SGW111X BLE Modules Series Datasheet ## 1. Introduction The SGW111X series of pre-certified multiprotocol SoM enables Bluetooth 5.0/Bluetooth Low Energy (BLE) connectivity for portable and extremely low power embedded systems. Powered by Nordic's nRF52840 Bluetooth® 5/BLE SoC, the SGW111X BLE Module can be easily applicable to popular development platforms to facilitate the building of smart devices fast at optimized cost. The highly flexible, ultra-low power SGW111X BLE Module features a small form factor of 10.2mm \times 14.1mm \times 1.9mm, and 128-bit AES hardware encryption which ensures best-in-class security for data transmission. This advanced BLE module series greatly facilitates IoT applications including connected home, smart industry, smart transport and logistics, etc. ## 2. Features - o Complete RF solution with integrated antenna or u.FL connector as external antenna - Bluetooth 5 ready multi-protocol module: - 2Mbps - Long Range - Advertising Extension support - Wireless System-on-Chip Nordic nRF52840: - 32Mbit ARM CortexTM M4F CPU @64MHz - 1MB Flash program memory - 256kB RAM data memory - Wide selection of MCU Peripherals: - Full-speed USB (12Mbps) - Four SPI Master/Slave (8Mbps) - Two 2-wire Master/Slave (I2C compatible) - Two UARTs (with CTS/RTS) - NFC Tag-A interface - 20 channel CPU independent - Programmable Peripheral Interconnect (PPI) - 5x32 bit, 3x24bit Real Timer Counters (RTC) - 12Mbit/200K SPS ADC - Support 128-bit AES HW encryption - 48 General Purpose I/O pins - Supply voltage: 1.7-5.5 V - Low Energy Current consumption, 3V DC/DC enabled: - Tx only, 0dBm: 4.8mA (typical) - Rx only @1Mbps: 4.6mA (typical) - System On mode, with full RAM retention: 2.35uA - System Off mode, with full RAM retention: 1.86uA - Operating Temperature: -40°C to 85°C - o BQB: DID D046088, QDID: 135014 - o FCC ID: 2AS9402 - o IC (Industrial Canada) ID: 25021-02 - CE: Certified - Mechanical Dimension: 10.2mm x 14.1mm x 1.9mm # 2.1. Applications - Connected home - Smart city infrastructure - Industrial mesh networks - Industrial smart lighting - Logistics and transportation # **Table of Contents** | 1. Introduction | 2 | |--|-----| | 2. Features | 2 | | 2.1. Applications | 3 | | 3. Ordering Information | 6 | | 4. Block Diagram | 6 | | 5. Pin Description | 7 | | 6. Electrical Specifications | 10 | | 6.1. Absolute Maximum Ratings | 10 | | 6.2. Operating Conditions | 10 | | 7. Module Interface | 11 | | 7.1. Power Management | 11 | | 7.2. RF Antenna Interface | 13 | | 7.3. General Purpose I/O | 13 | | 8. Mechanical Dimension | 16 | | 9. Recommended PCB Landing Pattern & Pad Locations | 17 | | 10. Module Marking | 17 | | 11. Soldering Temperature-Time Profile for Re-Flow Soldering | 18 | | 12. Certifications | 19 | | 12.1. Qualified Antenna Types | 19 | | 12.2. Bluetooth | 19 | | 12.3. FCC Statement | 19 | | 12.4. IC Statement | 222 | | 12.5. CE Statement | 233 | | 13. Product Packaging | 24 | | 14. Revision History | 25 | | 15. Useful Links | 25 | # **List of Figures** | Figure 1. SGW111SGW1110 (Embedded Antenna) Block Diagram | 6 | |---|----| | Figure 2. SGW111SGW1111 (External Antenna) Block Diagram | 6 | | Figure 3. SGW1110/SGW1111 Pin Out (Top View) | 7 | | Figure 4. SGW1110/SGW1111 Low Voltage Mode Application Example | 12 | | Figure 5. SGW1110/SGW1111 High Voltage Mode Application Example | 12 | | Figure 6. Low Frequency Clock Reference Circuit | 15 | | Figure 7. SGW1110 (Embedded Antenna) Mechanical Information | 16 | | Figure 8. SGW1111 (External Antenna) Mechanical Information | 16 | | Figure 9. SGW1110/SGW1111 Dimension (Top View) | 17 | | Figure 10. SGW1110/SGW1111 Module label | 17 | | Figure 11. Soldering Temperature-Time Profile for Re-Flow Soldering | 18 | | Figure 12. SGW1110/SGW1111 Tape Dimensions | 24 | | Figure 13. SGW1110/SGW1111 Reel Packaging | 24 | | Figure 14. SGW1110/SGW1111 Packaging Label | 25 | | | | | List of Tables | | | Table 1. Ordering Part Number | 6 | | Table 2. SGW1110/SGW1111 Pin Description | | | Table 3. Absolute Maximum Ratings | | | Table 4. Operating Conditions | | | Table 5. Power Mode Pin Connections | | | Table 4 CDIO Dia Information | | # 3. Ordering Information | Part No | Description | |---------|---| | SGW1110 | Bluetooth 5 module, built-in antenna | | SGW1111 | Bluetooth 5 module, u.FL connector for external antenna | Table 1. Ordering Part Number # 4. Block Diagram Below are the block diagrams of the SGW1110 and SGW1111. All the 48 GPIOs of nRF52840 can be accessed from the module. Figure 1. SGW1110 (Embedded Antenna) Block Diagram Figure 2. SGW1111 (External Antenna) Block Diagram # 5. Pin Description Figure 3. SGW1110/SGW1111 Pin Out (Top View) | Pin
Number | Pin Name | Туре | Description | |---------------|----------|-------------|--| | 1 | GND | Power | Ground signal | | 2 | GND | Power | Ground signal | | 3 | GND | Power | Ground signal | | 4 | GND | Power | Ground signal | | 5 | GND | Power | Ground signal | | 6 | GND | Power | Ground signal | | 7 | GND | Power | Ground signal | | 8 | SWDIO | Out | Serial wire debug I/O | | 9 | GND | Power | Ground signal | | 10 | GND | Power | Ground signal | | 11 | P0.10 | Digital I/O | General purpose I/O, NFC2 ⁽¹⁾ | | 12 | P1.06 | Digital I/O | General purpose I/O (1) | | 13 | P1.04 | Digital I/O | General purpose I/O (1) | | 14 | P1.02 | Digital I/O | General purpose I/O (1) | | 15 | SWDCLK | In | Serial wire debug clock input | | 16 | P0.25 | Digital I/O | General purpose I/O | | 17 | GND | Power | Ground signal | | 18 | GND | Power | Ground signal | | 19 | P1.12 | Digital I/O | General purpose I/O ⁽¹⁾ | | 20 | P0.09 | Digital I/O | General purpose I/O, NFC1 ⁽¹⁾ | | Pin
Number | Pin Name | Туре | Description | | |---------------|----------|---------------------------|--|--| | 21 | P1.07 | Digital I/O | General purpose I/O (1) | | | 22 | P1.03 | Digital I/O | General purpose I/O (1) | | | 23 | P1.01 | Digital I/O | General purpose I/O (1) | | | 24 | P1.00 | Digital I/O | General purpose I/O, TRACE_DO, SWO | | | 25 | P1.10 | Digital I/O | General purpose I/O (1) | | | 26 | P1.11 | Digital I/O | General purpose I/O (1) | | | 27 | P1.14 | Digital I/O | General purpose I/O (1) | | | 28 | P1.05 | Digital I/O | General purpose I/O (1) | | | 29 | P0.21 | Digital I/O | General purpose I/O | | | 30 | P0.22 | Digital I/O | General purpose I/O | | | 31 | P0.23 | Digital I/O | General purpose I/O | | | 32 | P0.24 | Digital I/O | General purpose I/O | | | 33 | P1.13 | Digital I/O | General purpose I/O (1) | | | 34 | P1.15 | Digital I/O | General purpose I/O (1) | | | 35 | P0.03 | Digital I/O, Analog Input | General purpose I/O, AIN1 ⁽¹⁾ | | | 36 | GND | Power | Ground signal | | | 37 | GND | Power | Ground signal | | | 38 | P0.18 | Digital I/O | General purpose I/O, nRESET | | | 39 | P0.19 | Digital I/O | General purpose I/O | | | 40 | P0.20 | Digital I/O | General purpose I/O | | | 41 | P0.02 | Digital I/O, Analog Input | General purpose I/O, AINO ⁽¹⁾ | | | 42 | P0.29 | Digital I/O, Analog Input | General purpose I/O, AIN5 ⁽¹⁾ | | | 43 | P0.28 | Digital I/O, Analog Input | General purpose I/O, AIN4 ⁽¹⁾ | | | 44 | GND | Power | Ground signal | | | 45 | GND | Power | Ground signal | | | 46 | P0.16 | Digital I/O | General purpose I/O | | | 47 | P0.14 | Digital I/O | General purpose I/O | | | 48 | P0.17 | Digital I/O | General purpose I/O | | | 49 | P0.31 | Digital I/O, Analog Input | General purpose I/O, AIN7 ⁽¹⁾ | | | 50 | P0.30 | Digital I/O, Analog Input | General purpose I/O, AIN6 ⁽¹⁾ | | | 51 | P0.07 | Digital I/O | General purpose I/O, TRACE_CLK | | | 52 | P1.08 | Digital I/O | General purpose I/O | | | 53 | P0.11 | Digital I/O | General purpose I/O, TRACE_D2 | | | 54 | P0.15 | Digital I/O | General purpose I/O | | | 55 | P0.13 | Digital I/O | General purpose I/O | | | 56 | USB-D+ | Digital I/O | USB-Data+ | | | 57 | P0.05 | Digital I/O, Analog Input | General purpose I/O, AIN3 | | | Pin
Number | Pin Name | Туре | Description | |---------------|----------|---------------------------|---| | 58 | P0.27 | Digital I/O | General purpose I/O | | 59 | P0.26 | Digital I/O | General purpose I/O | | 60 | P0.04 | Digital I/O, Analog Input | General purpose I/O, AIN2 | | 61 | P0.08 | Digital I/O | General purpose I/O | | 62 | P0.12 | Digital I/O | General purpose I/O, TRACE_D1 | | 63 | DCCH | Power | DC/DC converter output | | 64 | USB-D- | Digital I/O | USB-Data- | | 65 | GND | Power | Ground signal | | 66 | P0.00 | Digital I/O, Analog Input | General purpose I/O, XTAL1 (32.768kHz) | | 67 | P0.01 | Digital I/O, Analog Input | General purpose I/O, XTAL2 (32.768kHz) | | 68 | P0.06 | Digital I/O | General purpose I/O | | 69 | P1.09 | Digital I/O | General purpose I/O, TRACE_D3 | | 70 | VCC | Power | Normal Mode: 1.7 V to 3.6V in
High Voltage Mode: 1.8 V to 3.3 V supply out | | 71 | VCCH | Power | Normal Mode: Connect to VCC
High Voltage Mode: 2.5 V to 5.5 V in | | 72 | VBUS | Power | 5 V input for USB 3.3 V regulator | #### **REMARK:** (1): These pins are in close proximity to the nRF52840 radio power supply and antenna pins. Radio performance parameters may be affected by high frequency digital I/O with large sink/source current on these pins. Nordic recommends using only low frequency, low drive functions when possible. Table 2. SGW1110/SGW1111 Pin Description # 6. Electrical Specifications # 6.1. Absolute Maximum Ratings | Symbol | Parameter | Min. | Мах. | Unit | |----------------------|-----------------------------------|------|-----------|------| | VCC _{max} | Voltage on VCC supply pin | -0.3 | 3.9 | V | | VCCH _{max} | Voltage on VCCH supply pin | -0.3 | 5.8 | V | | VBUS _{max} | Voltage on VBUS supply pin | -0.3 | 5.8 | V | | VIO _{max} | Voltage on GPIO pin (VCC > 3.6 V) | -0.3 | 3.9 | V | | VIO _{max} | Voltage on GPIO pin (VCC ≤ 3.6 V) | -0.3 | VCC+0.3 V | V | | T _{storage} | Storage Temperature Range | -40 | 125 | °C | Table 3. Absolute Maximum Ratings # 6.2. Operating Conditions | Symbol | Parameter | Min. | Тур. | Мах. | Unit | |----------------------|----------------------------------------------------|------|------|------|------| | VCC | VCC Operating supply voltage | 1.7 | 3.0 | 3.6 | V | | VCC | VCC DCDC Startup voltage | 1.75 | 3.0 | 3.6 | V | | VCCH | VCCH Operating supply voltage | 2.5 | 3.7 | 5.5 | V | | VBUS | VBUS USB supply voltage | 4.35 | 5.0 | 5.5 | V | | T _{R_VCC} | VCC Supply Rise time (0V to 1.7 V) | | | 60 | ms | | T _{R_VCCH} | VCCH Supply Rise time (0V to 3.7 V) ⁽¹⁾ | | | 100 | ms | | T _{Ambient} | Operating Temperature Range | -40 | | 85 | °C | #### REMARK: (1): Applicable to module configured as nRF52840 HV mode. Table 4. Operating Conditions # 7. Module Interface ## 7.1. Power Management ## 7.1.1. Module supply input (VCC & VCCH). The SGW111X series modules uses integrated two step-down regulators (REG0 & REG1) to transform the supply voltage presented at the VCC & VCCH pins into a stable system voltage. Each regulator can be programmed as Low-dropout regulator (LDO) or Buck regulator (DC/DC), depending on the operating mode of the module. There are two operating modes for the modules, depending on the VCC and VCCH configuration: Normal/Low Voltage (LV) mode configuration: | Pin No | Pin Name | Connection | |--------|----------|------------------------------------| | 70 | VCC | 1.7 V to 3.6 V supply source input | | 71 | VCCH | Same as VCC | High Voltage (HV) mode configuration: | Pin No | Pin Name | Connection | |--------|----------|--------------------------------------------------------------------| | 70 | VCC | 1.8 V to 3.3 V output voltage for module internal operating supply | | 71 | VCCH | 2.5 V to 5.5 V supply source input | #### REMARK: In LV or HV mode, the GPIO logic level is determined by the VCC pin. Table 5. Power Mode Pin Connections #### 7.1.2. USB Power input (VBUS) The USB interface of the SGW111X series can be used in either Normal (LV) or High Voltage mode. With the VBUS power, the internal LDO regulator will be turned on and provide power to the USB transceiver. REMARK: The internal LDO regulator provides power to the USB transceiver only. For the whole module operation, please have the module VCC and VCCH configured as LV or HV mode. # 7.1.3. Low Voltage Power Mode Configuration $Remark: For \ VCC \ low \ voltage \ operation, please \ connect \ the \ DCCH \ (pin \ 63) \ to \ VCC \ pin \ externally.$ Figure 4. SGW1110/SGW1111 Low Voltage Mode Application Example ## 7.1.4. High Voltage Power Mode Configuration Remark: For VCCH high voltage operation, it is recommended to connect a 10uH inductor between DCCH (pin 63) to VCC pin externally. Figure 5. SGW1110/SGW1111 High Voltage Mode Application Example #### 7.2. RF Antenna Interface #### 7.2.1. 2.4 GHz Radio The SGW111X series BLE modules each has its own 2.4 GHz antenna solution: - The SGW1110 modules use a PCB trace antenna integrated into the module's PCB. This low-profile antenna solution is useful in space constrained designs. - \circ The SGW1111 modules provide an onboard antenna connector with a nominal characteristic impedance of 50Ω . ## 7.2.2. Near Field Communication (NFC) The SGW111X series modules includes a Near Field Communication interface capable of operating as a 13.56 MHz NFC tag, at a bit rate of 106 kbps. As an NFC tag, the data can be read from or written to the SGW111X modules using an NFC reader. Two pins are available for connecting to an external NFC antenna: NFC1 (P0.09) and NFC2 (P0.10). ## 7.3. General Purpose I/O There are a total 48 available GPIO pins for user application. Each pin can be programmable individually with the following configurable features: - Input/output direction - Output drive strength - o Internal pull-up and pull-down resistors - Wake-up from high or low-level triggers on all pins - Trigger interrupt on all pins - o All pins can be individually configured as a serial interface or quadrature demodulator signal | Symbol | Parameter | Min. | Тур. | Мах. | Unit | |-----------------|----------------------|-----------|------|-----------------------|------| | VIH | Input High Voltage | 0.7 x Vcc | | Vcc | V | | VIL | Input Low Voltage | Vss | | 0.3 x V _{CC} | V | | Vон | Output High Voltage | Vcc - 0.4 | | Vcc | V | | VoL | Output High Voltage | Vss | | V _{SS} + 0.4 | V | | R _{PU} | Pull-up Resistance | 11 | 13 | 16 | kΩ | | R _{PD} | Pull-down Resistance | 11 | 13 | 16 | kΩ | Table 6. GPIO Pin Information #### 7.3.1. Serial interfaces The SGW111X series provides the following serial communication interfaces: - 2x UART interfaces: 4-wire universal asynchronous receiver/transmitter interface used for AT command interface, data communication, and u-connect software upgrades using the Software update +UFWUPD AT command - o 3x SPI interfaces: Up to three serial peripheral interfaces can be used simultaneously - 1x QSPI interface: High speed interface used to connect to the external flash memories - 2x I2C interfaces: Inter-Integrated Circuit (I2C) interface for communication with digital sensors - o 1x I2S interface: Used to communicate with external audio devices - o 1x USB 2.0 interface: The USB device interface to connect to the upstream host ### 7.3.2. Analog interfaces 8 out of the 48 digital GPIOs can be multiplexed to analog functions. The following analog functions are available: - 1x 8-channel ADC - 1x Analog comparator (*) - 1x Low-power analog comparator (*) #### REMARK: (*): Only one comparator can be used at any given point of time. #### 7.3.3. Module Reset The modules can be reset using one of the following ways: - Low level on the nRESET (P0.18) input pin, normally kept high using an internal pull-up. This causes an "external" or "hardware" reset of the module - Using the AT+CPWROFF command. This causes an "internal" or "software" reset of the module #### 7.3.4. Debug and Programming interfaces The SGW111X series modules provides an SWD interface for flashing and debugging. The SWD interface consists of two pins - SWDCLK and SWDIO. The SGW111X series modules also supports parallel trace output. This allows output from the Embedded Trace Macrocell (ETM) and Instrumentation Trace Macrocell (ITM) embedded in the Arm Cortex-M4 core of the nRF52840 chip. The ETM trace data allows a user to record exactly how the application goes through the CPU instructions in real time. The parallel trace interface uses 1 clock signal and 4 data signals respectively - TRACE_CLK, TRACE_D0, TRACE_D1, TRACE_D2 and TRACE_D3. ## 7.3.5. Clocks The SGW111X series modules requires two clocks: High frequency and low frequency clock. The high frequency clock is provided by the on-board 32MHz crystal. For the low frequency clock, it supports several low-frequency 32.768kHz clock sources: - o 32.768 kHz +/-500 ppm nRF52840 internal RC oscillator - 32.768 kHz oscillator synthesized from on-board oscillator - o 32.768 kHz crystal oscillator, using external 32.768 kHz crystal Figure 6. Low Frequency Clock Reference Circuit - External Crystal # 8. Mechanical Dimension Figure 7. SGW1110 (Embedded Antenna) Mechanical Information Figure 8. SGW1111 (External Antenna) Mechanical Information # 9. Recommended PCB Landing Pattern & Pad Locations Figure 9. SGW1110/SGW1111 Dimension (Top View) # 10. Module Marking Figure 10. SGW1110/SGW1111 Module Label # 11. Soldering Temperature-Time Profile for Re-Flow Soldering Figure 11. Soldering Temperature-Time Profile for Re-Flow Soldering #### Remark: SGW1110 and SGW1111 are rated as MSL 3,168-hour floor life after opening. # 12. Certifications # 12.1. Qualified Antenna Types The SGW1111 module, supporting an external antenna, is designed to operate with a standard 3 dBi dipole antenna. Any antenna of a different type or with a gain higher than 3 dBi is strictly prohibited for use with this device. Using an antenna of a different type or gain more than 3 dBi will require additional testing for FCC, CE and IC. The required antenna impedance is 50Ω . | Manufacturer | Part Number | Max. Gain | Antenna Type | Size | |-----------------|-----------------|-----------|-----------------|---------------| | Master Wireless | JZC-RPF-N-ZBG19 | 3 dBi | 1/4 wave Dipole | Length: 196mm | #### 12.2. Bluetooth The SGW111X series are pre-qualified as a Low Energy RF-PHY tested component, having Declaration ID of D046088 and QDID of 135014. This allows customers to use different SoftDevices that have been qualified by Nordic without the need to complete additional RF-PHY testing. To achieve Bluetooth End Product qualification, the SG Wireless RF-PHY QDID can be combined with Nordic QDIDs for the SoftDevice used when filing on the Bluetooth SIG website. The only testing required is for the Bluetooth profiles supported by the customer's product. Products with only custom profiles do not require any additional testing. #### 12.3. FCC Statement This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures: **SGWireless** Reorient or relocate the receiving antenna o Increase the separation between the equipment and receiver Connect the equipment into an outlet on a circuit different from that to which the receiver is connected Consult the dealer or an experienced radio/TV technician for help 12.3.1. FCC RF Exposure Information and Statement. This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance of 20 cm between the radiator and your body. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter. This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: 1. This device may not cause harmful interference, and This device must accept any interference received, including interference that may cause undesirable operation. Any changes or modifications not expressly approved by SG Wireless could void the user's authority to operate the equipment. 12.3.2. Instructions to the OEM/Integrator: This module has been granted modular approval for mobile applications. OEM integrators for host products may use the module in their final products without additional FCC/ISED (Innovation, Science and Economic Development Canada) certification if they meet the following conditions. Otherwise, Additional FCC/IC approvals must be obtained. o The OEM must comply with the FCC labeling requirements. If the module's label is not visible when installed, then an additional permanent label must be applied on the outside of the finished product which states: "Contains transmitter module FCC ID: 2AS9402". Additionally, the following statement should be included on the label and in the final product's user manual: "This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interferences, and (2) this device must accept any interference received, including interference that may cause undesired operation." - The user's manual for the host product must clearly indicate the operating requirements and conditions that must be observed to ensure compliance with current FCC / IC RF exposure guidelines. - The final host / module combination may also need to be evaluated against the FCC Part 15B criteria for unintentional radiators in order to be properly authorized for operation as a Part 15 digital device. - This Module is full modular approval, it is limited to OEM installation ONLY. - The module is limited to installation in mobile application. - A separate approval is required for all other operating configurations, including portable configurations with respect to Part 2.1093 and difference antenna configurations. - The OEM integrator is responsible for ensuring that the end-user has no manual instruction to remove or install module. - The Grantee will provide guidance to the Host Manufacturer for compliance with the Part 15B requirements if requested. The transmitter module must not be co-located or operating in conjunction with any other antenna or transmitter except in accordance with FCC multitransmitter product procedures. #### **FCC** statement: **NOTE:** The manufacturer is not responsible for any radio or TV interference caused by unauthorized modifications to this equipment. Such modifications could void the user's authority to operate the equipment. #### 12.3.3. Important Note: In the event that the above conditions cannot be met (for certain configurations or co-location with another transmitter), then the FCC authorization is no longer considered valid and the FCC ID cannot be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC authorization. #### 12.3.4. End Product Labeling. The variants of SGW111X series are labeled with their own FCC ID. If the FCC ID is not visible when the module is installed inside another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed module. In that case, the final end product must be labeled in a visible area with the following: "Contains FCC ID: 2AS9402" The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module or change RF related parameters in the user manual of the end product. #### 12.4. IC Statement *EN:* This device complies with RSS-247 of Industry Canada. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. RF exposure warning: This equipment complies with IC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance of 20 cm between the radiator and your body. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter. FR: Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement. Avertissement d'exposition RF: Cet équipement est conforme aux limites d'exposition aux rayonnements de la IC établies pour unenvironnement non contrôé. Cet équipement doit être installé et fonctionner à au moins 20cm de distance d'un radiateur ou de votre corps. # 12.4.1. OEM Responsibilities to comply with IC Regulations. The SGW111X series have been certified for integration into products only by OEM integrators under the following conditions: - The antenna(s) must be installed such that a minimum separation distance as stated above is maintained between the radiator (antenna) and all persons at all times - The transmitter module must not be co-located or operating in conjunction with any other antenna or transmitter As long as the two conditions above are met, further transmitter testing will not be required. However, the OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed (for example, digital device emissions, PC peripheral requirements, etc.). ## 12.4.2. Important Note: In the event that these conditions cannot be met (for certain configurations or co-location with another transmitter), then the ISEDC authorization is no longer considered valid and the IC ID cannot be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate ISEDC authorization. # 12.4.3. End Product Labeling. The SGW111X series are labeled with its own IC ID. If the IC ID is not visible when the module is installed inside another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed module. In that case, the final end product must be labeled in a visible area with the following: "Contains IC: 25021-02" The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module or change RF related parameters in the user manual of the end product. ## 12.5. CE Statement ## 12.5.1. Declaration of Conformity. The SGW111X series are in conformity with the essential requirements and other relevant requirements of the Radio Equipment Directive (RED) (2014/53/EU). Please note that every application using the BGM13S22 will need to perform the radio EMC tests on the end product, according to EN 301 489-17. It is ultimately the responsibility of the manufacturer to ensure the compliance of the end-product. The SGW111X series are in conformity with the essential requirements and other relevant requirements of the radio Equipment Directive (RED) at rated 9.5 dBm transmit power. The operating frequency range is 2402-2480MHz. The full text of the EU declaration of conformity is available at the following internet address: www.sgwireless.com. This device may be used in each EU member state. # 13. Product Packaging Carrier Tape Dimensions for SGW1110/SGW1111: | Item | w | A_0 | B_0 | Ko | P_0 | P_1 | P_2 | D_0 | E | F | Т | |-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | Dimension | 24.00 | 10.80 | 15.60 | 2.70 | 16.00 | 4.00 | 2.00 | 1.50 | 1.75 | 11.50 | 0.30 | | | ±0.30 | ±0.10 | ±0.10 | ±0.10 | ±0.10 | ±0.10 | ±0.10 | ±0.10 | ±0.10 | ±0.10 | ±0.10 | Figure 12. SGW1110/SGW1111 Tape Dimensions Reel Packaging: 1000 modules will be loaded into the reel. Each reel will be placed in an antistatic bag and put into a 340 x350x45mm box as shown in below diagram. Figure 13. SGW1110/SGW1111 Reel Packaging ## **Packaging Label:** Figure 14. SGW1110/SGW1111 Packaging Label # 14. Revision History | Revision | Date | Description | |----------|-------------|------------------| | 1.0 | 9 Dec, 2019 | Official release | | | | | # 15. Useful Links - 1. Nordic Info Center: https://infocenter.nordicsemi.com/index.jsp. All the necessary technical files and software development kits of Nordic's chip are on this website. - 2. Nordic Developer Zone: https://devzone.nordicsemi.com/questions/. A highly recommended website for firmware developer. Interact with other developers and Nordic's employees will help with your questions. The site also includes tutorials in detail to help you get started. - 3. Official Page of nRF52840: https://www.nordicsemi.com/eng/Products/nRF52840. A brief introduction to nRF52840 and download links for Nordic's developing software and Soft Devices.