

RADIO TEST REPORT FCC ID: HLZ-ACERONE8T2

Product:TabletTrade Mark:AcerModel No.:Acer one 8 T2Family Model:N/AReport No.:S20072802602002Issue Date:24 Aug. 2020

Prepared for

Acer Incorporated

8F, 88, Sec. 1, Hsin Tai Wu Rd, Hsichih, Taipei Hsien, Taiwan

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel.: +86-755-6115 6588 Fax.: +86-755-6115 6599 Website:http://www.ntek.org.cn

TABLE OF CONTENTS

1	TEST RESULT CERTIFICATION	3
2	SUMMARY OF TEST RESULTS	4
3	FACILITIES AND ACCREDITATIONS	5
3. 3. 3.	2 LABORATORY ACCREDITATIONS AND LISTINGS	5
4	GENERAL DESCRIPTION OF EUT	6
5	DESCRIPTION OF TEST MODES	8
6	SETUP OF EQUIPMENT UNDER TEST	9
6. 6. 6.	2 SUPPORT EQUIPMENT	10 11
7	TEST REQUIREMENTS	13
7. 7. 7. 7. 7. 7. 7. 7. 7.	 2 RADIATED SPURIOUS EMISSION 3 6DB BANDWIDTH 4 DUTY CYCLE 5 PEAK OUTPUT POWER 6 POWER SPECTRAL DENSITY 7 CONDUCTED BAND EDGE MEASUREMENT 8 SPURIOUS RF CONDUCTED EMISSIONS 9 ANTENNA APPLICATION 	16 25 26 28 29 31 32 33
8	TEST RESULTS	
8. 8. 8. 8.	 OCCUPIED CHANNEL BANDWIDTH MAXIMUM POWER SPECTRAL DENSITY LEVEL 	36 40

1 TEST RESULT CERTIFICATION

Acer Incorporated
8F, 88, Sec. 1, Hsin Tai Wu Rd, Hsichih,Taipei Hsien,Taiwan
Acer Incorporated
8F, 88, Sec. 1, Hsin Tai Wu Rd, Hsichih,Taipei Hsien,Taiwan
Tablet
Acer one 8 T2
N/A

Measurement Procedure Used:

APPLICABLE STANDARDS

APPLICABLE STANDARD/ TEST PROCEDURE	TEST RESULT
FCC 47 CFR Part 2, Subpart J	
FCC 47 CFR Part 15, Subpart C	Complied
ANSI C63.10-2013	Complied
KDB 558074 D01 15.247 Meas Guidance v05r02	

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	: 28 Jul. 2020 ~ 24 Aug. 2020	
Testing Engineer	ið Ven löu	
Technical Manager	(Allen Liu) : Jason chen	
Ŭ	(Jason Chen)	
Authorized Signatory	Aless	
riamon200 olginatory	(Alex Li)	

FCC Part15 (15.247), Subpart C					
Standard Section	Test Item	Verdict	Remark		
15.207	Conducted Emission	PASS			
15.247 (a)(2)	6dB Bandwidth	PASS			
15.247 (b) Peak Output Power PAS					
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS			
15.247 (e)	Power Spectral Density	PASS			
15.247 (d) Band Edge Emission PASS					
15.247 (d) Spurious RF Conducted Emission PASS					
15.203	Antenna Requirement	PASS			

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Laboratory has been assessed and proved to be in compliance with
	CNAS-CL01:2006 (identical to ISO/IEC 17025:2005)
	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%

NTEK北测

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification				
Equipment Tablet				
Trade Mark	Acer			
FCC ID	HLZ-ACERONE8T2			
Model No.	Acer one 8 T2			
Family Model	N/A			
Model Difference	N/A			
Operating Frequency	2402MHz~2480MHz			
Modulation	GFSK			
Number of Channels	40 Channels			
Bluetooth Version	BT V4.0			
Antenna Type	FPCB Antenna			
Antenna Gain	0.7dBi			
Power supply	 ☑DC supply: DC 3.7V, 4000mAh ,14.8Wh from Battery or DC 5V from USB Port ☑Adapter: Model: EE-0501500UZ Input: 100-240V~50/60Hz Output: 5V,1500mA 			
HW Version	AL-MT8765-863M-V1.0-17			
SW Version	Acer_one_8_T2_V2.0_08222020			

ACO

Certificate #4298.01

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History					
Report No.	Version	Description	Issued Date		
S20072802602002	Rev.01	Initial issue of report	24 Aug. 2020		
			<u> </u>		

5 DESCRIPTION OF TEST MODES

NTEK 北测

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbpsfor GFSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

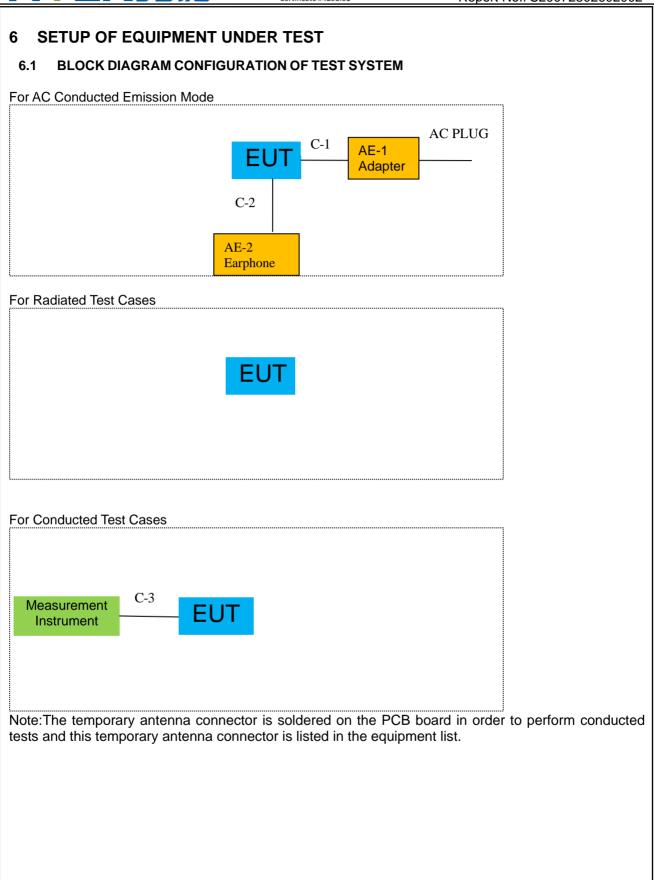
Channel	Frequency(MHz)
0	2402
1	2404
19	2440
20	2442
38	2478
39	2480

Note: fc=2402MHz+kx2MHz k=0 to 39

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Test Cases				
Test Item	Data Rate/ Modulation			
lest item	Bluetooth 4.0_LE / GFSK			
AC Conducted Emission	Mode 1: normal link mode			
	Mode 1: normal link mode			
Radiated Test	Mode 2: Bluetooth Tx Ch00_2402MHz_1Mbps			
Cases	Mode 3: Bluetooth Tx Ch19_2440MHz_1Mbps			
	Mode 4: Bluetooth Tx Ch39_2480MHz_1Mbps			
Constructed Test	Mode 2: Bluetooth Tx Ch00_2402MHz_1Mbps			
Conducted Test	Mode 3: Bluetooth Tx Ch19_2440MHz_1Mbps			
Cases	Mode 4: Bluetooth Tx Ch39_2480MHz_1Mbps			

Note:


1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

2. AC power line Conducted Emission was tested under maximum output power.

3. For radiated test cases, the worst mode data rate was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

4. EUT built-in battery-powered, the battery is fully-charged.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	EE-0501500UZ	N/A	Peripherals
AE-2	Earphone	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	YES	NO	1.0m
C-2	Earphone Cable	NO	NO	1.2m
C-3	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

Rudialic		lest equipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2020.05.11	2021.05.10	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2020.07.13	2021.07.12	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2020.07.13	2021.07.12	1 year
4	Test Receiver	R&S	ESPI7	101318	2020.05.11	2021.05.10	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2020.04.11	2021.04.10	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2020.04.11	2021.04.10	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2019.12.10	2020.12.09	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2020.07.13	2021.07.12	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2019.12.11	2020.12.10	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2020.07.13	2021.07.12	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2019.08.6	2022.08.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2019.08.6	2022.08.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2019.06.28	2022.06.27	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2020.04.11	2021.04.10	1 year
16	Filter	TRILTHIC	2400MHz	29	2020.07.13	2021.07.12	1 year
17	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Conduction Test equipment							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2020.05.11	2021.05.10	1 year
2	LISN	R&S	ENV216	101313	2020.04.11	2021.04.10	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2020.05.11	2021.05.10	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2021.05.10	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

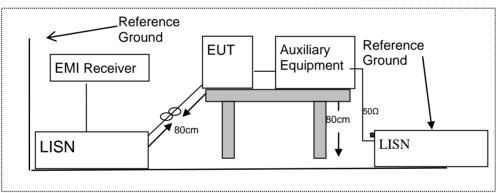
7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit

	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	


Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

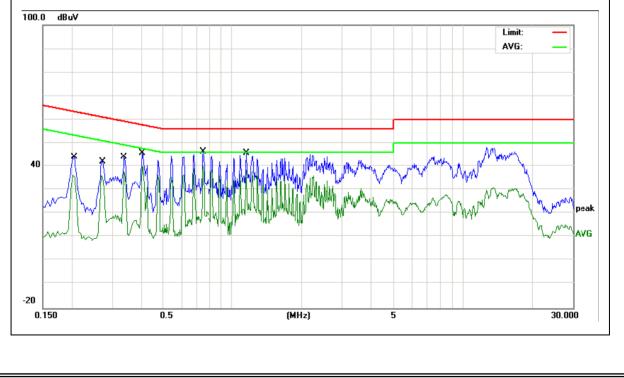
7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.6 Test Results


Ν

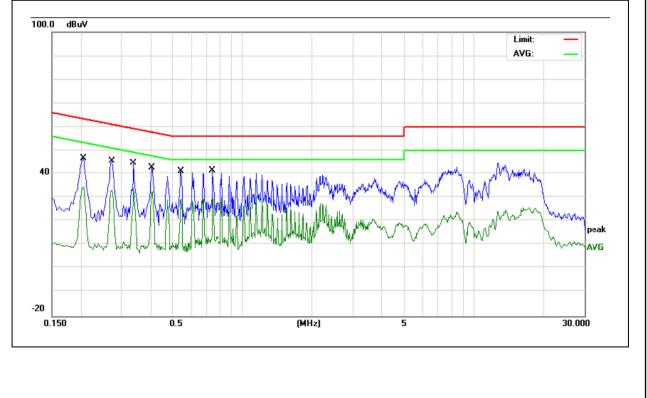
EUT:	Tablet	Model Name :	Acer one 8 T2
Temperature:	21 ℃	Relative Humidity:	53%
Pressure:	1010hPa	Phase :	L
	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.202	34.62	9.55	44.17	63.52	-19.35	QP
0.202	26.76	9.55	36.31	53.52	-17.21	AVG
0.27	32.56	9.54	42.1	61.12	-19.02	QP
0.27	26.37	9.54	35.91	51.12	-15.21	AVG
0.3379	34.53	9.54	44.07	59.25	-15.18	QP
0.3379	28.07	9.54	37.61	49.25	-11.64	AVG
0.406	36.42	9.55	45.97	57.73	-11.76	QP
0.406	30.28	9.55	39.83	47.73	-7.9	AVG
0.746	36.94	9.55	46.49	56	-9.51	QP
0.746	30.61	9.55	40.16	46	-5.84	AVG
1.15	36.21	9.56	45.77	56	-10.23	QP
1.15	28.72	9.56	38.28	46	-7.72	AVG

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

Version.1.3


EUT:	Tablet	Model Name :	Acer one 8 T2
Temperature:	21 ℃	Relative Humidity:	53%
Pressure:	1010hPa	Phase :	N
$1\Delta et V \cap tand .$	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.2059	24.78	9.54	34.32	53.37	-19.05	QP
0.274	35.93	9.53	45.46	60.99	-15.53	AVG
0.274	23.65	9.53	33.18	50.99	-17.81	QP
0.3379	35.13	9.53	44.66	59.25	-14.59	AVG
0.3379	24.25	9.53	33.78	49.25	-15.47	QP
0.406	32.87	9.54	42.41	57.73	-15.32	AVG
0.406	22.94	9.54	32.48	47.73	-15.25	QP
0.542	31.61	9.54	41.15	56	-14.85	AVG
0.542	19.82	9.54	29.36	46	-16.64	QP
0.7419	31.7	9.54	41.24	56	-14.76	AVG
0.7419	20.06	9.54	29.6	46	-16.4	QP
0.2059	24.78	9.54	34.32	53.37	-19.05	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to FOC Fait15.205, Restricted bands			
MHz	MHz	GHz	
16.42-16.423	399.9-410	4.5-5.15	
16.69475-16.69525	608-614	5.35-5.46	
16.80425-16.80475	960-1240	7.25-7.75	
25.5-25.67	1300-1427	8.025-8.5	
37.5-38.25	1435-1626.5	9.0-9.2	
73-74.6	1645.5-1646.5	9.3-9.5	
74.8-75.2	1660-1710	10.6-12.7	
123-138	2200-2300	14.47-14.5	
149.9-150.05	2310-2390	15.35-16.2	
156.52475-156.52525	2483.5-2500	17.7-21.4	
156.7-156.9	2690-2900	22.01-23.12	
162.0125-167.17	3260-3267	23.6-24.0	
167.72-173.2	3332-3339	31.2-31.8	
240-285	3345.8-3358	36.43-36.5	
322-335.4	3600-4400	(2)	
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHzMHz16.42-16.423399.9-41016.69475-16.69525608-61416.80425-16.80475960-124025.5-25.671300-142737.5-38.251435-1626.573-74.61645.5-1646.574.8-75.21660-1710123-1382200-2300149.9-150.052310-2390156.52475-156.525252483.5-2500156.7-156.92690-2900162.0125-167.173260-3267167.72-173.23332-3339240-2853345.8-3358	

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

	Frequency(MHz)	Class B (dBuV/m) (at 3M)		
		PEAK	AVERAGE	
	Above 1000	74	54	

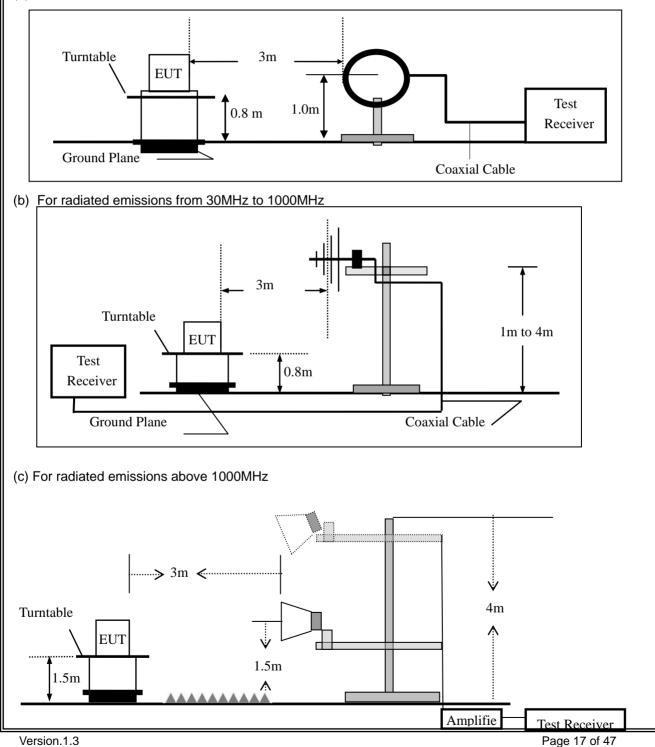
Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz: Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz: Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

7.2.3 Measuring Instruments


The Measuring equipment is listed in the section 6.3 of this test report.

ACC

Certificate #4298.01

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting		
Attenuation	Auto		
Start Frequency	1000 MHz		
Stop Frequency	10th carrier harmonic		
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average		

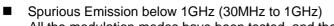
Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission t	During the radiated emission test, the Spectrum Analyzer was set with the following configurations:									
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth							
30 to 1000	QP	120 kHz	300 kHz							
Above 1000	Peak	1 MHz	1 MHz							
Above 1000	Average	1 MHz	10 Hz							

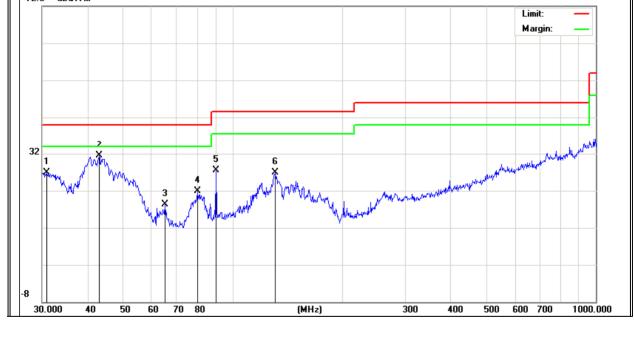
Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.


7.2.6 Test Results

I	Spurious Emission below 30MHz (9KHz to 30MHz)									
	EUT:	Tablet	Model No.:	Acer one 8 T2						
	Temperature:	20 ℃	Relative Humidity:	48%						
	Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu						

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3	m(dBuV/m)	Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.



All the modulation	n modes have been	n tested, and the	worst result was rep	oort as below:

EUT:	Tablet	Model Name :	Acer one 8 T2
Temperature:	25 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Test Mode:	Mode 1
Test Voltage :	DC 3.7V		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark				
(H/V)	(MHz)	Hz) (dBuV) (dB) (dBu		(dBuV/m)	(dBuV/m)	1 tomant					
V	30.9618	8.6	18.33	26.93	40	-13.07	QP				
V	43.0504	19.25	12.3	31.55	40	-8.45	QP				
V	65.3431	12.08	6.17	18.25	40	-21.75	QP				
V	80.0806	13.83	8.08	21.91	40	-18.09	QP				
V	90.2205	17.67	9.76	27.43	43.5	-16.07	QP				
V	131.2965	14.38	12.55	26.93	43.5	-16.57	QP				
	Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit										
72.0 dB	u¥/m	-				1:-2					

(H/V) (MHz) (dBuV) (dB) (dBuV/m) (dBuV/m) (dB) H 31.2893 5.85 18.16 24.01 40 -15.99 Q H 43.0504 7.2 12.3 19.5 40 -20.5 Q H 82.0705 14.95 8.21 23.16 40 -16.84 Q H 143.8294 7.59 12.13 19.72 43.5 -23.78 Q H 230.0985 13.59 10.81 24.4 46 -21.6 Q H 8.46 25.81 34.27 46 -11.73 Q Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit 72.0 dBuV/m Margin: 72.0 dBuV/m	Frequen	olar		Aeter eading	Factor	Emissio Level		Limi	ts	Ма	argin	F	Rema				
H 43.0504 7.2 12.3 19.5 40 -20.5 Q H 82.0705 14.95 8.21 23.16 40 -16.84 Q H 143.8294 7.59 12.13 19.72 43.5 -23.78 Q H 230.0985 13.59 10.81 24.4 46 -21.6 Q H 833.317 8.46 25.81 34.27 46 -11.73 Q Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit 72.0 48.0V/m -10.00 10.00 <th>(MHz)</th> <th>/V)</th> <th>(MHz) (d</th> <th>lBuV)</th> <th>(dB)</th> <th>(dBuV/r</th> <th>n)</th> <th>(dBuV</th> <th>/m)</th> <th>(</th> <th>dB)</th> <th></th> <th>torna</th>	(MHz)	/V)	(MHz) (d	lBuV)	(dB)	(dBuV/r	n)	(dBuV	/m)	(dB)		torna				
H 82.0705 14.95 8.21 23.16 40 -16.84 Q H 143.8294 7.59 12.13 19.72 43.5 -23.78 Q H 230.0985 13.59 10.81 24.4 46 -21.6 Q H 833.317 8.46 25.81 34.27 46 -11.73 Q Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit Margin: Margin: 72.0 dBuV/m dBuV/m </td <td>31.289</td> <td>-</td> <td>31.2893</td> <td>5.85</td> <td>18.16</td> <td>24.01</td> <td></td> <td>40</td> <td></td> <td>-1</td> <td>5.99</td> <td></td> <td>QP</td>	31.289	-	31.2893	5.85	18.16	24.01		40		-1	5.99		QP				
H 143.8294 7.59 12.13 19.72 43.5 -23.78 Q H 230.0985 13.59 10.81 24.4 46 -21.6 Q H 833.317 8.46 25.81 34.27 46 -11.73 Q Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit 72.0 dBuV/m				7.2	12.3	19.5		40					QP				
H 230.0985 13.59 10.81 24.4 46 21.6 Q H 833.317 8.46 25.81 34.27 46 -11.73 Q Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit 72.0 dBuV/m Imit: Margin: - 32																	QP
H 833.317 8.46 25.81 34.27 46 -11.73 Q Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit 72.0 dBw/m 4 4 5 4 2 32 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 6 7 7 8													QP				
Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit 72.0 dBuV/m																	
Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit 72.0 dBvV/m	033.31		033.317	5.40	25.61	34.27		40		- 1	1.73		QP				
72.0 dBuV/m	.evel= R∉		evel= ReadingLe	el+ Fact	tor. Margin	= Absolute	Leve	I - Limit									
32 33 4 5 4 5 4 6 4 6 4 6 4 6 4 6 4 6 6 4 6				<u></u>	tor, margin	7 10 0 0 1010	2010										
													-				
											Margi	in:	_				
				┯┛								6					
8												×	MAR MAR				
8		1		2		5				JAN	moneyalle	mar					
8	2		2	×	4	×			weekensisteder	n value							
8	which an		highly an	Mu.	and Anna Anna	بالمعادية	WANNER	And water and									
8	- MANNA		www.www.	Manan	West, and a cli	No support											
			1990 T														
<u>30.000 40 50 60 70 80 (MHz) 300 400 500 600 700 1000</u>																	
	40 50	0.000	0 50 60 70	80	(M	IHz)	3	300	400	500	600 70	DO	1000.00				

EUT:		Tablet			Model I	No.:	Acer	one 8 T2			
Temperatu	re:	20 ℃			Relative	e Humidity:	48%	48%			
Fest Mode:	:	Mode2/Mode3/Mode4 Test By: Allen Liu									
Frequenc y	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Remark	Comment		
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)				
			Low	Channel (2	402 MHz)-	Above 1G					
4803.79	60.14	5.21	35.59	44.30	56.64	74.00	-17.36	Pk	Vertical		
4803.79	42.91	5.21	35.59	44.30	39.41	54.00	-14.59	AV	Vertical		
7206.17	60.47	6.48	36.27	44.60	58.62	74.00	-15.38	Pk	Vertical		
7206.17	40.28	6.48	36.27	44.60	38.43	54.00	-15.57	AV	Vertical		
4803.5	61.79	5.21	35.55	44.30	58.25	74.00	-15.75	Pk	Horizonta		
4803.5	39.90	5.21	35.55	44.30	36.36	54.00	-17.64	AV	Horizonta		
7205.84	60.74	6.48	36.27	44.52	58.97	74.00	-15.03	Pk	Horizonta		
7205.84	41.45	6.48	36.27	44.52	39.68	54.00	-14.32	AV	Horizonta		
Mid Channel (2440 MHz)-Above 1G											
4879.27	61.84	5.21	35.66	44.20	58.51	74.00	-15.49	Pk	Vertical		
4879.27	42.87	5.21	35.66	44.20	39.54	54.00	-14.46	AV	Vertical		
7320.21	61.18	7.10	36.50	44.43	60.35	74.00	-13.65	Pk	Vertical		
7320.21	39.97	7.10	36.50	44.43	39.14	54.00	-14.86	AV	Vertical		
4880.61	62.13	5.21	35.66	44.20	58.80	74.00	-15.20	Pk	Horizonta		
4880.61	39.58	5.21	35.66	44.20	36.25	54.00	-17.75	AV	Horizonta		
7319.61	61.36	7.10	36.50	44.43	60.53	74.00	-13.47	Pk	Horizonta		
7319.61	41.25	7.10	36.50	44.43	40.42	54.00	-13.58	AV	Horizonta		
			High	Channel (2	480 MHz)-	Above 1G			-		
4960	59.96	5.21	35.52	44.21	56.48	74.00	-17.52	Pk	Vertical		
4960	41.99	5.21	35.52	44.21	38.51	54.00	-15.49	AV	Vertical		
7440.9	60.89	7.10	36.53	44.60	59.92	74.00	-14.08	Pk	Vertical		
7440.9	39.86	7.10	36.53	44.60	38.89	54.00	-15.11	AV	Vertical		
4960.6	61.44	5.21	35.52	44.21	57.96	74.00	-16.04	Pk	Horizonta		
4960.6	41.47	5.21	35.52	44.21	37.99	54.00	-16.01	AV	Horizonta		
7440.12	60.89	7.10	36.53	44.60	59.92	74.00	-14.08	Pk	Horizonta		
7440.12	40.79	7.10	36.53	44.60	39.82	54.00	-14.18	AV	Horizonta		

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2) All other emissions more than 20dB below the limit.

(3) All rate had been tested, but only the worst data on rate recorded in the report.

EUT:		Tablet		Mode	l No.:	Ad	cer one 8 T2			
Temperatu	ure:	20 ℃		Relati	Relative Humidity: 48%			· %		
Test Mode):	Mode2/	Mode4	Test I	By:	AI	len Liu			
Frequenc		Cable	Antenna	Preamp	Emission	Limits	Margin	Detector		
У (Ань)	Reading	Loss	Factor	Factor					Comment	
(MHz) (dB) dB/m (dB) (dBµV/m) (dB) Type GFSK										
0040.00	04.00	0.07	07.00		1	- 4	05.05			
2310.00	61.08	2.97	27.80	43.80	48.05	74	-25.95	Pk	Horizonta	
2310.00	41.61	2.97	27.80	43.80	28.58	54	-25.42	AV	Horizonta	
2310.00	61.90	2.97	27.80	43.80	48.87	74	-25.13	Pk	Vertical	
2310.00	40.86	2.97	27.80	43.80	27.83	54	-26.17	AV	Vertical	
2390.00	59.21	3.14	27.21	43.80	45.76	74	-28.24	Pk	Vertical	
2390.00	39.81	3.14	27.21	43.80	26.36	54	-27.64	AV	Vertical	
2390.00	60.07	3.14	27.21	43.80	46.62	74	-27.38	Pk	Horizonta	
2390.00	39.82	3.14	27.21	43.80	26.37	54	-27.63	AV	Horizonta	
2483.50	61.51	3.58	27.70	44.00	48.79	74	-25.21	Pk	Vertical	
2483.50	39.72	3.58	27.70	44.00	27.00	54	-27.00	AV	Vertical	
2483.50	61.91	3.58	27.70	44.00	49.19	74	-24.81	Pk	Horizonta	
2483.50	42.80	3.58	27.70	44.00	30.08	54	-23.92	AV	Horizonta	

Note: (1) All other emissions more than 20dB below the limit.

(2) All rate had been tested, but only the worst data on rate recorded in the report.

EUT:		Tal	olet		Model N	No.:	A	cer one 8	T2	
Tempe	erature:	20	°C		Relative	Relative Humidity:		8%		
Test M	est Mode: Mode2/ Mode4			Test By	-	A	llen Liu			
F			-							
	Frequenc	Readin		Antenn	Preamp	Emission	Limit	s Margin	Detecto	
-	у	g Level	Loss	а	Factor	Level			r	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµ V/m)	(dBµ V/m	1081	Туре	
	3260	60.43	4.04	29.57	44.70	49.34	74	-24.66	Pk	Vertical
	3260	51.42	4.04	29.57	44.70	40.33	54	-13.67	AV	Vertical
	3260	61.44	4.04	29.57	44.70	50.35	74	-23.65	Pk	Horizontal
	3260	49.97	4.04	29.57	44.70	38.88	54	-15.12	AV	Horizontal
	3332	62.28	4.26	29.87	44.40	52.01	74	-21.99	Pk	Vertical
	3332	49.58	4.26	29.87	44.40	39.31	54	-14.69	AV	Vertical
	3332	60.01	4.26	29.87	44.40	49.74	74	-24.26	Pk	Horizontal
	3332	51.77	4.26	29.87	44.40	41.50	54	-12.50	AV	Horizontal
	17797	40.73	10.99	43.95	43.50	52.17	74	-21.83	Pk	Vertical
	17797	30.35	10.99	43.95	43.50	41.79	54	-12.21	AV	Vertical
	17788	41.47	11.81	43.69	44.60	52.37	74	-21.63	Pk	Horizontal
	17788	30.30	11.81	43.69	44.60	41.20	54	-12.80	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \ge 3*RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results

EUT:	Tablet	Model No.:	Acer one 8 T2
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02 Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on}/T_{total}

7.4.6 Test Results

EUT:	Tablet	Model No.:	Acer one 8 T2
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	N/A	Test By:	N/A

N/A

7.5 PEAK OUTPUT POWER

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.1.

7.5.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows Subclause 11.9.1.1 of ANSI C63.10 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.5.6 Test Results

EUT:	Tablet	Model No.:	Acer one 8 T2
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.6 POWER SPECTRAL DENSITY

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10 This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5*DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW \geq 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

EUT:	Tablet	Model No.:	Acer one 8 T2
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	Tablet	Model No.:	Acer one 8 T2
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Allen Liu

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequency range from 30MHz to 26.5GHz.

7.8.5 Test Results

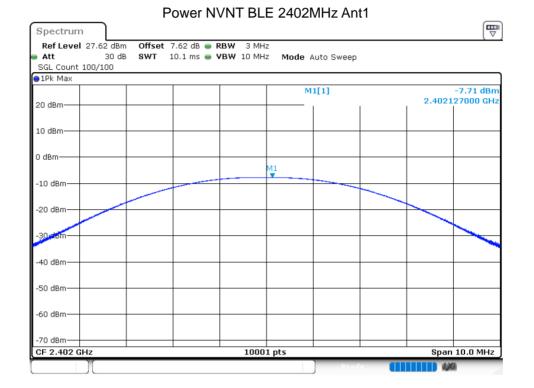
Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.9 ANTENNA APPLICATION

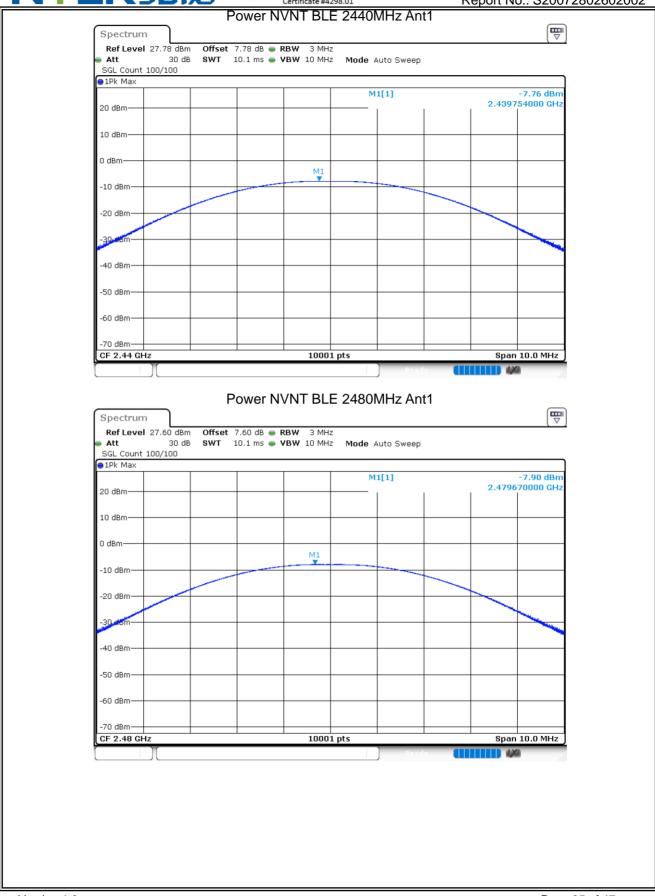
7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

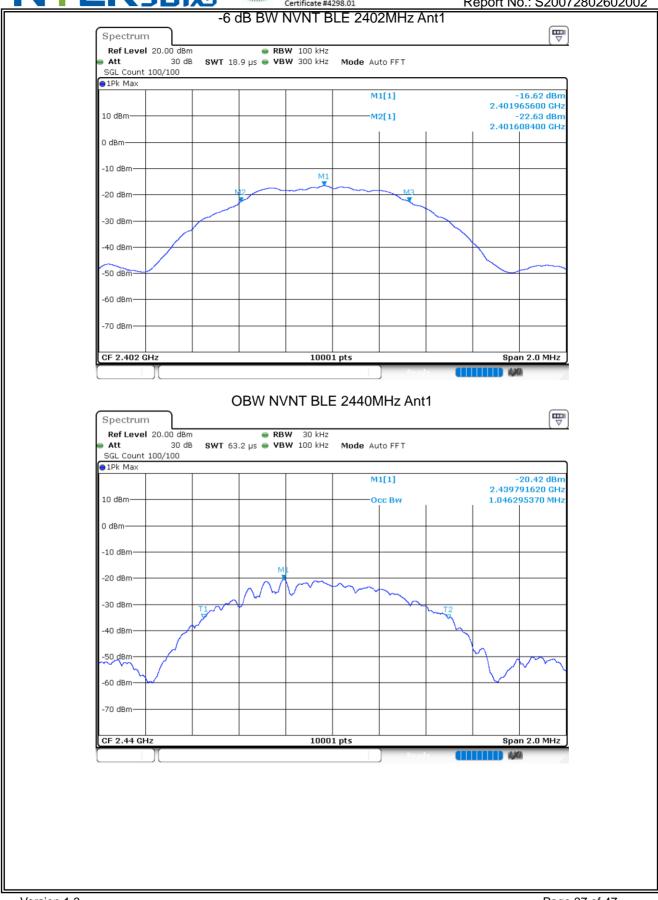
7.9.2 Result


The EUT antenna is permanent attached FPC Antenna (Gain: 0.7dBi). It comply with the standard requirement.

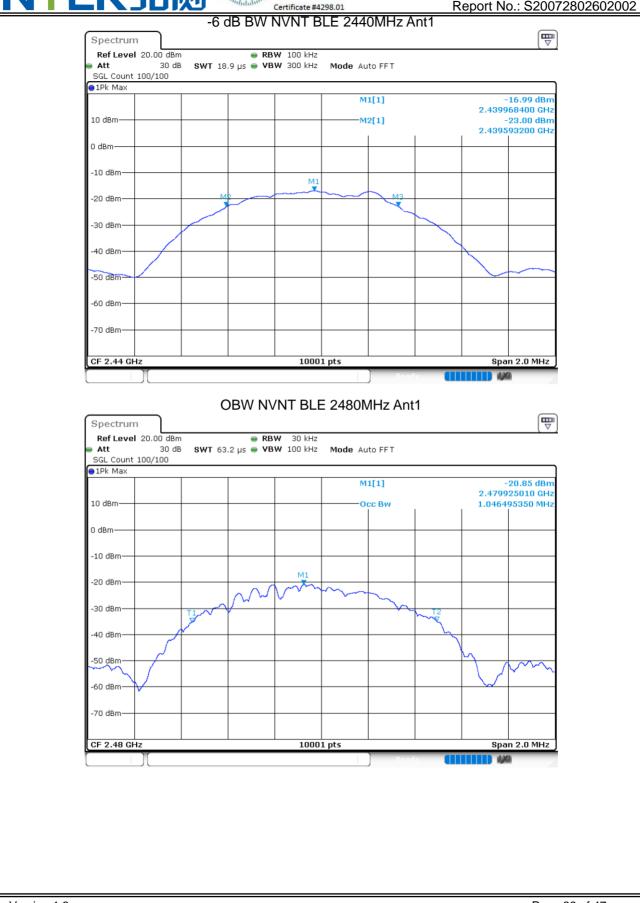
8 TEST RESULTS


8.1 MAXIMUM CONDUCTED OUTPUT POWER

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant 1	-7.708	30	Pass
NVNT	BLE	2440	Ant 1	-7.758	30	Pass
NVNT	BLE	2480	Ant 1	-7.904	30	Pass

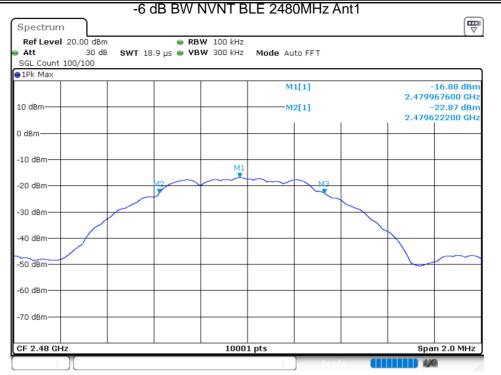


NVNT BLE 2440 Ant 1 1.0463 0.7364 ≥0.5 Pass NVNT BLE 2480 Ant 1 1.0465 0.7074 ≥0.5 Pass OBW NVNT BLE 2402MHz Ant1 Spectrum REF Level 20.00 dbm MILI -20.55 dbm OBW NVNT BLE 2402MHz Ant1 Spectrum RBW 30 kHz Mile Auto FFT SGL Count 100/100 #JPK Max Mile Auto FFT 10 dBm Occc Bw 0 dBm -20.55 dBm -20.50 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm -60 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	NVNT BLE 2440 Ant 1 1.0463 0.7364 ≥0.5 Pass NVNT BLE 2480 Ant 1 1.0465 0.7074 ≥0.5 Pass OBW NVNT BLE 2402MHz Ant1 Spectrum Image: Bit in the second s	Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)	-6 dB Bandwic (MHz)	dth Bar) (f	it -6 dB ndwidth MHz)	Verdict
NVNT BLE 2480 Ant 1 1.0465 0.7074 ≥0.5 Pass OBW NVNT BLE 2402MHz Ant1 Ref Level 20.00 dBm ● RBW 30 kHz ●	NVNT BLE 2480 Ant 1 1.0465 0.7074 ≥0.5 Pass OBW NVNT BLE 2402MHz Ant1 Image: Spectrum				Ant 1					
OBW NVNT BLE 2402MHz Ant1 Spectrum Ref Level 20.00 dBm A to 30 dB SWT 63.2 µs * VBW 100 kHz Mode Auto FFT SGL Count 100/100 PF Max MI[1] Occ Bw 1.039096090 MHz 0 MI Occ Bw 1.039096090 MHz Occ Bw 0 dBm -0 dBm<	OBW NVNT BLE 2402MHz Ant1 Ref Level 20.00 dbm Ref Level 20.00 dbm • RBW 30 kHz M1 30 db Spectrum • VBW 100 kHz Max - 20.55 dbm 10 dbm 0cc Bw 10 dbm 0cc Bw 10 dbm 0cc Bw -10 dbm M1 -20 dbm M1 -30 dbm M1 -50 dbm - 10 dbm									
Spectrum PRBW 30 kHz • At 30 dB SWT 63.2 µs • VBW 100 kHz Mode Auto FFT SGL Count 100/100 • II[1] -20.55 dBm • 0 dBm • 0 cc Bw 1.039096090 MHz • 0 dBm • 0 cc Bw 1.039096090 MHz • 0 dBm • 0 cc Bw 1.039096090 MHz • 0 dBm • 0 cc Bw 1.039096090 MHz • 0 dBm • 0 cc Bw 1.039096090 MHz • 0 dBm • 0 cc Bw 1.039096090 MHz • 0 dBm • 0 cc Bw 1.039096090 MHz • 0 dBm • 0 cc Bw 1.039096090 MHz • 0 dBm • 0 cc Bw 1.039096090 MHz • 0 dBm • 0 cc Bw 1.039096090 MHz • 0 dBm • 0 cc Bw 1.039096090 MHz • 0 dBm • 0 cc Bw 1.039096090 MHz • 0 dBm • 0 cc Bw 1.039096090 MHz • 0 dBm • 0 cc Bw 1.039096090 MHz • 0 dBm • 0 cc Bw • 0 cc Bw • 0 cc Bw • 0 dBm • 0 cc Bw • 0 cc Bw • 0 cc Bw • 0 dBm • 0 cc Bw • 0 cc Bw • 0 cc Bw <	Spectrum PRBW 30 kHz At 30 dB SWT 63.2 µS VBW 100 kHz Mode Auto FFT Sc. Count 100/100 -20.55 dBm -20.55 dBm -20.55 dBm 10 dBm 0 cc Bw 1.039096090 MHz -00.55 dBm -0 dBm 0 dBm -0 cc Bw 1.039096090 MHz -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0	NVNT	BLE	2480	Ant 1	1.0465	0.7074	4 2	≥0.5	Pass
10 dBm 0 cc Bw 1.039096090 MHz 0 dBm 0 dBm 0 dBm -10 dBm 0 dBm 0 dBm -20 dBm Mt 0 dBm -30 dBm 10 dBm 10 dBm -20 dBm 10001 pts Span 2.0 MHz	10 dBm 0 cc Bw 1.039096090 MHz 0 dBm 0 dBm 0 dBm 0 dBm -10 dBm 0 dBm 0 dBm 0 dBm -20 dBm MB 0 dBm 0 dBm -30 dBm 10 dBm 10 dBm 10 dBm -20 dBm 0 dBm 10 dBm 10 dBm -20 dBm 0 dBm 10 dBm 10 dBm -30 dBm 10 dBm 10 dBm 10 dBm -30 dBm 10 dBm 10 dBm 10 dBm -0 dBm 10 dBm 10 dBm 10 dBm -50 dBm 10001 pts Span 2.0 MHz		Ref Lo Att SGL Co	evel 20.00 dBm 30 dB SW unt 100/100	e RBW	/ 30 kHz	e Auto FFT			
-10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70	-10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -50 dBm -60 dBm -70		10 dBm·					2.4017	95620 GHz	
-20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70	-20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70									
-30 dBm -40 dBm -40 dBm -50 dBm -60 dBm -70	-30 dBm -40 dBm -50 dBm -60 dBm -70				мі					
-40 dBm -50 dBm -60 dBm -70 dBm CF 2.402 GHz 10001 pts Span 2.0 MHz	-40 dBm -50 dBm -60 dBm -70 dBm CF 2.402 GHz 10001 pts Span 2.0 MHz							_T2		
-60 dBm -70 dBm CF 2.402 GHz 10001 pts Span 2.0 MHz	-60 dBm -70 dBm CF 2.402 GHz 10001 pts Span 2.0 MHz		-40 dBm					~		
-70 dBm CF 2.402 GHz 10001 pts Span 2.0 MHz	-70 dBm		\sim					-	\sim	
	Beady Min		CF 2.4	02 GHz	· ·	10001 pts				



ACCREDITED Certificate #4298.01

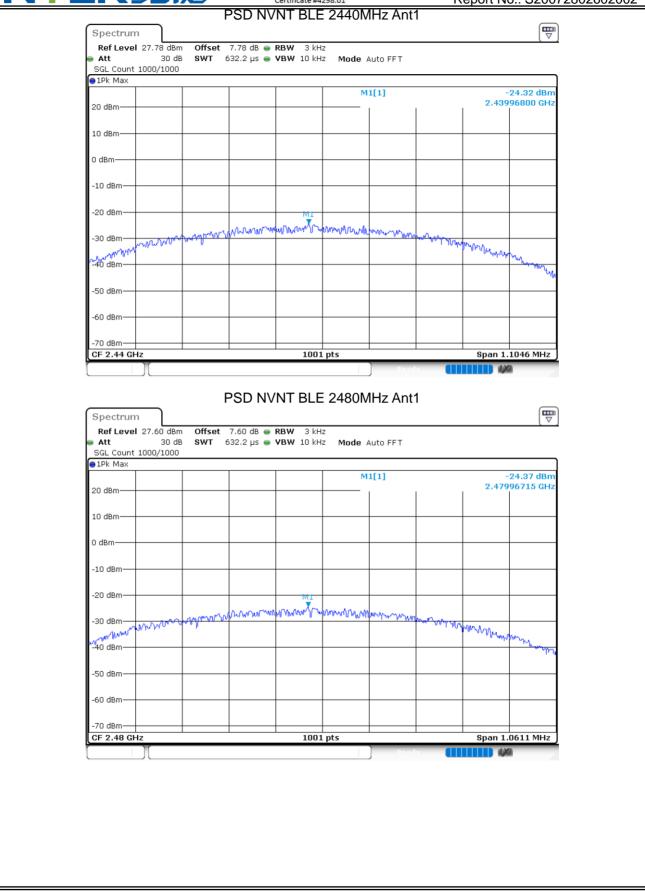
Report No.: S20072802602002



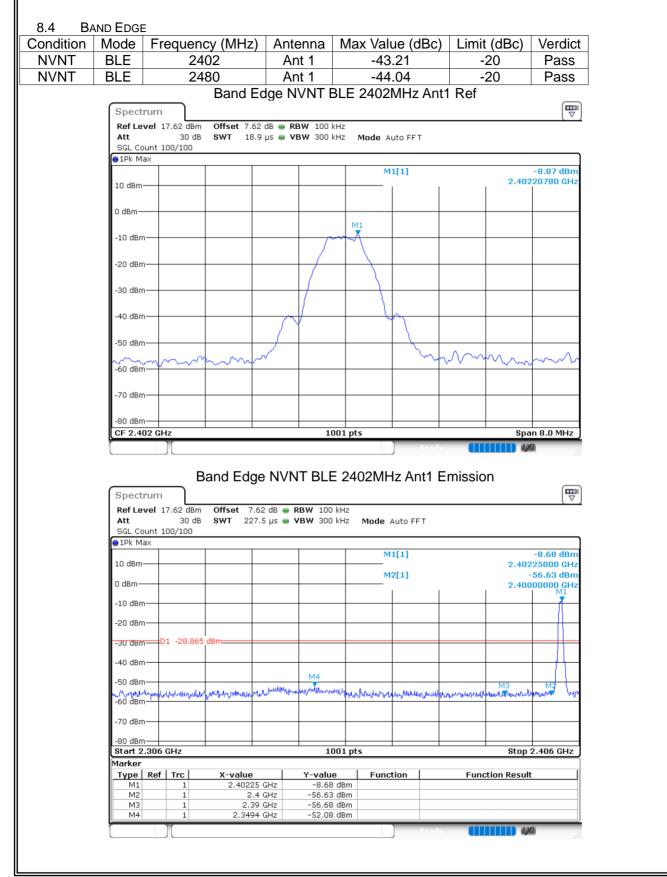
ACCREDITED

ACCREDITED

Certificate #4298.01



NVNT NVNT	Mode BLE BLE	Frequend 24 24	02	Antenna Ant 1 Ant 1	Max PSD (dBm/3kF -24.437 -24.321	lz) Limit ((dBm/3kHz) 8 8	Verdict Pass Pass
NVNT	BLE	24		Ant 1	-24.367		8	Pass
	👄 Att	evel 27.62 dBm 30 dB punt 1000/1000	n Offset 7.6	2 dB 🕳 RBW 3	LE 2402MHz Ant1 ^{kHz} ^{kHz} Mode Auto FFT			
	20 dBm 10 dBm				M1[1]		-24.44 dBm 196875 GHz	
	0 dBm-							
	-10 dBn -20 dBn				1			
	-30 dBn 40 dBn	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	waymad any	wyw ^{rann} allannau 	I Marin Marin - marine -	a Malana an	Werningermannen	
	-50 dBn -60 dBn	n						
	-70 dBn			1(001 pts	Span 1	.0797 MHz	


ſ

●1Pk Max				M	1[1]			-9.52 dBm
10 dBm					~. *3		2.479	9.32 dBm 96000 GHz
0 dBm								
-10 dBm			ML					
-10 080				~				
-20 dBm								
-30 dBm								
-40 dBm			\sim		~			
-50 dBm		/						
\sim \sim	m	m			J.	m	mm	m
-60 dBm								
-70 dBm								
-80 dBm								
CF 2.48 GHz			1001	pts			Spa	n 8.0 MHz
Spectrum Ref Level 17.	50 dBm	Offset 7.60 dB	VNT BLE 24			Emissio	'n	
-	50 dBm 30 dB	Offset 7.60 dB				Emissio	'n	
Ref Level 17.0 Att SGL Count 100	50 dBm 30 dB	Offset 7.60 dB	● RBW 100 kHz	Mode 4		Emissio		-8.99 dBm 25000 GHz
Ref Level 17.1 Att SGL Count 100 1Pk Max 10 dBm 0 dBm	50 dBm 30 dB	Offset 7.60 dB	● RBW 100 kHz	Mode A	Auto FFT	Emissio	2.480	-8.99 dBm
Ref Level 17.1 Att SGL Count 100 1Pk Max	50 dBm 30 dB	Offset 7.60 dB	● RBW 100 kHz	Mode A	Auto FFT	Emissio	2.480	-8.99 dBm 25000 GHz -56.51 dBm
Ref Level 17. Att SGL Count 1000 9 IPk Max 10 dBm 0 dBm 0 dBm 0 dBm 0 dBm	50 dBm 30 dB	Offset 7.60 dB	● RBW 100 kHz	Mode A	Auto FFT	Emissio	2.480	-8.99 dBm 25000 GHz -56.51 dBm
Ref Level 17.1 Att SGL Count 1000 ● 1Pk Max 10 dBm 0 0 0 dBm 0 0 dBm 0 0 -10 dBm -10 dBm <td>50 dBm 30 dB /100</td> <td>Offset 7.60 dB SWT 227.5 μs</td> <td>● RBW 100 kHz</td> <td>Mode A</td> <td>Auto FFT</td> <td>Emissio</td> <td>2.480</td> <td>-8.99 dBm 25000 GHz -56.51 dBm</td>	50 dBm 30 dB /100	Offset 7.60 dB SWT 227.5 μs	● RBW 100 kHz	Mode A	Auto FFT	Emissio	2.480	-8.99 dBm 25000 GHz -56.51 dBm
Ref Level 17.1 Att SGL Count 100 ● 1Pk Max 10 dBm 10 dBm 10 -10 dBm -20 dBm -30 uBm D1 -40 dBm -10 10	50 dBm 30 dB /100	Offset 7.60 dB SWT 227.5 µs	RBW 100 kHz VBW 300 kHz	Mode 4	Auto FFT 1[1] 2[1]		2.480	-8.99 dBm 255000 GHz 56.51 dBm 50000 GHz
Ref Level 17.1 Att SGL Count 100 ● 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -20 dBm -20 dBm -30 cBm -50 dBm -50 dBm -50 dBm -50 dBm	50 dBm 30 dB /100	Offset 7.60 dB SWT 227.5 µs	RBW 100 kHz VBW 300 kHz	Mode 4	Auto FFT 1[1] 2[1]		2.480	-8.99 dBm 255000 GHz 56.51 dBm 50000 GHz
Ref Level 17.1 Att SGL Count 100 ● 1Pk Max 10 dBm 10 ● 10 dBm ● 0 dBm dBm 0 dBm	50 dBm 30 dB /100	Offset 7.60 dB SWT 227.5 µs	● RBW 100 kHz	Mode 4	Auto FFT 1[1] 2[1]		2.480	-8.99 dBm 255000 GHz 56.51 dBm 50000 GHz
Ref Level 17./ Att SGL Count 100 ● 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -50 dBm -70 dBm	50 dBm 30 dB /100	Offset 7.60 dB SWT 227.5 µs	RBW 100 kHz VBW 300 kHz	Mode 4	Auto FFT 1[1] 2[1]		2.480	-8.99 dBm 255000 GHz 56.51 dBm 50000 GHz
Ref Level 17./ Att SGL Count 100 ID dBm 10 dBm 0 dBm M1 -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -80 dBm Start 2.476 GH	-29.516 dE	Offset 7.60 dB SWT 227.5 µs	RBW 100 kHz VBW 300 kHz	Mode 4	Auto FFT 1[1] 2[1]		2.480 2.483	-8.99 dBm 255000 GHz 56.51 dBm 50000 GHz
Ref Level 17.1 Att SGL Count 100 ● 1Pk Max 10 dBm 0 dBm M1 -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -70 dBm -80 dBm Start 2.476 GF Marker Type	-29,516 dE	Offset 7.60 dB SWT 227.5 µs	RBW 100 kHz VBW 300 kHz	Mode /	۱[1] 2[1] ا		2.480 2.483	-8.99 dBm 25000 GHz 56.51 dBm 50000 GHz
Ref Level 17./ Att SGL Count 100 I Pk Max 10 dBm 0 dBm M1 -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -60 dBm -70 dBm -80 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -80 dBm -80 dBm -70 dBm -80 dBm -80 dBm -70 dBm	-29.516 dE	Offset 7.60 dB SWT 227.5 µs	RBW 100 kHz VBW 300 kHz VBW 300 kHz 100 kHz 10 kHz	Mode / 	۱[1] 2[1] ا		2.480 2.483	-8.99 dBm 25000 GHz 56.51 dBm 50000 GHz
Ref Level 17./ Att SGL Count 100 1Pk Max 10 dBm 0 dBm 0 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -60 dBm -70 dBm -80 dBm -80 dBm Type Ref 1	-29.516 dB why why why why why why why why why why	Offset 7.60 dB SWT 227.5 μs	RBW 100 kHz VBW 300 kHz VBW	Mode 4	۱[1] 2[1] ا		2.480 2.483	-8.99 dBm 25000 GHz 56.51 dBm 50000 GHz
Ref Level 17.4 SGL Count 100 10 dBm 0 10 dBm 0 -10 dBm 0 -20 dBm 0 -30 cBm 0 -30 dBm 0 -20 dBm 0 -30 cBm 0 -50 dBm 0 -50 dBm 0 -50 dBm 0 -70 dBm 0 -70 dBm 0 -70 dBm 0 -80 Marker 1 M1 M3 0	-29.516 dE	Offset 7.60 dB SWT 227.5 µs	RBW 100 kHz VBW 300 kHz VBW 300 kHz 100 t Hz 10 t	Mode 4	۱[1] 2[1] ا	լ ստովիվ _{այ} նորներո Func	2.480 2.483	-8.99 dBm 25000 GHz 56.51 dBm 50000 GHz

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant 1	-35.3	-20	Pass
NVNT	BLE	2440	Ant 1	-35.34	-20	Pass
NVNT	BLE	2480	Ant 1	-36.06	-20	Pass
	🕳 Att	rum evel 17.62 dBm Offset 7.62 30 dB SWT 18.9 punt 100/100 ax	2 dB • RBW 100	BLE 2402MHz Ant		-9.21 dBm 97450 GHz
	-50 dBm -60 dBm -70 dBm	ŋ				
	-80 dBm	Ŋ 				
	CF 2.4		1	001 pts	Spa	n 1.5 MHz

⊖1Pk Max		1		· · · ·					0.00
10 dBm					M1[1	1			-9.76 dBm 2.4120 GHz
0 dBm					M2[1	1			-44.52 dBm 9.7563 GHz
-10 dBm									
-20 dBm—									
-30 dBm	D1 -29.20	5 dBm							
-40 dBm—								2	
-50 dBm	1 	M4	M M	5	Another and the second	harryonallyway	manne	maran	ha and the state of the state o
-60 dBm	miles ber								
-70 dBm—									
-80 dBm									
Start 30.0 Marker	MHz			1001	pts			Sto	p 25.0 GHz
Type Re		X-value		Y-value -9.76 dB	Function	<u>ا</u>	Fun	ction Resul	t
M1 M2	1	19.750	12 GHz 63 GHz	-44.52 dB	m				
M3 M4	1		93 GHz 62 GHz	-48.44 dB -48.74 dB					
M5 Spectrum Ref Leve Att SGL Count	1 n 1 17.78 dB 30 d	9.74 Tx. Spi m Offset 7	33 GHz urious 7.78 dB •	-50.08 dB	E 2440M	D FFT	nt1 Ref		0 (₩
M5 Spectrum Ref Leve Att	1 n 1 17.78 dB 30 d	9.74 Tx. Spi m Offset 7	33 GHz urious 7.78 dB •	-50.08 dB	E 2440M		nt1 Ref		
M5 Spectrum Ref Leve Att SGL Count PIPk Max	1 n 1 17.78 dB 30 d	9.74 Tx. Spi m Offset 7	33 GHz urious 7.78 dB •	-50.08 dB	E 2440M	D FFT	nt1 Ref		-9.18 dBm
Spectrum Ref Leve Att SGL Count	1 n 1 17.78 dB 30 d	9.74 Tx. Spi m Offset 7	33 GHz urious 7.78 dB •	-50.08 dB	E 2440M	D FFT	nt1 Ref		-9.18 dBm
M5 Spectrum Ref Leve Att SGL Count 9 1Pk Max	1 n 1 17.78 dB 30 d	9.74 Tx. Spi m Offset 7	33 GHz urious 7.78 dB •	-50.08 dB	E 2440M	D FFT	nt1 Ref		-9.18 dBm
Spectrum Ref Leve Att SGL Count 1Pk Max 10 dBm-	1 n 1 17.78 dB 30 d	9.74 Tx. Spi m Offset 7	33 GHz urious 7.78 dB •	-50.08 dB	E 2440M	D FFT	nt1 Ref		-9.18 dBm
M5 Spectrum Ref Leve • Att SGL Count • 1Pk Max 10 dBm	1 n 1 17.78 dB 30 d	9.74 Tx. Spi m Offset 7	33 GHz urious 7.78 dB •	-50.08 dB	E 2440M	D FFT	nt1 Ref		-9.18 dBm
M5 Spectrum Ref Leve • Att SGL Count • 1Pk Max 10 dBm	1 n 1 17.78 dB 30 d	9.74 Tx. Spi m Offset 7	33 GHz urious 7.78 dB •	-50.08 dB	E 2440M	D FFT	nt1 Ref		-9.18 dBm
M5 Spectrum Ref Leve Att SGL Count ID dBm- 0 dBm- -10 dBm-	1 n 1 17.78 dB 30 d	9.74 Tx. Spi m Offset 7	33 GHz urious 7.78 dB •	-50.08 dB	E 2440M	D FFT	nt1 Ref		-9.18 dBm
M5 Spectrum Ref Leve • Att SGL Count • 1Pk Max 10 dBm	1 n 1 17.78 dB 30 d	9.74 Tx. Spi m Offset 7	33 GHz urious 7.78 dB •	-50.08 dB	E 2440M	D FFT	nt1 Ref		-9.18 dBm
M5 Spectrum Ref Leve Att SGL Count ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 n 1 17.78 dB 30 d	9.74 Tx. Spi m Offset 7	33 GHz urious 7.78 dB •	-50.08 dB	E 2440M	D FFT	nt1 Ref		-9.18 dBm
M5 Spectrum Ref Leve Att SGL Count 1D dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	1 n 1 17.78 dB 30 d	9.74 Tx. Spi m Offset 7	33 GHz urious 7.78 dB •	-50.08 dB	E 2440M	D FFT	nt1 Ref		-9.18 dBm
M5 Spectrum Ref Leve Att SGL Count IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 n 1 17.78 dB 30 d	9.74 Tx. Spi m Offset 7	33 GHz urious 7.78 dB •	-50.08 dB	E 2440M	D FFT	nt1 Ref		-9.18 dBm
M5 Spectrum Ref Leve Att SGL Count 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	1 n 1 17.78 dB 30 d	9.74 Tx. Spi m Offset 7	33 GHz urious 7.78 dB •	-50.08 dB	E 2440M	D FFT	nt1 Ref		-9.18 dBm
M5 Spectrum Ref Leve Att SGL Count ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	1 n 1 17.78 dB 30 d	9.74 Tx. Spi m Offset 7	33 GHz urious 7.78 dB •	-50.08 dB	E 2440M	D FFT	nt1 Ref		-9.18 dBm
M5 Spectrum Ref Leve Att SGL Count 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	1 17.78 dB 30 c 100/100	9.74 Tx. Spi m Offset 7	33 GHz urious 7.78 dB •	-50.08 dB	Mode Aut	D FFT	nt1 Ref	2.43	-9.18 dBm

Version.1.3

0 dBm M1 1 2.437 GH2 -44.52 dBm 19.7563 GH2 -30 dBm M1	0 dBm 10,7563 GHz 10 dBm 10,7563 GHz 10 dBm 10,7563 GHz 10,70 dBm 10,70 dBm 10,763 GHz 10,7563 GHz 10,756 10,756 10,756 10,756 10,756 10,756 10,756 10,75 10	●1Pk Max 10 dBm—					M1	[1]			-8.58 dBm 2.4370 GHz
10 dBm 20 dBm 30 dBm 1 -29.176 dBm 40 dBm 50 dBm 70 dBm 70 dBm 70 dBm 1 2 29.765 dBm 1 2 29.765 dBm 40 dBm 70 dBm 70 dBm 70 dBm 1 2 29.765 dH 1 2 29.86 dH 1 2 29.8	10 dBm 20 dBm 30 dBm 1 -29.176 dBm 40 dBm 50 dBm 70 dBm 70 dBm 70 dBm 1 2 -29.176 dBm 40 dBm 50 dBm 70 dBm 70 dBm 70 dBm 70 dBm 1 2 -29.176 dBm 70 d						M2	[1]			-44.52 dBm
30 dBm M MS M MS 40 dBm M MS M MS 50 dBm M M MS M MS 50 dBm M M MS M MS M 50 dBm M M MS M MS M MS M 70 dBm M M MS 1001 pts Storp 25.0 GHz MS M M MS M M MS M M MS M M MS M MS M M MS	30 dBm M MS M MS 40 dBm M MS M MS 50 dBm M MS M MS 50 dBm M MS M MS 50 dBm M MS M MS 70 dBm M MS Stop 25.0 GHz Warker MS 1 2.437 GHz -9.59 dBm M2 1 3.9756 GHz -44.59 dBm Function Result M3 1 4.7072 GHz -49.49 dBm M M3 1 7.9726 GHz -49.49 dBm M M M4 1 7.222 GHz -49.49 dBm M M M M3 1 9.7433 GHz -49.49 dBm M	N N	1								9.7303 GH2
40 dBm M M5 M M M5 M	40 dBm Mi	-20 dBm—		-							
S0 dBm M5 M5 M6 M7	S0 dBm Mi	-30 dBm	D1 -29.17	5 dBm====							
Bit of 30.0 MHz Stop 25.0 GHz Start 30.0 MHz 1001 pts Stop 25.0 GHz Marker Type Ref Trc X-value Function Function Result M1 1 2.437 GHz -44.52 dBm -44.54 dBm -44.54 dBm -44.52 dBm -44.54	Bit of 30.0 MHz 1001 pts Stop 25.0 GHz Start 30.0 MHz 1001 pts Stop 25.0 GHz Marker Type Ref Trc X-value Function Function Result M1 1 2.437 GHz -44.52 dBm -44.54 dBm -44.52 dBm -44.54 dB	-40 dBm—	N	13					M2		
60 dBm -70	60 dBm -70	-50 dBm-	walkymutated	and the second and the second	- IVIS	wash wood the	and the second	Marchan	man	Mushalland H	للمهر محمد معادمة المعمولة الم ^ع مونة المعمولة المعمولة المحمولة المحمولة المحمولة المحمولة المحمولة المحمولة الم
Start 30.0 MHz 1001 pts Stop 25.0 GHz Marker Type Kef Trc X-value Y-value Function Function Result M1 1 2.437 GHz -8.58 dBm Hot Start 30.0 MHz Function Result M2 1 19.7563 GHz -44.25 GHz -44.767 dBm Hot Start 30.0 MHz Function Result Hot Start 30.0 MHz M3 1 4.8742 GHz -44.93 gBm Hot Start 30.0 MHz Hot Start 30.0 MHz </td <td>Start 30.0 MHz 1001 pts Stop 25.0 GHz Marker Type Kef Trc X-value Y-value Function Function Result M1 1 2.437 GHz -8.58 dBm Hondow Hondow M2 1 19.7563 GHz -44.22 GHz -44.767 dBm Hondow Hondow M3 1 4.8742 GHz -44.90 dBm Hondow Hondow</td> <td></td>	Start 30.0 MHz 1001 pts Stop 25.0 GHz Marker Type Kef Trc X-value Y-value Function Function Result M1 1 2.437 GHz -8.58 dBm Hondow Hondow M2 1 19.7563 GHz -44.22 GHz -44.767 dBm Hondow Hondow M3 1 4.8742 GHz -44.90 dBm Hondow										
Nerker Trc X-value Y-value Function Function Result M1 1 2.437 GHz -8.58 dBm Function Function Result M2 1 19.7563 GHz -44.52 dBm Function Function Result M3 1 4.8742 GHz -47.67 dBm Function Function Function M4 1 7.3212 GHz -49.59 dBm Function Function Function Function M5 1 9.7433 GHz -49.49 dBm Function Function Function Function Tx. Spurious NVNT BLE 2480MHz Ant1 Ref Sectrum Ref Level 17.60 dBm Offset 7.50 dB RBW 100 Hz Mode Auto FFT SGL Count 100/100 PIP Max	Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.437 GHz -8.58 dBm -44.52 dBm -44.52 dBm -44.52 dBm -44.57 dBm -44.53 dBm -44.59 dBm -44.45	-70 dBm—									
Nerker Trc X-value Y-value Function Function Result M1 1 2.437 GHz -8.58 dBm Function Function Result M2 1 19.7563 GHz -44.52 dBm Function Function Result M3 1 4.8742 GHz -47.67 dBm Function Function Function M4 1 7.3212 GHz -49.59 dBm Function Function Function Function M5 1 9.7433 GHz -49.49 dBm Function Function Function Function Tx. Spurious NVNT BLE 2480MHz Ant1 Ref Sectrum Ref Level 17.60 dBm Offset 7.50 dB RBW 100 Hz Mode Auto FFT SGL Count 100/100 PIP Max	Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.437 GHz -8.58 dBm -44.52 dBm -44.52 dBm -44.52 dBm -44.57 dBm -44.53 dBm -44.59 dBm -44.45	Start 30.0	MHz			1001	ots			Stor	25.0 GHz
M1 1 2.437 GHz -8.58 dBm M2 1 19.7563 dHz -44.52 dBm M3 1 4.8742 GHz -47.67 dBm M4 1 7.3212 GHz -49.59 dBm M4 1 7.3212 GHz -49.49 dBm M4 1 7.3212 GHz -49.49 dBm M5 1 9.7433 GHz -49.49 dBm Count 100/100 0ffset 7.60 dB RBW 100 kHz Mode Auto FFT SGL Count 100/100 SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL Count 100/100 0ffset 7.60 dB RBW 100 kHz Mode Auto FFT -8.88 dBm 0 dBm 0 0 M1 -8.88 dBm -8.48 dBm -10 dBm 0 0 M1 -8.88 dBm -8.48 dBm -20 dBm 0 0 M1 -10 -8.08 dBm -30 dBm 0 0 0 0 0 -8.08 dBm -30 dBm 0 0 0 0 0 0 0 -60 dBm 0 0 0 0 <t< td=""><td>M1 1 2.437 GHz -8.58 dBm M2 1 19.7563 dHz -44.52 dBm M3 1 4.8742 GHz -47.67 dBm M4 1 7.3212 GHz -49.59 dBm M4 1 7.3212 GHz -49.49 dBm M4 1 7.3212 GHz -49.49 dBm M5 1 9.7433 GHz -49.49 dBm Count 100/100 0ffset 7.60 dB RBW 100 kHz Mode Auto FFT SGL Count 100/100 SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL Count 100/100 0dBm M1[1] -8.88 dBm -8.88 dBm 10 dBm 0 M1 0 -8.88 dBm -30 dBm 0 0 M1 0 -8.88 dBm -30 dBm 0 0 0 0 0 0 -0 -30 dBm 0 0 0 0 0 0 0 0 -30 dBm 0 0 0 0 0 0 0 0 -60 dBm 0 0 0</td><td>Marker</td><td></td><td>X-ualue</td><td>, 1</td><td></td><td></td><td>on I</td><td>Eupo</td><td></td><td></td></t<>	M1 1 2.437 GHz -8.58 dBm M2 1 19.7563 dHz -44.52 dBm M3 1 4.8742 GHz -47.67 dBm M4 1 7.3212 GHz -49.59 dBm M4 1 7.3212 GHz -49.49 dBm M4 1 7.3212 GHz -49.49 dBm M5 1 9.7433 GHz -49.49 dBm Count 100/100 0ffset 7.60 dB RBW 100 kHz Mode Auto FFT SGL Count 100/100 SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL Count 100/100 0dBm M1[1] -8.88 dBm -8.88 dBm 10 dBm 0 M1 0 -8.88 dBm -30 dBm 0 0 M1 0 -8.88 dBm -30 dBm 0 0 0 0 0 0 -0 -30 dBm 0 0 0 0 0 0 0 0 -30 dBm 0 0 0 0 0 0 0 0 -60 dBm 0 0 0	Marker		X-ualue	, 1			on I	Eupo		
M3 1 4.8742 GHz -47.67 dBm M4 1 7.3212 GHz -49.59 dBm M5 1 9.733 GHz -49.49 dBm M5 1 9.733 GHz -49.49 dBm Tx. Spurious NVNT BLE 2480MHz Ant1 Ref Spectrum Ref Level 17.60 dBm Offset 7.60 dB RBW 100 kHz Att 30 dB SWT 18.9 µs VBW 300 kHz M4 1 -49.49 dBm Mode Auto FFT SGL Count 100/100 IPk Max -0.48 dBm 2.48020680 GHz 0 dBm 0 M1 -0.480 dBm -0.480 dBm -10 dBm 0 M1 0 -0.480 dBm -20 dBm 0 0 M1 -0.480 dBm -30 dBm 0 0 0 0 -50 dBm 0 0 0 0 0 -70 dBm 0 0 0 0 0 -70 dBm 0 0 0 0 0 -70 dBm 0 0 0 0 0 <	M3 1 4.8742 GHz -47.67 dBm M4 1 7.3212 GHz -49.59 dBm M5 1 9.733 GHz -49.49 dBm M8 1 9.733 GHz -49.49 dBm Tx. Spurious NVNT BLE 2480MHz Ant1 Ref Spectrum Ref Level 17.60 dBm Offset 7.60 dB RBW 100 kHz Att 30 dB SWT 18.9 µs YBW 300 kHz M111 -8.88 dBm 10 dBm M111 -8.88 dBm 0 dBm M111 -8.88 dBm -0 dBm M111 -8.88 dBm -0 dBm M111 -8.88 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm<	M1	1	2.4	37 GHz	-8.58 dBn				alon kesun	
MS 1 9.7433 GHz -49.49 dBm Tx. Spurious NVNT BLE 2480MHz Ant1 Ref Spectrum Ref Level 17.60 dB Offset 7.60 dB RBW 100 kHz Att 30 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL Count 100/100 IPk Max -0 dBm M1[1] -8.88 dBm -10 dBm M1 0 0 -20 dBm 0 M1 0 0 -30 dBm 0 0 0 0 0 -20 dBm 0 0 0 0 0 -20 dBm 0 0 0 0 0 0 -20 dBm 0 0 0 0 0 0 0 -20 dBm 0 0 0 0 0 0 0 0 -20 dBm 0 0 0 0 0 0 0 0 -20 dBm 0 0 0 0 0	MS 1 9.7433 GHz -49.49 dBm Tx. Spurious NVNT BLE 2480MHz Ant1 Ref Spectrum Ref Level 17.60 dB Offset 7.60 dB RBW 100 kHz Att 30 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL Count 100/100 IPk Max 10 dBm M1[1] -8.89 dBm -10 dBm M1 M1 -48020680 GHz -20 dBm M1 M1 -10 -30 dBm M1 M1 -40 dBm M1 -20 dBm M1 M1 -40 dBm -40 dBm -30 dBm M1 M1 -40 dBm -40 dBm -20 dBm -30 dBm -40 dBm -40 dBm -40 dBm -20 dBm -40 dBm -40 dBm -40 dBm -40 dBm -20 dBm -40 dBm -40 dBm -40 dBm -40 dBm -40 dBm -20 dBm -40 dBm -40 dBm -40 dBm -40 dBm -40 dBm -40 dBm -20 dBm -40 dBm <td< td=""><td>M3</td><td>1</td><td>4.87</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	M3	1	4.87							
Spectrum Image: Construction of the sector of	Spectrum Image: Construction of the sector of			7 20							
-10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm -70 dBm -80 dBm -80 dBm -80 dBm -101 pts Spen 1.5 MHz	-10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm -70 dBm -80 dBm -80 dBm -80 dBm -10 1 pts -10 1 pts	M5 Spectrur Ref Leve Att SGL Coun	1 n 17.60 dB/ 30 d	9.74 Tx. Spi	12 GHZ 33 GHZ urious N 7.60 dB • F	-49.59 dBn -49.49 dBn IVNT BL	E 2480	uto FFT	nt1 Ref		, , , , , , , , , , , , , , , , , , ,
-10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -10 -10 -10 -10 -10 -10 -10 -10 -10 -10	-10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -10	M5 Spectrui Ref Leve Att SGL Coun 1Pk Max	1 n 17.60 dB/ 30 d	9.74 Tx. Spi	12 GHZ 33 GHZ urious N 7.60 dB • F	-49.59 dBn -49.49 dBn IVNT BL	E 2480	uto FFT	nt1 Ref	2.480	-8.88 dBm
-20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -80 dBm -10	-20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -80 dBm -10	M5 Spectrui Ref Leve Att SGL Coun IPk Max	1 n 17.60 dB/ 30 d	9.74 Tx. Spi	12 GHZ 33 GHZ urious N 7.60 dB • F	-49.59 dBn -49.49 dBn IVNT BL	E 2480	uto FFT	nt1 Ref	2.480	-8.88 dBm
-30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -80 dBm -80 dBm -80 dBm -100 pts -100 p	-30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -80 dBm -80 dBm -80 dBm -101 pts -100 p	M5 Spectrui Ref Leve Att SGL Coun IPk Max 10 dBm	1 n 17.60 dB/ 30 d	9.74 Tx. Spi	12 GHZ 33 GHZ urious N 7.60 dB • F	-49.59 dBn -49.49 dBn IVNT BL	E 2480	uto FFT	nt1 Ref	2.480	-8.88 dBm
-40 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -80 dBm -80 dBm -80 dBm -80 dBm -90	-40 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -80 dBm -80 dBm -80 dBm -80 dBm -90 dBm -90 dBm -90 dBm -100 pts -90 dBm -90 dBm -9	M5 Spectrur Ref Leve Att SGL Coun IPk Max 10 dBm 0 dBm -10 dBm	1 n 17.60 dB/ 30 d	9.74 Tx. Spi	12 GHZ 33 GHZ urious N 7.60 dB • F	-49.59 dBn -49.49 dBn IVNT BL	E 2480	uto FFT	nt1 Ref	2.480	-8.88 dBm
-50 dBm -60 dBm -70 dBm -80 dBm -80 dBm -80 dBm -80 dBm -80 dBm -80 dBm -80 dBm -90	-50 dBm -60 dBm -70 dBm -80 dBm -80 dBm -80 dBm -80 dBm -80 dBm -80 dBm -90	M5 Spectrui Ref Leve Att SGL Coun 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	1 n 17.60 dB/ 30 d	9.74 Tx. Spi	12 GHZ 33 GHZ urious N 7.60 dB • F	-49.59 dBn -49.49 dBn IVNT BL	E 2480	uto FFT	nt1 Ref	2.480	-8.88 dBm
-60 dBm	-60 dBm -70 dBm -80 dBm CF 2.48 GHz 1001 pts Span 1.5 MHz	M5 Spectrui Ref Leve Att SGL Coun 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	1 n 17.60 dB/ 30 d	9.74 Tx. Spi	12 GHZ 33 GHZ urious N 7.60 dB • F	-49.59 dBn -49.49 dBn IVNT BL	E 2480	uto FFT	nt1 Ref	2.480	-8.88 dBm
-70 dBm	-70 dBm	M5 Spectrui Ref Leve SGL Coun SGL Coun 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	1 n 17.60 dB/ 30 d	9.74 Tx. Spi	12 GHZ 33 GHZ urious N 7.60 dB • F	-49.59 dBn -49.49 dBn IVNT BL	E 2480	uto FFT	nt1 Ref	2.480	-8.88 dBm
-70 dBm	-70 dBm	M5 Spectrur Ref Leve SGL Coun 9 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 n 17.60 dB/ 30 d	9.74 Tx. Spi	12 GHZ 33 GHZ urious N 7.60 dB • F	-49.59 dBn -49.49 dBn IVNT BL	E 2480	uto FFT	nt1 Ref	2.480	-8.88 dBm
-80 dBm F2 .48 GHz 1001 pts Span 1.5 MHz	-80 dBm F2 .48 GHz 1001 pts Span 1.5 MHz	M5 Spectrur Ref Leve SGL Coun 9 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm	1 n 17.60 dB/ 30 d	9.74 Tx. Spi	12 GHZ 33 GHZ urious N 7.60 dB • F	-49.59 dBn -49.49 dBn IVNT BL	E 2480	uto FFT	nt1 Ref	2.480	-8.88 dBm
CF 2.48 GHz 1001 pts Span 1.5 MHz	CF 2.48 GHz 1001 pts Span 1.5 MHz	M5 Spectrui Ref Leve Att SGL Coun 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	1 n 17.60 dB/ 30 d	9.74 Tx. Spi	12 GHZ 33 GHZ urious N 7.60 dB • F	-49.59 dBn -49.49 dBn IVNT BL	E 2480	uto FFT	nt1 Ref	2.480	-8.88 dBm
		M5 Spectrui Ref Leve Att SGL Coun 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	1 n 17.60 dB/ 30 d	9.74 Tx. Spi	12 GHZ 33 GHZ urious N 7.60 dB • F	-49.59 dBn -49.49 dBn IVNT BL	E 2480	uto FFT	nt1 Ref	2.480	-8.88 dBm
		M5 Spectrum Ref Leve Att SGL Coun 9 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -80 dBm	1 1 30 d 100/100	9.74 Tx. Spi	12 GHZ 33 GHZ urious N 7.60 dB • F	-49.59 dBn -49.49 dBn IVNT BL BW 100 kHz BW 300 kHz	E 2480	uto FFT	nt1 Ref		-8.88 dBm 120680 GHz

Att	e vel 17.60 3 ount 10/10	dBm Offset 30 dB SWT	_	RBW 100 kHz VBW 300 kHz	Mode Auto Sv	veep	
●1Pk Ma							
					M1[1]		-9.89 dBn
10 dBm-							2.4870 GH
0 dBm—					M2[1]		-44.94 dBn
o abiii	м1				1	1	19.7813 GH
-10 dBm	י אַד						
-20 dBm							
-20 UBII	1						
-30 dBm	D1 -28	.878 dBm		_			
-40 dBm	ר_	MB	M4	Mā		M2	
-50 dBm		1		M5 www.www.www.www.www.	u musicary	mary more marked	My and a second second
monthly	alater and the way	where a contraction of the	A HORADS HAVE	Contra an assurburgan da . Ja			International and a second sec
unally	abaya anot the and	where a	A HORAN AN	romen sumbride a la			
-60 dBm	46+444,04+4-4444 7	wordshines a g	A. BURGORDAN	Prostan p. Analysis a . Ja			- 1990 Mar an Azer and a Holes of Azer A
-60 dBm	46+444,04+4-4444 7	where the second s	the floor of the second				
-60 dBm -70 dBm	مالىمۇمى _ل ەرمۇمىيەرلەرمەرمەرمەر 			And the second sec			
-60 dBm -70 dBm -80 dBm	مالىمۇمى _ل ەرمۇمىيەرلەرمەرمەرمەر 			1001 pt:			Stop 25.0 GHz
-60 dBm -70 dBm <u>-80 dBm</u> Start 3	alester 						
-60 dBm -70 dBm -80 dBm Start 3	alester 						
-60 dBm -70 dBm <u>-80 dBm</u> Start 3 Marker	1	X-val		1001 pt:	5		Stop 25.0 GHz
-60 dBm -70 dBm -80 dBm Start 3 Marker Type M1 M2	0.0 MHz Ref Trc 1 1 1 1 1 1 1 1 1 1	X-val	ue .487 GHz 7813 GHz	1001 pt: -9.89 dBm -44.94 dBm	5		Stop 25.0 GHz
-60 dBm -70 dBm <u>-80 dBm</u> Start 3 Marker Type M1	Ref Trc 1	X-val 2 19. ⁻ 4.9	ue	1001 pt: Y-value -9.89 dBm	5		Stop 25.0 GHz

END OF REPORT

Version.1.3