Belkin International, Inc. 555 S. Aviation Blvd., Suite 180, El Segundo, CA 90245, USA

2024/05/10

To: Federal Communications Commission

7435 Oakland Mills Road

Columbia, MD

FCC ID: K7SWIZ035

To Whom It May Concern:

This letter is to ascertain that (Belkin International, Inc.) Product (BoostCharge 2-In-1 Magnetic Wireless Charging Stand with Qi2) Wireless Charger (WIZ028), has been the units used for conducting FCC compliance testing, and it meets KDB 680106 D01 V04 Clause 5(2) all 6 conditions except criteria (4).

Criteria	Requirements	Yes	No	Explanation
(1)	The power transfer frequency is below 1	\boxtimes		The power transfer frequency are
	MHz.			127.7kHz/360kHz/111-148kHz
(2)	The output power from each transmitting	\boxtimes		The maximum output power of
	element (e.g., coil) is less than or equal to			each coil is less than 15 watts.
	15 watts.			
(3)	A client device providing the maximum	\boxtimes		
	permitted load is placed in physical contact			
	with the transmitter (i.e., the surfaces of the			
	transmitter and client device enclosures			
	need to be in physical contact)			
(4)	Only § 2.1091-Mobile exposure conditions	\boxtimes		
	apply			
(5)	The E-field and H-field strengths, at and	\boxtimes		See the test report.
	beyond 20 cm surrounding the device			
	surface, are demonstrated to be less than			
	50% of the applicable MPE limit, per KDB			
	447498, Table 1. These measurements shall			
	be taken along the principal axes of the			
	device, with one axis oriented along the			
	direction of the estimated maximum field			
	strength, and for three points per axis or			
	until a 1/d (inverse distance from the			
	emitter structure) field strength decay is			
	observed. Symmetry considerations may be			
	used for test reduction purposes. The device			
	shall be operated in documented worst-case			
	compliance scenarios (i.e., the ones that			
	lead to the maximum field components),			
	and while all the radiating structures (e.g.,			
	coils or antennas) that by design can			
	simultaneously transmit are energized at			
	their nominal maximum power.			
(6)	For systems with more than one radiating	\boxtimes		The DUT(Device Under Test)
	structure, the conditions specified in (5)			includes two radiating structure,
	must be met when the system is fully			and operating at maximum power
	loaded (i.e., clients absorbing maximum			
	power available), and with all the radiating			

Belkin International, Inc. 555 S. Aviation Blvd., Suite 180, El Segundo, CA 90245, USA

structures operating at maximum power at the same time, as per design conditions. If the design allows one or more radiating structures to be powered at a higher level while other radiating structures are not powered, then those cases must be tested as well. For instance, a device may use three RF coils powered at 5 W, or one coil powered at 15	
powered at 5 W, or one coil powered at 15 W: in this case, both scenarios shall be tested.	

If you have any question or concerns, please contact us.

Sincerely Yours,

0

Name / Title: Zack Vogel/ Sr. Regulatory Compliance Engineer Company Name: Belkin International, Inc. Company Address: 555 S. Aviation Blvd., Suite 180, El Segundo, CA 90245, USA Tel: +1 310 751-2800 Fax: N/A Email: zack.vogel@belkin.com