

Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202407635F01

TEST Report

Applicant: Shenzhen Qishun Innovation Technology Development Co.,

LTD

Address of Applicant: 1906, Block A, RongchuangZhihui Building, Minzhi Street,

Longhua District, Shenzhen

Manufacturer: Shenzhen Qishun Innovation Technology Development Co.,

LTD

Address of 1906, Block A, RongchuangZhihui Building, Minzhi Street,

Manufacturer: Longhua District, Shenzhen

Equipment Under Test (EUT)

Product Name: Smart Watch

Model No.: TF-H08

Series model: N/A

Trade Mark: TRANSFORMERS

FCC ID: 2BAQF-TF-H08

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Jul. 24, 2024

Date of Test: Jul. 24, 2024 ~ Aug. 08, 2024

Date of report issued: Aug. 08, 2024

Test Result: PASS *

^{*} In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	Aug. 08, 2024	Original

Tested/ Prepared By	Heber He	Date:	Aug. 08, 2024
	Project Engineer		
Check By:	Bruce 2hu	Date:	Aug. 08, 2024
	Reviewer		
Approved By :	Kevin Yang HT	Ďate:	Aug. 08, 2024
	Authorized Signature		

2. Contents

	Page
RSION	
2. CONTENTS	3
3. TEST SUMMARY	4
4.2. TEST MODE 4.3. DESCRIPTION OF SUPPORT UNITS 4.4. DEVIATION FROM STANDARDS 4.5. ABNORMALITIES FROM STANDARD CONDITIONS 4.6. TEST FACILITY 4.7. TEST LOCATION 4.8. ADDITIONAL INSTRUCTIONS	
6.1. CONDUCTED EMISSIONS	9 12 13 16 19 21 23 25
7. TEST SETUP PHOTO	33
8 FUT CONSTRUCTIONAL DETAILS	33

3. Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes		
Radiated Emission	30~1000MHz	4.37 dB	(1)		
Radiated Emission	1~18GHz	5.40 dB	(1)		
Radiated Emission	18-40GHz	5.45 dB	(1)		
Conducted Disturbance	0.15~30MHz	2.68 dB	(1)		
Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.					

4. General Information

4.1. General Description of EUT

9.
Smart Watch
TF-H08
N/A
HTT202407635-1(Engineer sample) HTT202407635-2(Normal sample)
2402~2480 MHz
40
GFSK
2MHz
Wire Antenna
-2.70dBi
DC 3.8V From Battery and DC 5V From External Circuit
Mode: GS-0500200 Input: AC100-240V, 50/60Hz, 0.3A max Output: DC 5V, 2A

Channel	Frequency(MHz)	Channel	Frequency(MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been accredited on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

4.8. Additional Instructions

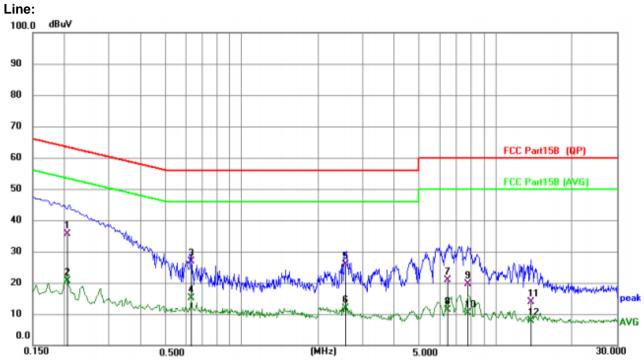
Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

5. Test Instruments list

Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2021	Aug. 09 2024
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2021	Aug. 09 2024
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	Apr. 26 2024	Apr. 25 2025
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	Apr. 26 2024	Apr. 25 2025
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	Apr. 26 2024	Apr. 25 2025
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	Apr. 26 2024	Apr. 25 2025
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	Apr. 26 2024	Apr. 25 2025
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	Apr. 26 2024	Apr. 25 2025
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	May. 21 2024	May. 20 2025
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	May. 20 2024	May. 19 2025
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	Apr. 26 2024	Apr. 25 2025
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	Apr. 26 2024	Apr. 25 2025
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	Apr. 26 2024	Apr. 25 2025
14	high-frequency Amplifier	HP	8449B	HTT-E014	Apr. 26 2024	Apr. 25 2025
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	Apr. 26 2024	Apr. 25 2025
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	Apr. 26 2024	Apr. 25 2025
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May. 23 2024	May. 22 2025
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May. 23 2024	May. 22 2025
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	Apr. 26 2024	Apr. 25 2025
20	Attenuator	Robinson	6810.17A	HTT-E007	Apr. 26 2024	Apr. 25 2025
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	Apr. 26 2024	Apr. 25 2025
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	Aug. 10 2021	Aug. 09 2024
23	DC power supply	Agilent	E3632A	HTT-E023	Apr. 26 2024	Apr. 25 2025
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	Apr. 26 2024	Apr. 25 2025
25	Analog signal generator	Agilent	N5181A	HTT-E025	Apr. 26 2024	Apr. 25 2025
26	Vector signal generator	Agilent	N5182A	HTT-E026	Apr. 26 2024	Apr. 25 2025
27	Power sensor	Keysight	U2021XA	HTT-E027	Apr. 26 2024	Apr. 25 2025
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	Apr. 28 2024	Apr. 27 2025
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A

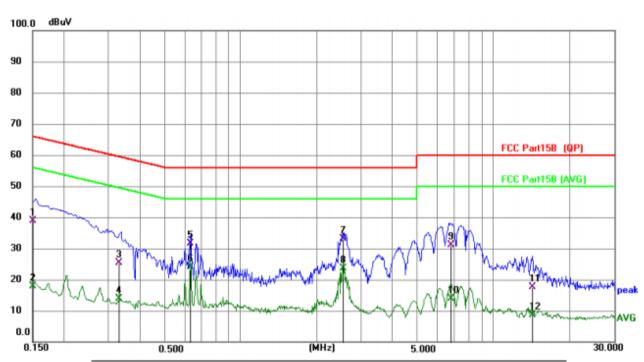
6. Test results and Measurement Data

6.1. Conducted Emissions


o.i. Odilaactea Elilissioli	3					
Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	150KHz to 30MHz					
Class / Severity:	Class B	Class B				
Receiver setup:	RBW=9KHz, VBW=30KHz, S	Sweep time=auto				
Limit:	Fragues ou ronge (MIII-)	Limit	(dBuV)			
	Frequency range (MHz) Quasi-peak 0.15-0.5 Geto 56* Set o 4					
	0.5-5	56	46			
	5-30	60	50			
Test setup:	* Decreases with the logarith					
Test procedure:	Reference Plane LISN AUX Equipment E.U.T Test table/Insulation plane Receiver Test table/Insulation plane Receiver 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted					
	positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.					
Test Instruments:	Refer to section 6.0 for detail	s				
Test mode:	Refer to section 5.2 for details					
Test environment:	Temp.: 25 °C Hu	mid.: 52%	Press.: 1012mbar			
Test voltage:	AC 120V, 60Hz		•			
Test results:	PASS					

Remark: Based on all tested data, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and withthe worst case as below:

Measurement data:



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz		dB	dBuV	dBuV	dB	Detector
1	*	0.2048	25.54	10.21	35.75	63.41	-27.66	QP
2		0.2048	10.32	10.21	20.53	53.41	-32.88	AVG
3		0.6320	16.68	10.32	27.00	56.00	-29.00	QP
4		0.6320	4.89	10.32	15.21	46.00	-30.79	AVG
5		2.5593	15.35	10.46	25.81	56.00	-30.19	QP
6		2.5593	1.33	10.46	11.79	46.00	-34.21	AVG
7		6.5135	10.35	10.62	20.97	60.00	-39.03	QP
8		6.5135	0.88	10.62	11.50	50.00	-38.50	AVG
9		7.7812	9.05	10.64	19.69	60.00	-40.31	QP
10		7.7812	-0.23	10.64	10.41	50.00	-39.59	AVG
11		13.7315	3.04	10.96	14.00	60.00	-46.00	QP
12		13.7315	-3.19	10.96	7.77	50.00	-42.23	AVG

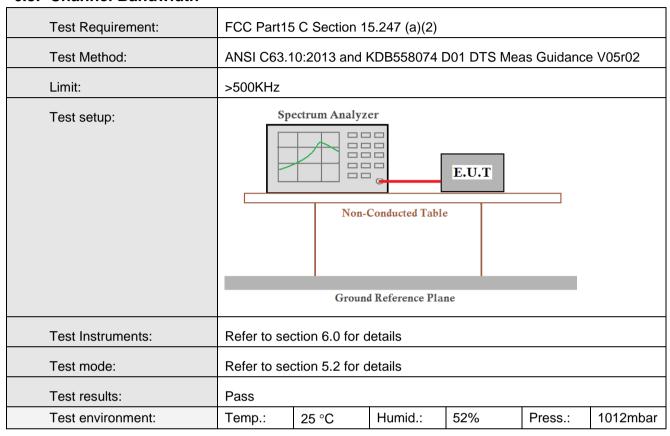
Neutral:

	Level	Factor	ment	Limit	Over	
MHz		dB	dBuV	dBuV	dB	Detector
0.1508	28.84	10.16	39.00	65.96	-26.96	QP
0.1508	7.65	10.16	17.81	55.96	-38.15	AVG
0.3310	15.23	10.24	25.47	59.43	-33.96	QP
0.3310	3.58	10.24	13.82	49.43	-35.61	AVG
0.6343	21.31	10.35	31.66	56.00	-24.34	QP
* 0.6343	13.82	10.35	24.17	46.00	-21.83	AVG
2.5560	22.78	10.43	33.21	56.00	-22.79	QP
2.5560	13.21	10.43	23.64	46.00	-22.36	AVG
6.8012	20.56	10.68	31.24	60.00	-28.76	QP
6.8012	3.08	10.68	13.76	50.00	-36.24	AVG
14.2557	6.49	11.13	17.62	60.00	-42.38	QP
14.2557	-2.41	11.13	8.72	50.00	-41.28	AVG
*	0.1508 0.1508 0.3310 0.3310 0.6343 0.6343 2.5560 2.5560 6.8012 14.2557	0.1508 28.84 0.1508 7.65 0.3310 15.23 0.3310 3.58 0.6343 21.31 0.6343 13.82 2.5560 22.78 2.5560 13.21 6.8012 20.56 6.8012 3.08 14.2557 6.49	0.1508 28.84 10.16 0.1508 7.65 10.16 0.3310 15.23 10.24 0.3310 3.58 10.24 0.6343 21.31 10.35 0.6343 13.82 10.35 2.5560 22.78 10.43 2.5560 13.21 10.43 6.8012 20.56 10.68 6.8012 3.08 10.68 14.2557 6.49 11.13	0.1508 28.84 10.16 39.00 0.1508 7.65 10.16 17.81 0.3310 15.23 10.24 25.47 0.3310 3.58 10.24 13.82 0.6343 21.31 10.35 31.66 0.6343 13.82 10.35 24.17 2.5560 22.78 10.43 33.21 2.5560 13.21 10.43 23.64 6.8012 20.56 10.68 31.24 6.8012 3.08 10.68 13.76 14.2557 6.49 11.13 17.62	0.1508 28.84 10.16 39.00 65.96 0.1508 7.65 10.16 17.81 55.96 0.3310 15.23 10.24 25.47 59.43 0.3310 3.58 10.24 13.82 49.43 0.6343 21.31 10.35 31.66 56.00 0.6343 13.82 10.35 24.17 46.00 2.5560 22.78 10.43 33.21 56.00 2.5560 13.21 10.43 23.64 46.00 6.8012 20.56 10.68 31.24 60.00 6.8012 3.08 10.68 13.76 50.00 14.2557 6.49 11.13 17.62 60.00	0.1508 28.84 10.16 39.00 65.96 -26.96 0.1508 7.65 10.16 17.81 55.96 -38.15 0.3310 15.23 10.24 25.47 59.43 -33.96 0.3310 3.58 10.24 13.82 49.43 -35.61 0.6343 21.31 10.35 31.66 56.00 -24.34 0.6343 13.82 10.35 24.17 46.00 -21.83 2.5560 22.78 10.43 33.21 56.00 -22.79 2.5560 13.21 10.43 23.64 46.00 -22.36 6.8012 20.56 10.68 31.24 60.00 -28.76 6.8012 3.08 10.68 13.76 50.00 -36.24 14.2557 6.49 11.13 17.62 60.00 -42.38

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Los

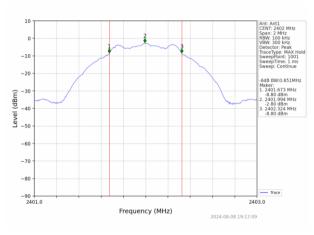
6.2. Conducted Output Power


Test Requirement: Test Method:		FCC Part15 C Section 15.247 (b)(3) ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02						
Limit:	30dBm	30dBm						
Test setup:	Power Mo	Non-Conducted Tabl		-				
Test Instruments:	Refer to sec	ction 6.0 for c	letails					
Test mode:	Refer to sec	ction 5.2 for c	letails					
Test results:	Pass	Pass						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		

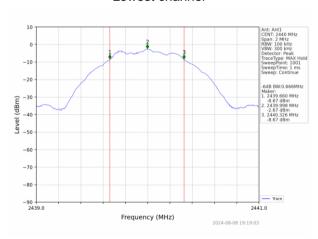
Measurement Data

Mode	Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
	Lowest	-2.61		
1M	Middle	-2.47	30.00	Pass
	Highest	-2.15		
	Lowest	-2.33		
2M	Middle	-3.05	30.00	Pass
	Highest	-2.05		

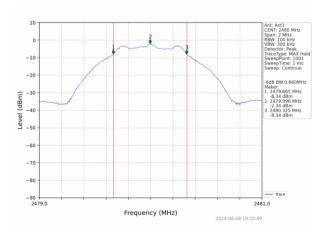
6.3. Channel Bandwidth


Measurement Data

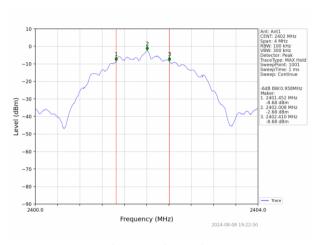
modean omone But	~				
Mode	Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result	
	Lowest	0.651			
1M	Middle	0.666	>500	Pass	
	Highest	0.660			
	Lowest	0.958			
2M	Middle	1.132	>500	Pass	
	Highest	1.144			

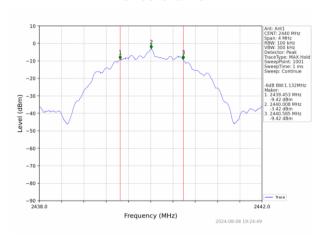


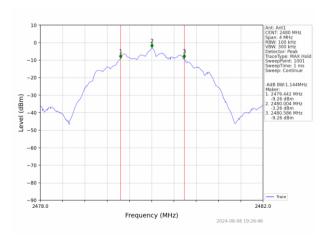
Test plot as follows:


1M:

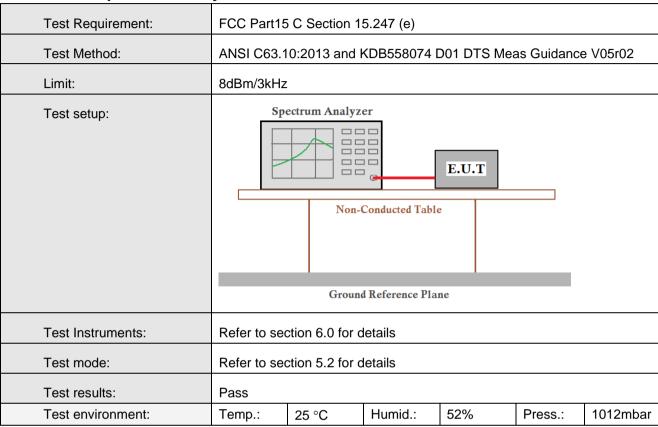
Lowest channel


Middle channel


Highest channel

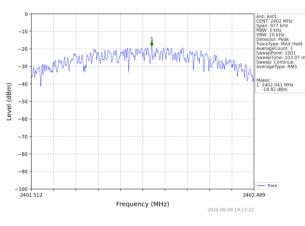

2M:

Lowest channel


Middle channel

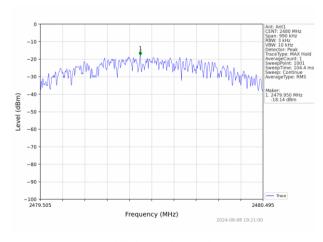
Highest channel

6.4. Power Spectral Density

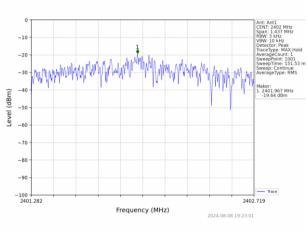

Measurement Data

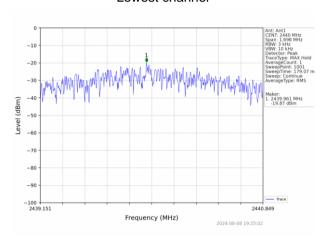
Mode	Test channel	Power Spectral Density (dBm/3kHz)	Limit(dBm/3kHz)	Result	
	Lowest	-18.82			
1M	Middle	-17.00	8.00	Pass	
	Highest	-18.14			
	Lowest	-19.64			
2M	Middle	-19.87	8.00	Pass	
	Highest	-19.28			

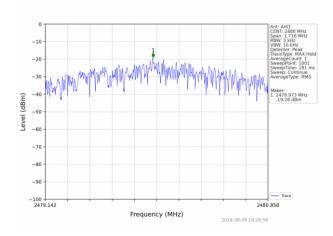
Test plot as follows:


1M:

Lowest channel


Middle channel


Highest channel

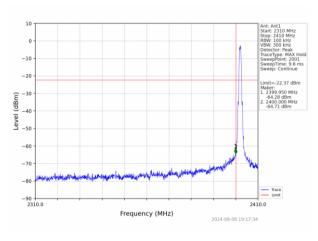

2M:

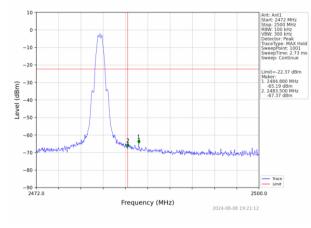
Lowest channel

Middle channel

Highest channel

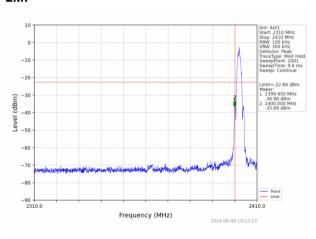
6.5. Band edges

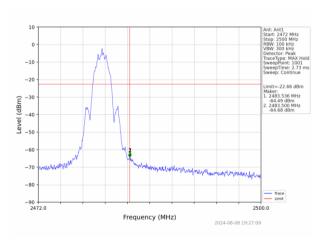

6.5.1 Conducted Emission Method


-	500 D 44 T 0 O 41 4 T 0 4 T 4 N
Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar

Test plot as follows:

1M:





Lowest channel

Highest channel

2M:

Lowest channel

Highest channel

6.5.2 Radiated Emission Method

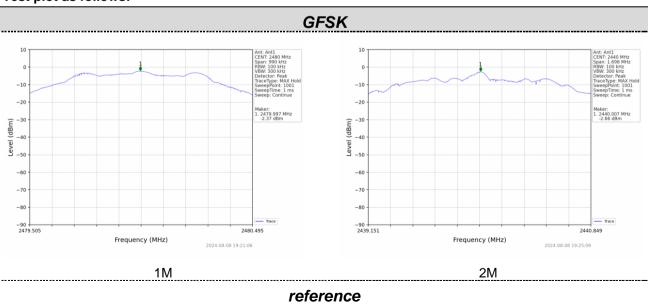
Test Requirement:	FCC Part15 C	Section 15.2	209 an	nd 15.205			
Test Method:	ANSI C63.10:						
Test Frequency Range:	All of the rest 2500MHz) date	rict bands we		sted, only	the wors	st band's	(2310MHz to
Test site:	Measurement						
Receiver setup:	Frequency	Frequency Detector			VBW	'	Value
		Paak		RBW 1MHz	3MHz		Peak
	Above 1GHz	RMS		1MHz	3MHz		verage
Limit:	Frequ	uency	Lir	mit (dBuV/	m @3m		Value
				54.0			verage
	Above	1GHz		74.0	0		Peak
Test setup:	Tum Table	EUT-	< 3m >	Test Antenna - < lm _ 4m >	?		
Test Procedure:	determine to antenna, we tower. 3. The antenna ground to compare the format and then the and the rote the maximum of the emission of the EUT have 10dB peak or aversheet. 7. The radiation and the rote the maximum of the EUT have 10dB peak or aversheet.	at a 3 meter the position of vas set 3 meter which was more than a height is value to the and vertical pent. Suspected emine antenna was a table was to um reading. Ceiver system and width with sion level of the cified, then the would be repurage method on measurement of the X axis po	cambo f the hers aw unted aried f maximolariza ssion, as tun- urned h Max he EU testing ported. d be real as spanents a sitioni	er. The take highest race vay from the top from one man value ations of the ed to heigh from 0 decimum Hole T in peaking could be a Cotherwise e-tested or pecified an are performing which it is to the top top the top the top top the to	ole was ribilitation. The interfer to fine antening was arrants from grees to the dimension of the end was arrants from grees to the end was stopped to the emment of the med in X tis wors	rotated 36 erence-reciable-heige four meter ield streng na are se unged to it 1 meter t 360 degree t Function as 10dB le and the p nissions the using p eported ir	ceiving ght antenna rs above the gth. Both to make the s worst case o 4 meters ees to find and ower than beak values at did not eak, quasina data
Test Instruments:	Refer to section	mode is reco		in the repo	ort.		
Test mode:	Refer to section						
		JII J.Z IOI U U I	allo				
Test results:	Pass	. <u> </u>			. 1		1016
Test environment:	Temp.: 2	25 °C F	lumid.	.: 52%)	Press.:	1012mbar

Measurement Data

Remark: GFSK(1M), GFSK(2M) all have been tested, only worse case GFSK(1M) is reported.

Operation Mode: GFSK (1M)

Freque	ncy(MHz)	:	24	02	Pola	arity:	н	ORIZONTA	L	
Frequency (MHz)	Emis Le [,] (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2390.00	61.15	PK	74	12.85	62.54	27.2	4.31	32.9	-1.39	
2390.00	45.25	AV	54	8.75	46.64	27.2	4.31	32.9	-1.39	
Freque	ncy(MHz)	:	24	02	Pola	arity:		VERTICAL		
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2390.00	59.74	PK	74	14.26	61.13	27.2	4.31	32.9	-1.39	
2390.00	46.53	AV	54	7.47	47.92	27.2	4.31	32.9	-1.39	
Freque	ncy(MHz)	:	24	80	P ola	arity:	н	HORIZONTAL		
Frequency (MHz)	Emis Le [,] (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2483.50	55.54	PK	74	18.46	56.47	27.4	4.47	32.8	-0.93	
2483.50	46.04	AV	54	7.96	46.97	27.4	4.47	32.8	-0.93	
Freque	ncy(MHz)	:	24	80	Pola	arity:		VERTICAL		
Frequency (MHz)	Emis Le	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2483.50	56.00	PK	74	18.00	56.93	27.4	4.47	32.8	-0.93	
2483.50	44.03	AV	54	9.97	44.96	27.4	4.47	32.8	-0.93	

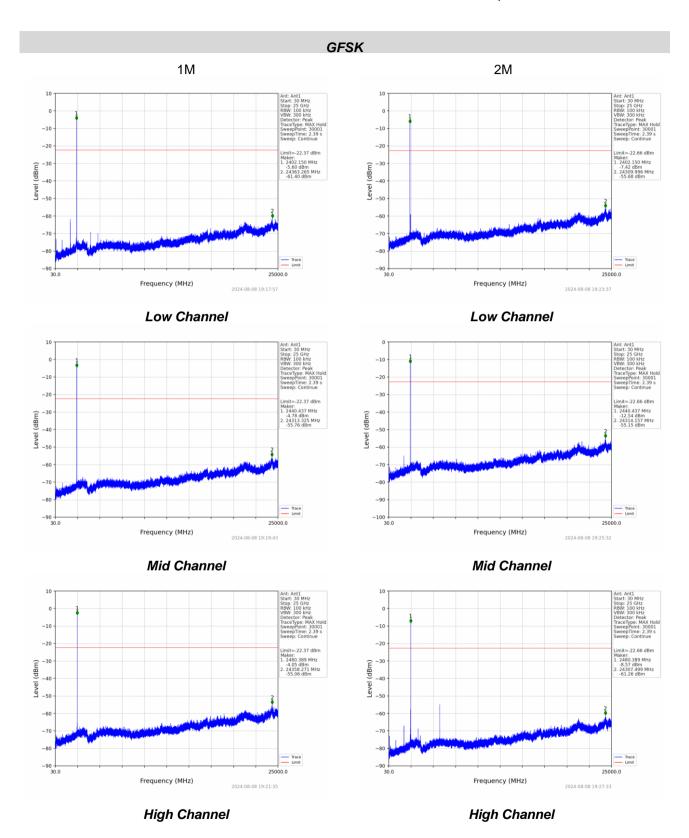


6.6. Spurious Emission

6.6.1 Conducted Emission Method

	tilou					
Test Requirement:	FCC Part15	C Section 1	5.247 (d)			
Test Method:	ANSI C63.1	0:2013 and I	KDB558074 [D01 DTS Mea	as Guidanc	e V05r02
Limit:	spread spec power that i below that i highest leve	ctrum intentic is produced b n the 100 kH	th outside the onal radiator i by the intentic z bandwidth v ed power, ba	s operating, to nal radiator so within the bar	he radio fre shall be at le nd that cont	equency east 20 dB ains the
Test setup:	Sp					
Test Instruments:	Refer to see	ction 6.0 for c	letails			
Test mode:	Refer to see	ction 5.2 for c	letails			
Test results:	Pass					
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar

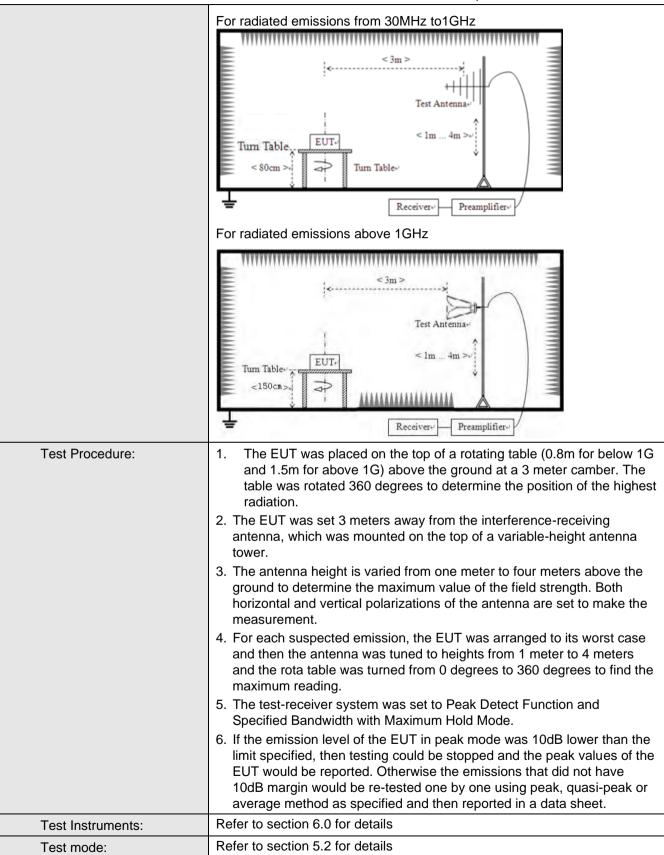
Test plot as follows:



Shenzhen HTT Technology Co.,Ltd.

Tel: 0755-23595200 Fax: 0755-23595201

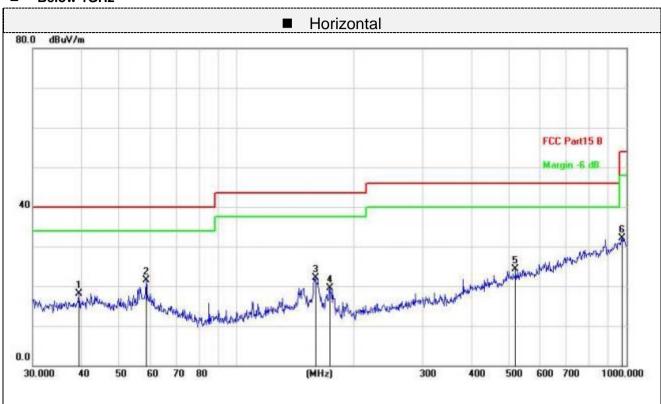
¹F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China



6.6.2 Radiated Emission Method

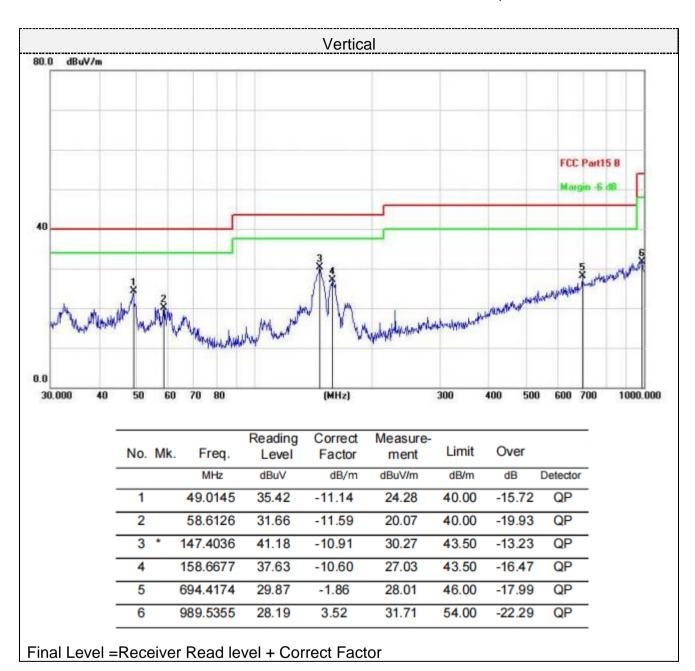
Test Requirement:	FCC Part15 C Section	on 15	5.209					
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Distar	nce: 3	3m					
Receiver setup:	Frequency		Detector	RB\	Ν	VBW	Value	
	9KHz-150KHz	Qι	ıasi-peak	k 200H		600Hz	z Quasi-peak	
	150KHz-30MHz	Qι	ıasi-peak	9KF	łz	30KH	z Quasi-peak	
	30MHz-1GHz Q		ıasi-peak	120K	Ήz	300KH	Iz Quasi-peak	
	Above 1GHz		Peak	1MF	łz	3MHz	z Peak	
	Above 10112		Peak	1MF	łz	10Hz	Average	
Limit:	Frequency		Limit (u\	//m)	٧	'alue	Measurement Distance	
	0.009MHz-0.490M	Hz	2400/F(k	(Hz)		QP	300m	
	0.490MHz-1.705M	05MHz 24000/F(KHz)		(Hz)		QP	30m	
	1.705MHz-30MHz 30 30MHz-88MHz 100				QP	30m		
					QP			
	88MHz-216MHz		150			QP		
	216MHz-960MH	Z	200			QP	3m	
	960MHz-1GHz			500		QP		
	Above 1GHz		500		Average			
			5000		F	Peak		
Test setup:	For radiated emissio	ns fr	< 3m >	******	0			

Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V, 6	0Hz				
Test results:	Pass					


Measurement data:

Remarks:

- 1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.
- 2. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.
- 3. Based on all tested data, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and with the worst case as BLE 1M 2402MHz as below:



■ Below 1GHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1		39.4371	28.36	-10.31	18.05	40.00	-21.95	QP
2	*	58.6126	33.15	-11.59	21.56	40.00	-18.44	QP
3		159.2251	32.77	-10.60	22.17	43.50	-21.33	QP
4		173.2051	31.13	-11.55	19.58	43.50	-23.92	QP
5		519.0649	29.02	-4.80	24.22	46.00	-21.78	QP
6		975.7529	28.64	3.41	32.05	54.00	-21.95	QP

■ Above 1-25GHz

Frequency(MHz):			2402		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit Margin (dBuV/m) (dB)	Raw Value	Antenna Factor	Cable Factor	Pre- amplifier	Correction Factor	
(1711 12)				(GD)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
4804.00	60.11	PK	74	13.89	54.41	31	6.5	31.8	5.7
4804.00	42.61	AV	54	11.39	36.91	31	6.5	31.8	5.7
7206.00	54.31	PK	74	19.69	41.66	36	8.15	31.5	12.65
7206.00	43.90	AV	54	10.10	31.25	36	8.15	31.5	12.65

Frequency(MHz):			2402		Polarity:		VERTICAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	58.53	PK	74	15.47	52.83	31	6.5	31.8	5.7
4804.00	43.74	AV	54	10.26	38.04	31	6.5	31.8	5.7
7206.00	53.22	PK	74	20.78	40.57	36	8.15	31.5	12.65
7206.00	42.49	AV	54	11.51	29.84	36	8.15	31.5	12.65

Frequency(MHz):			2440		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	60.39	PK	74	13.61	54.23	31.2	6.61	31.65	6.16
4880.00	43.16	AV	54	10.84	37.00	31.2	6.61	31.65	6.16
7320.00	53.06	PK	74	20.94	40.11	36.2	8.23	31.48	12.95
7320.00	44.32	AV	54	9.68	31.37	36.2	8.23	31.48	12.95

Frequency(MHz):			2440		Polarity:		VERTICAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit Margin (dBuV/m) (dB)	Raw Value	Antenna Factor	Cable Factor	Pre- amplifier	Correction Factor	
(1711 12)				(GD)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
4880.00	61.24	PK	74	12.76	55.08	31.2	6.61	31.65	6.16
4880.00	43.58	AV	54	10.42	37.42	31.2	6.61	31.65	6.16
7320.00	52.66	PK	74	21.34	39.71	36.2	8.23	31.48	12.95
7320.00	44.39	AV	54	9.61	31.44	36.2	8.23	31.48	12.95

Frequency(MHz):			2480		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	61.72	PK	74	12.28	55.06	31.4	6.76	31.5	6.66
4960.00	42.21	AV	54	11.79	35.55	31.4	6.76	31.5	6.66
7440.00	54.44	PK	74	19.56	41.14	36.4	8.35	31.45	13.3
7440.00	45.31	AV	54	8.69	32.01	36.4	8.35	31.45	13.3

Frequency(MHz):		2480		Polarity:		VERTICAL			
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw	Antenna	Cable	Pre-	Correction
					Value	Factor	Factor	amplifier	Factor
					(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
4960.00	63.64	PK	74	10.36	56.98	31.4	6.76	31.5	6.66
4960.00	42.98	AV	54	11.02	36.32	31.4	6.76	31.5	6.66
7440.00	54.13	PK	74	19.87	40.83	36.4	8.35	31.45	13.3
7440.00	44.29	AV	54	9.71	30.99	36.4	8.35	31.45	13.3

Remark:

⁽¹⁾ Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

⁽²⁾ When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

6.7. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The maximum gain of antenna was -2.70 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen HTT Technology Co., Ltd. does not assume any responsibility.

7. Test Setup Photo

Reference to the appendix I for details.

8. EUT Constructional Details

Reference to the appendix II for details.

