RF Exposure Evaluation

Limits

The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in KDB 447498 D01 V06 and 1.1307(b)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m) (mW/cm ²)		Averaging time (minutes)								
(A) Limits for Occupational/Controlled Exposures												
0.3–3.0	614	1.63	*(100) 6									
3.0–30	1842/f	4.89/f	*(900/f²)	6								
30–300	61.4	0.163	1.0	6								
300–1500			f/300	6								
1500–100,000			5	6								
(B) Limits for General Population/Uncontrolled Exposure												
0.3–1.34	614	1.63	*(100) 30									
1.34–30	824/f	2.19/f	*(180/f²)	30								
30–300	27.5	0.073	0.2	30								
300–1500			f/1500	30								
1500–100,000			1.0	30								

Limits for Maximum Permissible Exposure (MPE)

f = frequency in MHz

Friis transmission formula: Pd = (Pout*G)/(4*pi*r²)

Where

Pd = power density in mW/cm², Pout = output power to antenna in mW;

G = gain of antenna in linear scale, Pi = 3.1416;

 ${\bf R}$ = distance between observation point and center of the radiator in cm

Pd id the limit of MPE, 1 mW/cm². If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

Test Procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

Test Result of RF Exposure Evaluation

Channel	Output power to antenna (dBm)		Output power to antenna (mW)		Power Density at R=20cm (mW/cm ²)		Limit (mW/cm ²)	Result
	Antenna1	Antenna2	Antenna1	Antenna2	Antenna1	Antenna2		
802.11b	16.721	16.812	47.0002	47.9954	0.01648	0.01682	1.0	PASS
802.11g	13.495	13.447	22.3615	22.1157	0.00784	0.00775	1.0	PASS
802.11n20	14.368	14.528	27.3401	28.3661	0.00958	0.00994	1.0	PASS
802.11n40	13.509	13.518	22.4337	22.4802	0.00786	0.00788	1.0	PASS

wifi 2.4Gmode: ANT1&ANT2 MIMO

Remark: antenna gain=2.46dBi

For Simultaneous transmitting, 1): The sum of the ratios of the spatially averaged results to the applicable frequency dependent MPE limits =0.01648/1 + 0.01682/1 = 0.0333 < 1 Since the sum of the MPE ratios for all simultaneously transmitting antennas incorporated in the device is ≤ 1.0 , the EUT is considered to satisfy MPE compliance for simultaneous transmission operations.