

FCC Test Report

Report No: FCS202106046W01

Issued for

Arovast Corporation

1202 N Miller St. Suite A, Anaheim California United States

Product Name:	Cosori VeSync Aeroblaze [™] Indoor Grill			
Trade Name:	Cosori			
Model Name:	CAG-A601S-KUS			
Series Model:	CAG-A601S-KUSR			
FCC ID:	2ARBY-A601S			
Issued By: Flux Compliance Service Laboratory Add: Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan Tel: 769-27280901 Fax:769-27280901 http://www.FCS-lab.com				

TEST RESULT CERTIFICATION

Arovast Corporation
1202 N Miller St. Suite A, Anaheim California United States
Arovast Corporation
1202 N Miller St. Suite A, Anaheim California United States
Cosori VeSync Aeroblaze [™] Indoor Grill
CAG-A601S-KUS
CAG-A601S-KUSR
FCC Part15.247
ANSI C63.10-2013

This device described above has been tested by Flux Compliance Service Laboratory, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Flux Compliance Service Laboratory, this document may be altered or revised by Flux Compliance Service Laboratory, personal only, and shall be noted in the revision of the document.

Date of Test:

Date (s) of performance of tests : June. 20, 2021 to June. 30, 2021

Date of Issue.....: June. 30, 2021

Test Result Pass

Tested by

Scott shen

(Scott Shen)

Reviewed by

(Duke Qian)

Dukelian

Approved by

(Kait Chen)

Flux Compliance Service Laboratory

:

:

Table of Contents	Page
1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF THE EUT	8
2.2 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	10
2.3 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	11
2.4 EQUIPMENTS LIST 3. 6DB BANDWIDTH	12 13
	-
3.1 LIMIT	13
3.2 TEST PROCEDURE	13
3.3 TEST SETUP	13
3.4 TEST RESULTS	14
4 CONDUCTED OUTPUT POWER	21
4.1 LIMIT	21
4.2 TEST PROCEDURE	21
4.3 TEST SETUP	21
4.5 TEST RESULTS	21
5. POWER SPECTRAL DENSITY 5.1 LIMIT	22 22
5.2 TEST PROCEDURE	22
5.3 TEST SETUP	22
5.5 TEST RESULTS	23
5.6 ORIGINAL TEST DATA	24
6. BAND EDGE AND SPURIOUS	30
6.1 LIMIT	30
6.2 TEST PROCEDURE	30
6.3 TEST SETUP	30
6.5 TEST RESULTS	31
6.5 ORIGINAL TEST DATA	31
7 RADIATED EMISSION MEASUREMENT	54

Table of Contents	Page
8 CONDUCTED EMISSION TEST	54
9. ANTENNA REQUIREMENT	82
9.1 STANDARD REQUIREMENT	82
9.2 RESULT	82

Revision History

Rev.	Issue Date	Effect Page	Contents
00	00 June. 30, 2021		Initial Issue

 Flux Compliance Service Laboratory

 Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan

 Tel: 769-27280901
 Fax:769-27280901

 http://www.FCS-lab.com

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part 15.247,Subpart C					
Standard Section	Lest Item				
FCC 15.247 (a) (2)	6dB Bandwidth	PASS			
FCC 15.247 (b) (3)	Conducted Output Power	PASS			
FCC 15.247 (e)	Power Spectral Density	PASS			
FCC 15.247 (d)	Band-edge and Spurious Emissions (Conducted)	PASS			
FCC 15.247 (d)					
FCC 15.209	Radiated Spurious Emissions	PASS			
FCC 15.205					
FCC 15.247 (d)	Dedicted Rend Edge Compliance				
FCC 15.209	Radiated Band Edge Compliance	PASS			
FCC 15.205					
FCC 15.207	Power Line Conducted Emission	PASS			
FCC 15.203	Antenna requirement	PASS			
15.205	Restricted Band Edge Emission	PASS			

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

(2) All tests are according to ANSI C63.10-2013

1.1 TEST LOCATION

Company Name:	Flux Compliance Service Laboratory			
Address:Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan				
Telephone:	+86-769-27280901			
Fax: +86-769-27280901				
FCC Test Firm Registration Number: 514908 Designation number: CN0127 A2LA accreditation number: 5545.01				

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	RF output power, conducted	±0.71dB
2	Unwanted Emissions, conducted	±2.988 dB
3	Conducted Emission (9KHz-150KHz)	±4.13 dB
4	Conducted Emission (150KHz-30MHz)	±4.74 dB
5	All emissions,radiated(<1G) 30MHz-1000MHz	±5.2 dB
6	All emissions, radiated 1GHz -18GHz	±4.66 dB
7	All emissions, radiated 18GHz -40GHz	±4.31 dB

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	Cosori VeSync Aeroblaze [™] Indoor Grill
Trade Name	Cosori
Model Name	CAG-A601S-KUS
Series Model	CAG-A601S-KUSR
Model Difference	The electrical circuit design, layout, components used and internal wiring for above models are identical, only different in model name
Channel List	Please refer to the Note 2.2.
	IEEE 802.11b: 2412MHz-2462MHz
Operation frequency	IEEE 802.11g: 2412MHz-2462MHz
	IEEE 802.11n 20: 2412MHz-2462MHz
	IEEE 802.11n 40: 2422MHz-2452MHz
Modulation:	DSSS, OFDM
Power supply	DC 120V,60Hz
Battery	NA
Hardware version number	V1.0
Software version number	V1.0
Connecting I/O Port(s)	Please refer to the User's Manual

Note:

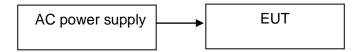
1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.

Channel List						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
01	2412	05	2432	09	2452	
02	2417	06	2437	10	2457	
03	2422	07	2442	11	2462	
04	2427	08	2447			

Page 9 of 82

3. Table for Filed Antenna


Ant.	Brand	Model Name	Model Name Antenna Type		Gain (dBi)	NOTE
1	NA	NA	PCB antenna	N/A	1.0B dBi	Antenna

2.2 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Block diagram of EUT configuration for test

Test software: the QA tool The test softeware was used to control EUT work in continuous TX mode, and select test channel, Wireless mode as below table

802.11 b g n20 n40

Note:

(1) According exploratory test, EUT will have maximum output power in those data rate, so those data rate were used for all test,

(2) During the test, the dutycycle>98%, the test voltage was tuned from 85% to 115% of the Nominal rate supply votage, and found that the worst case was the nominal rated supply condition, So the report just shows that condition's data

2.3 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Necessary accessories

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note

Support units

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in $\[$ Length $\]$ column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

2.4 EQUIPMENTS LIST

Radiation Test equipment

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until
EMI Test Receiver	R&S	ESRP 3	FCS-E001	2021.05.26	2022.05.25
Signal Analyzer	R&S	FSV40-N	FCS-E012	2021.05.05	2022.05.04
Active loop Antenna	ZHINAN	ZN30900C	FCS-E013	2020.08.09	2021.08.10
Bilog Antenna	SCHWARZBECK	VULB 9168	FCS-E002	2020.08.26	2021.08.25
Horn Antenna	SCHWARZBECK	BBHA 9120D	FCS-E003	2020.08.26	2021.08.25
SHF-EHF Horn Antenna (18G-40GHz)	A-INFO	LB-180400-KF	FCS-E018	2021.05.26	2022.05.25
Pre-Amplifier(0.1M-3G Hz)	EMCI	EM330N	FCS-E004	2021.05.26	2022.05.25
Pre-Amplifier (1G-18GHz)	N/A	TSAMP-0518SE	FCS-E014	2021.05.03	2022.05.02
Pre-Amplifier (18G-40GHz)	TERA-MW	TRLA-0400	FCS-E019	2020.08.08	2021.08.07
Temperature & Humidity	HTC-1	victor	FCS-E005	2020.08.26	2021.08.25

Conduction Test equipment

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until
EMI Test Receiver	R&S	ESPI	FCS-E020	2021.05.03	2022.05.02
LISN	R&S	ENV216	FCS-E007	2020.08.08	2021.08.07
LISN	ETS	3810/2NM	FCS-E009	2021.05.03	2022.05.02
Temperature & Humidity	HTC-1	victor	FCS-E008	2020.08.08	2021.08.07

RF Connected Test

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until
MXA SIGNAL Analyzer	Keysight	N9020A	FCS-E015	2021.05.03	2022.05.02
Spectrum Analyzer	Agilent	E4447A	MY50180039	2020.08.08	2021.08.07
Spectrum Analyzer	R&S	FSV-40	101499	2020.08.26	2021.08.25

3. 6DB BANDWIDTH

3.1 Limit

For direct sequence systems, the minimum 6dB bandwidth shall be at least 500 kHz

3.2 Test Procedure


(1) Connect EUT's antenna output to spectrum analyzer by RF cable.

(2) Set the spectrum analyzer as follows

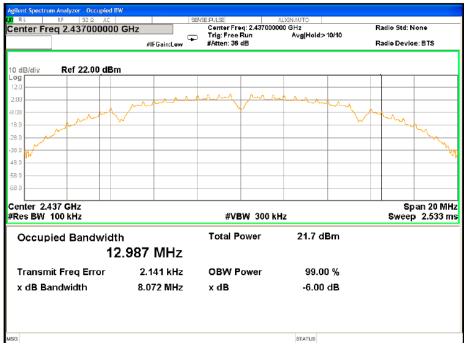
RBW:	100kHz
VBW:	300kHz
Detector Mode:	Peak
Sweep time:	auto
Trace mode	Max hold

(3) Allow the trace to stabilize, measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

3.3 Test setup

3.4 Test results

TestMode	Channel (MHz)	6dB Bandwidth (MHz)	Limit [MHz]	Verdict
802.11b	2412MHz	8.553	0.5	Pass
802.11b	2437MHz	8.072	0.5	Pass
802.11b	2462MHz	8.552	0.5	Pass
802.11g	2412MHz	16.37	0.5	Pass
802.11g	2437MHz	16.34	0.5	Pass
802.11g	2462MHz	16.37	0.5	Pass
802.11n 20	2412MHz	17.59	0.5	Pass
802.11n 20	2437MHz	17.58	0.5	Pass
802.11n 20	2462MHz	17.57	0.5	Pass
802.11n 40	2422MHz	36.34	0.5	Pass
802.11n 40	2437MHz	36.34	0.5	Pass
802.11n 40	2452MHz	36.31	0.5	Pass

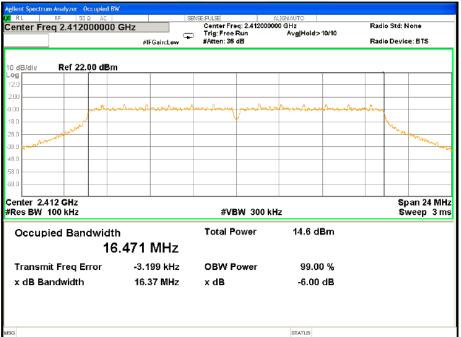


3.5 Original Test Data

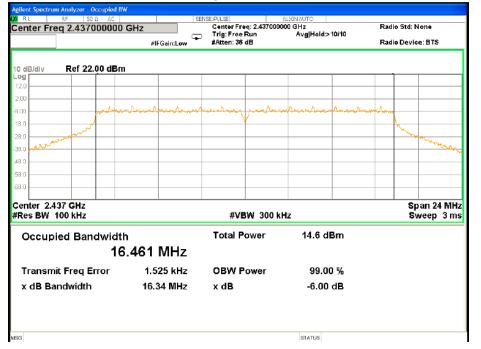
- Occupi SENSE:PULSE ALIGNAUT Center Freq: 2.412000000 GHz Trig: Free Run Avg #Atten: 36 dB Center Freq 2.412000000 GHz Radio Std: None Avg|Hold>10/10 Radio Device: BTS #IFGain:Low Ref 22.00 dBm 0 dB/div .00 Span 20 MHz Sweep 2.533 ms Center 2.412 GHz #Res BW 100 kHz 底图.jpg #VBW 300 kHz Total Power 21.9 dBm **Occupied Bandwidth** 12.977 MHz -6.081 kHz **OBW Power** 99.00 % Transmit Freq Error 8.553 MHz x dB Bandwidth x dB -6.00 dB STATUS

802.11b-CH2412MHZ

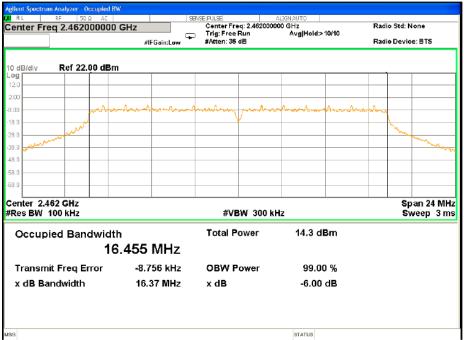
802.11b-CH237MHZ



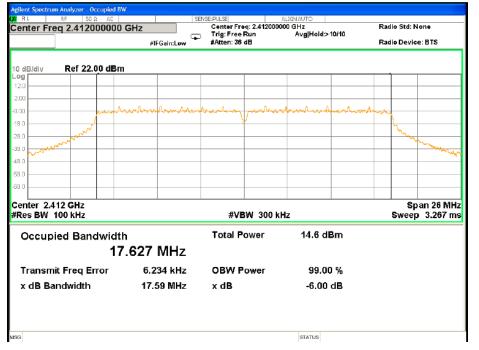
802.11b-CH2462MHZ



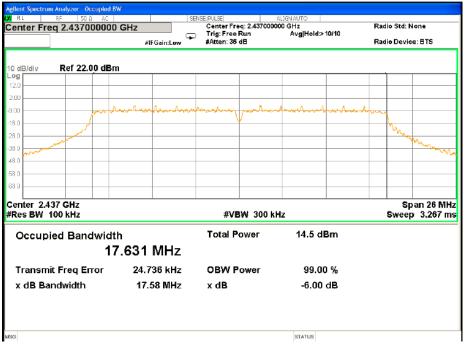
802.11g H2412MHZ



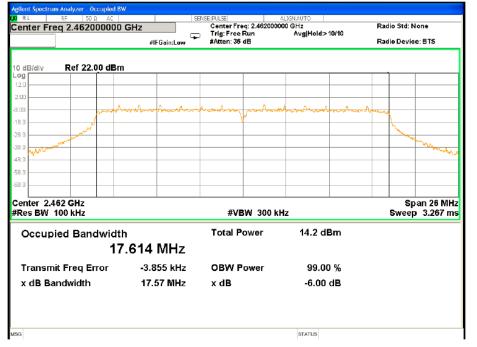
802.11g CH2437MHZ



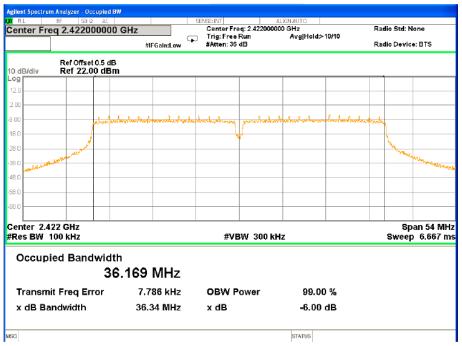
802.11g CH2462MHZ



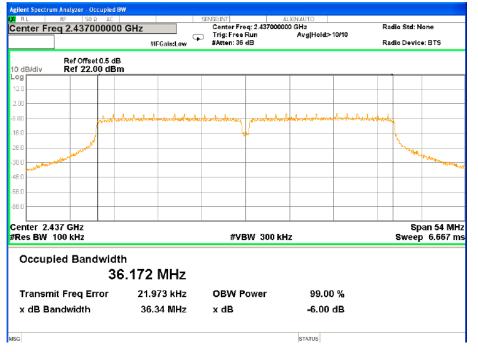
802.11n 20-2412MHz



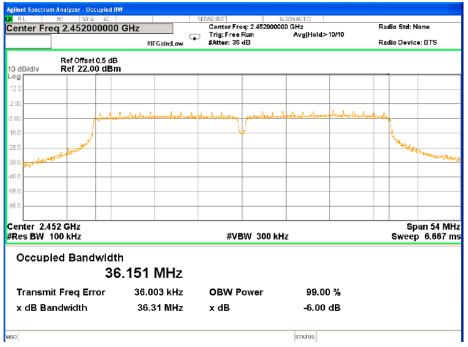
802.11n 20-2437MHz



802.11n 20-2462MHz



802.11n 40-2422MHz



802.11n 40-2437MHz

802.11n 40-2452MHz

4 CONDUCTED OUTPUT POWER

4.1 limit

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

4.2 test procedure

a. Connect each EUT's antenna output to power sensor by RF cable and attenuator

4.3 TEST SETUP

4.5 test results

TestMode	Channel (MHz)	Peak Result (dBm)	Limit (dBm)	Verdict
802.11b	2412MHz	15.82	30	Pass
802.11b	2437MHz	15.59	30	Pass
802.11b	2462MHz	16.18	30	Pass
802.11g	2412MHz	13.15	30	Pass
802.11g	2437MHz	13.83	30	Pass
802.11g	2462MHz	14.57	30	Pass
802.11n 20	2412MHz	13.02	30	Pass
802.11n 20	2437MHz	13.61	30	Pass
802.11n 20	2462MHz	14.39	30	Pass
802.11n 40	2422MHz	12.46	30	Pass
802.11n 40	2437MHz	13.01	30	Pass
802.11n 40	2452MHz	13.23	30	Pass

5. POWER SPECTRAL DENSITY

5.1 LIMIT

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

5.2 TEST PROCEDURE

(1) Connect EUT's antenna output to spectrum analyzer by RF cable.

(2) Set the spectrum analyzer as follows:

DTS Channel center frequency		
3 kHz ≤ RBW ≤ 100 kHz		
≥ 3RBW		
1.5 times the DTS bandwidth		
Peak		
auto		
Max hold		

- (3) Allow the trace to stabilize, use the peak marker function to determine the maximum amplitude level within the RBW
- (4) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

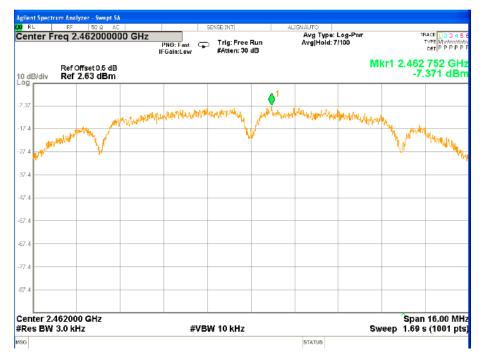
5.3 TEST SETUP

Spectrum Analyzer

5.5 TEST RESULTS

TestMode	Channel (MHz)	Result (dBm/3KHz)	Limit (dBm/3KHz)	Verdict
802.11b	2412MHz	-7.514	8	Pass
802.11b	2437MHz	-9.054	8	Pass
802.11b	2462MHz	-7.371	8	Pass
802.11g	2412MHz	-10.994	8	Pass
802.11g	2437MHz	-9.676	8	Pass
802.11g	2462MHz	-12.891	8	Pass
802.11n 20	2412MHz	-13.859	8	Pass
802.11n 20	2437MHz	-12.781	8	Pass
802.11n 20	2462MHz	-12.302	8	Pass
802.11n 40	2422MHz	-18.044	8	Pass
802.11n 40	2437MHz	-17.920	8	Pass
802.11n 40	2452MHz	-15.556	8	Pass

5.6 original test data



802.11b-2412MHz

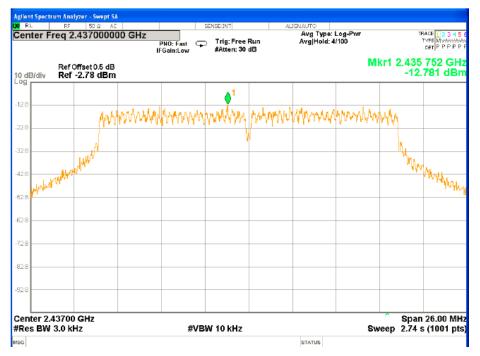
802.11b-2437MHz

802.11b-2462MHz

802.11g-2412MHz

802.11g-2437MHz

802.11g-2462MHz



802.11n 20-2412MHz

802.11n 20-2437MHz

Page 28 of 82

802.11n 20-2462MHz

802.11n 40-2422MHz



Page 29 of 82

802.11n 40-2437MHz

802.11n 40-2452MHz

6. Band edge and spurious

6.1 LIMIT

In any 100kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 30dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power.

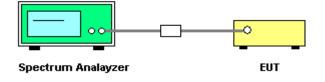
6.2 TEST PROCEDURE

(1) Connect EUT's antenna output to spectrum analyzer by RF cable.

(2) Establish a reference level by using the following procedure:

Center frequency	DTS Channel center	
	frequency	
RBW:	100kHz	
VBW:	300kHz	
Span	1.5times the DTS bandwidth	
Detector Mode:	Peak	
Sweep time:	auto	
Trace mode	Max hold	

(3) Establish Allow the trace to stabilize, use the peak marker function to determine the maximum peak

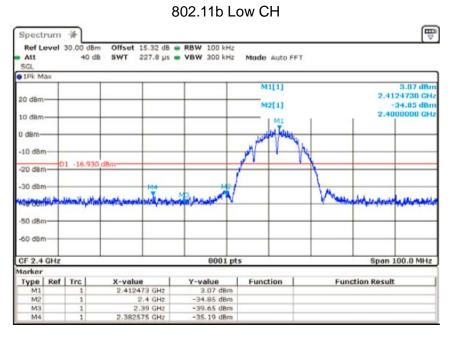

power level to establish the reference level.

(4) Set the spectrum analyzer as follows:

RBW:	100kHz
VBW:	300kHz
Span	Encompass frequency range to be
	measured
Number of measurement points	≥span/RBW
Detector Mode:	Peak
Sweep time:	auto
Trace mode	Max hold

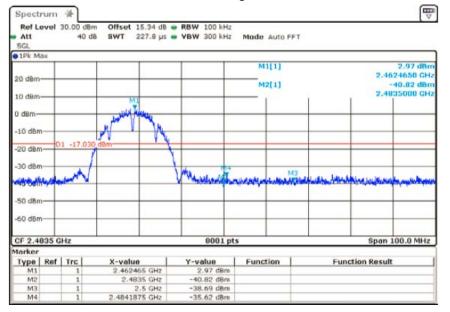
(5) Allow the trace to stabilize, use the peak marker function to determine the maximum amplitude of all unwanted emissions outside of the authorized frequency band

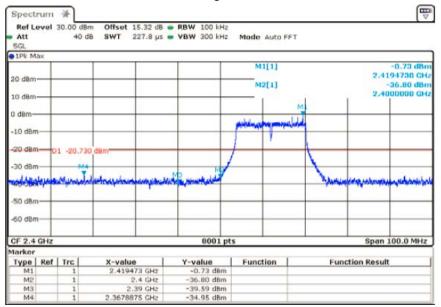
6.3 TEST SETUP



6.5 TEST RESULTS

Eut set mode	CH or Frequency	Result
802.11b	CH1	Pass
	CH11	Pass
802.11g	CH1	Pass
	CH11	Pass
802.11n 20	CH1	Pass
	CH11	Pass
000 11 - 10	СНЗ	Pass
802.11n 40	CH9	Pass


6.5 Original test data



802.11b High CH

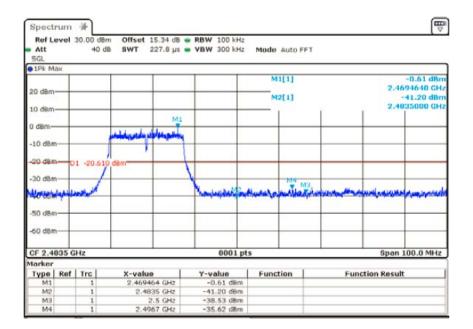
Page 32 of 82

802.11g low CH

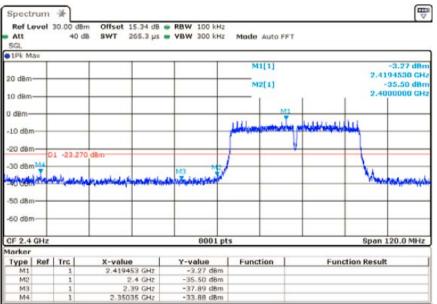
802.11g high CH

Page 33 of 82

Ref L Att SGL		30.00 dB 40 d			 RBW 100 kH VBW 300 kH 		Auto FF	Ŧ		₩ V	
1Pk M	ан				200						
						M	1[1]		-0.41 dBm		
20 d8m	20 d8m						2.4694640 GHz				
			M2[1]						-40.59 dBm		
10 dBm	-				++			13	2.4	835000 GH2	
			1 1	MI							
0 dBm-	-		a bil como a		+ +		-			-	
-10 dBn			Laight way to	A state of the sta							
-10 086			1								
20 d8n	_	1 -20.41	0.000		8						
20 000	-	1 -20.41	lo dem	1							
-30 dBn	-				X I	274					
attern W		A.A.			Kadas all		M	A		a la consta con	
40 000	P. P	and the	-		Automotion	entrational An	and subch	and the second second	the consiguration	CAN INCOMENTAL	
-			1								
-50 dBn	-								-		
-60 dBn											
-00 001	·										
CF 2.4	835 G	Hz	1 1		8001	ots			Span	100.0 MHz	
Marker	5										
Type	Ref	Trc	X-value		Y-value		Function		Function Result		
M1		1	2.469464 GHz		-0.41 dBm						
M2	-	1	2.4835 GHz		-40.59 dBm						
M3	_	1	2.5 GHz 2.4906 GHz		-38.83 dBm						
M4		1	2.490	6 GH2	-36.02 dBm						

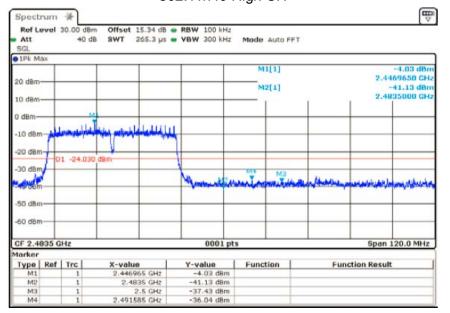

802.11n20 Low CH

	rum evel :	30.00 dBr 40 d		RBW 100 kHz VBW 300 kHz	Mode Auto F	FT	[m ⊽	
• 1Рk Мак 20 d8m-				M1[1]			-0.37 dBm 2.4144610 GHz -35.47 dBm	
10 dBm	+			-		i i	2.4000000 GH	
-meb 0	+				M2			
-10 dBm	-					~~~		
20 dBrr	-0	1 -20.370) d8m					
-30 dBm		M-1		Ma M				
-40 cisii	4	where we have	the second and the second s	with midulation		-	any advision of the later	
-50 dBm	+							
-60 dBm	+					_		
CF 2.4	GHz			8001 pt	s	_	Span 100.0 MHz	
Type	Ref	Trc	X-value	Y-value	Function	Func	tion Result	
MI	1001	1	2.414461 GHz	-0.37 dBm	r unction	- un	STOTI I WANTE	
M2		1	2.4 GHz	-35.47 dBm				
M3		1	2.39 GHz	-38.26 dBm				
M4		1	2.3671625 GHz	-34.65 dBm				

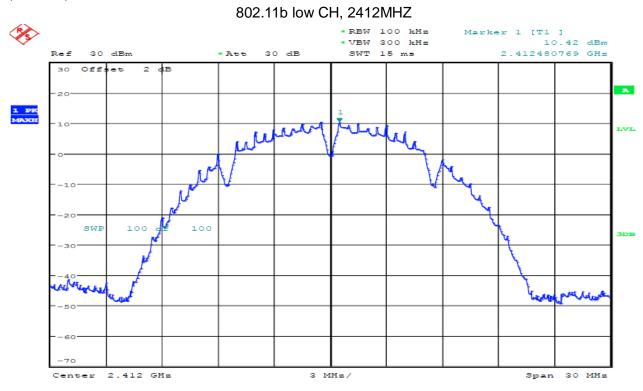


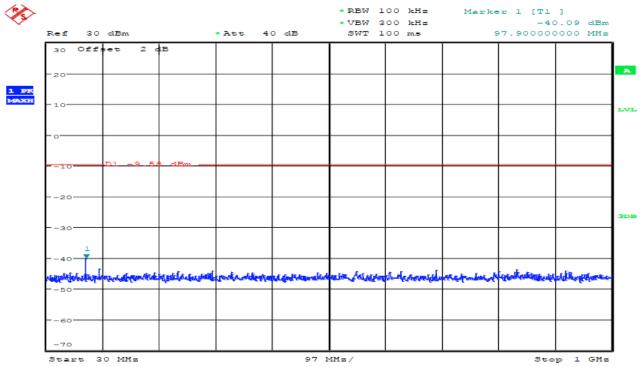
802.11n20 High CH

Page 34 of 82


802.11n40 Low CH

802.11n40 High CH


Page 35 of 82

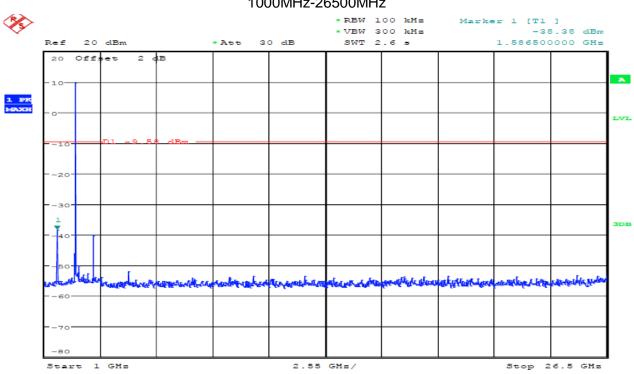


Spurious emissions

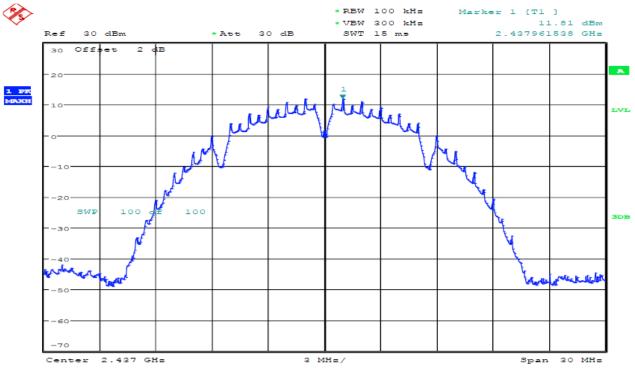
(802.11b)

30MHz-1000MHz

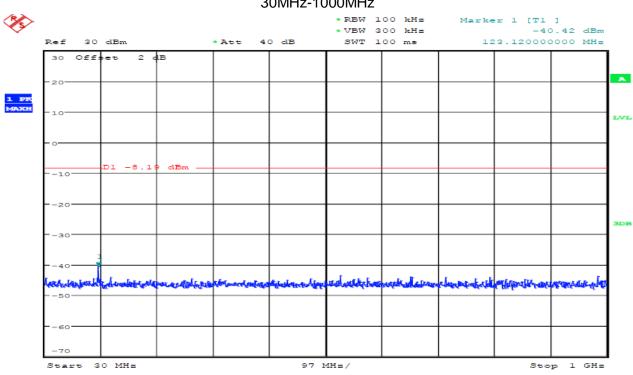
 Flux Compliance Service Laboratory

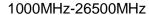

 Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan

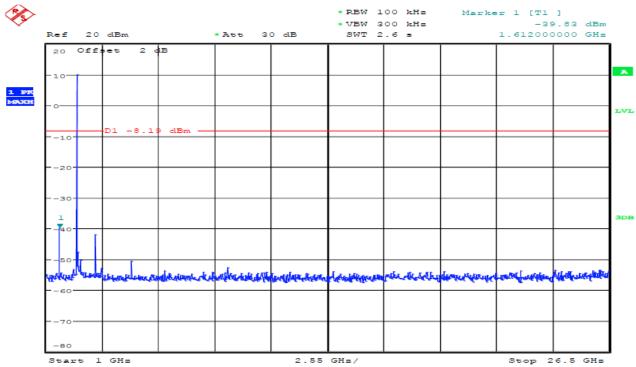
 Tel: 769-27280901
 Fax:769-27280901

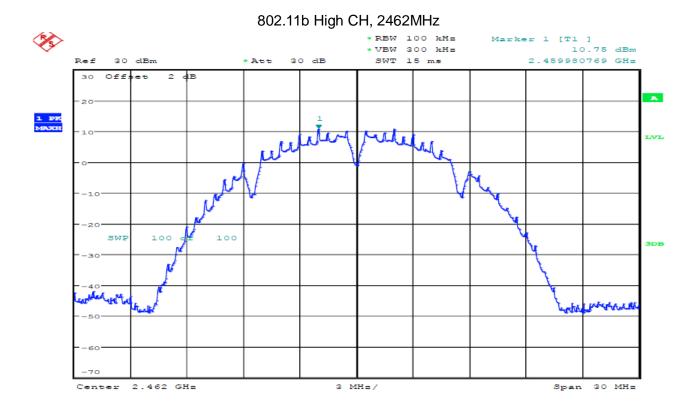

 http://www.FCS-lab.com

Page 37 of 82

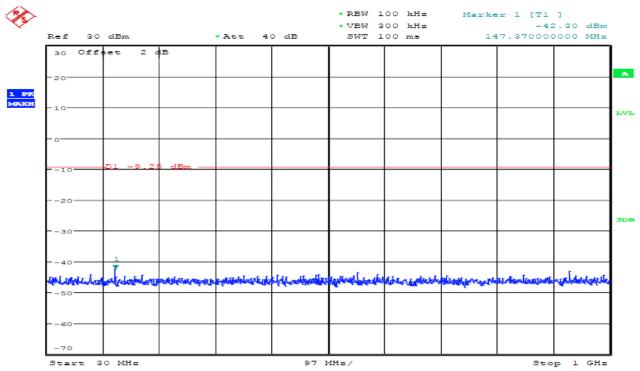

802.11b Middle CH, 2437MHz

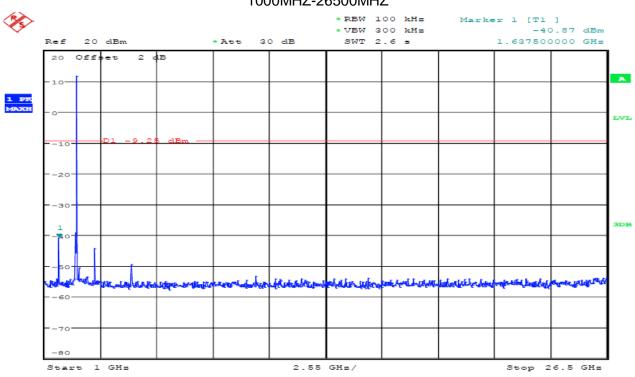

Flux Compliance Service Laboratory Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan Tel: 769-27280901 Fax:769-27280901 http://www.FCS-lab.com


1000MHz-26500MHz

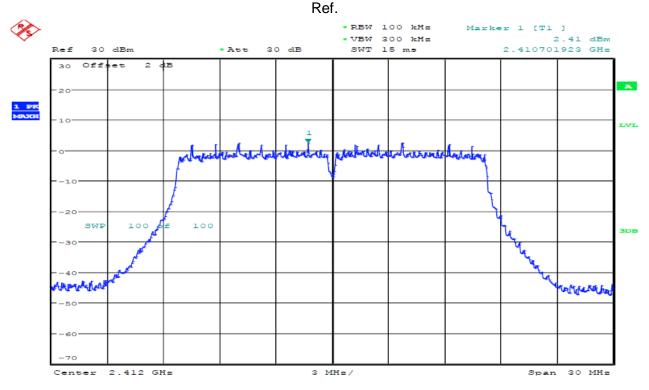


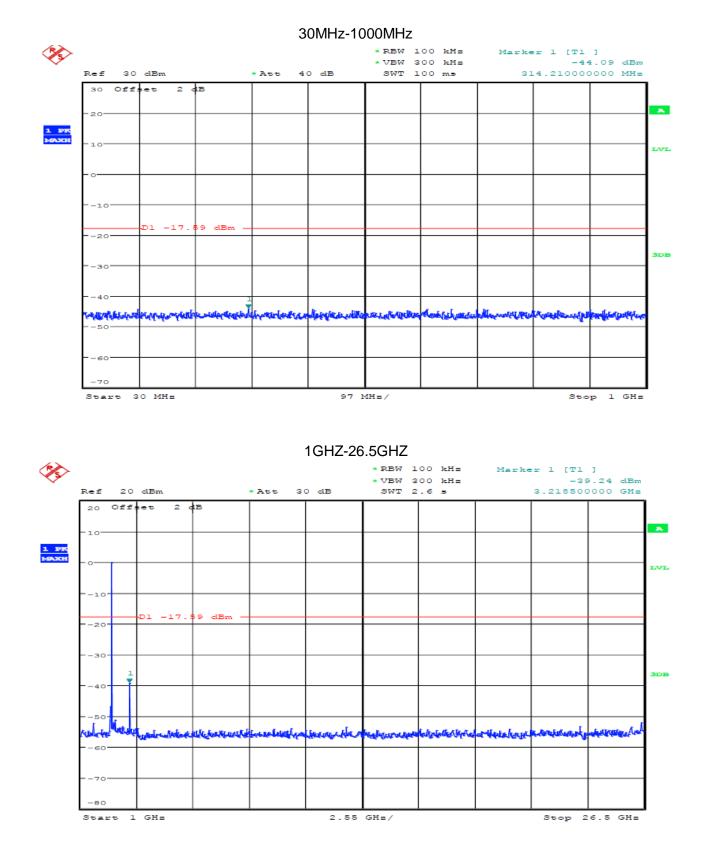
30MHz-1000MHz





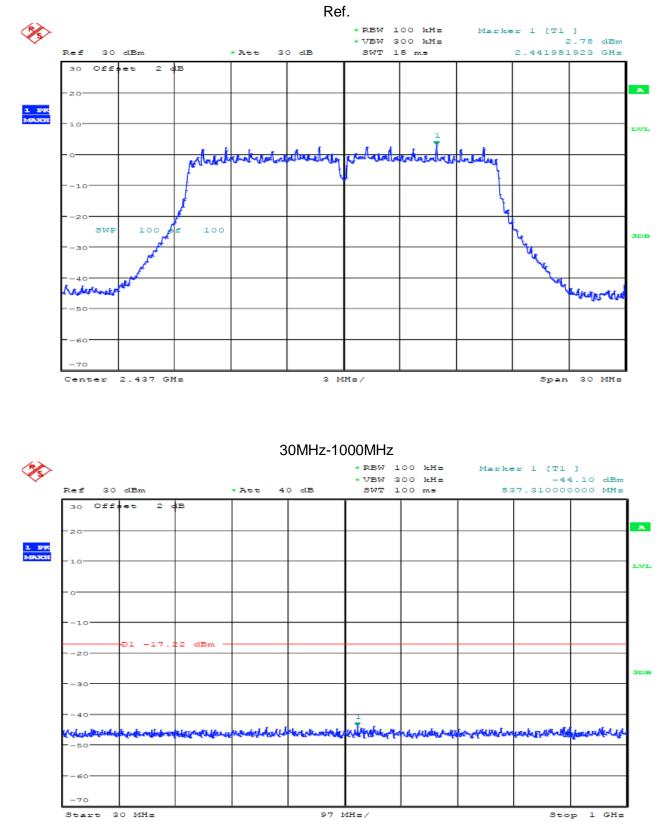
30MHZ-1000MHZ

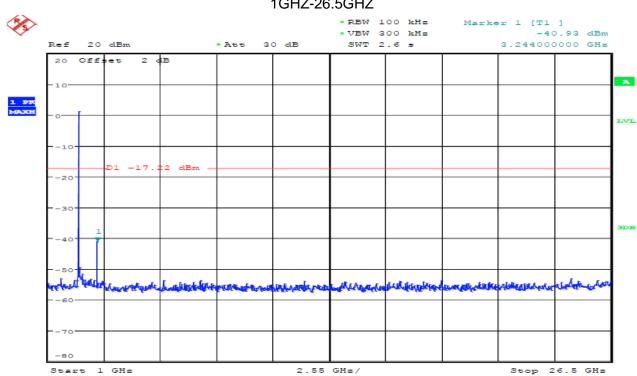


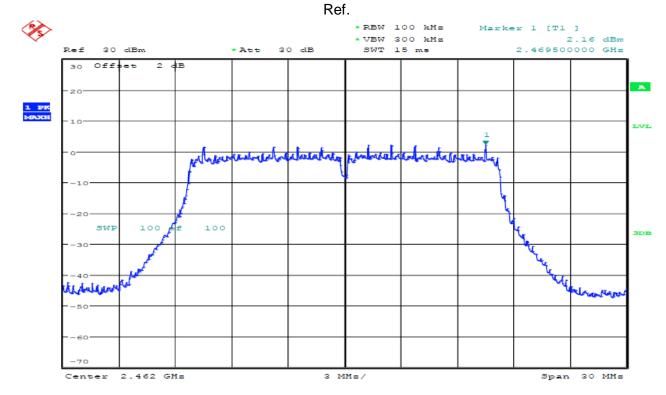

1000MHZ-26500MHZ

(802.11g)

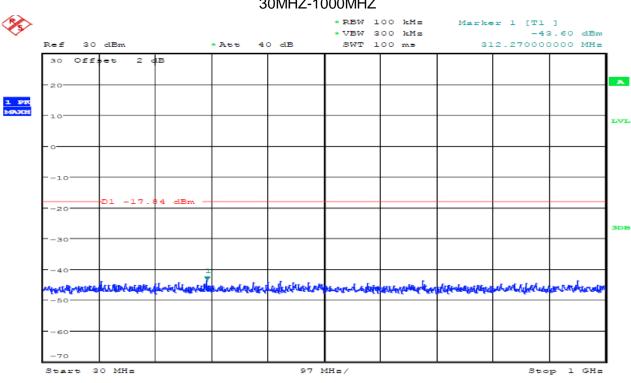
802.11g Low CH, 2412MHz



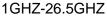

Page 42 of 82

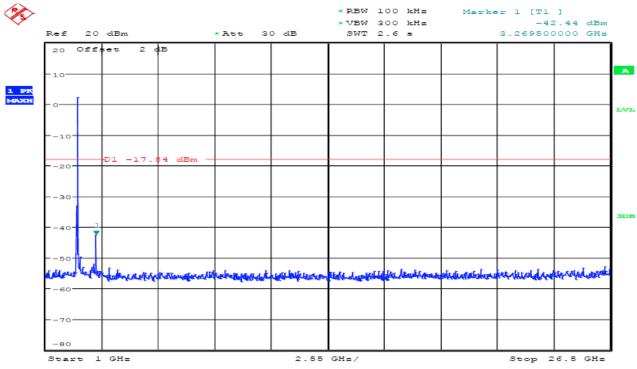

802.11g Middle CH, 2437MHz

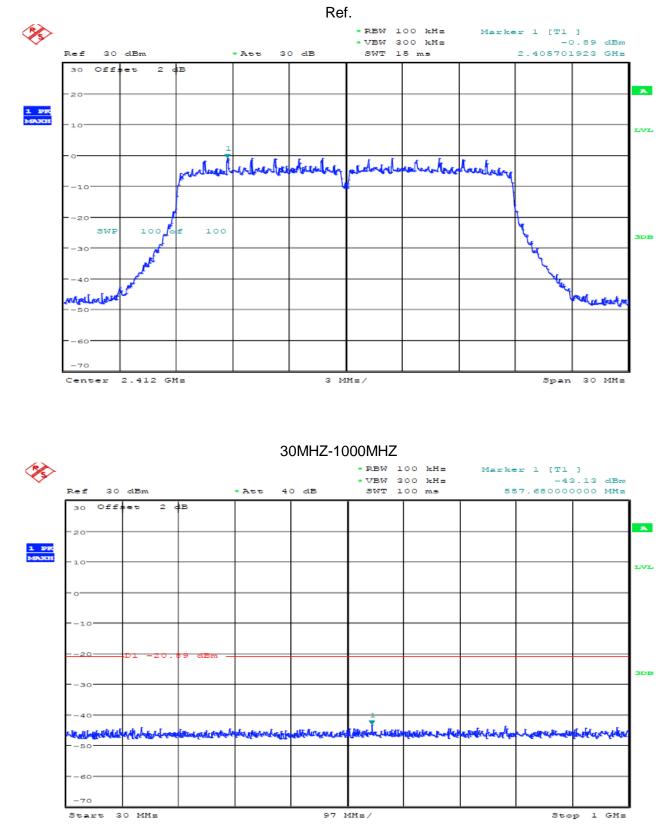
Page 43 of 82

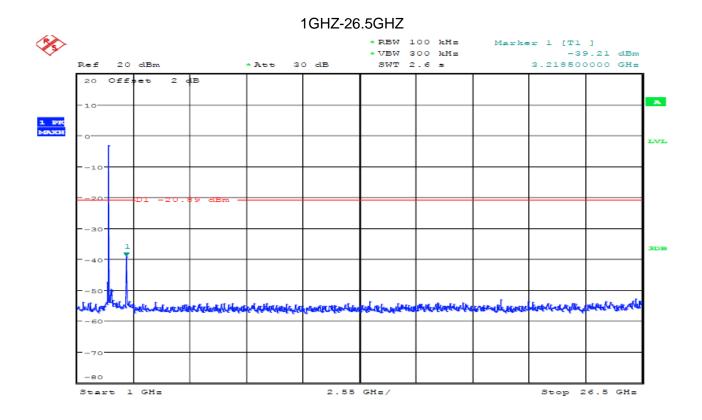


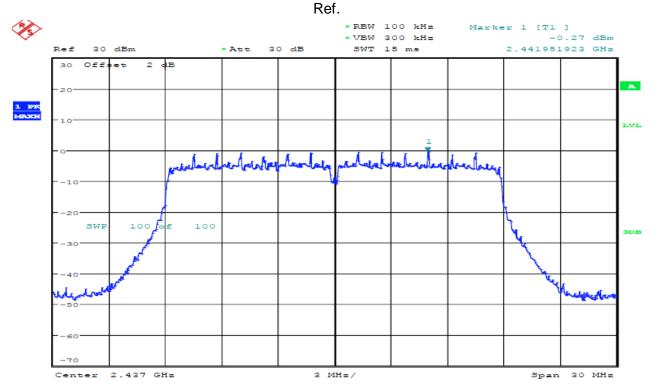
802.11g High CH, 2462MHz



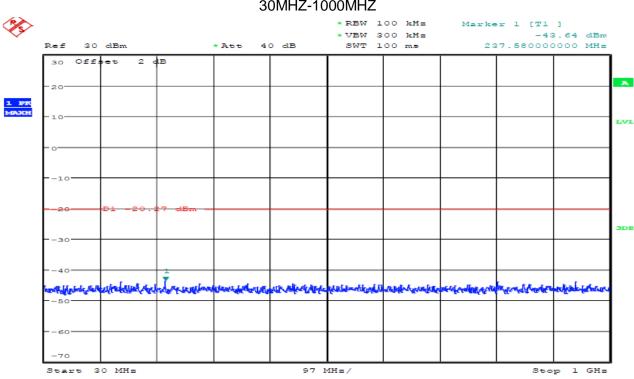

1GHZ-26.5GHZ


30MHZ-1000MHZ

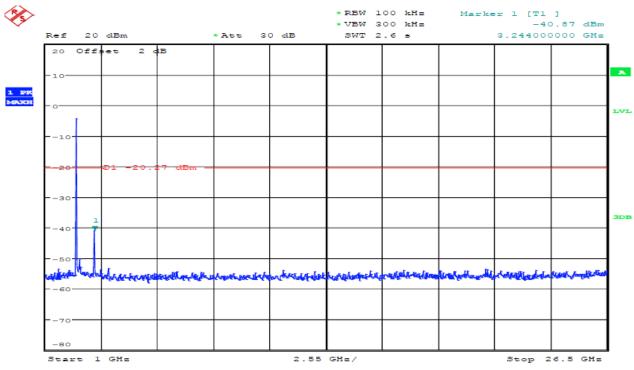

Page 45 of 82


802.11n 20 Low CH, 2412MHz

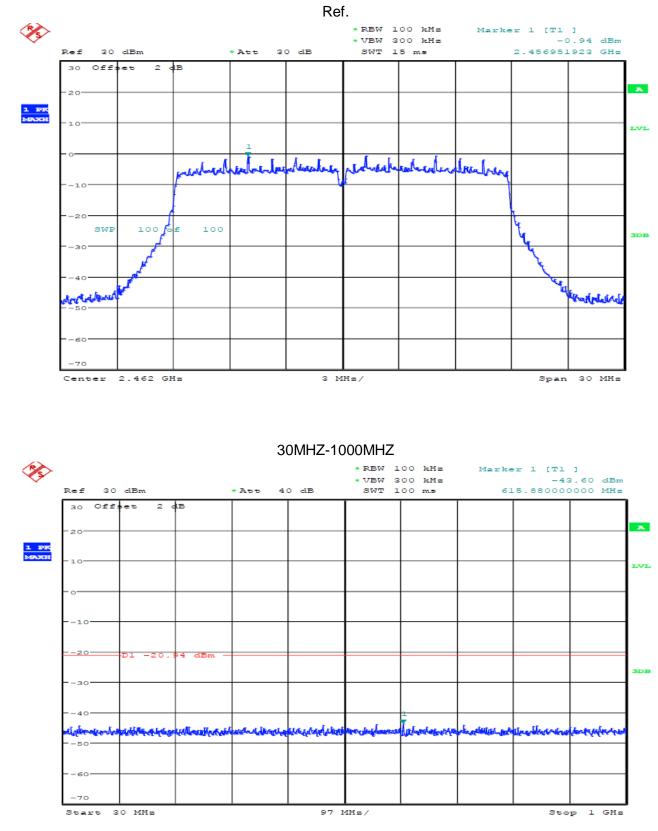
Page 46 of 82



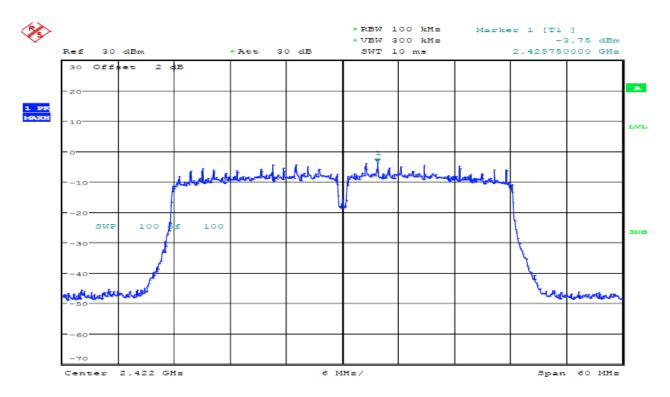
802.11n 20 Middle CH, 2437MHz



Page 47 of 82


30MHZ-1000MHZ

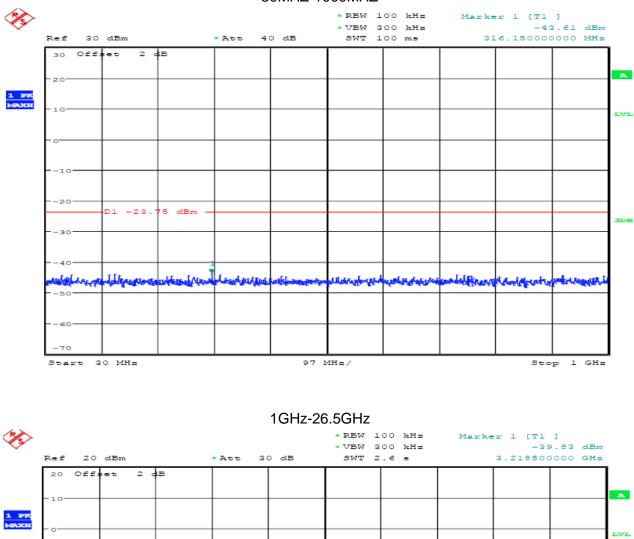
Page 48 of 82



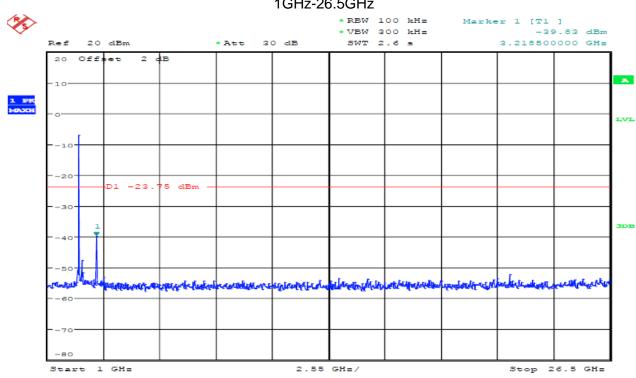
802.11n 20 High CH, 2462MHz

% * RBW 100 kHz Marker 1 [T1] *VBW 300 kHz -43.60 dBm Ref 20 dBm * Att 30 dB SWT 2.6 s 3.269500000 GHz Offset 2 dв 20 10 1 PK LVL -10 зр 40 50 L Achelica Indian tem A. Achai AMAMIN Hadam all of the second 60 80 2.55 GHz/ Start 1 GHz Stop 26.5 GHz

802.11n 40 Low CH, 2422MHz Ref.



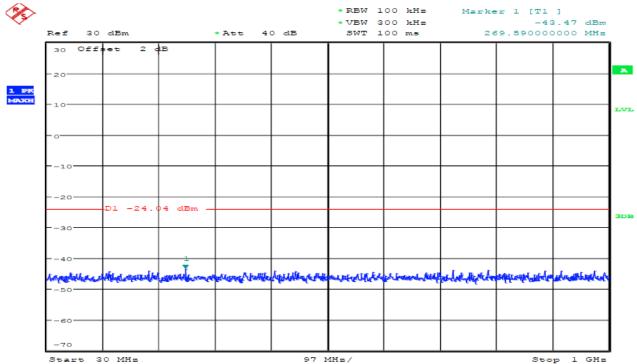
Flux Compliance Service Laboratory Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan Tel: 769-27280901 Fax:769-27280901 http://www.FCS-lab.com


1GHZ-26.5GHZ

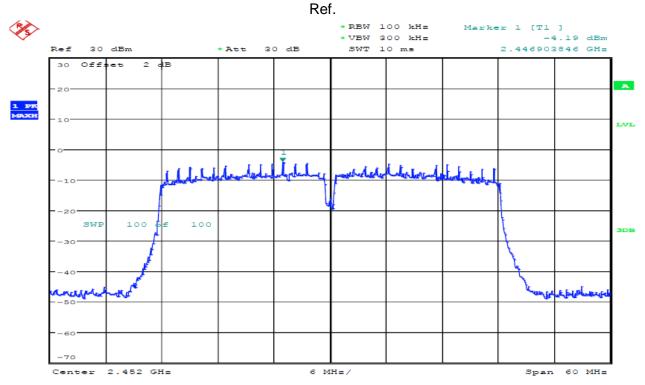
Page 49 of 82



30MHZ-1000MHZ

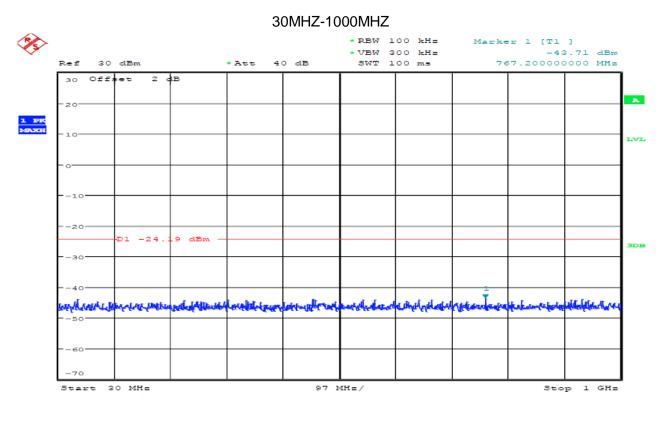


Page 51 of 82

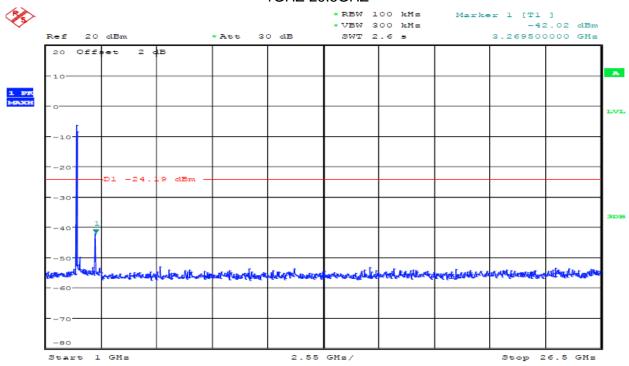

802.11n 40 Middle CH, 2437MHz

× * RBW 100 kHz Marker 1 [T1] • VBW 300 kHz -41.14 dBm 3.244000000 GHz Ref 20 dBm 30 dB SWT 2.6 5 * Att Offset 2 dB 20 ж 1 PK MAXH LVL -10 20 D1 -24.04 dBm --30 40 50 hund Link-4 r ni et tu -Her bull al altra وفليه الم alter lande 60 80 Start 1 GHz 2.55 GHz/ Stop 26.5 GHz

802.11n 40 High CH, 2452MHz



Flux Compliance Service Laboratory Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan Tel: 769-27280901 Fax:769-27280901 http://www.FCS-lab.com


1GHZ-26.5GHZ

Page 52 of 82

1GHZ-26.5GHZ

 Flux Compliance Service Laboratory

 Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan

 Tel: 769-27280901
 Fax: 769-27280901

 http://www.FCS-lab.com

7 RADIATED EMISSION MEASUREMENT

7.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed

LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (1GHz-25 GHz)

FREQUENCY (MHz)	(dBuV/m) (at 3M)			
	PEAK	AVERAGE		
Above 1000	74 54			

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

For Radiated Emission

Spectrum Parameter	Setting		
Attenuation	Auto		
Detector	Peak/AV		
Start Frequency	1000 MHz(Peak/AV)		
Stop Frequency	10th carrier hamonic(Peak/AV)		
RB / VB (emission in restricted			
band)	PK=1MHz / 1MHz, AV=1 MHz /10 Hz		

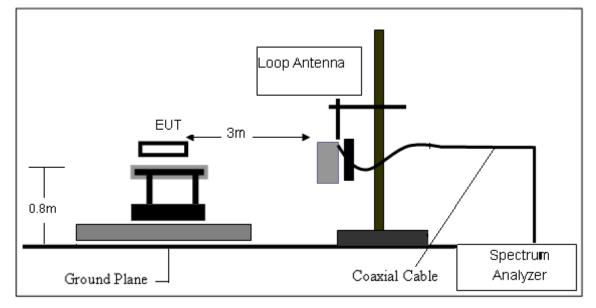
For Band edge

Spectrum Parameter	Setting
Detector	Peak/AV
	Lower Band Edge: 2300 to 2403 MHz
Start/Stop Frequency	Upper Band Edge: 2479 to 2500 MHz
RB / VB (emission in restricted band)	PK=1MHz / 1MHz, AV=1 MHz / 10 Hz

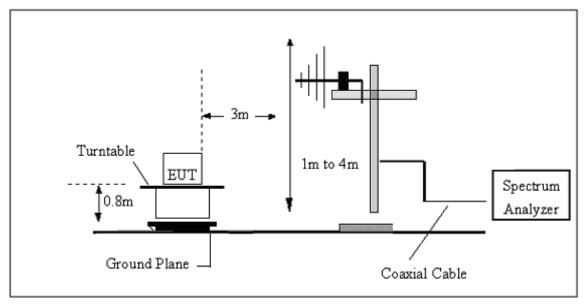
Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

7.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz,and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 meters (above 1GHz is 1.5 m) above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then QuasiPeak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

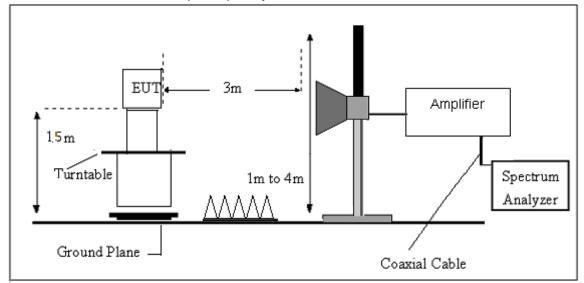

Both horizontal and vertical antenna polarities were tested

and performed pretest to three orthogonal axis. The worst case emissions were reported



7.3 TESTSETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz



(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

7.4. TEST RESULTS

(9KHz-30MHz)

Temperature:	22.7 ℃	Relative Humidity:	61%
Test Voltage:	AC 120V/60HZ	Test Mode:	802.11 b(worst)

Freq.	Reading	Limit	Margin	State		
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F	Test Result	
					PASS	
					PASS	

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

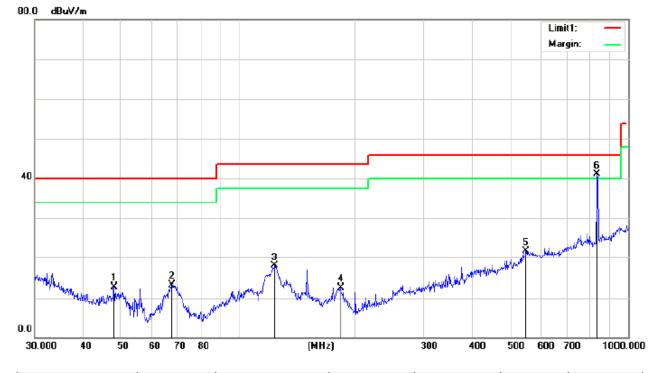

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits (dBuv) + distance extrapolation factor.

(30MHz-1000MHz)

Temperature:	24.7°C	Relative Humidity:	61%
Test Voltage:	AC 120V/60HZ	Phase:	Horizontal
Test Mode:	802.11 b(worst)		

Frequency	Reading	Correct	Result Limit		Margin	Remark
(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
49.7068	32.78	-21.33	11.45	40.00	-28.55	QP
67.9130	38.36	-24.15	14.21	40.00	-25.79	QP
98.8326	32.39	-19.32	13.07	43.50	-30.43	QP
125.0066	31.87	-17.61	14.26	43.50	-29.24	QP
317.7011	28.48	-14.25	14.23	46.00	-31.77	QP
836.2443	36.71	-2.89	33.82	46.00	-12.18	QP


Remark:

1.Margin = Result (Result = Reading + Factor)-Limit

Temperature:	22.7℃	Relative Humidity:	61%
Test Voltage:	AC 120V/60HZ	Phase:	Vertical
Test Mode:	802.11 b(worst)		

Frequency	Reading	Correct	Result	Limit	Margin	Remark
(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m) (dBuV/m		(dB)	
47.9940	33.09	-20.45	12.64	40.00	-27.36	QP
67.4382	37.30	-24.16	13.14	40.00	-26.86	QP
124.1330	35.49	-17.64	17.85	43.50	-25.65	QP
183.2005	32.28	-19.70	12.58	43.50	-30.92	QP
549.0195	28.60	-6.80	21.80	46.00	-24.20	QP
836.2443	44.02	-2.89	41.13	46.00	-4.87	QP

Remark:

1. Margin = Result (Result = Reading + Factor)–Limit

Page 61 of 82

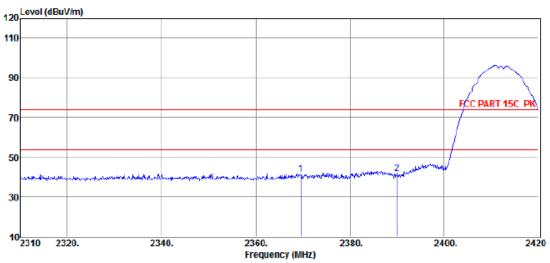
(1GHz~25GHz) Restricted band and Spurious emission Requirements

									Delevinetier
Freq	Read	Antenna	PRM	Cable	Result	Limit	Margin	Detector	Polarization
(MHz)	level	Factor	Factor(dB)	Loss	Level	(dBµV/m)	(dB)	type	
	(dBµV)	(dB/m)		(dB)	(dBµV/m)				
11b CH1									
4859.00	48.02	34.77	43.88	7.44	46.35	74.00	-27.65	Peak	HORIZONTAL
6219.00	46.83	35.70	43.27	8.24	47.50	74.00	-26.50	Peak	HORIZONTAL
7511.00	46.25	37.00	43.65	8.79	48.39	74.00	-25.61	Peak	HORIZONTAL
8378.00	45.76	37.28	43.91	9.66	48.79	74.00	-25.21	Peak	HORIZONTAL
8871.00	46.54	37.45	44.06	10.22	50.15	74.00	-23.85	Peak	HORIZONTAL
10044.00	46.63	38.23	44.39	10.90	51.37	74.00	-22.63	Peak	HORIZONTAL
4689.00	47.99	34.50	43.99	7.27	45.77	74.00	-28.23	Peak	VERTICAL
5726.00	47.93	35.59	43.36	8.04	48.20	74.00	-25.80	Peak	VERTICAL
7324.00	47.58	36.93	43.60	8.62	49.53	74.00	-24.47	Peak	VERTICAL
8837.00	46.00	37.43	44.05	10.18	49.56	74.00	-24.44	Peak	VERTICAL
9908.00	47.18	38.11	44.37	10.84	51.76	74.00	-22.24	Peak	VERTICAL
11302.00	47.13	38.68	44.20	11.03	52.64	74.00	-21.36	Peak	VERTICAL
11b CH6									
4451.00	47.49	34.03	44.13	7.03	44.42	74.00	-29.58	Peak	HORIZONTAL
5471.00	48.27	35.47	43.52	7.88	48.10	74.00	-25.90	Peak	HORIZONTAL
6865.00	47.54	36.50	43.46	8.31	48.89	74.00	-25.11	Peak	HORIZONTAL
7528.00	46.45	37.01	43.66	8.81	48.61	74.00	-25.39	Peak	HORIZONTAL
8956.00	46.98	37.48	44.09	10.32	50.69	74.00	-23.31	Peak	HORIZONTAL
9857.00	47.24	38.06	44.36	10.82	51.76	74.00	-22.24	Peak	HORIZONTAL
4604.00	48.72	34.37	44.04	7.18	46.23	74.00	-27.77	Peak	VERTICAL
5675.00	47.79	35.57	43.40	8.01	47.97	74.00	-26.03	Peak	VERTICAL
6185.00	47.53	35.70	43.26	8.23	48.20	74.00	-25.80	Peak	VERTICAL
7528.00	46.45	37.01	43.66	8.81	48.61	74.00	-25.39	Peak	VERTICAL
8531.00	46.24	37.31	43.96	9.84	49.43	74.00	-24.57	Peak	VERTICAL
9398.00	46.81	37.66	44.22	10.58	50.83	74.00	-23.17	Peak	VERTICAL
11b CH11									
4247.00	47.24	33.34	44.25	6.83	43.16	74.00	-30.84	Peak	HORIZONTAL
5471.00	47.91	35.47	43.52	7.88	47.74	74.00	-26.26	Peak	HORIZONTAL
6610.00	46.39	35.94	43.38	8.28	47.23	74.00	-26.77	Peak	HORIZONTAL
7443.00	46.96	36.98	43.63	8.73	49.04	74.00	-24.96	Peak	HORIZONTAL
8837.00	45.79	37.43	44.05	10.18	49.35	74.00	-24.65	Peak	HORIZONTAL
9891.00	46.08	38.09	44.37	10.83	50.63	74.00	-23.37	Peak	HORIZONTAL
3635.00	48.70	32.06	44.38	6.29	42.67	74.00	-31.33	Peak	VERTICAL
5250.00	47.22	35.25	43.65	7.74	46.56	74.00	-27.44	Peak	VERTICAL
6185.00	47.06	35.70	43.26	8.23	47.73	74.00	-26.27	Peak	VERTICAL
7409.00	46.57	36.96	43.62	8.70	48.61	74.00	-25.39	Peak	VERTICAL
8327.00	45.96	37.27	43.90	9.60	48.93	74.00	-25.07	Peak	VERTICAL
9789.00	45.90	37.99	43.90	10.78	40.95 50.36	74.00	-23.64	Peak	VERTICAL

Remark:

1.Factor = Antenna Factor + Cable Loss – Pre-amplifier.

2.Scan with 802.11b, 802.11g, 802.11n20, 802.11n 40, the worst case is 802.11b.Emission Level = Reading + FactorMargin = Limit - Emission Leve

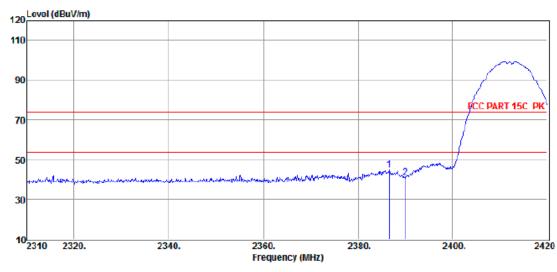

3. The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency emission is mainly from the environment noise

Radiated Band Edge data

Remark: All restriction band have been tested, and only the worst case is shown in report

802.11 b low CH

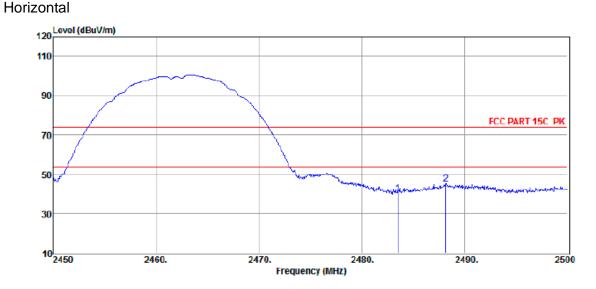
Horizontal


Item	Freq.	Read	Antenna	PRM	Cable	Result	Limit	Over	Detector	Polarization
		Level	Factor	Factor	Loss	Level	Line	Limit		
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	dB	(dBµV/m)	(dBµV /m)	(dB)		
1	2369.51	53.73	26.93	44.32	5.09	41.43	74.00	-32.57	Peak	HORIZONTAL
2	2389.97	54.08	27.00	44.32	5.11	41.87	74.00	-32.13	Peak	HORIZONTAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

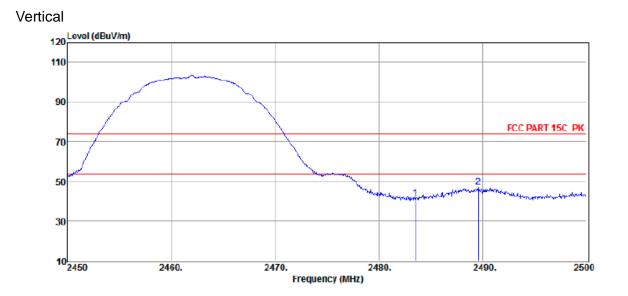
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

Vertical


Item	Freq.	Read	Antenna	PRM	Cable	Result	Limit	Over	Detector	Polarization
		Level	Factor	Factor	Loss	Level	Line	Limit		
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	dB	(dBµV/m)	(dBµV /m)	(dB)		
1	2386.56	56.99	26.99	44.32	5.11	44.77	74.00	-29.23	Peak	VERTICAL
2	2389.97	53.17	27.00	44.32	5.11	40.96	74.00	-33.04	Peak	VERTICAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

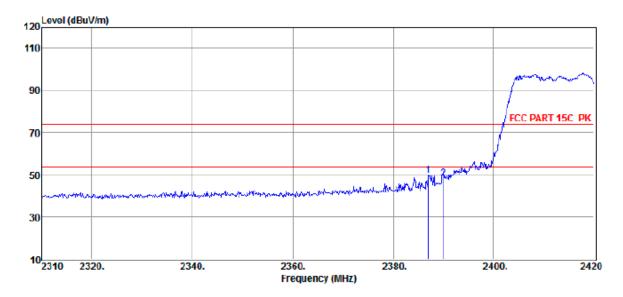
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


802.11 b High CH

ltem	Freq.	Read Level	Antenna Factor	PRM Factor	Cable Loss	Result Level	Limit Line	Over Limit	Detector	Polarization
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	dB	(dBµV/m)	(dBµV /m)	(dB)		
1	2483.50	52.12	27.34	44.32	5.21	40.35	74.00	-33.65	Peak	HORIZONTAL
2	2488.15	56.76	27.36	44.32	5.22	45.02	74.00	-28.98	Peak	HORIZONTAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

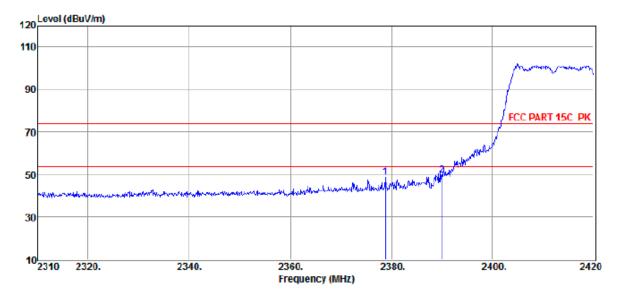

Item	Freq.	Read	Antenna	PRM	Cable	Result	Limit	Over	Detector	Polarization
		Level	Factor	Factor	Loss	Level	Line	Limit		
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	dB	(dBµV/m)	(dBµV /m)	(dB)		
1	2483.50	53.16	27.34	44.32	5.21	41.39	74.00	-32.61	Peak	VERTICAL
2	2489.55	58.95	27.36	44.32	5.22	47.21	74.00	-26.79	Peak	VERTICAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

802.11 g Low CH Horizontal

Item	Freq.	Read	Antenna	PRM	Cable	Result	Limit	Over	Detector	Polarization
		Level	Factor	Factor	Loss	Level	Line	Limit		
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	dB	(dBµV/m)	(dBµV /m)	(dB)		
1	2387.00	61.76	26.99	44.32	5.11	49.54	74.00	-24.46	Peak	HORIZONTAL
2	2390.00	60.54	27.00	44.32	5.11	48.33	74.00	-25.67	Peak	HORIZONTAL


Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

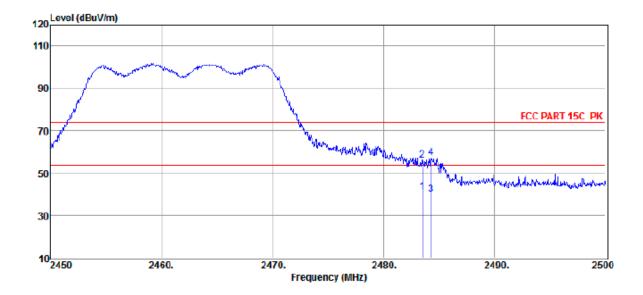
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

Vertical

Item	Freq.	Read	Antenna	PRM	Cable	Result	Limit	Over	Detector	Polarization
		Level	Factor	Factor	Loss	Level	Line	Limit		
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	dB	(dBµV/m)	(dBµV /m)	(dB)		
1	2378.75	60.86	26.96	44.32	5.10	48.60	74.00	-25.40	Peak	VERTICAL
2	2390.00	61.88	27.00	44.32	5.11	49.67	74.00	-24.33	Peak	VERTICAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

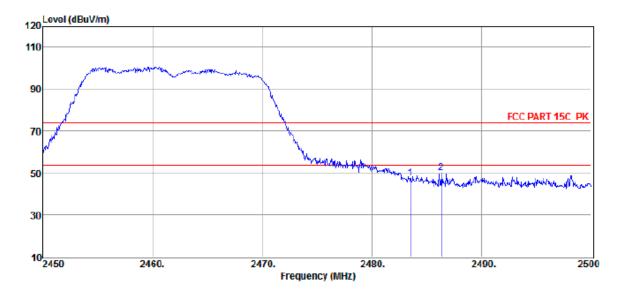

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

Page 68 of 82

802.11 g High CH Horizontal

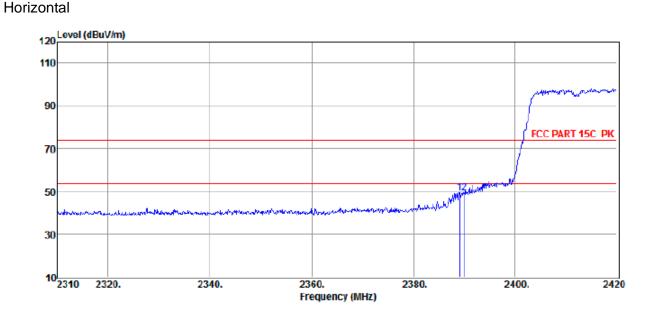
Item	Freq.	Read	Antenna	PRM	Cable	Result	Limit	Over	Detector	Polarization
		Level	Factor	Factor	Loss	Level	Line	Limit		
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	dB	(dBµV/m)	(dBµV /m)	(dB)		
1	2483.50	52.65	27.34	44.32	5.21	40.88	54.00	-13.12	Average	HORIZONTAL
2	2483.50	67.78	27.34	44.32	5.21	56.01	74.00	-17.99	Peak	HORIZONTAL
3	2484.25	51.49	27.34	44.32	5.21	39.72	54.00	-14.28	Average	HORIZONTAL
4	2484.25	69.00	27.34	44.32	5.21	57.23	74.00	-16.77	Peak	HORIZONTAL


Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

Vertical

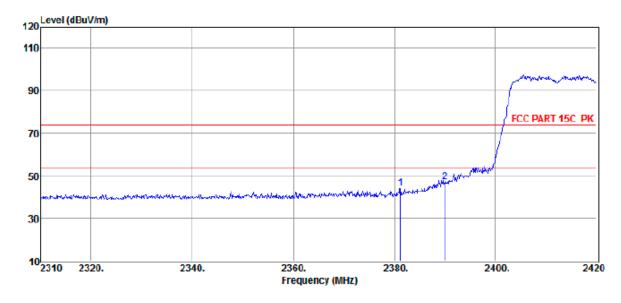

Item	Freq.	Read Level	Antenna Factor	PRM Factor	Cable Loss	Result Level	Limit Line	Over Limit	Detector	Polarization
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	dB	(dBµV/m)	(dBµV /m)	(dB)		
1	2483.50	59.31	27.34	44.32	5.21	47.54	74.00	-26.46	Peak	VERTICAL
2	2486.30	61.81	27.35	44.32	5.21	50.05	74.00	-23.95	Peak	VERTICAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

802.11 N 20 Low CH

Item	Freq.	Read	Antenna	PRM	Cable	Result	Limit	Over	Detector	Polarization
		Level	Factor	Factor	Loss	Level	Line	Limit		
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	dB	(dBµV/m)	(dBµV /m)	(dB)		
1	2389.09	61.48	27.00	44.32	5.11	49.27	74.00	-24.73	Peak	HORIZONTAL
2	2390.00	61.47	27.00	44.32	5.11	49.26	74.00	-24.74	Peak	HORIZONTAL

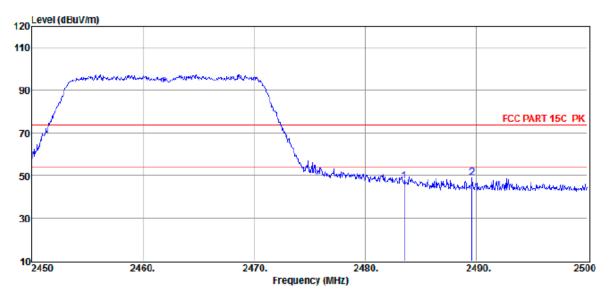

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

Vertical

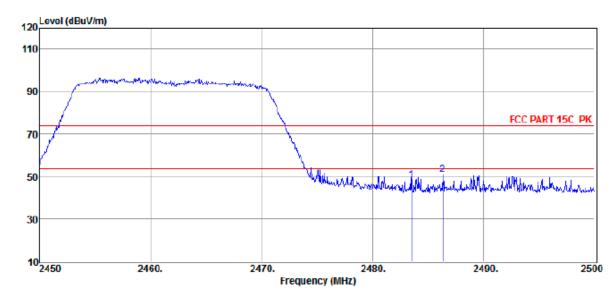
Item	Freq.	Read	Antenna	PRM	Cable	Result	Limit	Over	Detector	Polarization
		Level	Factor	Factor	Loss	Level	Line	Limit		
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	dB	(dBµV/m)	(dBµV /m)	(dB)		
1	2381.17	56.14	26.97	44.32	5.10	43.89	74.00	-30.11	Peak	VERTICAL
2	2390.00	59.31	27.00	44.32	5.11	47.10	74.00	-26.90	Peak	VERTICAL


Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

802.11 N 20 High CH

Horizontal

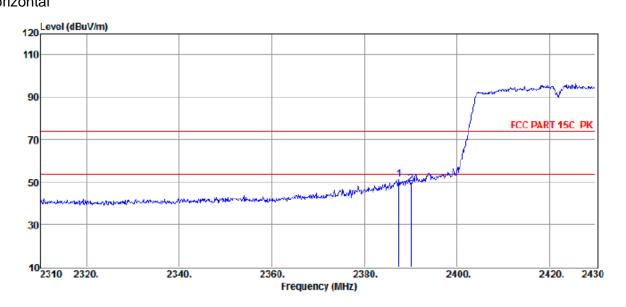

Item	Freq.	Read	Antenna	PRM	Cable	Result	Limit	Over	Detector	Polarization
		Level	Factor	Factor	Loss	Level	Line	Limit		
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	dB	(dBµV/m)	(dBµV /m)	(dB)		
1	2483.50	59.05	27.34	44.32	5.21	47.28	74.00	-26.72	Peak	HORIZONTAL
2	2489.60	60.51	27.36	44.32	5.22	48.77	74.00	-25.23	Peak	HORIZONTAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

Vertical


Item	Freq.	Read	Antenna	PRM	Cable	Result	Limit	Over	Detector	Polarization
		Level	Factor	Factor	Loss	Level	Line	Limit		
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	dB	(dBµV/m)	(dBµV /m)	(dB)		
1	2483.50	60.03	27.34	44.32	5.21	48.26	74.00	-25.74	Peak	VERTICAL
2	2486.30	62.73	27.35	44.32	5.21	50.97	74.00	-23.03	Peak	VERTICAL

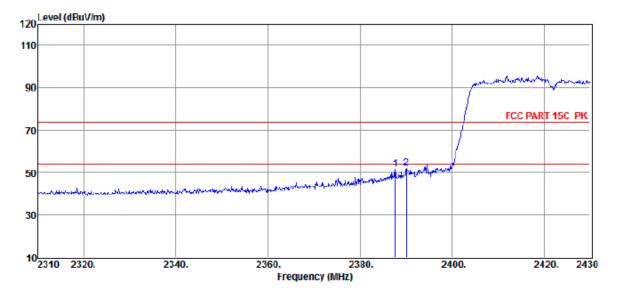
Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

802.11 N 40 Low CH Horizontal

Item	Freq.	Read	Antenna	PRM	Cable	Result	Limit	Over	Detector	Polarization
		Level	Factor	Factor	Loss	Level	Line	Limit		
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	dB	(dBµV/m)	(dBµV /m)	(dB)		
1	2387.52	63.52	27.00	44.32	5.11	51.31	74.00	-22.69	Peak	HORIZONTAL
2	2390.00	61.64	27.00	44.32	5.11	49.43	74.00	-24.57	Peak	HORIZONTAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

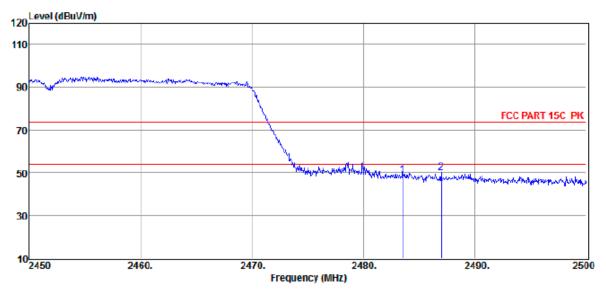

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

Vertical

Item	Freq.	Read	Antenna	PRM	Cable	Result	Limit	Over	Detector	Polarization
		Level	Factor	Factor	Loss	Level	Line	Limit		
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	dB	(dBµV/m)	(dBµV /m)	(dB)		
1	2387.64	63.64	27.00	44.32	5.11	51.43	74.00	-22.57	Peak	VERTICAL
2	2390.00	64.24	27.00	44.32	5.11	52.03	74.00	-21.97	Peak	VERTICAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

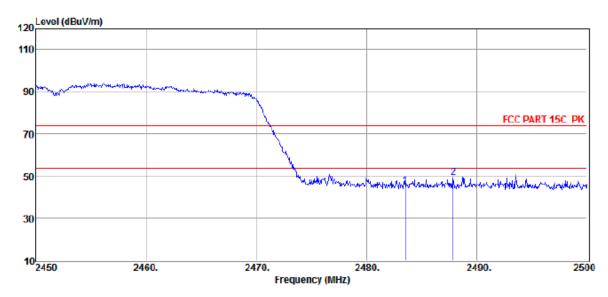

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

802.11 N 40 High CH

Horizontal

Item	Freq.	Read	Antenna	PRM	Cable	Result	Limit	Over	Detector	Polarization
		Level	Factor	Factor	Loss	Level	Line	Limit		
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	dB	(dBµV/m)	(dBµV /m)	(dB)		
1	2483.50	60.60	27.34	44.32	5.21	48.83	74.00	-25.17	Peak	HORIZONTAL
2	2486.95	61.75	27.35	44.32	5.22	50.00	74.00	-24.00	Peak	HORIZONTAL


Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

Vertical

Item	Freq.	Read	Antenna	PRM	Cable	Result	Limit	Over	Detector	Polarization
		Level	Factor	Factor	Loss	Level	Line	Limit		
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	dB	(dBµV/m)	(dBµV /m)	(dB)		
1	2483.50	56.85	27.34	44.32	5.21	45.08	74.00	-28.92	Peak	VERTICAL
2	2487.85	61.17	27.36	44.32	5.22	49.43	74.00	-24.57	Peak	VERTICAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

8 CONDUCTED EMISSION Test

8.1.1 POWER LINE CONDUCTED EMISSION LIMITS

Operating frequency band. In case the emission fall within the restricted band specified on Part 207(a) limit in the table below has to be followed.

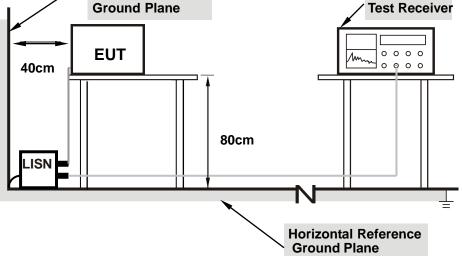
	Conducted Emissionlimit (dBuV)				
FREQUENCY (MHz)	Quasi-peak	Average			
0.15 -0.5	66 - 56 *	56 - 46 *			
0.50 -5.0	56.00	46.00			
5.0 -30.0	60.00	50.00			

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting			
Attenuation	10 dB			
Start Frequency	0.15 MHz			
Stop Frequency	30 MHz			
IF Bandwidth	9 kHz			



8.1.2 TEST PROCEDURE

8.1.3 TEST SETUP

- a. The EUT was 0.8 meters from the horizontal ground plane and 0.4 meters from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Vertical Reference Ground Plane

Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

8.1.4 TEST RESULT

Temperature:	22.1 °C	Relative Humidity:	56%
Test Voltage:	120V/60HZ by adapter	Phase:	L/N
Test Mode:	802.11 b(worst)		

L-line

						vit1: —
50 × Manna Man	manna	Nrownway water and the second se	HIN Jamon and a			pe:
o 0.150	0.5	Marand Manager and Maran and Andrew		there and the second	and and the second second of	30.000
Frequency	Reading	Correct	Result	Limit	Margin	Dement
(MHz)	(dBu∀)	Factor(dB)	(dBuV)	(dBuV)	(dB)	Remark
0.1500	35.17	9.79	44.96	66.00	-21.04	QP
0.1500	14.29	9.79	24.08	56.00	-31.92	AVG
0.2620	28.89	10.06	38.95	61.37	-22.42	QP
0.2620	8.62	10.06	18.68	51.37	-32.69	AVG
0.6700	26.51	9.87	36.38	56.00	-19.62	QP
0.6700	14.18	9.87	24.05	46.00	-21.95	AVG
2.2180	16.64	9.79	26.43	56.00	-29.57	QP
2.2180	3.51	9.79	13.30	46.00	-32.70	AVG
4.6100	14.70	9.85	24.55	56.00	-31.45	QP
4.6100	2.16	9.85	12.01	46.00	-33.99	AVG
28.3500	23.98	10.24	34.22	60.00	-25.78	QP
28.3500	7.39	10.24	17.63	50.00	-32.37	AVG

Remark:

1.All readings are Quasi-Peak and Average values.

2.Margin = Result (Result = Reading + Factor)-Limit

Page 81 of 82

						ii1: — iit2: —
Num M	Marina V	i Andrew March	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	White when the share	manna	helman App
.0	0.5		(MHz)	5		30.000
Frequency	Reading	Correct	Result	Limit	Margin	Demerk
(MHz)	(dBu∀)	Factor(dB)	(dBuV)	(dBuV)	(dB)	Remark
0.1540	35.06	9.79	44.85	65.78	-20.93	QP
0.1540	14.70	9.79	24.49	55.78	-31.29	AVG
0.2580	29.71	10.04	39.75	61.50	-21.75	QP
0.2580	11.85	10.04	21.89	51.50	-29.61	AVG
0.6700	31.90	9.87	41.77	56.00	-14.23	QP
0.6700	20.06	9.87	29.93	46.00	-16.07	AVG
1.0740	23.36	9.80	33.16	56.00	-22.84	QP
1.0740	10.25	9.80	20.05	46.00	-25.95	AVG
4.2620	22.42	9.84	32.26	56.00	-23.74	QP
4.2620	7.56	9.84	17.40	46.00	-28.60	AVG
	00.04	40.05	22.26	60.00	26.74	QP
28.4420	23.01	10.25	33.26	60.00	-26.74	QF

Remark:

1.All readings are Quasi-Peak and Average values.

2.Margin = Result (Result = Reading + Factor)-Limit

9. ANTENNA REQUIREMENT

9.1 STANDARD REQUIREMENT

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

9.2 RESULT

The antennas used for this product are pcb antenna and other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is 1.0dBi.

* * * * * END OF THE REPORT * * * * *