

Report No.: EEd32O80248502 Page 1 of 46

Product Vgate iCarPro BLE4.0

: Vgate vLinker Trade mark

Model/Type reference : CV235, CV191, CV188

Serial Number : N/A

Report Number EED32O80248502

FCC ID 2A45F-CV235

Date of Issue : Mar. 07, 2022

Test Standards : 47 CFR Part 15 Subpart C

Test result **PASS**

Prepared for:

Shenzhen Chebotong Technology Co., Ltd. Room5c 5th Building2, BanDao Chengbang Garden 2th, Shekou Street, Nanshan District shenzhen 518000 China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Reviewed by:

Date:

Mar. 07, 2022

David Wang

Check No.:4723240222

1

	ntents					Page
1 CONTEN	TS			•••••	•••••	2
2 VERSION	I	•••••	•••••	•••••	•••••	3
	MMARY					
	L INFORMATION					
4.2 GENE 4.3 TEST 4.4 TEST	NT INFORMATIONERAL DESCRIPTION OF EUT CONFIGURATION					5 7 8
	RIPTION OF SUPPORT UNITS					
5.2 MAXII 5.3 20DB 5.4 CARR 5.5 NUME 5.6 TIME 5.7 BAND 5.8 COND 5.9 PSEU 5.10 RAD	NNA REQUIREMENT MUM CONDUCTED OUTPUT FOR EMISSION BANDWIDTH RIER FREQUENCY SEPARATION BER OF HOPPING CHANNEL OF OCCUPANCY DEDGE MEASUREMENTS DUCTED SPURIOUS EMISSION DORANDOM FREQUENCY HOP DIATED SPURIOUS EMISSION EXAMPLE OF TEST SETUP	POWER)S			131415161718192022
8 PHOTOG	RAPHS OF EUT CONSTR	RUCTIONAL DETAI	ILS		•••••	46



2 Version

Version No.	Date		Description	-0.5
00	Mar. 07, 2022	(1)	Original	(31)

3 Test Summary

4.31	0.1
Test Requirement	Result
47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	PASS
47 CFR Part 15, Subpart C Section 15.207	N/A
47 CFR Part 15, Subpart C Section 15.247 (b)(1)	PASS
47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
47 CFR Part 15, Subpart C Section 15.247(b)(4)	PASS
47 CFR Part 15, Subpart C Section 15.247(d)	PASS
47 CFR Part 15, Subpart C Section 15.247(d)	PASS
47 CFR Part 15, Subpart C Section 15.205/15.209	PASS
47 CFR Part 15, Subpart C Section 15.205/15.209	PASS
	47 CFR Part 15, Subpart C Section 15.203/15.247 (c) 47 CFR Part 15, Subpart C Section 15.207 47 CFR Part 15, Subpart C Section 15.247 (b)(1) 47 CFR Part 15, Subpart C Section 15.247 (a)(1) 47 CFR Part 15, Subpart C Section 15.247 (a)(1) 47 CFR Part 15, Subpart C Section 15.247 (a)(1) 47 CFR Part 15, Subpart C Section 15.247 (a)(1) 47 CFR Part 15, Subpart C Section 15.247 (b)(4) 47 CFR Part 15, Subpart C Section 15.247(d) 47 CFR Part 15, Subpart C Section 15.247(d) 47 CFR Part 15, Subpart C Section 15.247(d) 47 CFR Part 15, Subpart C Section 15.247(d)

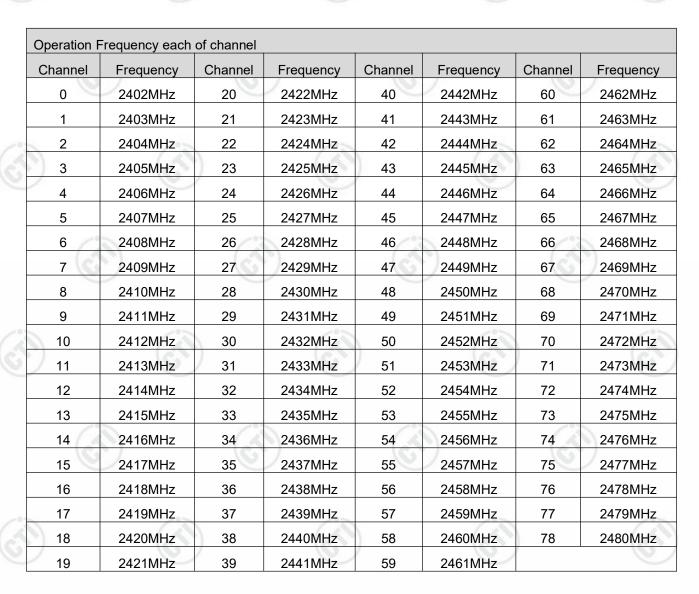
Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Model No.: CV235, CV191, CV188

Only the model CV235 was tested, Their electrical circuit design, layout, components used and internal wiring are identical, Only the shell is different.

4.1 Client Information


Applicant:	Shenzhen Chebotong Technology Co., Ltd.
Address of Applicant:	Room5c 5th Building2, BanDao Chengbang Garden 2th, Shekou Street, Nanshan District shenzhen 518000 China
Manufacturer:	Shenzhen Chebotong Technology Co., Ltd.
Address of Manufacturer:	Room5c 5th Building2, BanDao Chengbang Garden 2th, Shekou Street, Nanshan District shenzhen 518000 China
Factory:	Shenzhen Chebotong Technology Co., Ltd.
Address of Factory:	Room5c 5th Building2, BanDao Chengbang Garden 2th, Shekou Street, Nanshan District shenzhen 518000 China

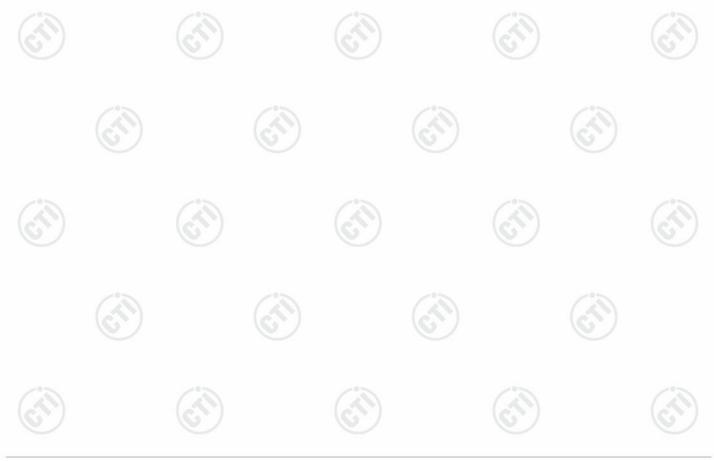
4.2 General Description of EUT

-			
Product Name:	Vgate iCarPro BLE4.0		
Model No.:	CV235, CV191, CV188		
Test Model No.:	CV235		(41)
Trade Mark:	Vgate、vLinker		
Product Type:	Fix Location		
Operation Frequency:	2402MHz~2480MHz	-05	
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)		
Modulation Type:	GFSK, π/4DQPSK, 8DPSK		
Number of Channel:	79		
Hopping Channel Type:	Adaptive Frequency Hopping systems		100
Antenna Type:	PCB antenna		(3)
Test Software of EUT:	Realtek RTLBTAPP		(0,)
Antenna Gain:	3.5dBi		
Power Supply:	DC 12V		
Test Voltage:	DC 12V		
Sample Received Date:	Feb. 25, 2022		
Sample tested Date:	Feb. 25, 2022 to Mar. 03, 2022		

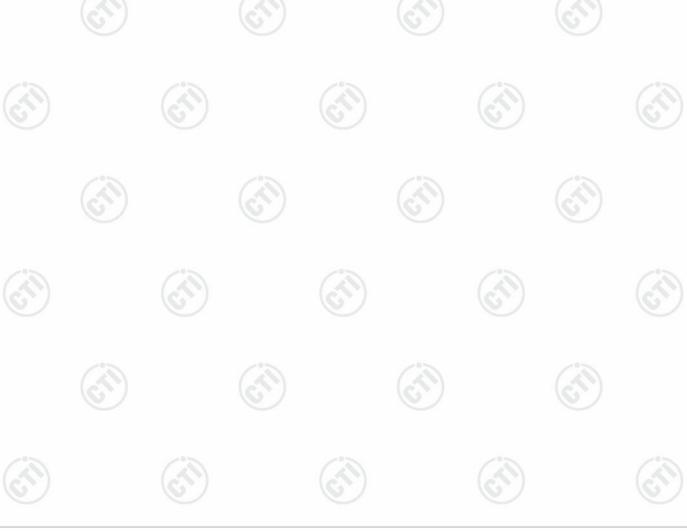
Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz



EUT Test Software Setting	s:					
Software:	Realtek RTLBTAPP	Realtek RTLBTAPP				
EUT Power Grade:	Class2 (Power level is built- selected)	Class2 (Power level is built-in set parameters and cannot be changed and selected)				
Use test software to set the transmitting of the EUT.	lowest frequency, the middle freq	quency and the high	nest frequency keep	6		
Mode	Channel		Frequency(MHz)			
	CH0		2402			
DH1/DH3/DH5	CH39		2441			
	CH78		2480			
	CH0		2402			
2DH1/2DH3/2DH5	CH39	-0-	2441	_0_		
	CH78	(25)	2480			
	CH0		2402			
2DH1/2DH3/2DH5	CH39		2441			
(2)	CH78	/°	2480			
2DH1/2DH3/2DH5	CH0 CH39		2402 2441			



Operating Environment	:			
Radiated Spurious Emi	ssions:			
Temperature:	22~25.0 °C			
Humidity:	50~55 % RH			
Atmospheric Pressure:	1010mbar		(1)	13
RF Conducted:				
Temperature:	22~25.0 °C			
Humidity:	50~55 % RH			
Atmospheric Pressure:	1010mbar	-05		

4.5 **Description of Support Units**

The EUT has been tested with associated equipment below.

D	escription	Manufacturer	Model No.	Certification	Supplied by
	Netbook	DELL	Latitude 3490	FCC&CE	CTI

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-40GHz)
	/*>	3.3dB (9kHz-30MHz)
	Dedicted Country aminging test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
		3.4dB (18GHz-40GHz)
1	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

4.8 Equipment List

/ 43/	1.4		1 4 6	/	107		
RF test system							
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-24-2021	12-23-2022		
Signal Generator	Keysight	N5182B	MY53051549	12-24-2021	12-23-2022		
Signal Generator	Agilent	N5181A	MY46240094	12-24-2021	12-23-2022		
DC Power	Keysight	E3642A	MY56376072	12-24-2021	12-23-2022		
Power unit	R&S	OSP120	101374	12-24-2021	12-23-2022		
RF control unit	JS Tonscend	JS0806-2	158060006	12-24-2021	12-23-2022		
Communication test set	R&S	CMW500	120765	08-04-2021	08-03-2022		
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-24-2021	12-23-2022		
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-24-2021	06-23-2022		
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	2.6.77.0518	(6)			

3M Semi-anechoic Chamber (2)- Radiated disturbance Test							
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date		
3M Chamber & Accessory Equipment	TDK	SAC-3		05/24/2019	05/23/2022		
Receiver	R&S	ESCI7	100938-003	10/14/2021	10/13/2022		
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/23/2019	05/22/2022		
Multi device Controller	maturo	NCD/070/10711112					
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024		
Spectrum Analyzer	R&S	FSP40	100416	04/29/2021	04/28/2022		
Microwave Preamplifier	Agilent	8449B	3008A02425	06/23/2021	06/22/2022		

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

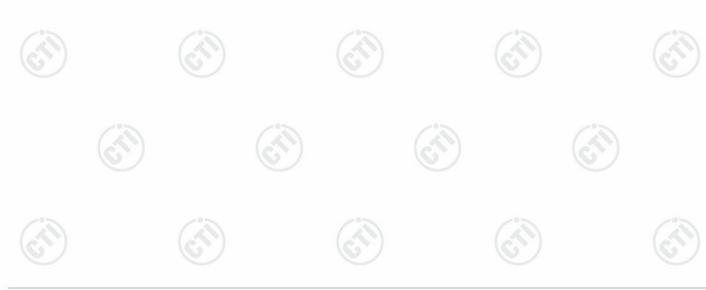
15.203 requirement:

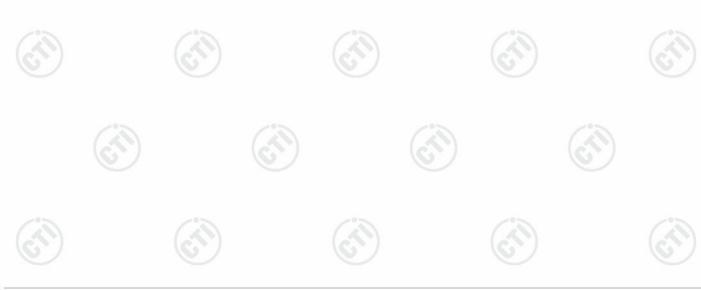
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

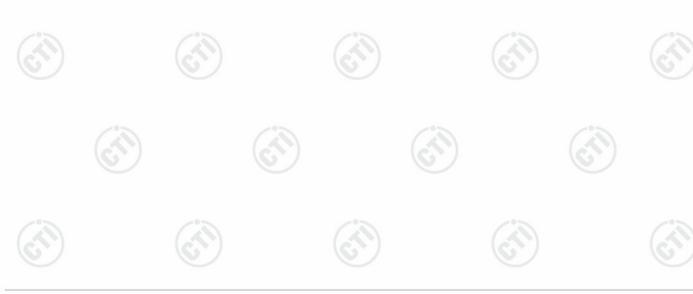
EUT Antenna: Please see Internal photos

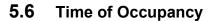

The antenna is PCB antenna. The best case gain of the antenna is 3.5dBi.

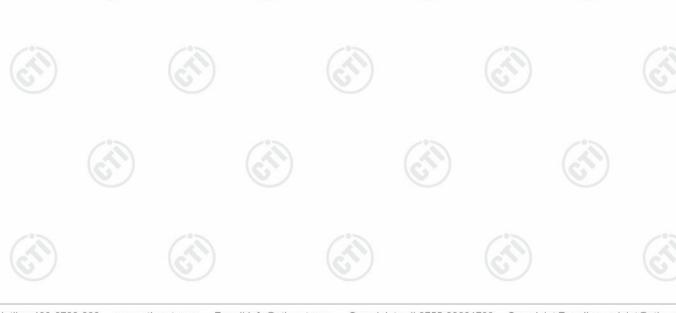

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Control Computer Power poorts) Power pot Table RF test System System Instrument
Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.
Limit:	21dBm
Exploratory Test Mod	e: Non-hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π/4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
Test Results:	Refer to Appendix A
7 43.3	

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup: Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Use the following spectrum analyzer settings for 20dB Bandwidth
Limit:	measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW ≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. 4. Measure and record the results in the test report. NA
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
Test Results:	Refer to Appendix A

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Control Control Control Power Supply Actenuary Power Supply Table RF test System System Instrument Table
Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Enable the EUT hopping function. 4. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. 5. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.
Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
Test Results:	Refer to Appendix A






Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Control Congular Power Supply Table RF test System System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep= auto; Detector function = peak; Trace = max hold.
	5. The number of hopping frequency used is defined as the number of total channel.6. Record the measurement data in report.
1: 4	
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.
Test Mode:	Hopping transmitting with all kind of modulation
Test Results:	Refer to Appendix A

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)							
Test Method:	ANSI C63.10:2013							
Test Setup:	Control Computer Power Supply Power Table RF test System System Instrument							
	Remark: Offset=Cable loss+ attenuation factor.							
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 							
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.							
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.							
Test Results:	Refer to Appendix A							

Test Requirement:	47 CFR Part 15C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013						
Test Setup:	Control Control Control Actenna Pool(a) Actenna Pool(a) Actenna Pool(a) Actenna Pool(a) Actenna Pool(a) Actenna Table RF test System Instrument Table						
	Remark: Offset=Cable loss+ attenuation factor.						
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report. 						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type						
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.						
Test Results:	Refer to Appendix A						

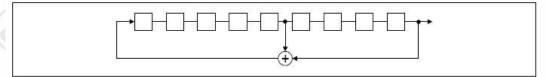
Test Method: Test Setup: Remark: Offset=Cable loss+ attenuator Instrument Remark: Offset=Cable loss+ attenuator Instrument Remark: Offset=Cable loss+ attenuator Instrument Remark: Offset=Cable loss+ attenuator. 1. The RF output of EUT was connected to the spectrum analyzer by RI cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transm continuously. 3. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. A harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. 4. Measure and record the results in the test report. 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. Limit: In any 100 kHz bandwidth outside the frequency band in which the sprease spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiater measurement. Exploratory Test Mode: Non-hopping transmitting with all kind of modulation and all kind of data type is the worst case of GFSI modulation type, 2-DH5 of data type is the worst case of m/4DQPSI modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.	Test Requirement:	47 CFR Part 15C Section 15	5.247 (d)		(3)
Remark: Offset=Cable loss+ attenuation factor. 1. The RF output of EUT was connected to the spectrum analyzer by RI cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transm continuously. 3. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. A harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. 4. Measure and record the results in the test report. 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. Limit: In any 100 kHz bandwidth outside the frequency band in which the sprear spectrum intentional radiator is operating, the radio frequency power that it produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Exploratory Test Mode: Non-hopping transmitting with all kind of modulation and all kind of data type. Final Test Mode: Through Pre-scan, find the DH5 of data type is the worst case of GFSI modulation type, 2-DH5 of data type is the worst case of 8DPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation	Test Method:	ANSI C63.10:2013	(0)		(6,2)
Test Procedure: 1. The RF output of EUT was connected to the spectrum analyzer by RI cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transm continuously. 3. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. A harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. 4. Measure and record the results in the test report. 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. Limit: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that it produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Exploratory Test Mode: Non-hopping transmitting with all kind of modulation and all kind of data type. Through Pre-scan, find the DH5 of data type is the worst case of GFSI modulation type, 2-DH5 of data type is the worst case of 8DPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation.	Test Setup:	Control Computer Power Supply TEMPERATURE CASNET	nuator	System	
cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transm continuously. 3. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. A harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. 4. Measure and record the results in the test report. 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. Limit: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that it produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Exploratory Test Mode: Non-hopping transmitting with all kind of modulation and all kind of data type. Final Test Mode: Through Pre-scan, find the DH5 of data type is the worst case of GFSH modulation type, 2-DH5 of data type is the worst case of 8DPSK modulation.		Remark: Offset=Cable loss+	attenuatio	on factor.	
spectrum intentional radiator is operating, the radio frequency power that i produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Exploratory Test Mode: Non-hopping transmitting with all kind of modulation and all kind of data type Final Test Mode: Through Pre-scan, find the DH5 of data type is the worst case of GFSH modulation type, 2-DH5 of data type is the worst case of 8DPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation	Test Procedure:	cable and attenuator. The parmeasurement. 2. Set to the maximum continuously. 3. Set RBW = 100 kHz, VBV harmonics / spurs must be level within the authorized bath. Measure and record the results of the parmeasure and record the results. The RF fundamental frequence is the results of the r	power set N = 300kH at least 20 and as measults in the	tting and enabled to the string and enabled to the string and enabled to the string and the string as under the string as unde	o the results for each the the EUT transmit gh 10th harmonic. All the highest emission 0kHz RBW.
Final Test Mode: Through Pre-scan, find the DH5 of data type is the worst case of GFSł modulation type, 2-DH5 of data type is the worst case of π/4DQPSł modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation	Limit:	spectrum intentional radiator produced by the intentional 100 kHz bandwidth within desired power, based on	r is operat radiator sh the band t	ing, the radio fre nall be at least 20 that contains the	quency power that is described descr
modulation type, 2-DH5 of data type is the worst case of π/4DQPSi modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation	Exploratory Test Mode:	Non-hopping transmitting with	th all kind o	of modulation and	all kind of data type
	Final Test Mode:	modulation type, 2-DH5 of modulation type, 3-DH5 of d	f data typ	e is the worst	case of $\pi/4\text{DQPSK}$
Test Results: Refer to Appendix A	Test Results:	Refer to Appendix A		-0-	

Test Requirement:

47 CFR Part 15C Section 15.247 (a)(1), (h) requirement:

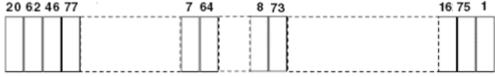
The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.


The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Compliance for section 15.247(a)(1)

According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage


outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- · Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals.

Compliance for section 15.247(g)

According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom

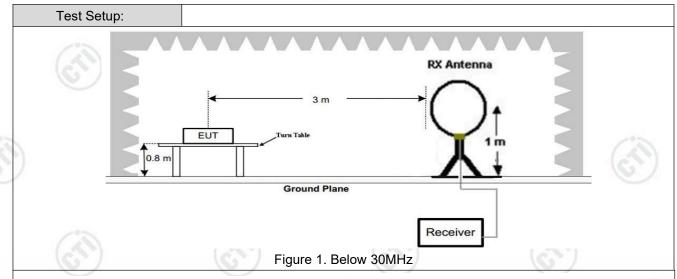
hopping frequency system.

Compliance for section 15.247(h)

According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

Test Requirement:	47 CFR Part 15C Section	on 1	5.209 and 15.	205	(3)	•)					
Test Method:	ANSI C63.10: 2013	ANSI C63.10: 2013									
Test Site:	Measurement Distance	Measurement Distance: 3m (Semi-Anechoic Chamber)									
Receiver Setup:	Frequency	Frequency Detector RBW V		VBW	Remark						
	0.009MHz-0.090MH	z	Peak	10kHz	30kHz	Peak					
	0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average					
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	z 30kHz	Quasi-peak					
	0.110MHz-0.490MH	z	Peak	10kHz	30kHz	Peak					
	0.110MHz-0.490MH	z	Average	10kHz	30kHz	Average					
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak					
	30MHz-1GHz		Peak	100 kH	z 300kHz	Peak					
	Above 1GHz		Peak	1MHz	3MHz	Peak					
			Peak	1MHz	10kHz	Average					
Limit:	Frequency	Frequency		Limit (dBuV/m)	Remark	Measureme distance (m					
	0.009MHz-0.490MHz	//Hz 2400/F(kHz)		-	-	300					
	0.490MHz-1.705MHz	MHz 24000/F(kHz)		-	-/3	30					
	1.705MHz-30MHz		30	-	(65)	30					
	30MHz-88MHz		100	40.0	Quasi-peak	3					
	88MHz-216MHz 150 43.5 Quasi-peak										
	216MHz-960MHz	3									
	960MHz-1GHz	54.0	Quasi-peak	3							
	Above 1GHz	3									
	Note: 15.35(b), Unless emissions is 20dE applicable to the expeak emission lev	3 abo equip	ove the maximoment under t	num permi est. This p	itted average	emission limit					



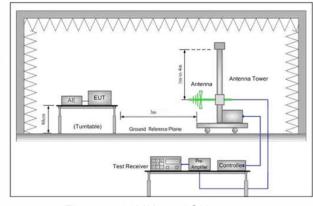
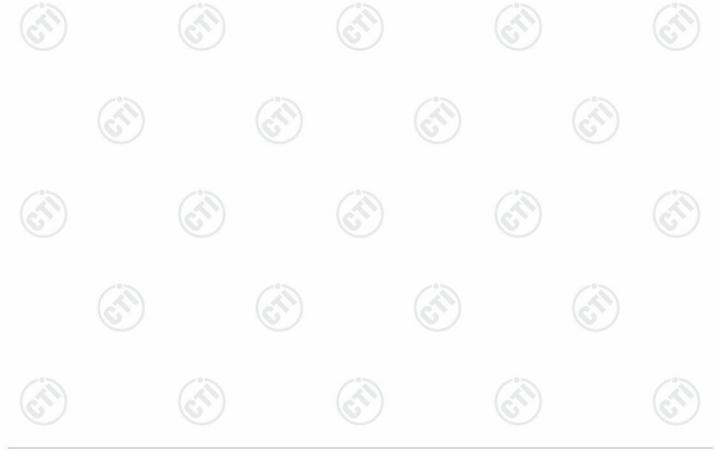


Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

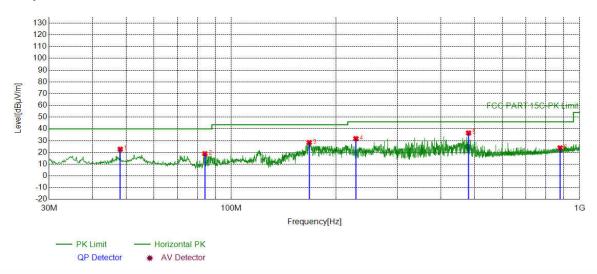
Test Procedure:

- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.


Note: For the radiated emission test above 1GHz:

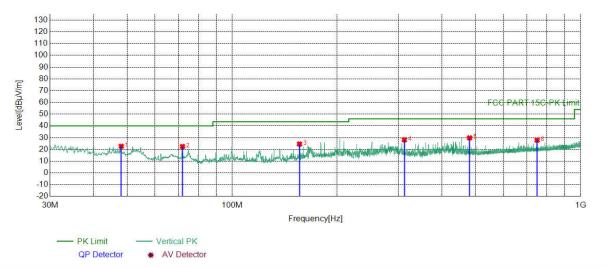
Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

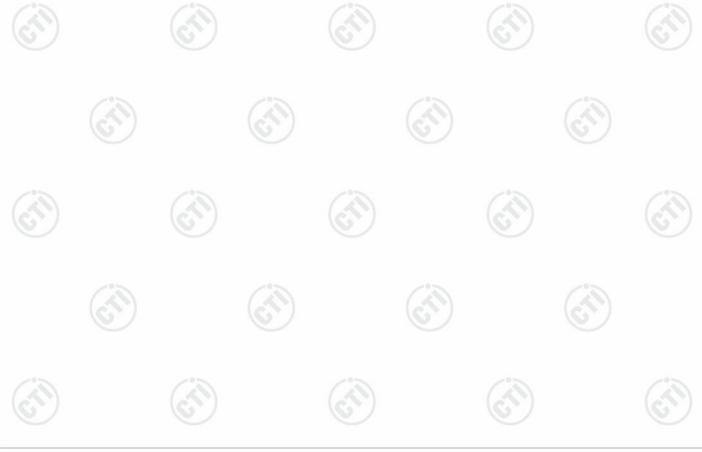
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.


	 d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz),the middle channel (2441MHz),the Highest channel (2480MHz) h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case. Pretest the EUT at Transmitting mode, For below 1GHz part, through pre-scan, the worst case is the lowest channel. Only the worst case is recorded in the report.
Test Results:	Pass

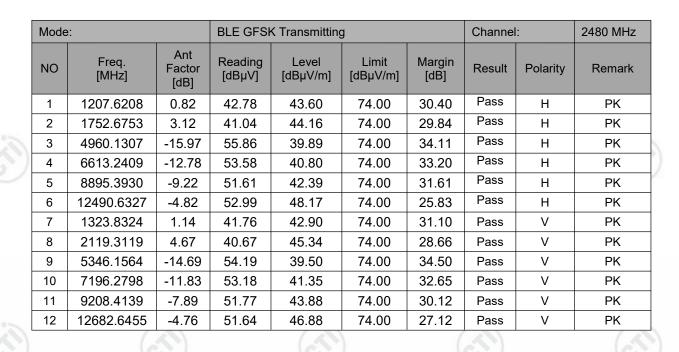
Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of DH5 for GFSK was recorded in the report.


Suspec	Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	48.0438	-17.17	39.90	22.73	40.00	17.27	PASS	Horizontal	PK	
2	84.0344	-21.58	40.45	18.87	40.00	21.13	PASS	Horizontal	PK	
3	167.4627	-20.64	49.07	28.43	43.50	15.07	PASS	Horizontal	PK	
4	227.9968	-17.05	48.78	31.73	46.00	14.27	PASS	Horizontal	PK	
5	480.0280	-11.20	47.72	36.52	46.00	9.48	PASS	Horizontal	PK	
6	879.1259	-5.17	29.01	23.84	46.00	22.16	PASS	Horizontal	PK	



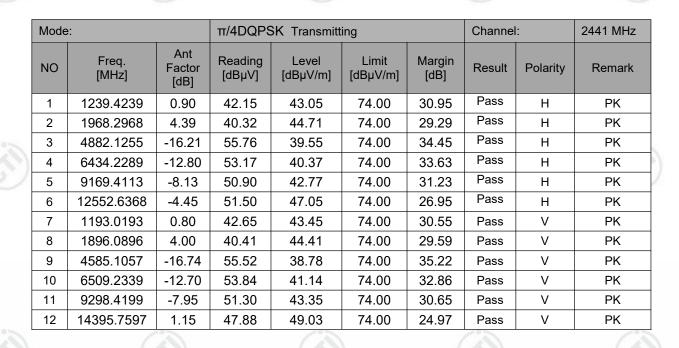
Suspec	Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	48.0438	-17.17	39.88	22.71	40.00	17.29	PASS	Vertical	PK	
2	72.0052	-21.15	43.62	22.47	40.00	17.53	PASS	Vertical	PK	
3	156.0156	-21.35	45.97	24.62	43.50	18.88	PASS	Vertical	PK	
4	312.0072	-15.10	43.28	28.18	46.00	17.82	PASS	Vertical	PK	
5	480.0280	-11.20	41.04	29.84	46.00	16.16	PASS	Vertical	PK	
6	750.1030	-7.00	34.94	27.94	46.00	18.06	PASS	Vertical	PK	



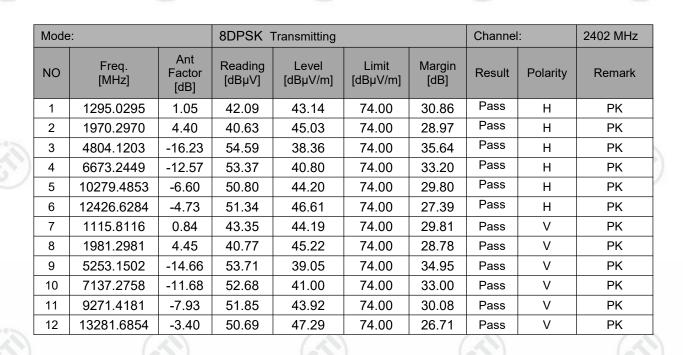
Mode	de: BLE GFSK Transmitting				Channel	:	2402 MHz		
NO	Freq. [MHz]	Ant Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1236.6237	0.90	42.01	42.91	74.00	31.09	Pass	Н	PK
2	2014.3014	4.60	40.39	44.99	74.00	29.01	Pass	Н	PK
3	3187.0125	-20.38	59.36	38.98	74.00	35.02	Pass	Н	PK
4	5686.1791	-13.97	55.36	41.39	74.00	32.61	Pass	Н	PK
5	9876.4584	-7.14	50.61	43.47	74.00	30.53	Pass	Н	PK
6	14318.7546	-0.13	48.71	48.58	74.00	25.42	Pass	Н	PK
7	1175.2175	0.81	42.00	42.81	74.00	31.19	Pass	V	PK
8	1771.6772	3.18	40.81	43.99	74.00	30.01	Pass	V	PK
9	3340.0227	-19.96	58.24	38.28	74.00	35.72	Pass	V	PK
10	6075.2050	-13.10	53.11	40.01	74.00	33.99	Pass	V	PK
11	9230.4154	-7.90	51.51	43.61	74.00	30.39	Pass	V	PK
12	13763.7176	-1.68	49.28	47.60	74.00	26.40	Pass	V	PK

Mode):		BLE GFS	< Transmitting	g		Channel	l:	2441 MHz
NO	Freq. [MHz]	Ant Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1275.8276	1.00	42.65	43.65	74.00	30.35	Pass	Н	PK
2	1693.4693	2.90	40.94	43.84	74.00	30.16	Pass	Н	PK
3	3516.0344	-20.08	56.42	36.34	74.00	37.66	Pass	Н	PK
4	6509.2339	-12.70	53.49	40.79	74.00	33.21	Pass	Н	PK
5	10386.4924	-6.30	51.84	45.54	74.00	28.46	Pass	Н	PK
6	14370.7581	0.73	48.37	49.10	74.00	24.90	Pass	Н	PK
7	1205.0205	0.81	41.84	42.65	74.00	31.35	Pass	V	PK
8	1676.2676	2.79	41.06	43.85	74.00	30.15	Pass	V	PK
9	3195.0130	-20.36	60.61	40.25	74.00	33.75	Pass	V	PK
10	5311.1541	-14.78	54.30	39.52	74.00	34.48	Pass	V	PK
11	8896.3931	-9.22	51.90	42.68	74.00	31.32	Pass	V	PK
12	15398.8266	0.51	50.27	50.78	74.00	23.22	Pass	V	PK

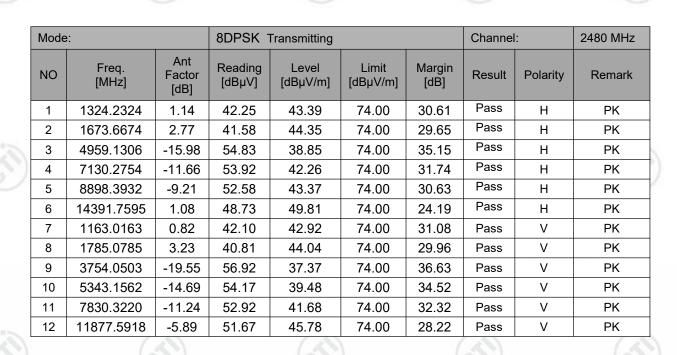
Mode):		π/4DQPS	SK Transmitt	ing		Channel	:	2402 MHz
NO	Freq. [MHz]	Ant Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1153.8154	0.82	42.29	43.11	74.00	30.89	Pass	Н	PK
2	1781.2781	3.22	41.19	44.41	74.00	29.59	Pass	Н	PK
3	4577.1051	-16.76	55.39	38.63	74.00	35.37	Pass	Н	PK
4	6638.2426	-12.70	52.98	40.28	74.00	33.72	Pass	Н	PK
5	9270.4180	-7.93	51.43	43.50	74.00	30.50	Pass	Н	PK
6	11353.5569	-6.36	51.28	44.92	74.00	29.08	Pass	Н	PK
7	1325.0325	1.14	41.48	42.62	74.00	31.38	Pass	V	PK
8	1696.6697	2.92	41.01	43.93	74.00	30.07	Pass	V	PK
9	4322.0881	-17.19	56.06	38.87	74.00	35.13	Pass	V	PK
10	6555.2370	-12.77	53.38	40.61	74.00	33.39	Pass	V	PK
11	7888.3259	-10.96	52.92	41.96	74.00	32.04	Pass	V	PK
12	12468.6312	-4.79	51.65	46.86	74.00	27.14	Pass	V	PK



Mode) :		π/4DQPS	SK Transmitt	ing		Channel:		2480 MHz
NO	Freq. [MHz]	Ant Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1102.6103	0.85	42.50	43.35	74.00	30.65	Pass	Н	PK
2	2035.5036	4.67	40.86	45.53	74.00	28.47	Pass	Н	PK
3	4960.1307	-15.97	56.26	40.29	74.00	33.71	Pass	Н	PK
4	6613.2409	-12.78	53.67	40.89	74.00	33.11	Pass	Н	PK
5	10313.4876	-6.44	51.54	45.10	74.00	28.90	Pass	Н	PK
6	12451.6301	-4.76	51.34	46.58	74.00	27.42	Pass	Н	PK
7	1270.6271	0.98	41.79	42.77	74.00	31.23	Pass	V	PK
8	1792.6793	3.26	41.26	44.52	74.00	29.48	Pass	V	PK
9	5049.1366	-15.75	55.59	39.84	74.00	34.16	Pass	V	PK
10	6911.2608	-11.83	53.75	41.92	74.00	32.08	Pass	V	PK
11	10856.5238	-6.31	51.22	44.91	74.00	29.09	Pass	V	PK
12	14350.7567	0.40	48.65	49.05	74.00	24.95	Pass	V	PK

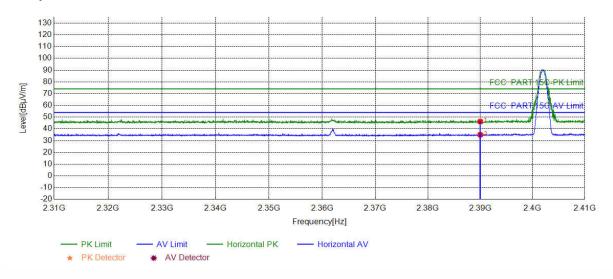


Mode	: :		8DPSK 1	Transmitting			Channel	l:	2441 MHz
NO	Freq. [MHz]	Ant Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1104.2104	0.85	42.76	43.61	74.00	30.39	Pass	Н	PK
2	1662.6663	2.70	41.00	43.70	74.00	30.30	Pass	Н	PK
3	4882.1255	-16.21	55.20	38.99	74.00	35.01	Pass	Н	PK
4	6725.2484	-12.46	53.92	41.46	74.00	32.54	Pass	Н	PK
5	9235.4157	-7.90	51.36	43.46	74.00	30.54	Pass	Н	PK
6	14385.7591	0.98	48.34	49.32	74.00	24.68	Pass	Н	PK
7	1423.2423	1.41	41.69	43.10	74.00	30.90	Pass	V	PK
8	2020.9021	4.62	40.75	45.37	74.00	28.63	Pass	V	PK
9	5056.1371	-15.74	54.19	38.45	74.00	35.55	Pass	V	PK
10	7399.2933	-11.51	52.76	41.25	74.00	32.75	Pass	V	PK
11	10770.5180	-6.30	51.22	44.92	74.00	29.08	Pass	V	PK
12	15474.8317	0.33	48.60	48.93	74.00	25.07	Pass	V	PK



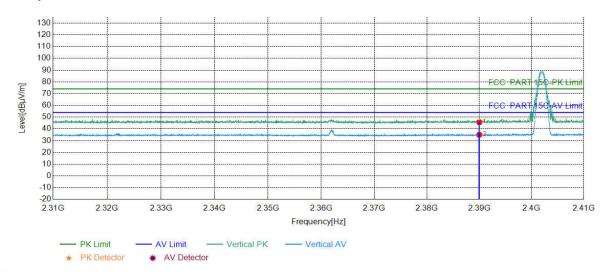
Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

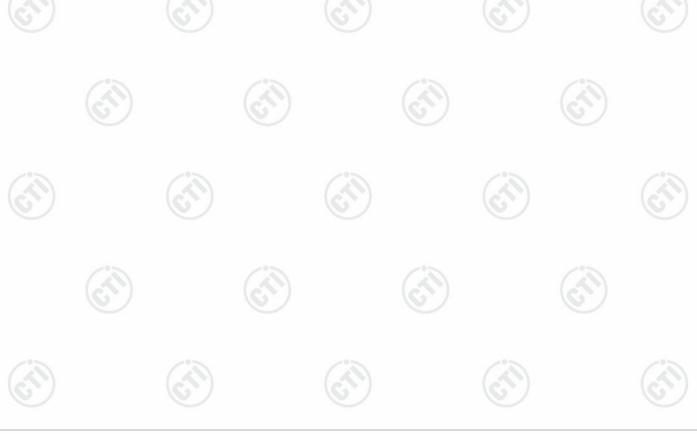


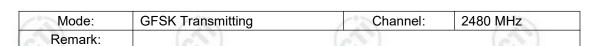
Test plot as follows:

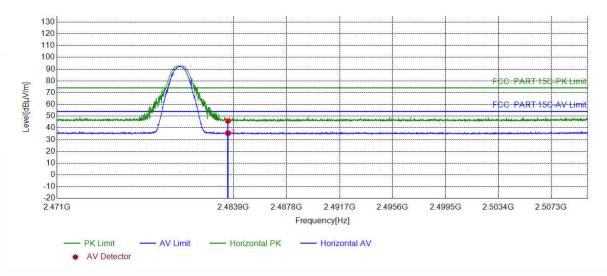
Mode:	GFSK Transmitting	Channel:	2402 MHz
Remark:			



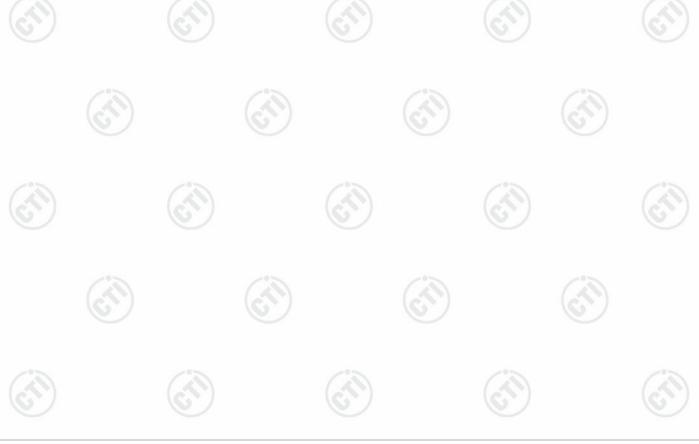
Suspec	Suspected List													
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark					
1	2390.0000	5.77	40.50	46.27	74.00	27.73	PASS	Horizontal	PK					
2	2390.0000	5.77	29.25	35.02	54.00	18.98	PASS	Horizontal	AV					

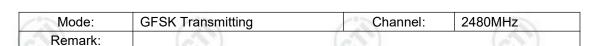


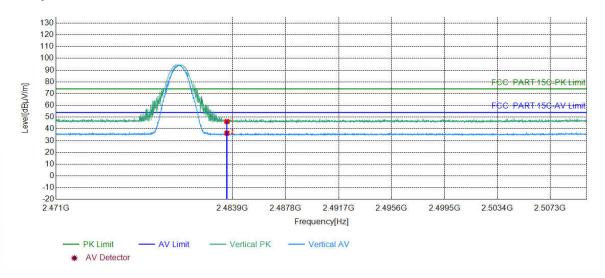




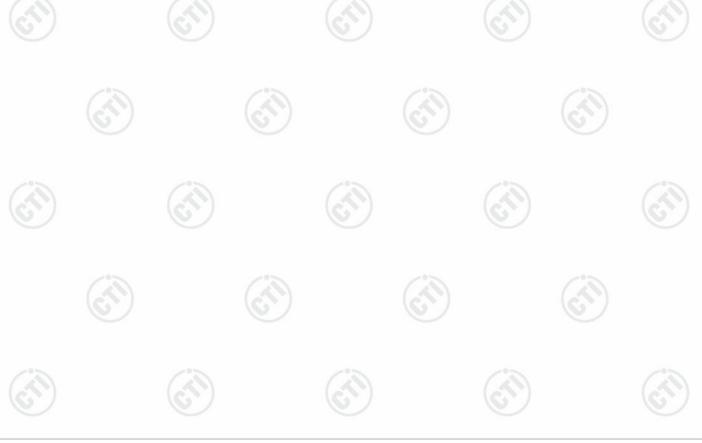
Suspe	Suspected List												
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark				
1	2390.0000	5.77	39.86	45.63	74.00	28.37	PASS	Vertical	PK				
2	2390.0000	5.77	29.25	35.02	54.00	18.98	PASS	Vertical	AV				

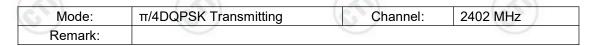


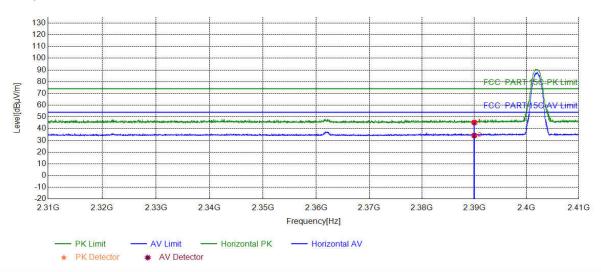




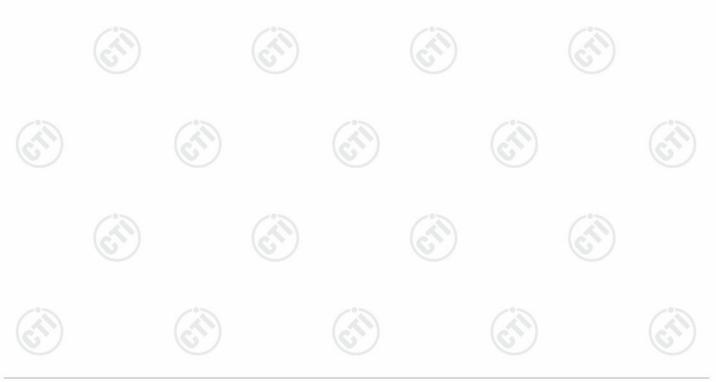
Suspec	Suspected List												
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark				
1	2483.5000	6.57	39.40	45.97	74.00	28.03	PASS	Horizontal	PK				
2	2483.5000	6.57	29.00	35.57	54.00	18.43	PASS	Horizontal	AV				

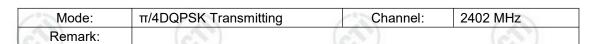


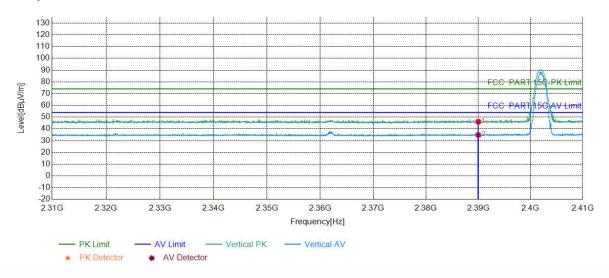




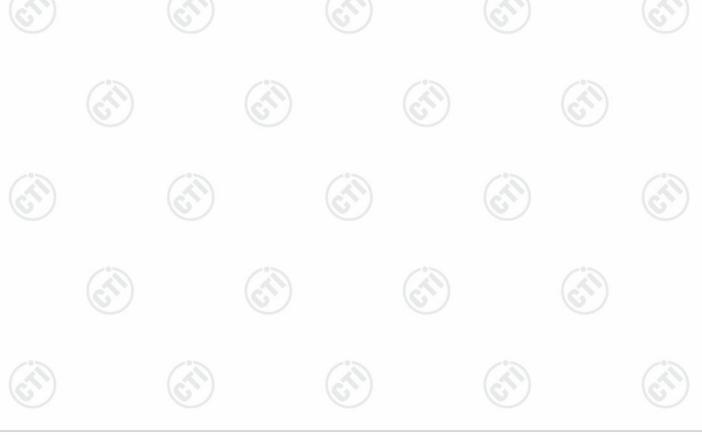
Suspec	Suspected List												
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark				
1	2483.5000	6.57	39.76	46.33	74.00	27.67	PASS	Vertical	PK				
2	2483.5000	6.57	29.78	36.35	54.00	17.65	PASS	Vertical	AV				

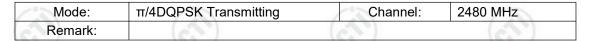


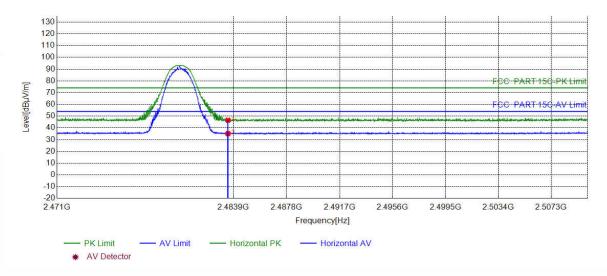


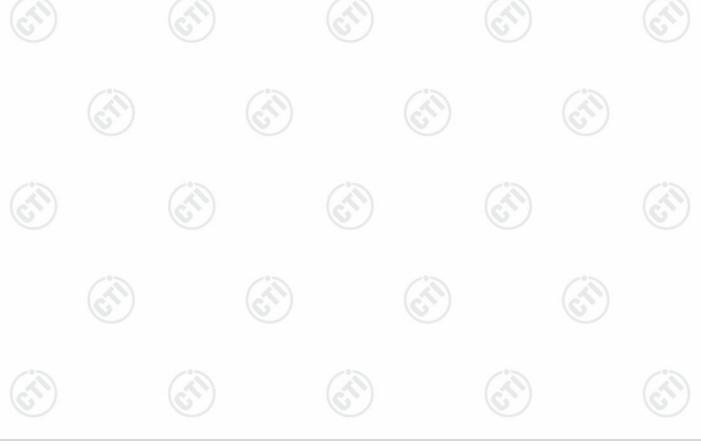


Suspec	Suspected List												
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark				
1	2390.0000	5.77	39.50	45.27	74.00	28.73	PASS	Horizontal	PK				
2	2390.0000	5.77	28.42	34.19	54.00	19.81	PASS	Horizontal	AV				

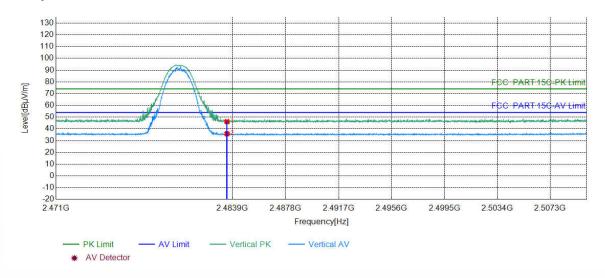


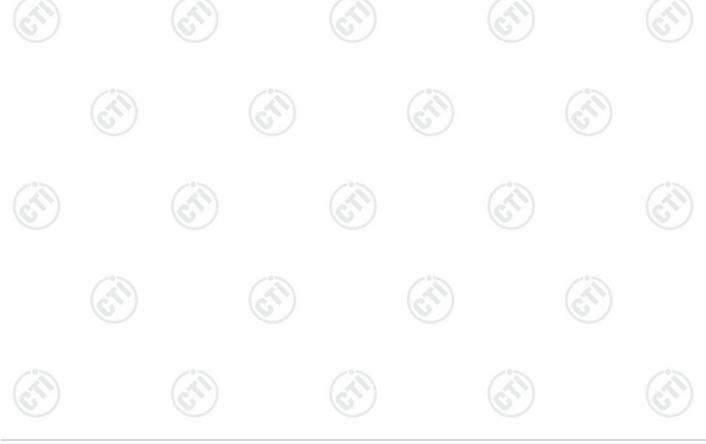

Suspe	Suspected List												
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark				
1	2390.0000	5.77	40.38	46.15	74.00	27.85	PASS	Vertical	PK				
2	2390.0000	5.77	29.13	34.90	54.00	19.10	PASS	Vertical	AV				



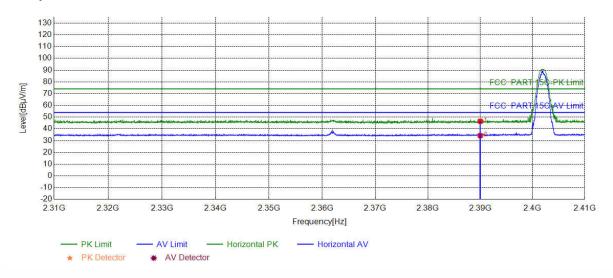


Suspec	Suspected List												
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark				
1	2483.5000	6.57	39.99	46.56	74.00	27.44	PASS	Horizontal	PK				
2	2483.5000	6.57	28.58	35.15	54.00	18.85	PASS	Horizontal	AV				

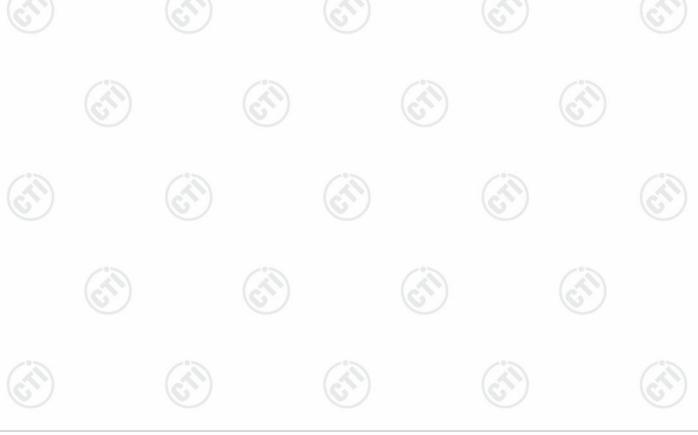


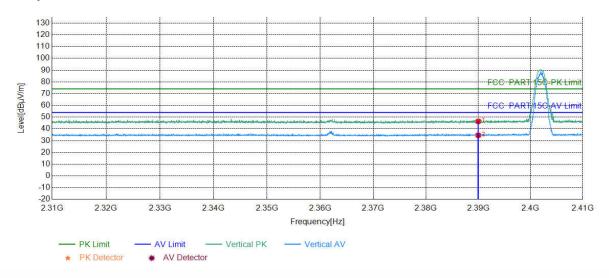


Mode:	π/4DQPSK Transmitting	Channel:	2480 MHz
Remark:	(253)	(6.50)	(25)

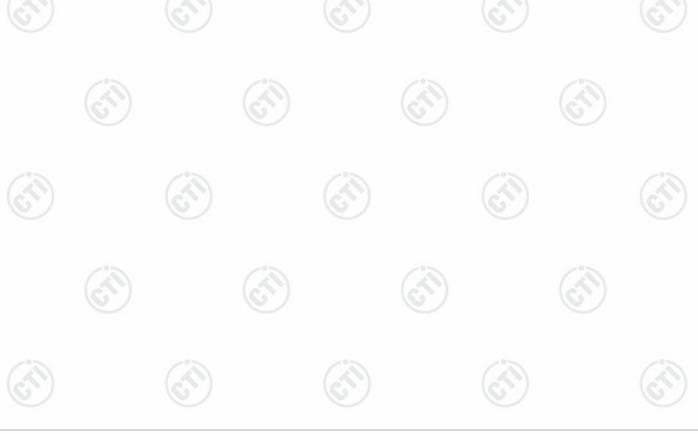


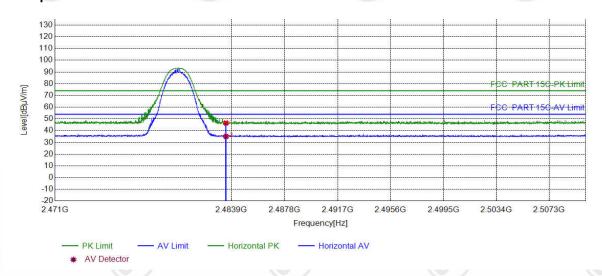
Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	2483.5000	6.57	39.61	46.18	74.00	27.82	PASS	Vertical	PK		
2	2483.5000	6.57	29.31	35.88	54.00	18.12	PASS	Vertical	AV		



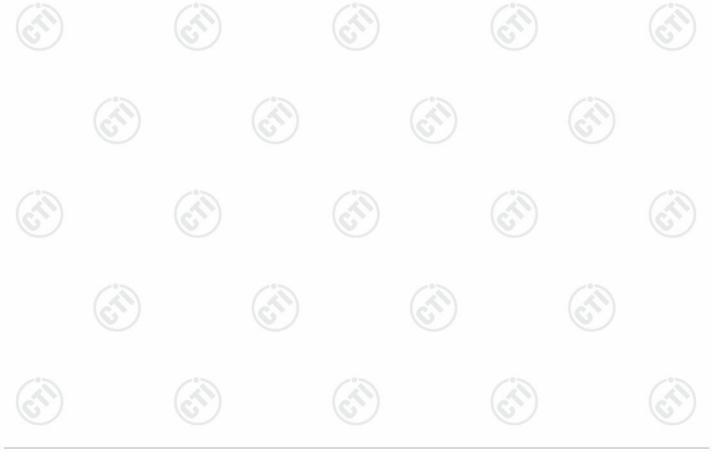


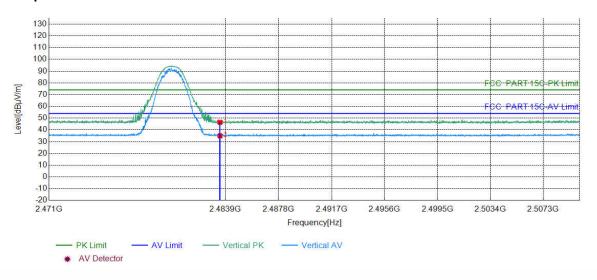
Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	2390.0000	5.77	40.71	46.48	74.00	27.52	PASS	Horizontal	PK		
2	2390.0000	5.77	28.56	34.33	54.00	19.67	PASS	Horizontal	AV		





Suspec	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	2390.0000	5.77	40.61	46.38	74.00	27.62	PASS	Vertical	PK			
2	2390.0000	5.77	28.82	34.59	54.00	19.41	PASS	Vertical	AV			





Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	2483.5000	6.57	39.95	46.52	74.00	27.48	PASS	Horizontal	PK		
2	2483.5000	6.57	28.51	35.08	54.00	18.92	PASS	Horizontal	AV		

Suspec	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	2483.5000	6.57	39.90	46.47	74.00	27.53	PASS	Vertical	PK			
2	2483.5000	6.57	28.43	35.00	54.00	19.00	PASS	Vertical	AV			

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

6 Appendix A

