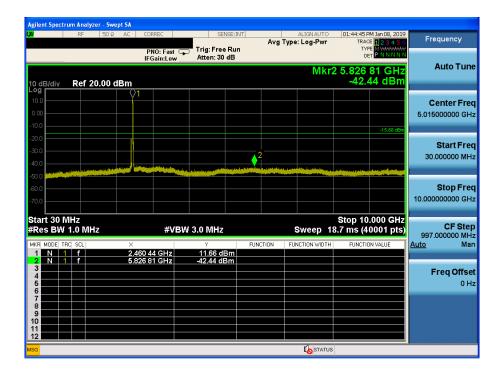
Report No.: DRTFCC1901-0011



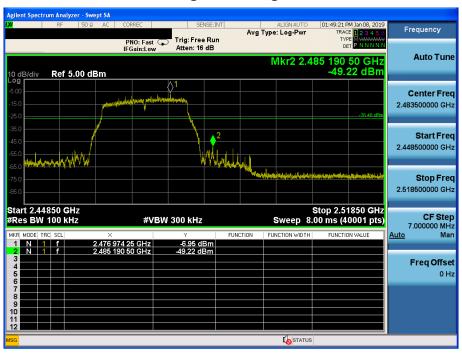


TM 2 & 2462

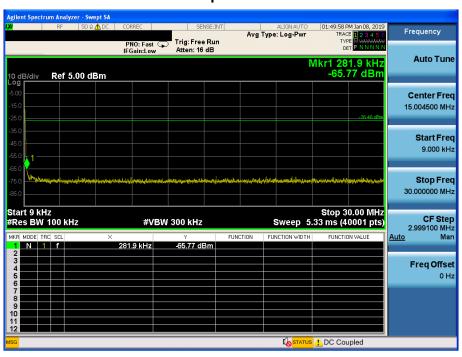

Reference

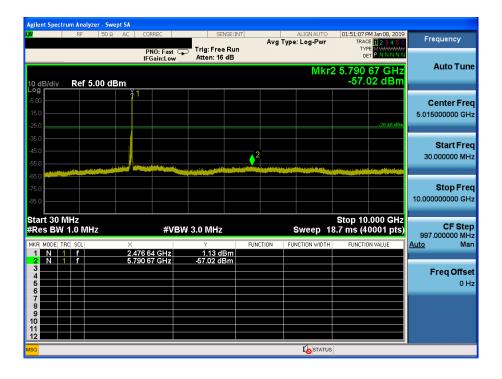


High Band-edge



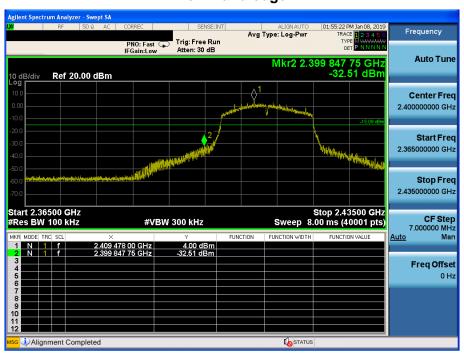
TM 2 & 2472


Reference

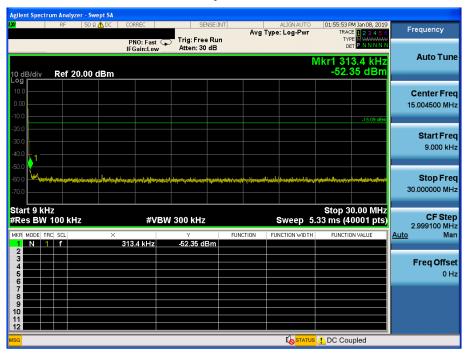


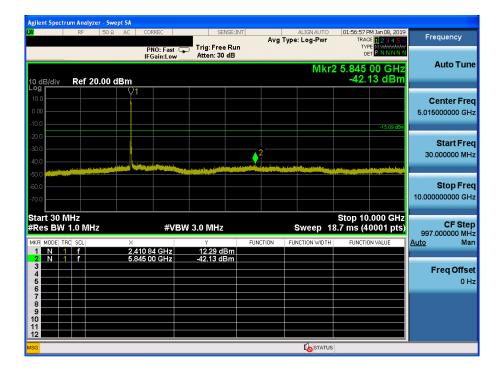
High Band-edge



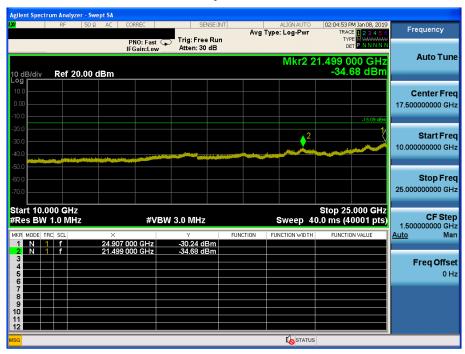


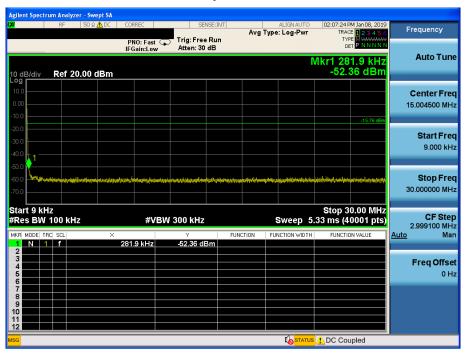
TM 3 & 2412


Reference

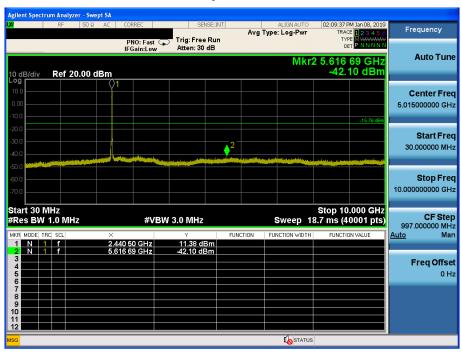


Low Band-edge



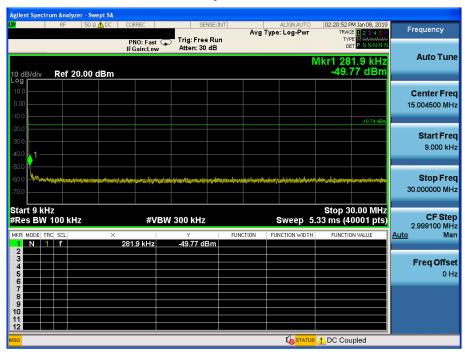


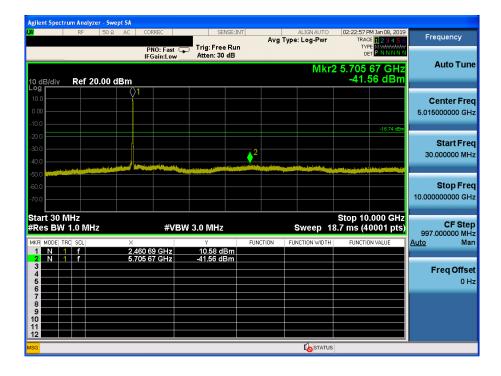
TM 3 & 2437


Report No.: DRTFCC1901-0011

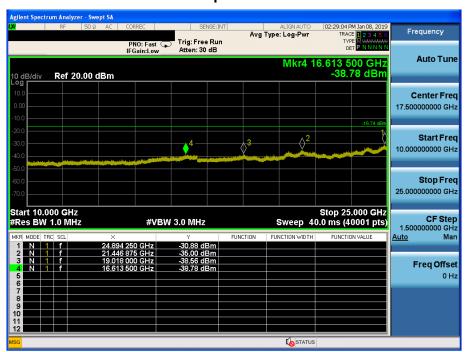
Reference

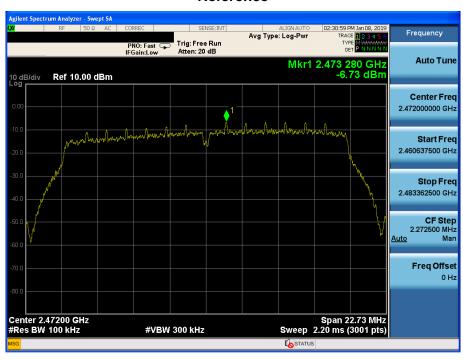
TM 3 & 2462

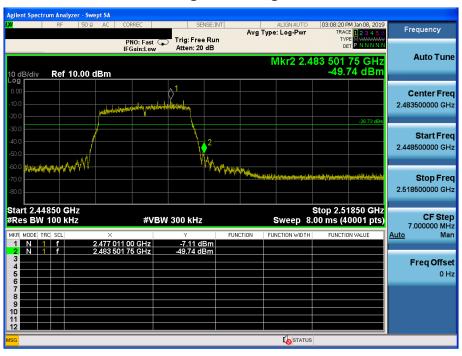

Reference



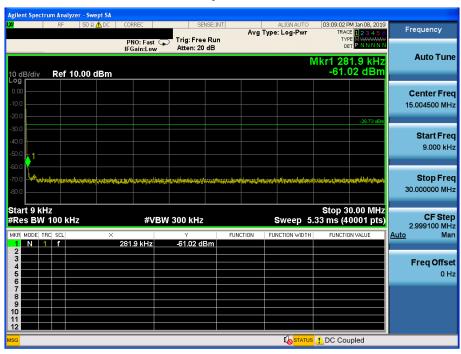
High Band-edge

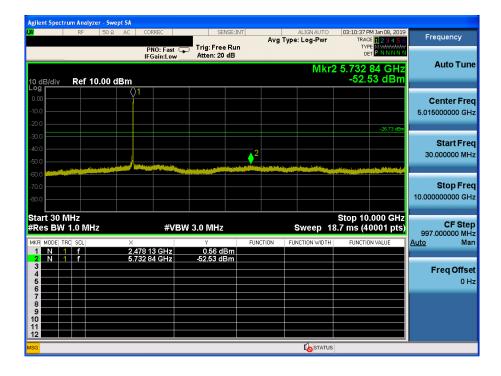





TM 3 & 2472

Report No.: DRTFCC1901-0011


Reference



High Band-edge

8.5 Radiated spurious emissions

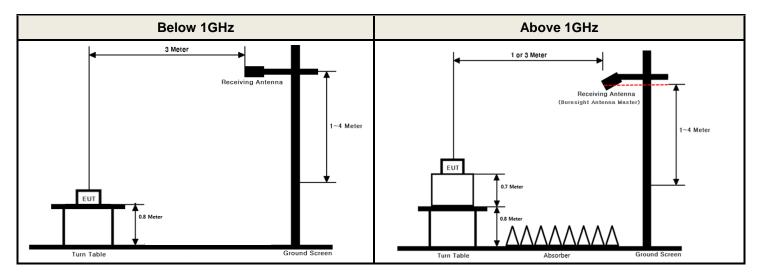
■ Test Requirements and limit, §15.247(d), §15.205, §15.209

In any 100 kHz bandwidth outside the operating frequency band, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 KHz bandwidth within the band. In case the emission fall within the restricted band specified on 15.205(a) and (b), then the 15.209(a) limit in the table below has to be followed.

Report No.: DRTFCC1901-0011

• FCC Part 15.209(a) and (b)

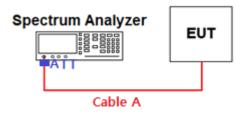
Frequency (MHz)	Limit (uV/m)	Measurement Distance (meter)
0.009 - 0.490	2400/F (kHz)	300
0.490 - 1.705	24000/F (kHz)	30
1.705 – 30.0	30	30
30 ~ 88	100 **	3
88 ~ 216	150 **	3
216 ~ 960	200 **	3
Above 960	500	3


^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

• FCC Part 15.205 (a): Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.41425 ~ 8.41475	108 ~ 121.94	1300 ~ 1427	4.5 ~ 5.15	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1435 ~ 1626.5	5.35 ~ 5.46	15.35 ~ 16.2
2.1735 ~ 2.1905	12.51975 ~ 12.52025	149.9 ~ 150.05	1645.5 ~ 1646.5	7.25 ~ 7.75	17.7 ~ 21.4
4.125 ~ 4.128	12.57675 ~ 12.57725	156.52475 ~	1660 ~ 1710	8.025 ~ 8.5	22.01 ~ 23.12
4.17725 ~ 4.17775	13.36 ~ 13.41	156.52525	1718.8 ~ 1722.2	9.0 ~ 9.2	23.6 ~ 24.0
4.20725 ~ 4.20775	16.42 ~ 16.423	156.7 ~ 156.9	2200 ~ 2300	9.3 ~ 9.5	31.2 ~ 31.8
6.215 ~ 6.218	16.69475 ~ 16.69525	162.0125 ~ 167.17	2310 ~ 2390	10.6 ~ 12.7	36.43 ~ 36.5
6.26775 ~ 6.26825	16.80425 ~ 16.80475	167.72 ~ 173.2	2483.5 ~ 2500	13.25 ~ 13.4	Above 38.6
6.31175 ~ 6.31225	25.5 ~ 25.67	240 ~ 285	2655 ~ 2900		
8.291 ~ 8.294	37.5 ~ 38.25	322 ~ 335.4	3260 ~ 3267		
8.362 ~ 8.366	73 ~ 74.6	399.90 ~ 410	3332 ~ 3339		
8.37625 ~ 8.38675	74.8 ~ 75.2	608 ~ 614	3345.8 ~ 3358		
		960 ~ 1240	3600 ~ 4400		

• FCC Part 15.205(b): The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.


■ Test Configuration

■ Test Procedure

- 1. The EUT is placed on a non-conductive table, emission measurements at below 1 GHz, the table height is 80 cm and above 1 GHz, the table height is 1.5 m.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 1 or 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

Conducted Measurement

Path loss information

Frequency (GHz)	Path Loss (dB)	Frequency (GHz)	Path Loss (dB)
0.03	3.83	15	4.77
1	3.90	20	4.97
2.412 & 2.437 & 2.462	3.94	25	5.86
5	4.60	-	-
10	4.67	-	-

Note 1: The path loss from EUT to Spectrum analyzer was measured and used for test.

Path loss (S/A's correction factor) = Cable A

(Attenuator, Applied only when it was used externally)

■ Measurement Instrument Setting for Radiated Emission Measurements.

The radiated emission was tested according to the section 6.3, 6.4, 6.5 and 6.6 of the ANSI C63.10-2013 with following settings.

Peak Measurement

RBW = As specified in below table, VBW ≥ 3 x RBW, Sweep = Auto, Detector = Peak, Trace mode = Max Hold until the trace stabilizes.

Frequency	RBW
9-150 kHz	200-300 Hz
0.15-30 MHz	9-10 kHz
30-1000 MHz	100-120 kHz
> 1000 MHz	1 MHz

Average Measurement:

- 1. RBW = 1 MHz (unless otherwise specified).
- 2. VBW \geq 3 x RBW.
- 3. Detector = RMS (Number of points ≥ 2 x Span / RBW)
- 4. Averaging type = power. (i.e., RMS)
- 5. Sweep time = auto.
- 6. Perform a trace average of at least 100 traces.
- 7. A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:
- 1) If power averaging (RMS) mode was used in step 4, then the applicable correction factor is 10 log(1/x), where x is the duty cycle.
- 2) If linear voltage averaging mode was used in step 4, then the applicable correction factor is 20 log(1/x), where x is the duty cycle.
- 3) If a specific emission is demonstrated to be continuous (≥ 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

Duty Cycle Correction factor

Test Mode	Date rate	Duty Cycle (%)	Duty Cycle Correction Factor (dB)
TM 1	1 Mbps	98.94	0.05
TM 2	6 Mbps	96.49	0.16
TM 3	MCS 0	96.22	0.17

■ Test Results: Comply

Please refer to next page for data table and the appendix I for worst data plots.

Radiated Spurious Emissions data(9 kHz ~ 25 GHz) : TM 1

Tested Frequency	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	2386.13	Н	Х	PK	53.59	2.29	N/A	N/A	55.88	74.00	18.12
2412	2388.41	Н	Х	AV	42.59	2.30	N/A	N/A	44.89	54.00	9.11
2412	4824.02	Н	Х	PK	49.97	0.84	N/A	N/A	50.81	74.00	23.19
	4823.78	Н	Х	AV	38.95	0.84	N/A	N/A	39.79	54.00	14.21
0.407	4873.88	Н	Х	PK	49.94	0.87	N/A	N/A	50.81	74.00	23.19
2437	4873.70	Н	Х	AV	39.11	0.87	N/A	N/A	39.98	54.00	14.02
	2485.62	Н	Х	PK	53.53	2.61	N/A	N/A	56.14	74.00	17.86
2462	2483.62	Н	Х	AV	43.06	2.61	N/A	N/A	45.67	54.00	8.33
2402	4923.80	Н	Х	PK	50.98	0.98	N/A	N/A	51.96	74.00	22.04
	4924.00	Н	Х	AV	38.95	0.98	N/A	N/A	39.93	54.00	14.07
	2485.73	Н	Х	PK	53.12	2.61	N/A	N/A	55.73	74.00	18.27
0.470	2483.85	Н	Х	AV	42.92	2.61	N/A	N/A	45.53	54.00	8.47
2472	4944.42	Н	Х	PK	50.11	1.03	N/A	N/A	51.14	74.00	22.86
	4944.18	Н	Х	AV	38.92	1.03	N/A	N/A	39.95	54.00	14.05

Note.

- 1. The radiated emissions were investigated 9kHz to 25GHz. And no other spurious and harmonic emissions were found above listed frequencies.
- 2. Sample Calculation.

Margin = Limit - Result / Result = Reading + T.F+ DCCF + DCF / T.F = AF + CL - AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

3. Information of Distance Factor.

For finding emissions, the test distance might be reduced from 3m to 1m. In this case, the distance factor(-9.54dB) is applied to the result.

- Calculation of distance factor = 20 log(applied distance / required distance) = 20 log(1 m / 3 m) = -9.54 dB

Radiated Spurious Emissions data(9 kHz ~ 25 GHz) : <u>TM 2</u>

Tested Frequency	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	2388.88	Н	Х	PK	58.93	2.31	N/A	N/A	61.24	74.00	12.76
2412	2389.95	Н	Х	AV	44.38	2.31	0.16	N/A	46.85	54.00	7.15
2412	4823.74	Н	Х	PK	51.09	0.84	N/A	N/A	51.93	74.00	22.07
	4824.43	Н	Х	AV	39.16	0.84	0.16	N/A	40.16	54.00	13.84
2427	4874.27	Н	Х	PK	50.93	0.87	N/A	N/A	51.80	74.00	22.20
2437	4874.28	Н	Х	AV	39.18	0.87	0.16	N/A	40.21	54.00	13.79
	2483.66	Н	Х	PK	62.51	2.61	N/A	N/A	65.12	74.00	8.88
2462	2483.52	Н	Х	AV	47.84	2.61	0.16	N/A	50.61	54.00	3.39
2462	4923.82	Н	Х	PK	49.87	0.98	N/A	N/A	50.85	74.00	23.15
	4924.00	Н	Х	AV	39.01	0.98	0.16	N/A	40.15	54.00	13.85
	2483.83	Н	Х	PK	54.19	2.61	N/A	N/A	56.80	74.00	17.20
0.470	2483.52	Н	Х	AV	44.65	2.61	0.16	N/A	47.42	54.00	6.58
2472	4943.80	Н	Х	PK	49.92	1.03	N/A	N/A	50.95	74.00	23.05
	4943.57	Н	Х	AV	38.99	1.03	0.16	N/A	40.18	54.00	13.82

Note.

- 1. The radiated emissions were investigated 9kHz to 25GHz. And no other spurious and harmonic emissions were found above listed frequencies.
- 2. Sample Calculation.

Margin = Limit - Result / Result = Reading + T.F+ DCCF + DCF / T.F = AF + CL - AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

3. Information of Distance Factor.

For finding emissions, the test distance might be reduced from 3m to 1m. In this case, the distance factor(-9.54dB) is applied to the result.

- Calculation of distance factor = 20 log(applied distance / required distance) = 20 log(1 m / 3 m) = -9.54 dB

Radiated Spurious Emissions data(9 kHz ~ 25 GHz) : TM 3

Tested Frequency	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	2389.81	Н	Х	PK	62.77	2.31	N/A	N/A	65.08	74.00	8.92
2412	2389.77	Н	Х	AV	43.93	2.31	0.17	N/A	46.41	54.00	7.59
2412	4823.79	Н	Х	PK	50.00	0.84	N/A	N/A	50.84	74.00	23.16
	4824.40	Η	X	AV	39.16	0.84	0.17	N/A	40.17	54.00	13.83
2427	4874.04	Н	Х	PK	49.99	0.87	N/A	N/A	50.86	74.00	23.14
2437	4873.68	Н	Х	AV	39.26	0.87	0.17	N/A	40.30	54.00	13.70
	2483.94	Н	Х	PK	61.63	2.61	N/A	N/A	64.24	74.00	9.76
2462	2483.59	Н	Х	AV	47.75	2.61	0.17	N/A	50.53	54.00	3.47
2402	4924.15	Н	Х	PK	50.71	0.98	N/A	N/A	51.69	74.00	22.31
	4924.06	Η	X	AV	39.05	0.98	0.17	N/A	40.20	54.00	13.80
	2483.52	Н	Х	PK	55.04	2.61	N/A	N/A	57.65	74.00	16.35
2472	2483.55	Н	Х	AV	45.06	2.61	0.17	N/A	47.84	54.00	6.16
2472	4944.35	Н	Х	PK	49.89	1.03	N/A	N/A	50.92	74.00	23.08
	4943.84	Н	Х	AV	38.84	1.03	0.17	N/A	40.04	54.00	13.96

Note.

- 1. The radiated emissions were investigated 9kHz to 25GHz. And no other spurious and harmonic emissions were found above listed frequencies.
- 2. Sample Calculation.

Margin = Limit - Result / Result = Reading + T.F+ DCCF + DCF / T.F = AF + CL - AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

3. Information of Distance Factor.

For finding emissions, the test distance might be reduced from 3m to 1m. In this case, the distance factor(-9.54dB) is applied to the result.

- Calculation of distance factor = 20 log(applied distance / required distance) = 20 log(1 m / 3 m) = -9.54 dB

8.6 Power-line conducted emissions

■ Test Requirements and limit, §15.207

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network(LISN).

Report No.: DRTFCC1901-0011

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

Frequency Range (MHz)	Conducted Limit (dBuV)					
	Quasi-Peak	Average				
0.15 ~ 0.5	66 to 56 *	56 to 46 *				
0.5 ~ 5	56	46				
5 ~ 30	60	50				

^{*} Decreases with the logarithm of the frequency

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

■ Test Configuration

See test photographs for the actual connections between EUT and support equipment.

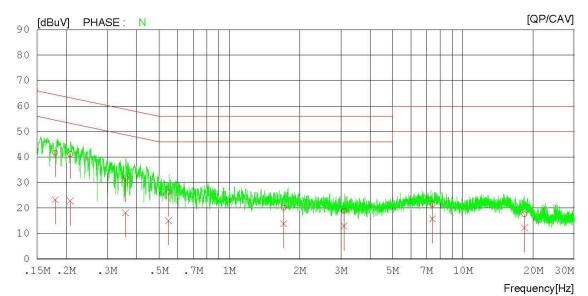
■ Test Procedure

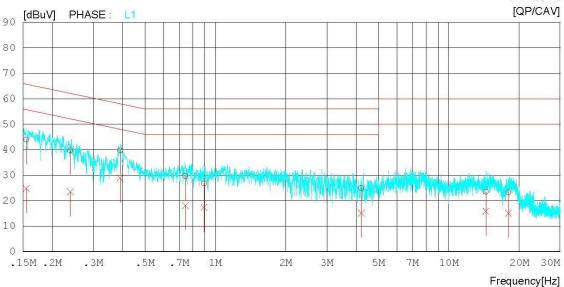
- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to the test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors Quasi Peak and Average Detector.

Test Results: Comply(Refer to next page.)

The worst data was reported.

RESULT PLOTS


AC Line Conducted Emissions (Graph)


Test Mode: TM 2 & 2437 MHz

Results of Conducted Emission

LIMIT : FCC P15.207 QP FCC P15.207 AV

AC Line Conducted Emissions (List)

Test Mode: TM 2 & 2437 MHz

Results of Conducted Emission

DTNC Date 2018-12-28

Order No. Model No. Serial No. Test Condition

LM-X420EM WLAN(2.4G) Referrence No. Power Supply Temp/Humi. Operator

120 V, 60 Hz 23 'C / 45 % InHee Bae

Memo

LIMIT : FCC P15.207 QP FCC P15.207 AV

NC	FREQ	READING	C.FACTOR	RESULT	L:	IMIT	MARGIN	PHASE
		QP CAV		QP CAV	QP	CAV	QP CAV	
	[MHz]	[dBuV] [dBuV	[dB]	[dBuV][dBuV] [dBu ^v	/] [dBuV] [dBuV][dBuV	J]
	Allera per independente del	version african streets attachers	No. 100 100 100	29. NO 2000/00A VIDENCE WITHOUT	TROWN PLOTES	WETSLAND ADDROS	GI SG SPSESSE WILLIAM ANTHERWA	
1	0.17950	31.60 13.13	10.12	41.72 23.25	64.51	54.51	22.79 31.26	N
2	0.20825	31.18 12.81	10.00	41.18 22.81	63.27	53.27	22.09 30.46	N
3	0.35902	21.92 8.10	10.03	31.95 18.13	58.75	48.75	26.80 30.62	N
4	0.54879	16.27 5.05	10.03	26.30 15.08	56.00	46.00	29.70 30.92	N
5	1.70860	10.01 3.76	10.09	20.1013.85	56.00	46.00	35.90 32.15	N
6	3.09720	8.73 2.71	10.15	18.88 12.86	56.00	46.00	37.12 33.14	N
7	7.40080	11.20 5.44	10.30	21.50 15.74	60.00	50.00	38.50 34.26	N
8	18.37560	6.90 1.64	10.56	17.4612.20	60.00	50.00	42.54 37.80	N
9	0.15487	33.65 14.56	10.23	43.8824.79	65.73	55.73	21.85 30.94	L1
10	0.23908	29.73 13.45	9.97	39.7023.42	62.13	52.13	22.43 28.71	L1
11	0.39060	29.7618.87	9.99	39.75 28.86	58.05	48.05	18.30 19.19	L1
12	0.74321	19.58 8.08	10.01	29.59 18.09	56.00	46.00	26.41 27.91	L1
13	0.89326	16.65 7.29	10.02	26.67 17.31	56.00	46.00	29.33 28.69	L1
14	4.21940	14.84 4.99	10.16	25.00 15.15	56.00	46.00	31.00 30.85	L1
15	14.39660	13.04 5.33	10.46	23.50 15.79	60.00	50.00	36.50 34.21	L1
16	17.99560	12.71 4.49	10.51	23.22 15.00	60.00	50.00	36.7835.00	L1

9. LIST OF TEST EQUIPMENT

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent Technologies	N9020A	17/12/18 18/12/19	18/12/18 19/12/19	MY48010133
Spectrum Analyzer	Agilent Technologies	N9020A	17/12/18 18/12/19	18/12/18 19/12/19	MY48011700
Attenuator	SMAJK	SMAJK-2-3	18/07/04	19/07/04	4
DC Power Supply	Agilent Technologies	66332A	18/07/02	19/07/02	US37473422
Multimeter	FLUKE	17B	18/12/18	19/12/18	26030065WS
Signal Generator	Rohde Schwarz	SMBV100A	17/12/18	18/12/18	255571
Signal Generator	ANRITSU	MG3695C	18/12/19 18/12/10	19/12/19 19/12/10	173501
			17/12/26	18/12/16	
Thermohygrometer	BODYCOM	BJ5478	18/12/27	19/12/27	120612-1
Thermohygrometer	BODYCOM	BJ5478	17/12/26 18/12/27	18/12/26 19/12/27	120612-2
Thermohygrometer	BODYCOM	BJ5478	18/07/09	19/07/09	N/A
HYGROMETER	TESTO	608-H1	18/02/10	19/02/10	34862883
Loop Antenna	Schwarzbeck	FMZB1513	18/01/30	20/01/30	1513-128
BILOG ANTENNA	Schwarzbeck	VULB 9160	18/07/13	20/07/13	3359
Horn Antenna	ETS-Lindgren	3115	18/01/30	20/01/30	6419
Horn Antenna	Schwarzbeck	BBHA 9120C	17/12/04	19/12/04	9120C-561
Horn Antenna	A.H.Systems Inc.	SAS-574	17/07/31	19/07/31	155
PreAmplifier	tsj	MLA-0118-J01-45	18/02/08	19/02/08	17138
PreAmplifier	tsj	MLA-1840-J02-45	18/07/06	19/07/06	16966-10728
PreAmplifier	H.P	8447D	18/12/18	19/12/18	2944A07774
Attenuator	SMAJK	SMAJK-2-3	18/07/02	19/07/02	3
Attenuator	Aeroflex/Weinschel	56-3	18/07/02	19/07/02	Y2370
Attenuator	SRTechnology	F01-B0606-01	18/07/02	19/07/02	13092403
Attenuator	Hefei Shunze	SS5T2.92-10-40	18/07/03	19/07/03	16012202
Attenuator	SMAJK	SMAJK-2-3	18/07/04	19/07/04	4
High Pass Filter	Wainwright Instruments	WHNX8.0/26.5-6SS	18/07/03	19/07/03	3
High Pass Filter	Wainwright Instruments	WHKX12-935-1000- 15000-40SS	18/07/02	19/07/02	8
High Pass Filter	Wainwright Instruments	WHKX10-2838-3300- 18000-60SS	18/07/02	19/07/02	1
Power Meter & Wide Bandwidth Sensor	Anritsu	ML2495A MA2490A	18/04/17	19/04/17	1306007 1249001
EMI Test Receiver	Rohde Schwarz	ESR7	18/02/13	19/02/13	101061
EMI Test Receiver	Rohde Schwarz	ESCI7	18/02/12	19/02/12	100910
PULSE LIMITER	Rohde Schwarz	ESH3-Z2	18/09/27	19/09/27	101333
LISN	SCHWARZBECK	NNLK 8121	18/03/20	19/03/20	06183
Cable	Radiall	TESTPRO3	18/07/06	19/07/06	M-01
Cable	Junkosha	MWX315	18/11/19	19/11/19	M-05
Cable	Junkosha	MWX221	18/11/19	19/11/19	M-06
Cable	Junkosha	MWX241	18/06/25	19/06/25	G-04
Cable	Junkosha	MWX241	18/06/25	19/06/25	G-07
Cable	DT&C	Cable	18/07/06	19/07/06	G-13
Cable	DT&C	Cable	18/07/06	19/07/06	G-14
Cable	HUBER+SUHNER	SUCOFLEX 104	18/07/06	19/07/06	G-15
Cable	DT&C	Cable	18/06/25	19/06/25	RF-18
Cable	DT&C	Cable	18/07/05	19/07/05	RF-82

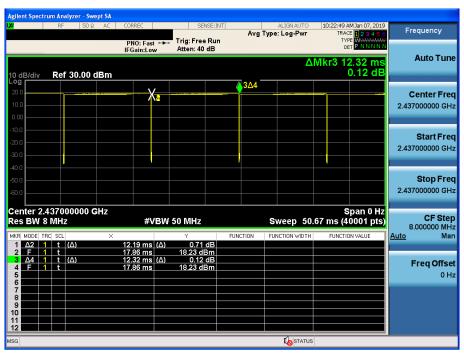
Note 1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017

Note 2: The cable is not a regular calibration item, so it has been calibrated by DT & C itself.

APPENDIX I

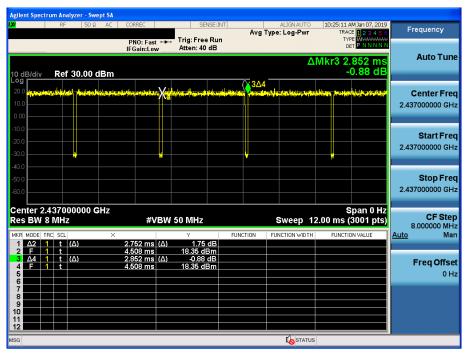
Duty cycle plots

Test Procedure

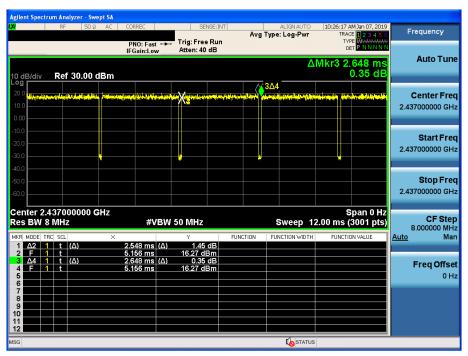

Duty Cycle was measured using section 6.0 b) of KDB558074 D01V05:

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average.

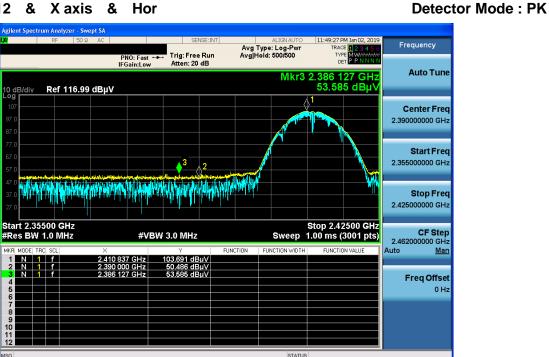
Report No.: DRTFCC1901-0011

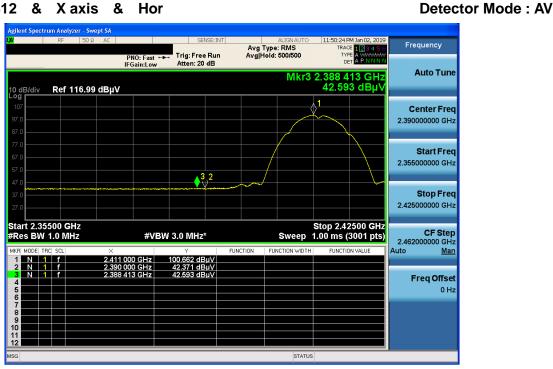

The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

Duty Cycle TM 1 & 2437



Duty Cycle TM 3 & 2437




APPENDIX II

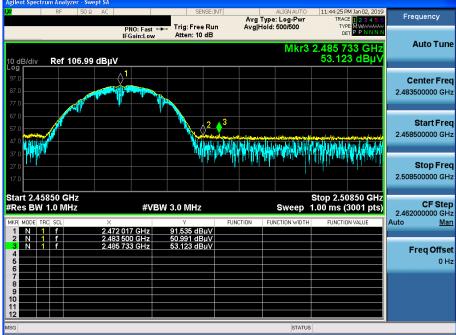
Unwanted Emissions (Radiated) Test Plot

TM 1 & 2412 & X axis & Hor

TM 1 & 2412 & X axis & Hor

TM 1 & 2462 & X axis & Hor

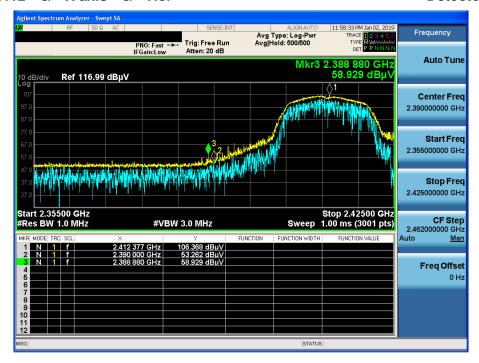
STATUS


TM 1 & 2462 & X axis & Hor

TM 1 & 2472 & X axis & Hor

Detector Mode : PK

TM 1 & 2472 & Xaxis & Hor



TM 2 & 2412 & X axis & Hor

Detector Mode: PK

TM 2 & 2412 & X axis & Hor

TM 2 & 2462 & X axis & Hor

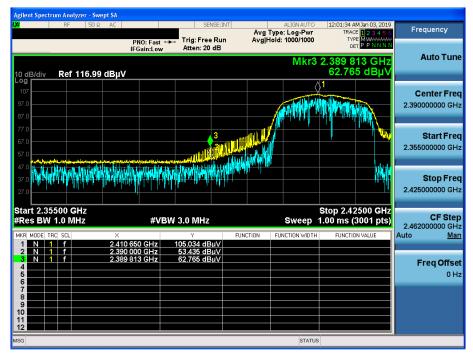
Detector Mode : PK

TM 2 & 2462 & X axis & Hor



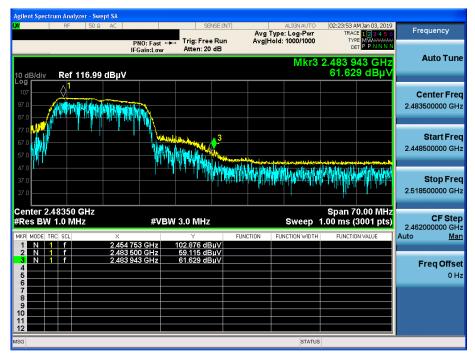
TM 2 & 2472 & X axis & Hor

Detector Mode: PK


TM 2 & 2472 & X axis & Hor

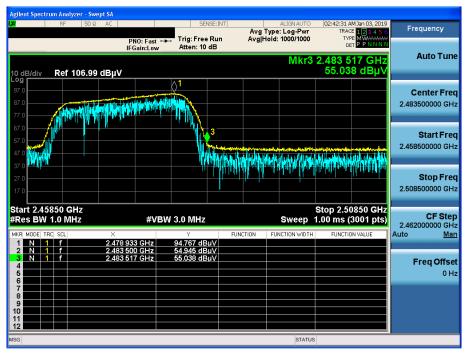
TM 3 & 2412 & X axis & Hor

Detector Mode: PK


TM 3 & 2412 & X axis & Hor

TM 3 & 2462 & X axis & Hor

Detector Mode: PK


TM 3 & 2462 & X axis & Hor

TM 3 & 2472 & X axis & Hor

Detector Mode: PK

TM 3 & 2472 & X axis & Hor

TM 1 & 2437 & X axis & Hor



#VBW 3.0 MHz*

Span 5.000 MHz Sweep 1.00 ms (3001 pts)

TM 2 & 2437 & X axis & Hor

Center 4.874000 GHz #Res BW 1.0 MHz

TM 3 & 2437 & X axis & Hor

