

COMPLIANCE WORLDWIDE INC. TEST REPORT 407-15R1

In Accordance with the Requirements of

Industry Canada RSS 220, Issue 1, March 2009 Federal Communications Commission 47 CFR Part 15, Subpart F Technical Requirements for Ground Penetrating Radar Systems

Issued to

Geophysical Survey Systems, Inc. 40 Simon Street Nashua, NH 03060-3075 603-893-1109

> For the StructureScan Mini XT

> > FCC ID: QF7MINIXT IC: 8498A-MINIXT

Report Issued on December 27, 2015 Revision R1 Issued on January 19, 2016

Tested by

Stillings Larry **Reviewed By**

Brian F. Breault

This test report shall not be reproduced, except in full, without written permission from Compliance Worldwide, Inc.

Table of Contents

1. Scope 2 2. Product Details 2 3. Product Configuration 2	
3 Product Configuration	3
	3
4. Measurements Parameters	5
5. Measurements Summary	7
6. Measurement Data	3
7. Test Images	3
7.1. Spurious Emissions – 30 MHz – 960 MHz (Front)23	3
7.2. Spurious Emissions – 30 MHz – 960 MHz (Rear)24	1
7.3. Spurious Emissions – 960 MHz - 18 GHz (Front)25	5
7.4. Spurious Emissions – 960 MHz - 18 GHz (Rear)26	3
8. Test Site Description	7

1. Scope

This test report certifies that the Geophysical Survey Systems StructureScan Mini XT, as tested, meets the FCC Part 15, Subpart F and Industry Canada RSS 220 requirements. The scope of this test report is limited to the test sample provided by the client, only in as much as that sample represents other production units. If any significant changes are made to the unit, the changes shall be evaluated and a retest may be required. Revision R1 reviews and updates the measurement standard reference to ANSI C63.10:2013 and updates the RF Exposure (SAR Test Exclusion) information in Section 6.7.

2. Product Details

 2.1. Manufacturer: 2.2. Model Number: 2.3. Serial Number: 2.4. Description: 2.5. Power Source: 2.6. Hardware Revision: 2.7. Software Revision: 2.8. Modulation Type: 2.9. Operating Frequency: 2.10. EMC Modifications: 	Geophysical Survey Systems, Inc. Mini XT E72 Ground Penetrating Radar – Concrete Scanner 10.8V Li-On Battery Powered N/A N/A 625 pS Impulse 500 kHz PRF 1.6 GHz Nominal None
--	---

3. Product Configuration

3.1 Operational Characteristics & Software

Turn on the StructureScan Mini XT and allow the unit to boot up.

Software Setup:

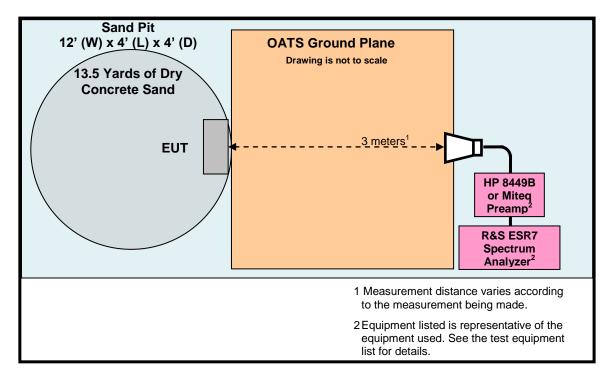
For normal operation:

1. After boot up start the unit scanning by selecting the System menu and select 500 kHz PRF.

3.2. EUT Hardware

Manufacturer	Model	Serial Number	Description/Function
GSSI	Mini XT	E72	GPR Handheld analyzer

- 3.3. EUT Cables/Transducers None
- 3.4. Support Equipment


None

3. Product Configuration (continued)

3.5. Test Setup Diagram

Page 4 of 27

Test Number: 407-15R1

4. Measurements Parameters

4.1. Measurement Equipment Used to Perform Test

Device	Manufacturer	Model No.	Serial No.	Cal Due	Cal Interval
EMI Test Receiver, 9kHz - 7GHz	Rohde & Schwarz	ESR7	101156	7/23/2017	2 Yr
Spectrum Analyzer	Rohde & Schwarz	FSV40	100899	7/23/2017	2 Yr
Microwave Preamp	Hewlett Packard	8449B	3008A01323	7/23/2017	2 Yr
Preamp 100 MHz – 7 GHz	Miteq	AFS3- 01000200- 10-15P-4	257561	6/19/2016	1 Yr
Bilog Antenna 30 to 1000 MHz	Com-Power	AC-220	25509	8/31/2016	1 Yr
Horn Antenna 1 to 18 GHz	Electro-Metrics	EM-6961	6337	10/11/2015	2 Yr
Barometer – Temperature & Humidity	Extech Instruments	SD700	Q590483	9/30/2015	2 Yr

4.2. Measurement & Equipment Setup

Test Date:	8/31/2015, 9/23/2015
Test Engineer:	Larry Stillings
Normal Site Temperature (15 - 35°C):	21.6
Relative Humidity (20 - 75%RH):	35
Frequency Range:	30 MHz to 18 GHz
Measurement Distance:	3 Meters
EMI Receiver IF Bandwidth:	120 kHz - 30 MHz to 960 MHz 1 MHz - Above 960 MHz
EMI Receiver Avg Bandwidth:	300 kHz - 30 MHz to 960 MHz 3 MHz - Above 960 MHz
Detector Function:	Peak, Quasi-Peak, EMI Average and RMS Average

4. Measurements Parameters (continued)

4.3. Measurement Procedure

Test measurements were made in accordance FCC Part 15.509, 15.521, IC RSS-220 Issue I, ANSI C63.10:2013 Clause 10 and KDB Publication 393764 D01 UWB FAG v01, dated July 31, 2015.

The test methods used to generate the data is this test report is in accordance with ANSI C63.10:2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

In accordance with ANSI C63.10:2013, Section 10.2.2, the device under test was placed on a bed of dry sand and rotated through 16 azimuth angles (per Clause 5.4) to determine which produced the highest emission relative to the limit. The azimuth that produced the highest emission relative to the limit was used for all radiated emission measurements.

4.4. Measurement Uncertainty

The following uncertainties are expressed for an expansion/coverage factor of K=2.

RF Frequency (out of band)	± 1x10 ⁻⁸
Radiated Emission of Transmitter to 10 GHz	± 4.55 dB
Radiated Emission of Receiver	± 4.55 dB
Temperature	± 0.91° C
Humidity	± 5%

Page 6 of 27

Test Number: 407-15R1

5. Measurements Summary

Test Requirement	FCC Rule Requirement	IC Rule Requirement	Test Report Section	Result	Comment
Antenna Requirement	15.203	RSS-GEN 7.1.4	6.1	Compliant	The antenna is housed within a sealed enclosure with the intentional radiator.
Operational Requirements	15.509 (b)	RSS-220 6	6.2	Compliant	
UWB Bandwidth	15.503 (a)	RSS-220 6.2.1 (a)	6.3	Compliant	
Spurious Radiated Emissions	15.509 (d) 15.209	RSS-220 3.4 RSS-220 6.2(c) & 6.2(d)	6.4	Compliant	
Radiated Emissions in GPS Bands	15.509 (e) 15.209	RSS-220 6.2(e)	0.4	Compilant	
Peak Emissions in a 50 MHz Bandwidth	15.509 (f)	RSS-220 6.2(g)	6.5	Compliant	
Conducted Emissions	15.207	RSS-GEN	6.6	Compliant	EUT is battery powered
Radio Frequency Exposure	FCC OET Bulletin 65	RSS-GEN	6.7	Compliant	

Page 7 of 27

6. Measurement Data

6.1. Antenna Requirement (15.203), RSS-GEN Section 7.1.4

Requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply

The antenna utilized by the device under test is an internal, non user replaceable unit.

6.2. Operational Requirements of the Device under Test (15.509 (b)), RSS-220 Sec 6

Requirement: Operation under the provisions of this section is limited to GPRs and wall imaging systems operated for the purposes with law enforcement, fire fighting, emergency rescue, scientific research, commercial mining, or construction.

The manufacturer states that the device under test complies with the requirements outlined in section FCC Part 15.509 (b).

6.3. UWB Bandwidth (15.503 (a)), RSS-220 Section 6.2.1 (a)

Requirement: The UWB bandwidth is the frequency band bounded by the points that are 10 dB below the highest radiated emission, as based on the complete transmission system including the antenna. The upper boundary is designated f_H and the lower boundary is designated f_L . The frequency at which the highest radiated emission occurs is designated f_M . The center frequency f_C , equals $(f_H + f_L) / 2$. The fractional bandwidth equals 2 * $(f_H - f_L) / (f_H + f_L)$.

f _M	The highest emission peak	0.200271
fL	10 dB below the highest peak	0.179081
f _н	10 dB above the highest peak	0.237772
f _C	Calculated: $(f_H + f_L)/2$	0.208427
Bandwidth	Calculated: (f _H - f _L)	0.058691
Fractional BW	Calculated: $2*(f_H - f_L)/(f_H + f_L)$	0.281591

6.3.1. Measurement Data	(Values in GHz)
-------------------------	-----------------

Note: The Fraction Bandwidth is greater than 0.2 and therefore the minimum UWB Bandwidth of 500 MHz requirement does not need to be met.

6. Measurement Data (continued)

6.3. UWB Bandwidth (15.503 (a), RSS-220 Sec 6.2.1(a)) (continued)

Recei	ver		Spee	ctrum	∞									
Ref L	evel	82.00	dBµ∖	//m	-	RB	W 10 MHz							
🔵 Att			10	dB SWT	2 ms	٧B	W 40 MHz	Μ	l ode Sv	veep	Inpu	t 1 DC		
PS PA														
		iysical	Mini	XT 500 kHz	PRF Vert	tical	●1Pk View							
80 dBµʻ	∨/m+-								M	1[1]				47 dBµV/m).2710 MHz
75 dBu'	v/m∔								<u> </u>	1B			200	10.00 dB
II .	·						M1						58.6910	
70 dBµ'	V/m+−								Q	factor				3.4
65 dBµ'	v/m∔-				المانياتين أرار	the faith		nudder)	IN ALL AND ALL AND					
				T 11 UL HILLING	all have been a second					a through plan	a history will	linespectrations	Mulder hered	Т2
оо ивр		فلمعيد	الجوادا والمالغان	A PARTICIPACION OF THE PARTICI										and a state of the second
Service	unhanian	harmon				_								00000 MHz 3.4 T2
50 dBµ՝														
45 dBμ'	v/m+													
40 dBμ'	v/m+-													
35 dBµʻ	v/m+													
30 dBµ'	v/m+													
25 dBµ՝	v/m+													
CF 201	CF 201.95 MHz 2001 pts Span 80.0 MHz													
Marker														
Туре	Ref	Trc		X-value			Y-value		Func	tion		Fund	ction Result	t l
M1		1		200.27			68.47 dBμV/		ndB	down			5	8.691 MHz
T1 T0		1		179.08			58.22 dBµV/			ndB				10.00 dB
T2		1		237.77	2 MHZ	5	58.31 dBµV∕	m	Q	factor				3.4
		Л							Meas	uring				8/31/2015 3:33:53 PM //

6.3.2. Measurement Plot of 10 dB BW on GPR Site = 58.691 MHz

Date: 31.AUG.2015 15:33:53

Issue Date: 1/19/2016

6. Measurement Data (continued)

6.3. UWB Bandwidth (15.503 (a), RSS-220 Sec 6.2.1(a)) (continued)

Receiv	ver		Spectru	m	\boxtimes									
Ref Le	evel	82.00	dBµV/m		-	RB	W 10 MHz							
🔵 Att			10 dB	SWT	2 ms	VB	W 10 MHz	N	lode Sv	veep	Inpu	it 1 DC		
PS PA														
407-15 (Geoph	nysical	MiniXT 5	00 kHz	PRF Ver	tical	●1Pk View							
80 dBµ\	//m-								M	1[1]				35 dBµV∕n
														7920 MH2
75 dBµV	//m+-								0	cc Bw			76.6416	79160 MHz
70 dBµV	//m+-													
							In the states	444	sha .			a likelijad a diget biosegi sig z		
65 dBµ\	//m+-				مار بيان الماري	alul M			hul					
60 dBµV	100			الديولية	An pink standard	(nile)			~W.	Her Minda Land	أسعله	A Handled and the low as the a	L.4	
ου αθμν	//IIT		A Market Law	W. Walter							A. 14		ALL	l≥ Maslatana
5 dBm	//m	. Intradior	WWW											
AND A PLAN	HUMAN	Man.												
50 dBµV	//m+-													
45 dBµ\	//m+-													
40 dBµ\	//m+-													
35 dBµV	//m+													
CF 201	CF 201.95 MHz 2001 pts Span 80.0 MHz													
Marker														
Туре	Ref	Trc	Х	-value	e		Y-value		Func	tion		Fund	tion Result	
M1		1			92 MHz		7.85 dBµV∕							
T1		1			39 MHz		64.01 dBµV/		0	cc Bw			76.641	57916 MHz
T2		1		240.850	05 MHz	5	57.08 dBµV/	m						
									Meas	uring				8/31/2015 :36:10 PM

6.3.3. Measurement Plot of 99% BW on GPR Site = 76.641 MHz

Date: 31.AUG.2015 15:36:10

Issue Date: 1/19/2016

6. Measurement Data (continued)

6.4. Spurious Radiated Emissions (15.509 (d), 15.209, RSS-220 Section 6.1(d))

Requirement: The radiated emissions at or below 960 MHz from a device operating under the provisions of this section shall not exceed the emission levels in Section 15.209. The radiated emissions above 960 MHz from a device operating under the provisions of this section shall not exceed the following average limits when measured using a resolution bandwidth of 1 MHz. Limits are converted from EIRP (dBm) to field strength at 3 meters using a conversion factor of 95.2.

Frequency	EIRP	Field Strength			
(MHz)	(dBm)	(dBµV/m)			
960 - 1610	-65.3	29.9			
1610 - 1990	-53.3	41.9			
1990 - 3100	-51.3	43.9			
3100 - 10600	-41.3	53.9			
Above 10600	-51.3	43.9			

Spurious Radiated Emissions in GPS Bands

(15.509 (e), 15.209, RSS-220 Section 6.2(e))

Requirement: In addition to the radiated emission limits specified in the table in paragraph (d) of this section, UWB transmitters operating under the provisions of this section shall not exceed the following average limits when measured using a resolution bandwidth of no less than 1 kHz. Limits are converted from EIRP (dBm) to field strength at 3 meters using a conversion factor of 95.2 when measured with 1 kHz.

Frequency (MHz)	EIRP (dBm)	Field Strength (dBµV/m)
1164 - 1240	-75.3	19.9
1559 - 1610	-75.3	19.9

Radiated Emissions Field Strength Limits at 3 Meters (Section 15.209, RSS-GEN, RSS-220 Section 3.4)

Frequency (MHz)	Field Strength (dBµV/m)
30 - 88	40.0
88 - 216	43.5
216 - 960	46.0

Test Notes: Refer to Section 4.1 for the test equipment used and Section 4.2 for the test equipment setups.

6. Measurement Data (continued)

6.4. Spurious Radiated Emissions (15.509 (d), 15.209, RSS-220 Section 6.1(d))

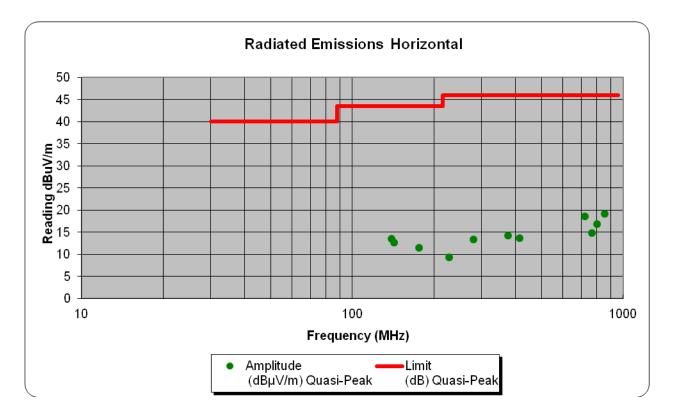
6.4.1. 30 MHz to 960 MHz, measured at 3 Meters Geophysical Survey, Mini XT

Frequency (MHz)	•	litude µV/m)	Limit (dB) Margin (dB)		Polarity (H/V)	Antenna Height	Azimuth (Dev.)
()	Peak	Quasi- Peak	Quasi- Peak	(()	(cm)	(2011)
139.42	19.86	13.49	43.5	-30.01	Н	100	0
142.39	19.15	12.70	43.5	-30.80	Н	100	0
176.21	18.37	11.48	43.5	-32.02	Н	100	0
227.22	18.70	9.30	46.0	-36.70	Н	200	0
280.85	18.93	13.39	46.0	-32.61	Н	200	0
375.50	22.21	14.26	46.0	-31.74	Н	200	0
415.04	22.93	13.68	46.0	-32.32	Н	200	0
721.96	25.92	18.64	46.0	-27.36	Н	100	0
766.14	26.48	14.78	46.0	-31.22	Н	100	0
800.72	25.57	16.84	46.0	-29.16	Н	100	0
856.95	23.58	19.09	46.0	-26.91	Н	125	0

6. Measurement Data (continued)

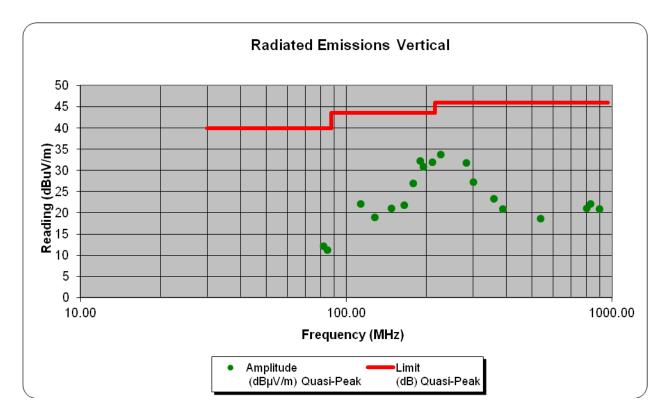
6.4. Spurious Radiated Emissions (15.509 (d), 15.209, RSS-220 Section 6.1(d))

6.4.2. 30 MHz to 960 MHz, measured at 3 Meters Geophysical Survey, Mini XT


Frequency (MHz)		litude μV/m)	Limit (dB)	Margin (dB)	Polarity (H/V)	Antenna Height	Azimuth (Dev.)
~ ,	Peak	Quasi- Peak	Quasi- Peak			(cm)	
81.93	17.84	12.06	40.0	-27.94	V	100	90
85.12	18.06	11.21	40.0	-28.79	V	100	90
113.20	25.98	22.18	43.5	-21.32	V	100	90
127.99	23.86	19.00	43.5	-24.50	V	100	90
147.74	25.13	21.08	43.5	-22.42	V	100	90
164.87	27.37	21.85	43.5	-21.65	V	100	90
178.14	32.37	26.87	43.5	-16.63	V	100	90
189.75	37.01	32.20	43.5	-11.30	V	100	90
194.51	36.03	30.88	43.5	-12.66	V	100	90
210.69	35.68	31.94	43.5	-11.56	V	100	90
226.83	37.59	33.78	46.0	-12.22	V	100	90
282.44	35.26	31.72	46.0	-14.28	V	100	90
300.81	33.11	27.17	46.0	-18.83	V	100	90
358.35	29.25	23.32	46.0	-22.68	V	100	90
388.47	28.41	20.85	46.0	-25.15	V	100	90
539.06	24.43	18.62	46.0	-27.38	V	100	90
801.52	30.09	21.12	46.0	-24.88	V	100	90
829.71	29.83	22.18	46.0	-23.82	V	100	90
896.20	28.92	20.85	46.0	-25.15	V	100	90

6. Measurement Data (continued)

6.4. Spurious Radiated Emissions (15.509 (d), 15.209, RSS-220 Section 6.1(d)) 6.4.3. 30 MHz to 960 MHz, Horizontal Plot



6. Measurement Data (continued)

6.4. Spurious Radiated Emissions (15.509 (d), 15.209, RSS-220 Section 6.1(d)) 6.4.4. 30 MHz to 960 MHz, Vertical Plot

Issue Date: 1/19/2016

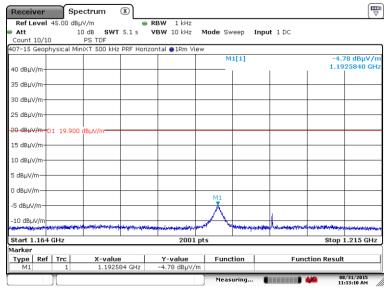
6. Measurement Data (continued)

6.4. Spurious Radiated Emissions (15.509 (d), 15.209, RSS-220 Section 6.2(d)) 6.4.5. 960 MHz to 18 GHz at 3 meters

Freq. (MHz)	Amplitude (dBµV/m) RMS	Corr. Factor (dB)	Amplitude (dBµV/m) RMS	Limit (dBµV/m)	Margin (dB)	Pol (H/V)	EI. (cm)	Az. (deg)
962.77	24.19	Included	24.19	29.90	5.71	V	100	90
969.04	24.30	Included	24.30	29.90	5.60	V	100	90
1057.42	25.59	Included	25.59	29.90	4.31	V	100	90
1076.66	27.60	Included	27.60	29.90	2.30	V	100	90
1091.51	27.77	Included	27.77	29.90	2.13	V	100	90
1101.00	28.62	Included	28.62	29.90	1.28	V	100	90
1114.59	28.70	Included	28.70	29.90	1.20	V	100	90
1141.43	28.20	Included	28.20	29.90	1.70	V	100	90
1375.88	25.07	Included	25.07	29.90	4.83	V	100	90
1502.44	28.70	Included	28.70	29.90	1.20	V	100	90
1535.31	29.20	Included	29.20	29.90	0.70	V	100	90
1590.54	29.62	Included	29.62	29.90	0.28	V	100	90
1596.28	29.23	Included	29.23	29.90	0.67	V	100	90
1625.33	29.43	Included	29.43	29.90	0.47	V	100	90
1637.09	29.54	Included	29.54	29.90	0.36	V	100	90
1733.09	28.18	Included	28.18	29.90	1.72	V	100	90
1760.81	27.17	Included	27.17	29.90	2.73	V	100	90
1792.85	25.76	Included	25.76	29.90	4.14	V	100	90
1850.66	24.90	Included	24.90	29.90	5.00	V	100	90
1904.83	24.91	Included	24.91	29.90	4.99	V	100	90
2005.72	23.77	Included	23.77	29.90	6.13	V	100	90
2044.30	25.05	Included	25.05	29.90	4.85	V	100	90
2107.58	27.27	Included	27.27	29.90	2.63	V	100	90
2133.29	28.36	Included	28.36	29.90	1.54	V	100	90
2171.31	27.72	Included	27.72	29.90	2.18	V	100	90
2297.43	27.81	Included	27.81	29.90	2.09	V	100	90
2346.50	26.23	Included	26.23	29.90	3.67	V	100	90
3043.69	24.50	Included	24.50	29.90	5.40	V	100	90
3132.47	24.22	Included	24.22	29.90	5.68	V	100	90
3554.65	24.02	Included	24.02	29.90	5.88	V	100	90
3610.50	24.07	Included	24.07	29.90	5.83	V	100	90
3998.61	25.52	Included	25.52	29.90	4.38	V	100	90

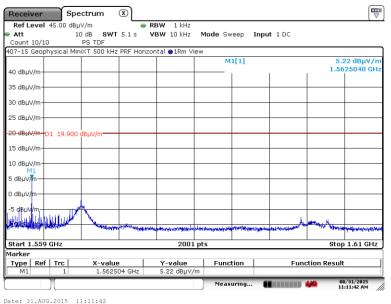
Note: Using: 1 MHz RBW / 3 MHz VBW and 1mS RMS Average Detector. There were no other measurable emissions between 4 to 18 GHz.

Page 16 of 27



6. Measurement Data (continued)

6.4. Spurious Radiated Emissions (15.509 (d), 15.209, RSS-220 Section 6.1(d)) Spurious Radiated Emissions in GPS Bands (15.509 (e), RSS-220 6.2(e))

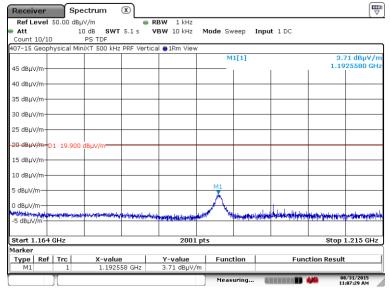

Measurements were made at 3 Meters and the -75.3 dBm limit was converted to a field strength limit of 19.9 dB μ V/m.

6.4.6 1164 to 1240 MHz - Horizontal

Date: 31.AUG.2015 11:13:10

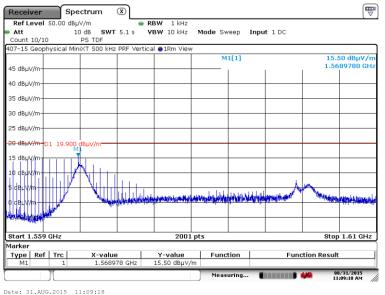
6.4.7 1559 to 1610 MHz - Horizontal

Page 17 of 27



6. Measurement Data (continued)

6.4. Spurious Radiated Emissions (15.509 (d), 15.209, RSS-220 Section 6.1(d)) Spurious Radiated Emissions in GPS Bands (15.509 (e), RSS-220 6.2(e))


Measurements were made at 3 Meters and the -75.3 dBm limit was converted to a field strength limit of 19.9 dB μ V/m.

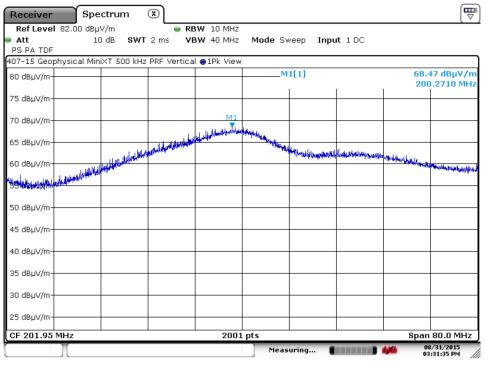
6.4.8 1164 to 1240 MHz - Vertical

Date: 31.AUG.2015 11:07:29

6.4.9 1559 to 1610 MHz - Vertical

Page 18 of 27

6. Measurement Data (continued)


6.5. Peak Emissions in a 50 MHz Bandwidth (15.509 (f), RSS-220 Section 6.2 (g))

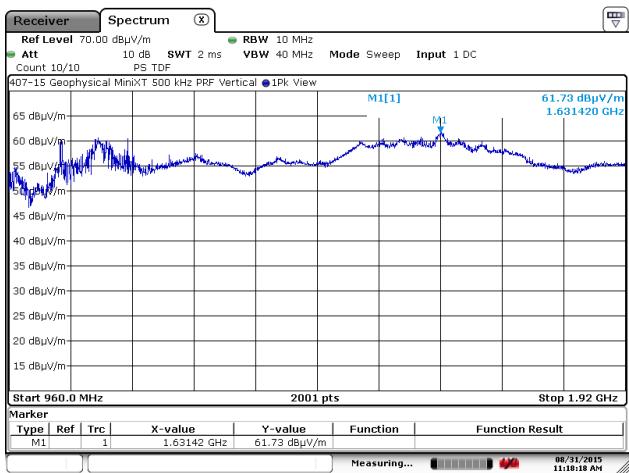
Requirement: For UWB devices where the frequency at which the highest radiated emissions occurs, f_M , is above 960 MHz, there is a limit on the peak level of the emissions contained within a 50 MHz bandwidth centered on the frequency f_M . That limit is 0 dBm EIRP. It is acceptable to employ a different resolution bandwidth, and a correspondingly different peak emission limit, following the procedures described in Section 15.521. The 0 dBm limit was converted to -13.98 dBm limit when using a 10 MHz RBW. The limit was then converted to a 3 meter field strength limit of 81.22 dBµV/m by using a conversion factor of 95.2.

Freq. (MHz)	Peak Amplitude (dBµV/m)	Corr. Factor (dB)	Peak Amplitude (dBµV/m)	Peak Limit (dBµV/m)	Margin (dB)	Pol (H/V)	EI. (cm)	Az. (deg)
200.271	68.47	Included	68.47	N/A	N/A	V	100	90
1631.42	61.73	Included	61.73	81.22	19.49	V	100	90

Note using: 10 MHz RBW / 40 MHz VBW

6.5.1 Plot of Peak Power below 960 MHz

Date: 31.AUG.2015 15:31:35



Test Number: 407-15R1

6. Measurement Data (continued)

6.5. Peak Emissions in a 50 MHz Bandwidth (15.509 (f), RSS-220 Section 6.2 (g))

6.5.2 Plot of Peak Power above 960 MHz

Date: 31.AUG.2015 11:18:18

Test Number: 407-15R1

6. Measurement Data (continued)

6.6. Regulatory Limit: FCC Part 15.209

Frequency Range (MHz)		mits ΒμV)		
(Quasi-Peak	Average		
0.15 to 0.50	66 to 56*	56 to 46*		
0.50 to 5.0	56	46		
5.0 to 30.0	60	50		
* Decreases with the logarithm of the frequency.				

6.6.1. Measurement Equipment Used to Perform Test

Device	Manufacturer	Model No.	Serial No.	Cal Due
LISN	EMCO	3825/2	9109-1860	7/21/2016
EMI Receiver	Hewlett Packard	8546A	3330A00115	6/2/2016

6.6.2. Measurement & Equipment Setup

Test Date:	N/A
Test Engineer:	N/A
Site Temperature (°C):	N/A
Relative Humidity (%RH):	N/A
Frequency Range:	0.15 MHz to 30 MHz
EMI Receiver IF Bandwidth:	9 kHz
EMI Receiver Avg Bandwidth:	30 kHz
Detector Functions:	Peak, Quasi-Peak. & Average

6.6.3. Test Procedure

Test measurements were made in accordance with ANSI C63.4-2003, Standard Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronics Equipment in the Range of 9 kHz to 40 GHz.

EUT is battery powered and the batteries are recharged using a separate charger not contained in the device.

6. Measurement Data (continued)

6.7. Public Exposure to Radio Frequency Energy Levels (1.1307 (b)(1)), KDB 447498 D01 v06, RSS-GEN 5.5, RSS 102

6.7.1. SAR Test Exclusion

Requirement: Portable devices are subject to radio frequency radiation exposure requirements as explained in FCC KDB 447498 D01 General RF Exposure Guidance v06, dated October 23, 2015.

For a 1-g SAR, the test exclusion result must be \leq 3.0 and \leq 7.5 for 10-g extremity SAR.

Test Notes: The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by the following formula:

SAR Test Exclusion = $\frac{P_{MAX}}{d_{MIN}} \times \sqrt{f_{(GHz)}}$ (1)

- P_{MAX} mW Maximum power of channel, including tune-up tolerance
- d_{MIN} mm Minimum test separation distance, mm (\leq 50 mm)
- f_(GHz)
 GHz
 f_(GHz) is the RF channel transmit frequency in GHz (>100 MHz and <6 GHz)</td>

 Power and distance are rounded to the nearest mW and mm before calculation

 The result is rounded to one decimal place for comparison

 The values 3.0 and 7.5 are referred to as numeric thresholds below

Per KDB 447498 Appendix A SAR Exclusion Threshold at 50 mm is 274 mW at 300 MHz. Extremity SAR is 2.5 times this value or 685 mW at 300 MHz.

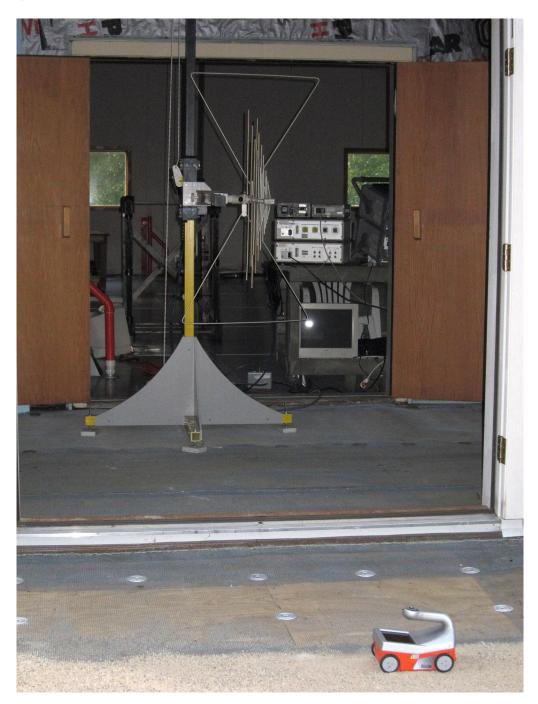
The manufacturer's mechanical drawing shows the distance of the EUT's antenna to the handle is 160 mm (see attached page).

Per KDB 447498 Appendix B the approximate power exclusion is 494 mW at 160 mm and 300 MHz.

SAR Test Exclusion = $P((numeric threshold) + (160 - 50 mm)) \times (f(MHz) / 150)$

Per IC RSS-102, Section 2.5.1 Table 1 devices operating \leq 300 MHz and at a separation distance \geq 50 mm shall be at or below 345 mW.

The power of the EUT is -0.22 dBm or 0.95 mW and therefore meets the SAR Test exclusion requirements of KDB 447498 D01 and IC RSS-102.

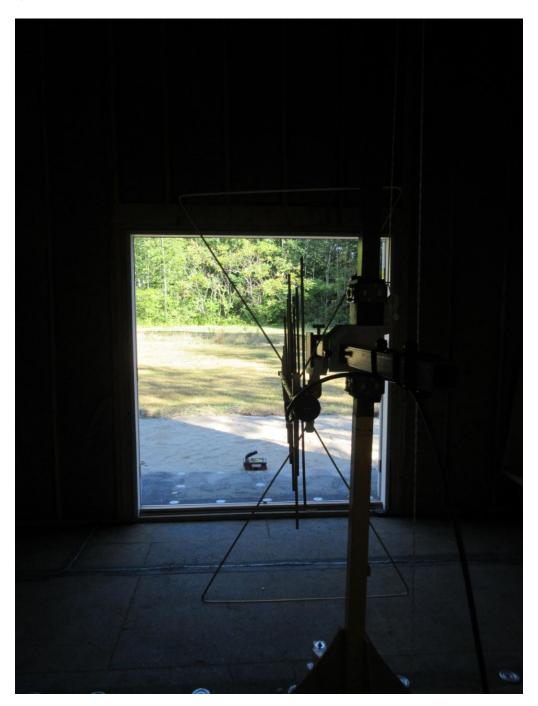


Test Number: 407-15R1

7. Test Images

7.1. Spurious Emissions – 30 MHz – 960 MHz Front

Page 23 of 27



Test Number: 407-15R1

7. Test Images

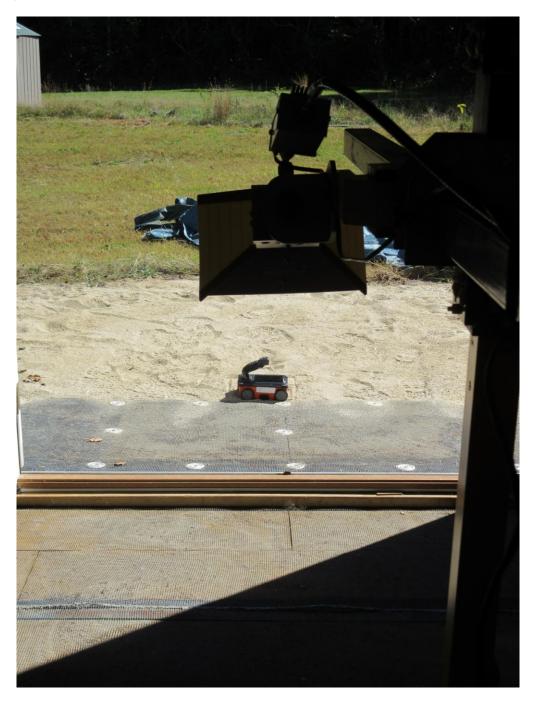
7.2. Spurious Emissions – 30 MHz – 960 MHz Rear

Page 24 of 27

Test Number: 407-15R1

7. Test Images

7.3. Spurious Emissions – 960 MHz - 18 GHz Front



Test Number: 407-15R1

7. Test Images

7.4. Spurious Emissions – 960 MHz - 18 GHz Rear

Page 26 of 27

8. Test Site Description

Compliance Worldwide is located at 357 Main Street in Sandown, New Hampshire. The test sites at Compliance Worldwide are used for conducted and radiated emissions testing in accordance with Federal Communications Commission (FCC) and Industry Canada standards. A description of the test sites is on file with the FCC (registration number **96392**) and Industry Canada (file number **IC 3023A-1**).

The radiated emissions test site is a 3 and 10 meter enclosed open area test site (OATS). Personnel, support equipment and test equipment are located in the basement beneath the OATS ground plane.

Off of the rear of the 10 Meter Enclosed Open Area test site a Sandpit has been added to accommodate the testing of Ground Penetrating Radar (GPR) products. The sand pit measures 12' (L) x 4' (W) x 4' (D) and is filled with 13.5 yards of dry concrete sand.

The conducted emissions site is part of a $16' \times 20' \times 12'$ ferrite tile chamber and uses one of the walls for the vertical ground plane.

Both sites are designed to test products or systems 1.5 meter W x 1.5 meter L x 2.0 meter H, floor standing or table top.

Page 27 of 27