

REGULATORY COMPLIANCE TEST REPORT

FCC CFR47 Part 95 Subpart L

Report No.: DEKR199-U4 Rev C

Company: Advanced Automotive Antennas, S.L.

Test of: TCU-FITAX-3.5

REGULATORY COMPLIANCE TEST REPORT

Company: Advanced Automotive Antennas S.L

Test of: TCU-FITAX-3.5

To: FCC CFR47 Part 95 Subpart L

Test Report Serial No.: DEKR199-U4 Rev C

This report supersedes: DEKR199-U4 Rev B

Applicant: Advanced Automotive Antennas, S.L Calle Gran Via Carles III, Barcelona, 08028 Spain

Issue Date: 25th June 2020

This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc. 575 Boulder Court Pleasanton California 94566 USA Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Table of Contents

1. ACCREDITATION, LISTINGS & RECOGNITION	4
1.1. TESTING ACCREDITATION	4
1.2. RECOGNITION	5
1.3. PRODUCT CERTIFICATION	6
2. DOCUMENT HISTORY	
3. TEST RESULT CERTIFICATE	
4. REFERENCES AND MEASUREMENT UNCERTAINTY	9
4.1. Normative References	
4.2. Test and Uncertainty Procedure	10
5. PRODUCT DETAILS AND TEST CONFIGURATIONS	11
5.1. Technical Details	
5.2. Scope Of Test Program	
5.3. Equipment Model(s) and Serial Number(s)	
5.4. Antenna Details	
5.5. Cabling and I/O Ports	
5.6. Test Configurations	
5.7. Equipment Modifications	
5.8. Deviations from the Test Standard	
6. TEST EQUIPMENT CONFIGURATION(S)	
6.1. Radiated Emissions - 3m Chamber	
6.2. Conducted	
7. TEST SUMMARY	
8. TEST RESULTS	
8.1. RF Output Power	
8.2. Transmitter Spectrum Mask	
8.3. Occupied Channel Bandwidth	
8.4. Frequency Stability	
8.5. Conducted Transmitter Unwanted Emissions	
8.6. Radiated Transmitter Spurious Unwanted Emissions	35
8.6.2 Radiated Testing	
A. APPENDIX - GRAPHICAL IMAGES	
A.1. Spectrum Mask	
A.2. Occupied Channel Bandwidth	
A.3. Transmitter Unwanted Emissions in the Spurious Domain	
A.4. Radiated Spurious Emissions	49

1. ACCREDITATION, LISTINGS & RECOGNITION

1.1. TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard ISO/IEC 17025:2017. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-01.pdf</u>

1.2. RECOGNITION

MiCOM Labs, Inc has widely recognized wireless testing and certification capabilities. In addition to being recognized for Testing and Certification under Phase 2 agreements with Canada, Europe and Japan, our international recognition includes Conformity Assessment Body designation under Phase 1 agreements with APEC MRA countries. MiCOM Labs test reports are accepted globally.

Country	Recognition Body	Status	MRA Phase	Identification No.
USA	Federal Communications Commission (FCC)	тсв	-	US0159 Test Firm Designation #: US1084
Canada	Industry Canada (ISED)	FCB	APEC MRA 2	US0159 ISED #: 4143A
Japan	MIC (Ministry of Internal Affairs and Communication) Japan Approvals Institute for Telecommunication Equipment (JATE)	cation)		RCB 210
	VCCI			A-0012
Europe	European Commission	NB	EU MRA 2	NB 2280
Mexico	Instituto Federal de Telecomunicaciones (IFT)	CAB	Mexico MRA 1	US0159
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	САВ	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	US0159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	САВ	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

EU MRA – European Union Mutual Recognition Agreement NB – Notified Body

APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement. Recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

MRA Phase

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

1.3. PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard ISO/IEC 17065:2012. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; http://www.a2la.org/scopepdf/2381-02.pdf

Accredited Product Certification Body

A2LA has accredited

MICOM LABS

Pleasanton, CA

This product certification body is accredited in accordance with the recognized International Standard ISO/IEC 17065:2012 Requirements for bodies certifying products, processes and services. This product certification body also meets the A2LA R322 – Specific Requirements – Notified Body Accreditation Requirements and A2LA R308 - Specific Requirements - ISO-IEC 17065 - Telecommunication Certification Body Accreditation Program. This accreditation demonstrates technical competence for a defined scope and the operation of a management system.

Presented this 24th day of February 2020

Vice President, Accreditation Services For the Accreditation Council Certificate Number 2381.02 Valid to November 30, 2021

For the product certification schemes to which this accreditation applies, please refer to the organization's Product Certification Scope of Accreditation.

United States of America – Telecommunication Certification Body (TCB) Industry Canada – Certification Body, CAB Identifier – US0159 Europe – Notified Body (NB), NB Identifier - 2280 Japan – Recognized Certification Body (RCB), RCB Identifier - 210

2. DOCUMENT HISTORY

Document History						
Revision	Date	Comments				
Draft	9 th March 2020	Draft for Client Review				
Rev A	9 th June 2020	Initial Release				
Rev B	15 th June 2020	Modified Page 13 DSRC antenna gain typo Correction to duty cycle offset Pages 23 & 24				
Rev C	25 th June 2020	Correction to Model and Company name on Page 2				

In the above table the latest report revision will replace all earlier versions.

3. TEST RESULT CERTIFICATE

- Manufacturer: Advanced Automotive Antennas, S.L Calle Gran Via Carles III, Barcelona 08028 Spain
- Tested By: MiCOM Labs, Inc. 575 Boulder Court Pleasanton California 94566 USA

Model: TCU-FITAX-3.5

Equipment Type: Dedicated Short Range Communication On-Board Unit (DSRC OBU)

S/N's: 201944207078, 201944207079

Test Date(s): 4th – 6th March 2020

Telephone: +1 925 462 0304 **Fax:** +1 925 462 0306

Website: www.micomlabs.com

STANDARD(S)

FCC CFR 47 Part 95 Subpart L

TEST RESULTS

EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

1. This document reports conditions under which testing was conducted and the results of testing performed.

2. Details of test methods used have been recorded and kept on file by the laboratory.

3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve Quality Manager MiCOM Labs, Inc.

ACCREDITED TESTING CERT #2381.01

Gordon Hurst President & CEO MiCOM Labs, Inc.

4. REFERENCES AND MEASUREMENT UNCERTAINTY

4.1. Normative References

REF.	PUBLICATION	YEAR	TITLE
I	A2LA	October 2019	R105 - Requirement's When Making Reference to A2LA Accreditation Status
п	ETSI TR 100 028	2001-12	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
111	M 3003	Edition 3 Nov.2012	Expression of Uncertainty and Confidence in Measurements
IV	FCC CFR 47 Part 90 Subpart L and M	13 th March 2020	Private Land Mobile Radio Services
V	FCC CFR 47 Part 95 L	13 th March 2020	Title 47 CFR Part 95, Personal Radio Services
VI	ASTM E2213-03	2018	Standard Specification for Telecommunications and Information Exchange Between Roadside and Vehicle Systems — 5-GHz Band Dedicated Short-Range Communications (DSRC)
VII	ANSI/TIA 603-D	June 2010	Land Mobile FM or PM Communications Equipment Measurement and Performance Standards
VIII	ANSI C63.26	December 2015	Compliance Testing of Transmitters Used in Licensed Radio Services

4.2. Test and Uncertainty Procedure

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

5. PRODUCT DETAILS AND TEST CONFIGURATIONS

5.1. Technical Details

	Description
Purpose:	Test of the Advanced Automotive Antennas, S.L TCU-FITAX-3.5
	to FCC CFR 47 Part 95 Subpart L Personal Radio Services
Applicant:	Advanced Automotive Antennas, S.L
	Calle Gran Via Carles III,
	Barcelona 08028 Spain
	Advanced Automotive Antennas, S.L
Laboratory performing the tests:	
	575 Boulder Court
Test report reference number:	Pleasanton California 94566 USA
Date EUT received:	
	FCC CFR 47 Part 95 Subpart L
Dates of test (from - to):	
No of Units Tested:	
Product Family Name:	
	TCU-FITAX-3.5
Location for use:	
Declared Frequency Range(s):	
Type of Modulation:	
	BPSK, QPSK, 16QAM, 64QAM
Declared Nominal Output Power	20 dBm
(dBm):	
Transmit/Receive Operation:	
Rated Input Voltage and Current:	
Operating Temperature Range:	
ITU Emission Designator:	
	143.8 / 34.5 / 141.4 mm
Weight:	470 grams
Hardware Rev:	51986582
Software Rev:	DSRC_GEN1.4

5.2. Scope of Test Program

Advanced Automotive Antennas, S.L TCU-FITAX-3.5

The scope of the test program was to test the Advanced Automotive Antennas, S.L TCU-FITAX-3.5, TCU-FITAX-3.5 configurations for compliance against the following specification. While the product is capable of BPSK, QPSK, 16QAM, and 64QAM, BPSK was found to provide the highest power and a consistent duty cycle, thus was tested as a worse case. The S.L TCU-FITAX-3.5 also has two antenna ports providing the same function however, only one is active at any given time and employs an algorithm to ensure the more efficient of the two ports is used for data transmission. No testing was performed on the second port which is a duplicate of port 1.

FCC CFR 47 Part 95 Subpart L DSRCS ON-Board Units

5.3. Equipment Model(s) and Serial Number(s)

⁻ ype (EUT/ Support)	Equipment Description	Mfr	Model No.	Serial No.
EUT	JT Dedicated Short Range Advanced Communication On- Board Unit (DSRC OBU Antennas.		TCU-FITAX-3.5	201944207078, 201944207079

5.4. Antenna Details

Туре	Manufacturer	Family	Gain (dBi)	BF Gain	Dir BW	X-Pol	Frequency Band (MHz)
LTE	Ficosa	Flexible Foil	2.0				698-798 (LTE 700)
LTE	Ficosa	Flexible Foil	2.5				791-862 (LTE 800)
LTE	Ficosa	Flexible Foil	3.0				880-960 (GSM 900)
LTE	Ficosa	Flexible Foil	4.0				1710-1990 (GSM1800, PCS 1900)
LTE	Ficosa	Flexible Foil	5.5				1900-2200 (UMTS)
LTE	Ficosa	Flexible Foil	3.5				2500-2690 (LTE 2600)
WiFi/BT	Ficosa	Flexible Foil	-1.5				2400-2485, 5014-5925
DSRC	Mobile Mark	Volumetric	7.0				5800-6000
DSRC	Mobile Mark	Volumetric	7.0				5800-6000
GPS	Mobile Mark	Patch	5.0				1575.42 +/- 2
GPS	Mobile Mark	Patch	5.0				1575.42 +/- 2

BF Gain - Beamforming Gain Dir BW - Directional BeamWidth X-Pol - Cross Polarization

5.5. Cabling and I/O Ports

Port Type	Max Cable Length	# of Ports	Screened	Conn Type	Data Type	Bit Rate (Mbit/s)	Environment
Main	>10m	1	No	Multi	DC and Digital	?	End-User
GNSS	> 3m	1	Yes	Fakra	Digital	?	End-User
V2X	> 3m	2	Yes	Fakra	Digital	< 24	End-User
LTE	> 3m	2	Yes	Fakra	Digital	?	End-User
WiFi/BT	>3m	1	Yes	Fakra	Digital	?	End-User
USB	Not Connect*	1	Yes	USB	Digital	?	NC*
HDMI	Not Connect*	1	Yes	HDMI	Digital	?	NC*
CAN Bus	Not Connect*	1	No	Multi	Digital	?	NC*

*NC, Not Connected, manufacturer declares not used in normal operation.

5.6. Test Configurations

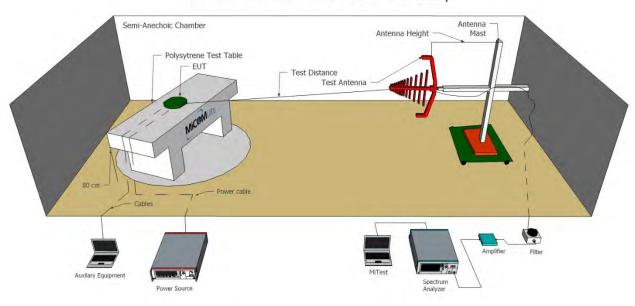
Results for the following configurations are provided in this report:

Operational Mode(s)	Data Rate	Channel Frequency (MHz)					
(802.11p)	Duta Hato	Low	Low Mid				
	5850 - 5925 MHz						
BPSK	3	5860.00	5890.00	5920.00			
QPSK	6	5860.00	5890.00	5920.00			
16QAM	12	5860.00	5890.00	5920.00			
64QAM	24	5860.00	5890.00	5920.00			

5.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance: 1. NONE

5.8. Deviations from the Test Standard


The following deviations from the test standard were required to complete the test program: 1. NONE

6. TEST EQUIPMENT CONFIGURATION(S)

6.1. Radiated Emissions - 3m Chamber

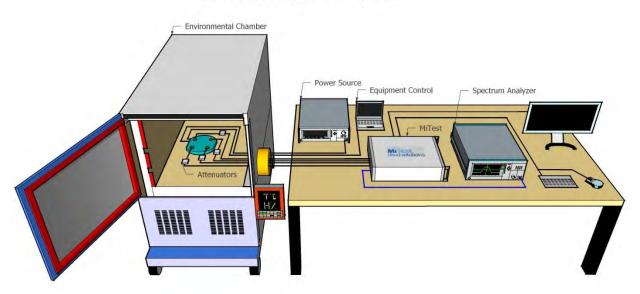
The following tests were performed using the radiated test set-up shown in the diagram below. Radiated emissions below 1GHz. Radiated Emissions above 1GHz.

Radiated Emissions Below 1GHz Test Setup

Radiated Emissions Above 1GHz Test Setup

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.


Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
170	Video System Controller for Semi Anechoic Chamber	Panasonic	WV-CU101	04R08507	Not Required
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	8 Oct 2020
298	3M Radiated Emissions Chamber Maintenance Check	MiCOM	3M Chamber	298	26 Nov 2020
338	Sunol 30 to 3000 MHz Antenna	Sunol	JB3	A052907	4 Apr 2021
373	26III RMS Multimeter	Fluke	Fluke 26 series III	76080720	21 Sep 2020
377	Band Rejection Filter 5150 to 5880MHz	Microtronics	BRM50716	034	3 Sep 2020
378	Rohde & Schwarz 40 GHz Receiver with Generator	Rhode & Schwarz	ESIB40	100107/040	12 Oct 2020
396	2.4 GHz Notch Filter	Microtronics	BRM50701	001	3 Sep 2020
397	Amp 10 - 2500MHz	MiCOM Labs	Amp 10 - 2500 MHz	NA	6 Sep 2020
399	ETS 1-18 GHz Horn Antenna	ETS	3117	00154575	12 Oct 2020
406	Amplifier for Radiated Emissions	MiCOM Labs	40dB 1 to 18GHz Amp	0406	9 Sep 2020
410	Desktop Computer	Dell	Inspiron 620	WS38	Not Required
411	Mast/Turntable Controller	Sunol Sciences	SC98V	060199-1D	Not Required
412	USB to GPIB Interface	National Instruments	GPIB-USB HS	11B8DC2	Not Required
413	Mast Controller	Sunol Science	TWR95-4	030801-3	Not Required
414	DC Power Supply 0-60V	HP	6274	1029A01285	Cal when used
415	Turntable Controller	Sunol Sciences	Turntable Controller	None	Not Required
447	MiTest Rad Emissions Test Software	MiCOM	Rad Emissions Test Software Version 1.0	447	Not Required
462	Schwarzbeck cable from Antenna to Amplifier.	Schwarzbeck	AK 9513	462	5 Sep 2020
463	Schwarzbeck cable from Amplifier to Bulkhead.	Schwarzbeck	AK 9513	463	5 Sep 2020
464	Schwarzbeck cable from Bulkhead to Receiver	Schwarzbeck	AK 9513	464	9 Sep 2020
466	Low Pass Filter DC-1500 MHz	Mini-Circuits	NLP-1750+	VUU10401438	3 Sep 2020
480	Cable - Bulkhead to Amp	SRC Haverhill	157-3050360	480	9 Sep 2020
481	Cable - Bulkhead to Receiver	SRC Haverhill	151-3050787	481	9 Sep 2020
510	Barometer/Thermometer	Control Company	68000-49	170871375	20 Dec 2020
518	Cable - Amp to Antenna	SRC Haverhill	157-3051574	518	9 Sep 2020
87	Uninterruptible Power Supply	Falcon Electric	ED2000-1/2LC	F3471 02/01	Cal when used
CC05	Confidence Check	MiCOM	CC05	None	4 Oct 2020

6.2. Conducted

Conducted RF Emission Test Set-up(s) The following tests were performed using the conducted test set-up shown in the diagram below

MiTest Automated Test System

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
#3 SA	MiTest Box to SA	Fairview Microwave	SCA1814- 0101-72	#3 SA	9 Sep 2020
#3P1	EUT to MiTest box port 1	Fairview Microwave	SCA1814- 0101-72	#3P1	9 Sep 2020
#3P2	EUT to MiTest box port 2	Fairview Microwave	SCA1814- 0101-72	#3P2	9 Sep 2020
#3P3	EUT to MiTest box port 3	Fairview Microwave	SCA1814- 0101-72	#3P3	9 Sep 2020
#3P4	EUT to MiTest box port 4	Fairview Microwave	SCA1812- 0101-72	#3P4	9 Sep 2020
249	Resistance Thermometer	Thermotronics	GR2105-02	9340 #2	30 Oct 2020
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	8 Oct 2020
378	Rohde & Schwarz 40 GHz Receiver with Generator	Rhode & Schwarz	ESIB40	100107/040	12 Oct 2020
398	MiTest RF Conducted Test Software	MiCOM	MiTest ATS	Version 4.1	Not Required
405	DC Power Supply 0-60V	Agilent	6654A	MY4001826	Cal when used
408	USB to GPIB interface	National Instruments	GPIB-USB HS	14C0DE9	Not Required
440	USB Wideband Power Sensor	Boonton	55006	9178	22 Sep 2020
441	USB Wideband Power Sensor	Boonton	55006	9179	20 Sep 2020
442	USB Wideband Power Sensor	Boonton	55006	9181	19 Sep 2020
445	PoE Injector	D-Link	DPE-101GL	QTAH1E2000625	Not Required
461	Spectrum Analyzer	Agilent	E4440A	MY46185537	20 Sep 2020
510	Barometer/Thermometer	Control Company	68000-49	170871375	20 Dec 2020
515	MiTest Cloud Solutions RF Test Box	MiCOM	2nd Gen with DFS	515	9 Sep 2020
534	Power Sensor 50 GHz - 70dBm to +20dBm	R&S	NRP50SN	1419.0093K02- 100888-SB	26 Feb 2021
75	Environmental Chamber	Thermatron	SE-300-2-2	27946	20 Feb 2021

MiCOMLabs.

7. TEST SUMMARY

List of Measurements	-	
Test Header	Result	Data Link
RF Output Power	Complies	View Data
Transmit Spectrum Mask	Complies	View Data
Occupied Channel Bandwidth	Complies	View Data
Conducted Transmitter Spurious Emissions	Complies	View Data
Radiated Transmitter Spurious Emissions	Complies	View Data
Frequency Stability	Complies	View Data

Title: To: Serial #:

8. TEST RESULTS

8.1. <u>RF Output Power</u>

Conducted Test Conditions for RF Output Power						
Standard:	CFR 47 Part 95 L / ASTM E2213-02	Ambient Temp. (°C):	24.0 - 27.5			
Test Heading:	RF Output Power	RF Output Power Rel. Humidity (%): 32 - 45				
Standard Section(s):	95.3189 / 8.10 Pressure (mBars): 999 - 1001					
Reference Document(s):	See Normative References					

Applicability

This requirement applies to all DSRCS On-Board Units

On-Board Unit transmitter types operating in the 5850-5925 MHz band must be designed to comply with the technical standard ASTM E2213-03, Standard Specification for Telecommunications and Information Exchange Between Roadside and Vehicle Systems—5 GHz Band Dedicated Short-range Communications (DSRC) Medium Access Control (MAC) and Physical Layer (PHY) Specifications

ASTM E2213-03 8.10.1

8.10.1.5 Public safety RSU and OBU operations in Channel 184 shall not exceed 28.8 dBm antenna input power and 40 dBm EIRP. Private RSU operations in Channel 184 shall not exceed 28.8 dBm antenna input power and 33 dBm EIRP.

8.10.1.6 Private OBU operations in Channels 172, 174, 176, 178, and 184 shall not exceed 28.8 dBm antenna input power and 33 dBm EIRP. Private OBU operations in Channel 175 shall not exceed 10 dBm antenna input power and 23 dBm EIRP. Private OBU operations in Channels 180, 181, and 182 shall not exceed 20 dBm antenna input power and 23 dBm EIRP.

8.10.1.7 Public safety OBU operations in Channels 172, 174, and 176 shall not exceed 28.8 dBm antenna input power and 33 dBm EIRP. Public safety OBU operations in Channel 175 shall not exceed 10 dBm antenna input power and 23 dBm EIRP.

8.10.1.8 Public safety OBU operations in Channel 178 shall not exceed 28.8 dBm antenna input power and 44.8 dBm EIRP. 8.10.1.9 The RSUs and OBUs shall transmit only the power needed to communicate over the distance required by the application being supported.

8.10.1.10 Four classes of operation are specified for DSRC devices in the 5.850 to 5.925-GHz band and are shown in Table 9.

TABLE 9 DSRC Device Classes and Transmit Power Level

Device Class	Maximum Device Output Power, dBm
Α	0
В	10
С	20
D	28.8 or more

Test Process

Test Procedure for Fundamental Emission Output Power Measurement

In the case of average power measurements an average power sensor was utilized.

For peak power measurements the spectrum analyzer built-in power function was used to integrate peak power over the 20 dB bandwidth.

Testing was performed under ambient conditions at nominal voltage only. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured, summed (Σ) and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document. Supporting Information

Calculated Power = A + G + Y+ 10 log (1/x) dBm

A = Total Power $[10^{*}Log10 (10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10})]$

G = Antenna Gain

Y = Beamforming Gain

x = Duty Cycle (average power measurements only)

Test configuration and setup used for the measurement was per Section 'Conducted RF Emissions Test Set-up' in this report.

Limit

Manufacturer declared device type C, Maximum Output power is 20 dBm

Issue Date:	25 th June 2020	Page:	20 of 52
•	, , , , ,	The document may only be updated the Document History section of the	5

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

Equipment Configuration for Output Power

Variant:	802.11p	Duty Cycle (%):	80.0
Data Rate:	3 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	BPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Measured Output Power (dBm) Calculated Total Power Σ				Limit	Manaia		
Frequency		Por	rt(s)		Port(s) + DCCF (0.96 dB)	Limit	Margin	EUT Power Setting
MHz	а	b	с	d	dBm	dBm	dB	
5860.0	18.99				19.95	20.00	-0.05	20
5890.0	18.87				19.83	20.00	-0.17	20
5900.0	18.87				19.83	20.00	-0.17	20
5910.0	18.91				19.87	20.00	-0.13	20
5920.0	18.49				19.45	20.00	-0.55	20

Traceability to Industry Recognized Test Methodologies

Work Instruction: WI-01 MEASURING RF OUTPUT POWER

Measurement Uncertainty: ±1.33 dB

Equipment Configuration for Output Power

Variant:	802.11p	Duty Cycle (%):	69
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	QPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	N	leasured Outp Por	ut Power (dBn rt(s)	n)	Calculated Total Power Σ Port(s) + DCCF (1.6 dB)	Limit	Margin	EUT Power Setting
MHz	а	b	С	d	dBm	dBm	dB	
5860.0	17.44				19.04	20.00	-0.96	20
5890.0	17.47				19.07	20.00	-0.93	20
5900.0	17.40				19.00	20.00	-1.00	20
5910.0	17.46				19.06	20.00	-0.94	20
5920.0	17.43				19.03	20.00	-0.97	20

rideballity to madely recognized root motifedologies	Traceability to Industry Recognized Test Methodologies
--	--

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	±1.33 dB

Equipment Configuration for Output Power

Variant:	802.11p	Duty Cycle (%):	50.0
Data Rate:	12.00 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	16QAM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	N	leasured Outp	ut Power (dBn	n)	Calculated Total Power Σ			
Frequency		Por	t(s)		Port(s) + DCCF (3.0 dB)	Limit	Margin	EUT Power Setting
MHz	а	b	С	d	dBm	dBm	dB	
5860.0	16.83				19.83	20.00	-0.17	19*
5890.0	16.81				19.81	20.00	-0.19	19*
5900.0	16.90				19.90	20.00	-0.10	19*
5910.0	16.92				19.92	20.00	-0.08	19*
5920.0	16.85				19.85	20.00	-0.15	19*

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

*Note: Power reduced to meet limit

Equipment Configuration for Output Power

Variant:	802.11p	Duty Cycle (%):	50.0
Data Rate:	24.00 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	64QAM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	N	leasured Outp	ut Power (dBn	n)	Calculated Total Power Σ			
Frequency	Port(s)			Port(s) + DCCF (3.0 dB)	Limit	Margin	EUT Power Setting	
MHz	а	b	с	d	dBm	dBm	dB	
5860.0	16.81				19.81	20.00	-0.19	19*
5890.0	16.77				19.77	20.00	-0.23	19*
5900.0	16.90				19.90	20.00	-0.10	19*
5910.0	16.88				19.88	20.00	-0.12	19*
5920.0	16.85				19.85	20.00	-0.15	19*

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	±1.33 dB

*Note: Power reduced to meet limit

8.2. Transmitter Spectrum Mask

Conducted Test Conditions for Power Spectral Density					
Standard: CFR 47 Part 95 L / ASTM E2213-02 Ambient Temp. (°C): 24.0 - 27.5					
Test Heading:	g: Power Spectral Density Rel. Humidity (%): 32 - 45				
Standard Section(s):	95.3189 / 8.10 Pressure (mBars): 999 - 1001				
Reference Document(s):	See Normative References				

Applicability

This requirement applies to all DSRCS On-Board Units

On-Board Unit transmitter types operating in the 5850-5925 MHz band must be designed to comply with the technical standard ASTM E2213-03, Standard Specification for Telecommunications and Information Exchange Between Roadside and Vehicle Systems—5 GHz Band Dedicated Short-range Communications (DSRC) Medium Access Control (MAC) and Physical Layer (PHY) Specifications

ASTM E2213-03 8.10.2

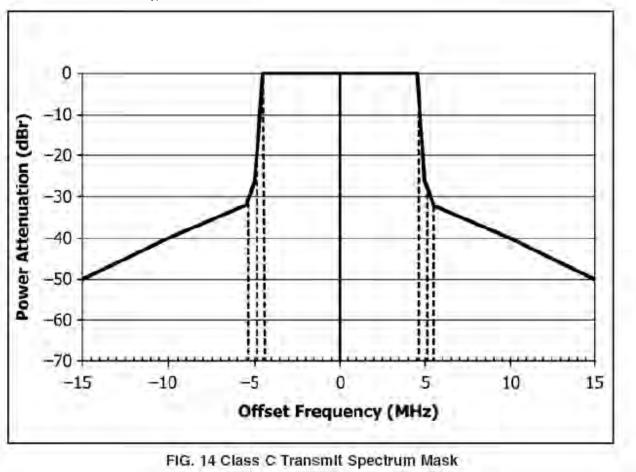
8.10.2.1 The DSRC transmitted spectrum mask is relative to the device class of operation. The power in the transmitted spectrum for all DSRC devices shall be -25 dBm or less within 100 kHz outside all channel and band edges. This will be accomplished by attenuating the transmitted signal 100 kHz outside the channel and band edges by 55 + 10log(*P*) dB, where *P* is the total transmitted power in watts. The transmitted spectral density of the transmitted signal for all devices shall fall within the spectral mask, as detailed in Table 10. The measurements shall be made using a 100-kHz resolution bandwidth and a 30-kHz video bandwidth.

8.10.2.2 The transmitted spectral mask for class A, B, C, and D devices are shown in Figs. 12-15. In addition, all DSRC site installations shall limit the EIRP in the transmitted spectrum to -25 dBm or less in the 100 kHz at the channel edges

and the band edges. Additional filtering that supplements the filtering provided by the transmitter may be needed for some antenna/transmitter combinations.

TABLE 10 DSRC Spectrum Mask

NOTE 1-Reduction in Power Spectral Density, dBr^A.


Class	±4.5-MHz Offset	±5.0-MHz Offset	±5.5-MHz Offset	±10-MHz Offset	±15-MHz Offset
Class A	0	-10	-20	-28	-40
Class B	0	-16	-20	-28	-40
Class C	0	-26	-32	-40	-50
Class D	0	-35	-45	-55	-65

^AFrom IEEE 802.11a. Copyright 1999 IEEE. All rights reserved.

Title: To: Serial #: Advanced Automotive Antennas, S.L TCU-FITAX-3.5 FCC CFR47 Part 95 Subpart L DEKR199-U4 Rev C

Manufacturer Declared Device type is C

Test Configuration

Test configuration and setup used for the measurement was per Section 'Conducted RF Emissions Test Set-up' in this report.

Equipment Configuration for Transmitter Spectrum Mask

Variant:	802.11p	Duty Cycle (%):	80
Data Rate:	3 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	BPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results					
Test Frequency	Peak Marker	Limit	Power Setting		
MHz	dBm	dBm			
5860.0	<u>8.3</u>	-25.0	20		
5890.0	<u>7.4</u>	-25.0	20		
5920.0	<u>7.74</u>	-25.0	20		

Traceability to Industry Recognized Test Methodologies

 Work Instruction:
 WI-03 MEASURING RF SPECTRUM MASK

 Measurement Uncertainty:
 ±2.81 dB

* This value is the maximum RF Output Power measurement

Note: click the links in the above matrix to view the graphical image (plot).

8.3. Occupied Channel Bandwidth

Conducted Test Conditions for Occupied Channel Bandwidth					
Standard: CFR 47 Part 95 L / Part 2 ASTM E2213-03 Ambient Temp. (°C): 24.0 - 27.5					
Test Heading:	Occupied Channel Bandwidth	Rel. Humidity (%):	32 - 45		
Standard Section(s):	95.3163 / 2.1049 ASTM E2213-03: 8.9.1 Pressure (mBars): 999 - 1001		999 - 1001		
Reference Document(s):	See Normative References				

Applicability

This requirement applies to all types of intentional transmitter equipment types.

Definition

The Occupied Channel Bandwidth is the bandwidth that contains 99 % of the power of the signal.

Limits §95.3163:

The following table lists the channels allotted for use by On-Board Units (OBUs):

Channel No.	Channel use	Frequency range (MHz)
170	Reserved	5850-5855
172	Service	5855-5865
174	Service	5865-5875
175	Service	5865-5885
176	Service	5875-5885
178	Control	5885-5895
180	Service	5895-5905
181	Service	5895-5915
182	Service	5905-5915
184	Service	5915-5925

(a) Channels 174 and 176 may be combined to create a 20 MHz bandwidth channel designated as Channel 175.
 (b) Channels 180 and 182 may be combined to create a 20 MHz bandwidth channel designated as Channel 181.
 (c) Channels 172 and 184 are designated for public safety applications involving safety of life and property.

§2.1049 Measurements required: Occupied bandwidth.

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured under the following conditions as applicable:

(h) Transmitters employing digital modulation techniques—when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudo-random generators or other devices required in normal service. Additionally, the occupied bandwidth shall be shown for operation with any devices used for modifying the spectrum when such devices are optional at the discretion of the user.

Title: To: Serial #:

Limit:

ASTM E2213-03: 8.9.1 -

TABLE 6 Major Parameters of the OFDM PHY ^A			
Information Data Rate	3, 4.5, 6, 9, 12, 18, 24, and 27 Mbit/s (3, 6, and 12 Mbit/s are Mandatory)		
Modulation	BPSK OFDM QPSK OFDM 16-QAM OFDM 64-QAM OFDM		
Error correcting code	K = 7 (64 states) convolutional code		
Coding rate	1/2, 2/3, 3/4		
Number of subcarriers	52		
OFDM symbol duration	8.0 µs		
Guard interval	1.6 μs² (T _{GI})		
Occupied bandwidth	8.3 MHz		

^A From IEEE 802.11a. Copyright 1999 IEEE. All rights reserved.

Test Configuration

Test configuration and setup used for the measurement was per Section 'Conducted RF Emissions Test Set-up' in this report.

Equipment Configuration for Occupied Channel Bandwidth

Variant:	802.11p	Duty Cycle (%):	80
Data Rate:	3 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	BPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Temperature: 20.0°C	Voltage: 12 Vdc	99% Occupied Bandwidth Markers		
Test Frequency:	99% Channel Bandwidth	Marker T1	Marker T2	Pass/Fail
MHz	MHz	MHz	MHz	
5860.00	<u>8.257</u>	5855.852	5864.108	PASS
5890.00	<u>8.257</u>	5885.852	5894.108	PASS
5920.00	<u>8.257</u>	5915.852	5924.108	PASS

Traceability to Industry Recognized Test Methodologies
--

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

8.4. Frequency Stability

Conducted Test Conditions for Frequency Stability						
Standard:	CFR 47 Part 95 L / Part 2 ASTM E2213-03	Ambient Temp. (°C):	20.0 - 24.5			
Test Heading:	Frequency Stability	Rel. Humidity (%):	32 - 45			
Standard Section(s):	ASTM 2213-03: 8.10.4	Pressure (mBars):	999 - 1001			
Reference Document(s):	See Normative References					

Applicability

This requirement applies to all intentional transmitters falling under this standard

Definition

Carrier frequency stability is the ability of the transmitter to maintain an assigned carrier frequency.

Limits

ASTM 2213-03 8.10.4: ±10 ppm Temperature range requirements: -20 to +50° C. Voltage Variation +, -15% ±10 PPM

Equipment Configuration for Frequency Stability

Variant:	802.11p	Duty Cycle (%):	80
Data Rate:	3 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	BPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:	Channel Frequency 5890.0 MHz		

Test Measurement Results

Test frequency	5890.00 MHz	M1 Frequency	M2 Frequency	(M1 + M2) /2 Center Frequency	Freq	Error	Limit	Margin
Temperature	Voltage	MHz	MHz	MHz	kHz	ppm	ppm	ppm
20 °C	12.0 Vdc	5885.261	5894.721	5889.991	-9.00	-1.5280	±10.0	-8.4720
20 °C	10.8 Vdc	5885.261	5894.720	5889.991	-9.00	-1.5280	±10.0	-8.4720
20 °C	13.2 Vdc	5885.261	5894.723	5889.992	-8.00	-1.3582	±10.0	-8.6418
-30 °C	12.0 Vdc	5885.271	5894.741	5890.006	6.00	1.0187	±10.0	-8.9813
-20 °C	12.0 Vdc	5885.350	5894.669	5890.010	10.00	1.6978	±10.0	-8.3022
-10 °C	12.0 Vdc	5885.281	5894.738	5890.010	10.00	1.6978	±10.0	-8.3022
0 °C	12.0 Vdc	5885.300	5894.719	5890.010	10.00	1.6978	±10.0	-8.3022
10 °C	12.0 Vdc	5885.291	5894.721	5890.006	6.00	1.0187	±10.0	-8.9813
30 °C	12.0 Vdc	5885.320	5894.699	5890.010	10.00	1.6978	±10.0	-8.3022
40 °C	12.0 Vdc	5885.340	5894.679	5890.010	10.00	1.6978	±10.0	-8.3022
50 °C	12.0 Vdc	5885.31	5894.709	5890.010	10.00	1.6978	±10.0	-8.3022

Traceability to Industry Recognized Test Methodologies				
Work Instruction: WI-02 MEASURING FREQUENCY				
Measurement Uncertainty:	0.86 ppm			

8.5. Conducted Transmitter Unwanted Emissions

Conducted Test Conditions for Transmitter Unwanted Emissions							
Standard:	CFR 47 Part 95 L / Part 2 ASTM E2213-03	FR 47 Part 95 L / Part 2 Ambient Temp. (°C): 24.0 - 27.5					
Test Heading:	Transmitter Unwanted Emissions	32 - 45					
Standard Section(s):	95.3189/ 2.1053 Pressure (mBars): 999 - 1001 \STM E2213-03: 8.10.3 Pressure (mBars): 999 - 1001						
Reference Document(s):	See Normative References						

Applicability

This requirement applies to all types of intentional transmitter equipment types.

Definition

Transmitter unwanted emissions in the out-of-band domain are spurious emissions when the equipment is in Transmit mode,

Limits Transmitter Unwanted Emissions

ASTM E2213-03: 8.10.2 ... In addition, all DSRC site installations shall limit the EIRP in the transmitted spectrum to -25 dBm or less in the 100 kHz at the channel edges and the band edges. And per inference to the rest of the Transmitter spectrum

Test Configuration

Test configuration and setup used for the measurement was per Section 'Conducted RF Emissions Test Set-up' in this report.

Only Noise floor was detected above 26 GHz

Equipment Configuration for Conducted Spurious Emissions - Peak

Variant:	802.11p	Duty Cycle (%):	80
Data Rate:	3 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	BPSK	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Frequency		Conducted Spurious Emissions - Peak (dBm)						
Frequency	Range	Po	Port a Port b		Po	rt c	Po	rt d	
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit
2412.0	30.0 - 26000.0	<u>-30.215</u>	-25.00						
2437.0	30.0 - 26000.0	<u>-30.087</u>	-25.00						
2462.0	30.0 - 26000.0	<u>-30.247</u>	-25.00						
2402.0	20000.0	00.241	20.00						

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS			
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB			

Note: click the links in the above matrix to view the graphical image (plot).

8.6. Radiated Transmitter Spurious Unwanted Emissions

Test Conditions for Transmitter Unwanted Emissions in the Spurious Domain						
Standard:	CFR 47 Part 95 L / Part 2 ASTM E2213-03	R 47 Part 95 L / Part 2 Ambient Temp. (°C): 24.0 - 27.5				
Test Heading:	Transmitter Unwanted Emissions	32 - 45				
Standard Section(s):	95.3189/ 2.1053 Pressure (mBars): 999 - 1001 \STM E2213-03: 8.10.3 999 - 1001 999 - 1001					
Reference Document(s):	See Normative References					

Applicability

This requirement applies to all types of intentional transmitter equipment types.

Definition

Transmitter unwanted emissions in the out-of-band domain are spurious emissions when the equipment is in Transmit mode,

Limits Transmitter Unwanted Emissions

ASTM E2213-03: 8.10.2 ... In addition, all DSRC site installations shall limit the EIRP in the transmitted spectrum to -25 dBm or less in the 100 kHz at the channel edges and the band edges. And per inference to the rest of the Transmitter spectrum. Limit in dBuV/m = EIRP Limit in dBm - 20log(D) + 104.8; where D is the measurement distance.

 $70.2 = (-25)-(20\log(3)+104.8 = (-25)-(9.54)+104.8$

Test Configuration

Test configuration and setup used for the measurement was per Section 'Conducted RF Emissions Test Set-up' in this report.

Only Noise floor was detected above 18 GHz

Per ANSI C63.26: 2015, section 5.5.1:

Substitution is not required on direct radiated emissions performed on a validated test site per requirements of C63.10

NOTE: Any emissions found within < 6 dB of the limit line and \geq to the limit line are evaluated in more detail in order to prove compliance. The Evaluation Table identifies emissions that fall within this criteria and are presented at the end of the test data for that particular operational mode

8.6.2 Radiated Testing

Equipment Configuration for Radiated Transmitter Unwanted Emissions in the Spurious Domain

Antenna:	50 Ω Term	Variant:	802.11p
Antenna Gain (dBi):	Not Applicable	Modulation:	BPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	80
Channel Frequency (MHz):	5860.00	Data Rate:	3 MBit/s
Power Setting:	20	Tested By:	JMH

Test Measurement Results

1000.00 - 18000.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	11721.16	68.18	4.49	-5.52	67.15	Max Peak	Vertical	116	186	70.2	-3.1	Pass
Test Notes: EUT powered by 12 V, Antenna ports terminated. 2.4G and 5G Notch in front of amp to prevent overload												

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for Restricted Band Spurious Emissions

Antenna:	50 Ohm Term	Variant:	802.11p
Antenna Gain (dBi):	Not Applicable	Modulation:	BPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	84
Channel Frequency (MHz):	5890.00	Data Rate:	3 MBit/s
Power Setting:	20	Tested By:	JMH

Test Measurement Results

	1000.00 - 18000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	11779.32	68.90	4.84	-5.49	68.25	Max Peak	Vertical	115	186	70.2	-2.0	Pass
Test Not	es: EUT powe	ered by 12	2 V, Anter	nna ports	terminated	l. 2.4G and 5G N	lotch in fr	ont of amp	to preve	ent overload	d	

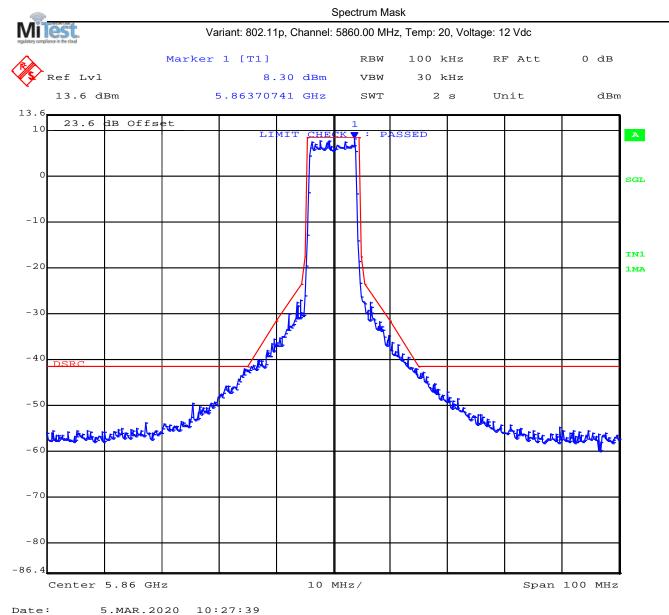
Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for Restricted Band Spurious Emissions

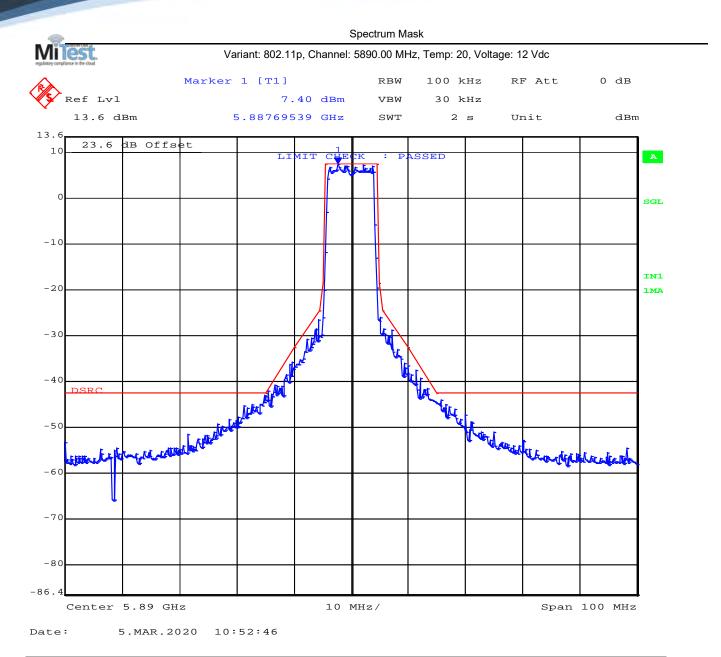
Antenna:	50 Ohm Term	Variant:	802.11p
Antenna Gain (dBi):	Not Applicable	Modulation:	BPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	84
Channel Frequency (MHz):	5920.00	Data Rate:	3 MBit/s
Power Setting:	20	Tested By:	JMH

Test Measurement Results

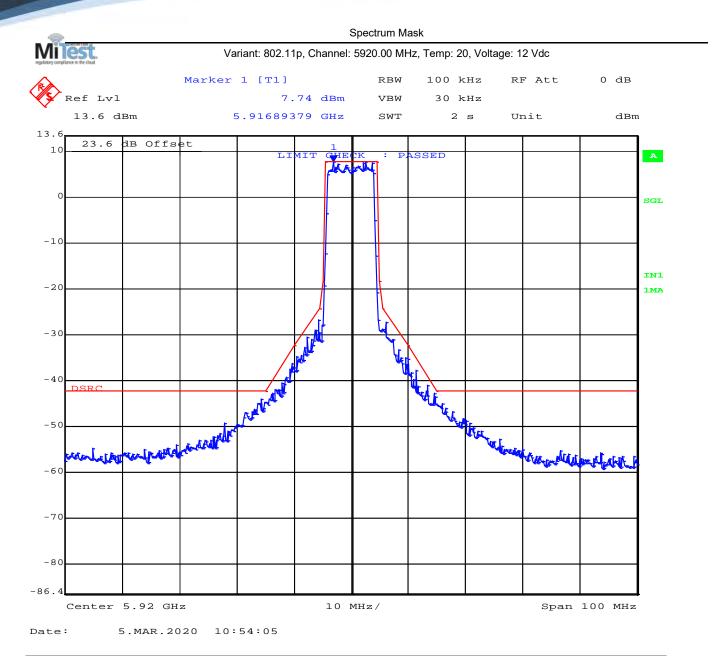
	1000.00 - 18000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	11841.12	70.07	4.50	-5.89	68.68	Max Peak	Vertical	110	180	70.2	-1.5	Pass
Test Not	Test Notes: EUT powered by 12 V, Antenna ports terminated. 2.4G and 5G Notch in front of amp to prevent overload											


Note: click the links in the above matrix to view the graphical image (plot).

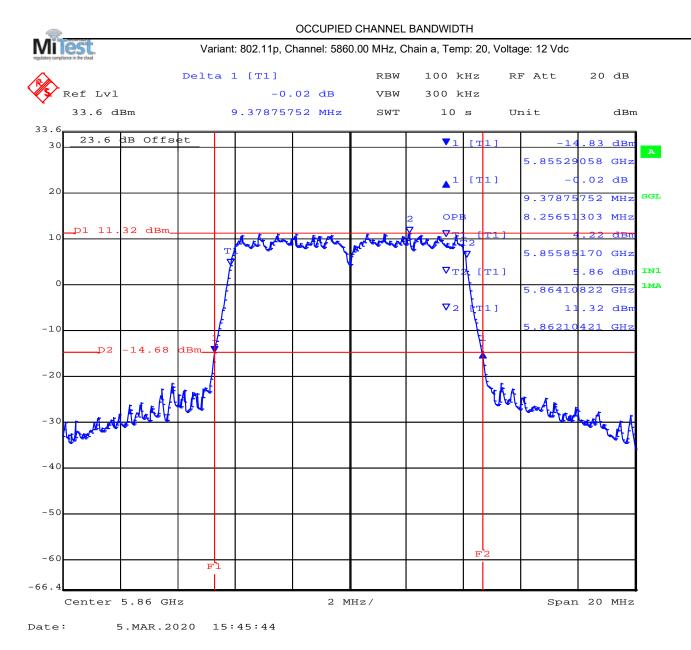
A. APPENDIX - GRAPHICAL IMAGES



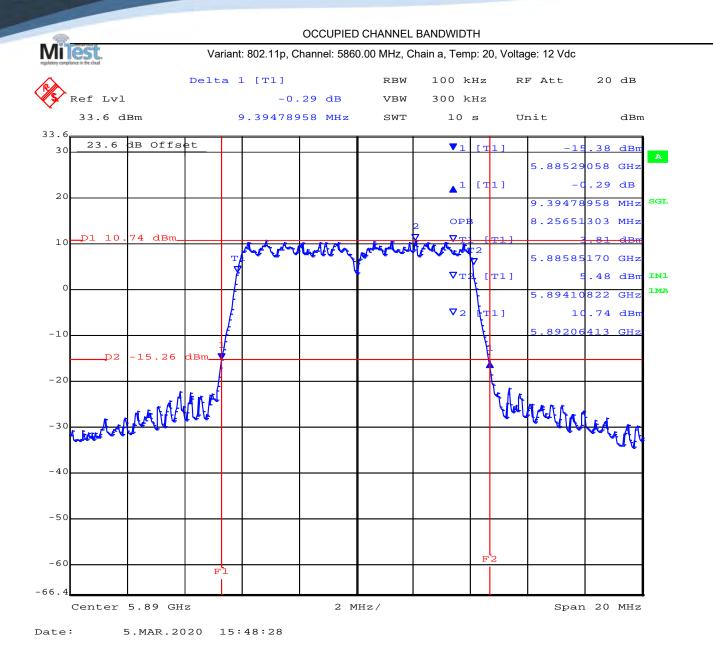
A.1. Spectrum Mask


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Peak Sweep Count = 0 RF Atten (dB) = 0 Trace Mode = CLR/WRITE	M1 : 5863.707 MHz : 8.300 dBm	Channel Frequency: 5860.00 MHz

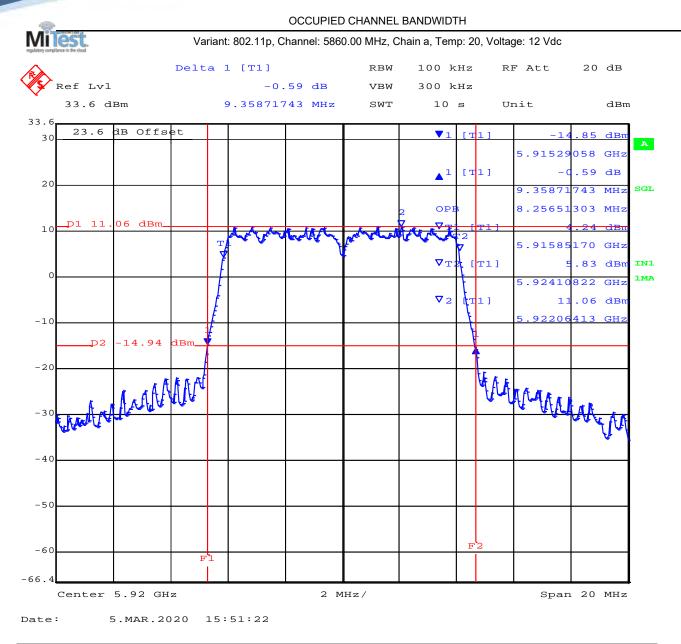
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Detector = Peak Sweep Count = 0 RF Atten (dB) = 0 Trace Mode = CLR/WRITE	M1 : 5887.69 MHz : 7.4 dBm	Channel Frequency: 5890.00 MHz



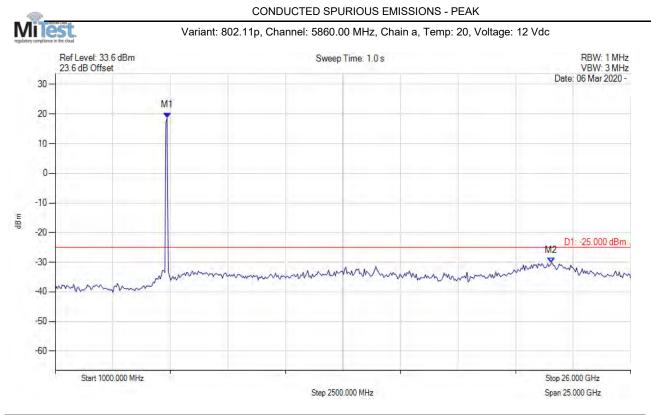
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Detector = Peak Sweep Count = 0 RF Atten (dB) = 0 Trace Mode = CLR/WRITE	M1 : 5916.89 MHz : 7.74 dBm	Channel Frequency: 5890.00 MHz



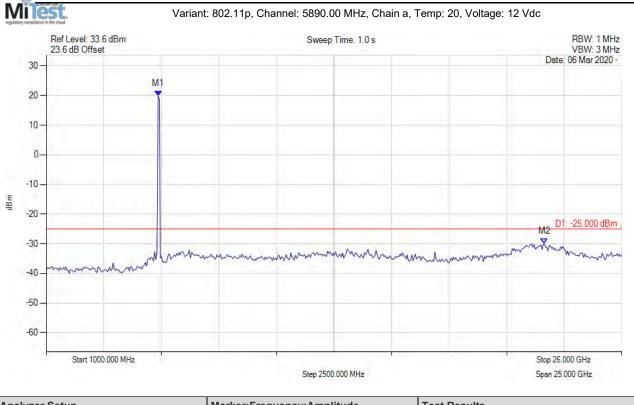
A.2. Occupied Channel Bandwidth


Analyzer SetupMarker:Frequency:AmplitudeTest ResultsDetector = PeakOBW: 8.257 MHzChannel Frequency: 580 MHzSweep Count = 0Marker T1: 5855.852 MHzChannel Frequency: 580 MHzRF Atten (dB) = 20Marker T2: 5864.108 MHzOccupied Bandwidth: 8.257 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Peak Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	OBW: 8.257 MHz Marker T1: 5885.852 MHz Marker T2: 5894.108 MHz	Channel Frequency: 5890 MHz Occupied Bandwidth: 8.257 MHz



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Peak	OBW: 8.257 MHz	Channel Frequency: 5920 MHz
Sweep Count = 0	Marker T1: 5915.852 MHz	Occupied Bandwidth: 8.257 MHz
RF Atten (dB) = 20	Marker T2: 5924.108 MHz	
Trace Mode = MAX HOLD		

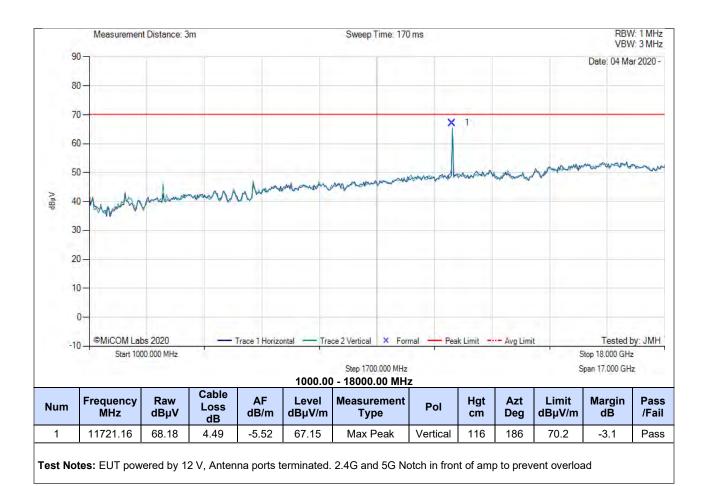

A.3. Transmitter Unwanted Emissions in the Spurious Domain

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 5859.719 MHz : 18.729 dBm	Channel Frequency: 5860.00 MHz
Sweep Count = 0	M2 : 22.543 GHz : -30.215 dBm	
RF Atten (dB) = 20		
Trace Mode = CLR/WRITE		

CONDUCTED SPURIOUS EMISSIONS - PEAK

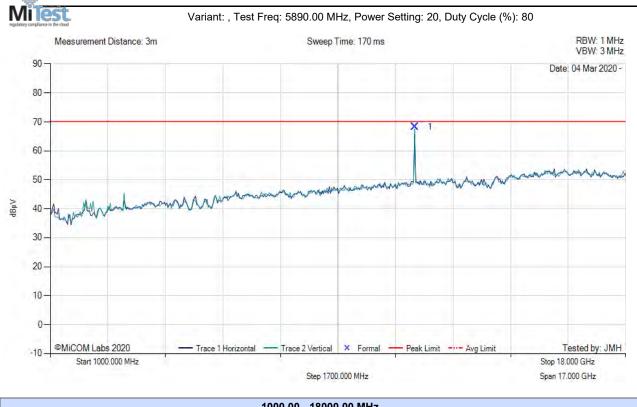
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 5859.719 MHz : 19.880 dBm	Channel Frequency: 5890.00 MHz
Sweep Count = 0	M2 : 22.643 GHz : -30.087 dBm	
RF Atten (dB) = 20		
Trace Mode = CLR/WRITE		

CONDUCTED SPURIOUS EMISSIONS - PEAK Milest Variant: 802.11p, Channel: 5920.00 MHz, Chain a, Temp: 20, Voltage: 12 Vdc Ref Level: 33.6 dBm Sweep Time: 1.0 s RBW: 1 MHz 23.6 dB Offset VBW: 3 MHz Date: 06 Mar 2020 -30 M1 20 10-0--10 dBm -20 -25.000 dBm D1: M2 mont -30 mahun A & & & & -40 -50 -60 Start 1000.000 MHz Stop 26.000 GHz Step 2500.000 MHz Span 25.000 GHz


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
	M1 : 5909.820 MHz : 20.021 dBm M2 : 22.443 GHz : -30.247 dBm	Channel Frequency: 5920.00 MHz
RF Atten (dB) = 20		
Trace Mode = CLR/WRITE		

A.4. Radiated Spurious Emissions

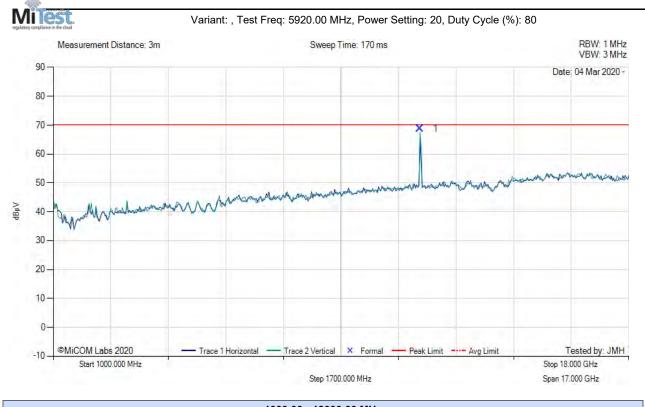
Variant: , Test Freq: 5860.00 MHz, Power Setting: 20, Duty Cycle (%): 80


back to matrix

 Issue Date:
 25th June 2020
 Page:
 49 of 52

 This test report may be reproduced in full only.
 The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

 MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com



	1000.00 - 18000.00 MHZ											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	11779.32	68.90	4.84	-5.49	68.25	Max Peak	Vertical	115	186	70.2	-2.0	Pass

Test Notes: EUT powered by 12 V, Antenna ports terminated. 2.4G and 5G Notch in front of amp to prevent overload

	1000.00 - 18000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	11841.12	70.07	4.50	-5.89	68.68	Max Peak	Vertical	110	180	70.2	-1.5	Pass

Test Notes: EUT powered by 12 V, Antenna ports terminated. 2.4G and 5G Notch in front of amp to prevent overload

575 Boulder Court Pleasanton, California 94566, USA Tel: +1 (925) 462 0304 Fax: +1 (925) 462 0306 www.micomlabs.com